Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.41
      1  1.41       cgd /*	$NetBSD: machdep.c,v 1.41 1996/09/10 19:13:42 cgd Exp $	*/
      2   1.1       cgd 
      3   1.1       cgd /*
      4  1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5   1.1       cgd  * All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Author: Chris G. Demetriou
      8   1.1       cgd  *
      9   1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10   1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11   1.1       cgd  * notice and this permission notice appear in all copies of the
     12   1.1       cgd  * software, derivative works or modified versions, and any portions
     13   1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14   1.1       cgd  *
     15   1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16   1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17   1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18   1.1       cgd  *
     19   1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20   1.1       cgd  *
     21   1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22   1.1       cgd  *  School of Computer Science
     23   1.1       cgd  *  Carnegie Mellon University
     24   1.1       cgd  *  Pittsburgh PA 15213-3890
     25   1.1       cgd  *
     26   1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27   1.1       cgd  * rights to redistribute these changes.
     28   1.1       cgd  */
     29   1.1       cgd 
     30   1.1       cgd #include <sys/param.h>
     31   1.1       cgd #include <sys/systm.h>
     32   1.1       cgd #include <sys/signalvar.h>
     33   1.1       cgd #include <sys/kernel.h>
     34   1.1       cgd #include <sys/map.h>
     35   1.1       cgd #include <sys/proc.h>
     36   1.1       cgd #include <sys/buf.h>
     37   1.1       cgd #include <sys/reboot.h>
     38  1.28       cgd #include <sys/device.h>
     39   1.1       cgd #include <sys/conf.h>
     40   1.1       cgd #include <sys/file.h>
     41   1.1       cgd #ifdef REAL_CLISTS
     42   1.1       cgd #include <sys/clist.h>
     43   1.1       cgd #endif
     44   1.1       cgd #include <sys/callout.h>
     45   1.1       cgd #include <sys/malloc.h>
     46   1.1       cgd #include <sys/mbuf.h>
     47   1.1       cgd #include <sys/msgbuf.h>
     48   1.1       cgd #include <sys/ioctl.h>
     49   1.1       cgd #include <sys/tty.h>
     50   1.1       cgd #include <sys/user.h>
     51   1.1       cgd #include <sys/exec.h>
     52   1.1       cgd #include <sys/exec_ecoff.h>
     53   1.1       cgd #include <sys/sysctl.h>
     54   1.1       cgd #ifdef SYSVMSG
     55   1.1       cgd #include <sys/msg.h>
     56   1.1       cgd #endif
     57   1.1       cgd #ifdef SYSVSEM
     58   1.1       cgd #include <sys/sem.h>
     59   1.1       cgd #endif
     60   1.1       cgd #ifdef SYSVSHM
     61   1.1       cgd #include <sys/shm.h>
     62   1.1       cgd #endif
     63   1.1       cgd 
     64   1.1       cgd #include <sys/mount.h>
     65   1.1       cgd #include <sys/syscallargs.h>
     66   1.1       cgd 
     67   1.1       cgd #include <vm/vm_kern.h>
     68   1.1       cgd 
     69   1.1       cgd #include <dev/cons.h>
     70   1.1       cgd 
     71   1.1       cgd #include <machine/cpu.h>
     72   1.1       cgd #include <machine/reg.h>
     73   1.1       cgd #include <machine/rpb.h>
     74   1.1       cgd #include <machine/prom.h>
     75   1.1       cgd 
     76   1.8       cgd #ifdef DEC_3000_500
     77   1.8       cgd #include <alpha/alpha/dec_3000_500.h>
     78   1.8       cgd #endif
     79   1.8       cgd #ifdef DEC_3000_300
     80   1.8       cgd #include <alpha/alpha/dec_3000_300.h>
     81   1.8       cgd #endif
     82   1.8       cgd #ifdef DEC_2100_A50
     83   1.8       cgd #include <alpha/alpha/dec_2100_a50.h>
     84   1.8       cgd #endif
     85  1.12       cgd #ifdef DEC_KN20AA
     86  1.12       cgd #include <alpha/alpha/dec_kn20aa.h>
     87  1.12       cgd #endif
     88  1.12       cgd #ifdef DEC_AXPPCI_33
     89  1.12       cgd #include <alpha/alpha/dec_axppci_33.h>
     90  1.12       cgd #endif
     91  1.12       cgd #ifdef DEC_21000
     92  1.12       cgd #include <alpha/alpha/dec_21000.h>
     93  1.12       cgd #endif
     94   1.8       cgd 
     95  1.33       cgd #include <net/if.h>
     96   1.1       cgd #include <net/netisr.h>
     97  1.33       cgd #include <netinet/in.h>
     98  1.33       cgd #include <netinet/ip_var.h>
     99  1.33       cgd #include <netinet/if_arp.h>
    100   1.1       cgd #include "ether.h"
    101   1.1       cgd 
    102  1.17       cgd #include "le_ioasic.h"			/* for le_iomem creation */
    103   1.1       cgd 
    104   1.1       cgd vm_map_t buffer_map;
    105   1.1       cgd 
    106   1.7       cgd void dumpsys __P((void));
    107   1.7       cgd 
    108   1.1       cgd /*
    109   1.1       cgd  * Declare these as initialized data so we can patch them.
    110   1.1       cgd  */
    111   1.1       cgd int	nswbuf = 0;
    112   1.1       cgd #ifdef	NBUF
    113   1.1       cgd int	nbuf = NBUF;
    114   1.1       cgd #else
    115   1.1       cgd int	nbuf = 0;
    116   1.1       cgd #endif
    117   1.1       cgd #ifdef	BUFPAGES
    118   1.1       cgd int	bufpages = BUFPAGES;
    119   1.1       cgd #else
    120   1.1       cgd int	bufpages = 0;
    121   1.1       cgd #endif
    122   1.1       cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    123   1.1       cgd int	maxmem;			/* max memory per process */
    124   1.7       cgd 
    125   1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    126   1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    127   1.7       cgd int	firstusablepage;	/* first usable memory page */
    128   1.7       cgd int	lastusablepage;		/* last usable memory page */
    129   1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    130   1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    131   1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    132   1.1       cgd 
    133   1.1       cgd int	cputype;		/* system type, from the RPB */
    134   1.1       cgd 
    135   1.1       cgd /*
    136   1.1       cgd  * XXX We need an address to which we can assign things so that they
    137   1.1       cgd  * won't be optimized away because we didn't use the value.
    138   1.1       cgd  */
    139   1.1       cgd u_int32_t no_optimize;
    140   1.1       cgd 
    141   1.1       cgd /* the following is used externally (sysctl_hw) */
    142   1.1       cgd char	machine[] = "alpha";
    143  1.29       cgd char	cpu_model[128];
    144   1.1       cgd char	*model_names[] = {
    145   1.2       cgd 	"UNKNOWN (0)",
    146   1.2       cgd 	"Alpha Demonstration Unit",
    147   1.2       cgd 	"DEC 4000 (\"Cobra\")",
    148   1.2       cgd 	"DEC 7000 (\"Ruby\")",
    149   1.2       cgd 	"DEC 3000/500 (\"Flamingo\") family",
    150   1.2       cgd 	"UNKNOWN (5)",
    151   1.2       cgd 	"DEC 2000/300 (\"Jensen\")",
    152   1.2       cgd 	"DEC 3000/300 (\"Pelican\")",
    153   1.2       cgd 	"UNKNOWN (8)",
    154   1.2       cgd 	"DEC 2100/A500 (\"Sable\")",
    155   1.2       cgd 	"AXPvme 64",
    156   1.2       cgd 	"AXPpci 33 (\"NoName\")",
    157  1.12       cgd 	"DEC 21000 (\"TurboLaser\")",
    158   1.7       cgd 	"DEC 2100/A50 (\"Avanti\") family",
    159   1.2       cgd 	"Mustang",
    160  1.12       cgd 	"DEC KN20AA",
    161  1.12       cgd 	"UNKNOWN (16)",
    162   1.2       cgd 	"DEC 1000 (\"Mikasa\")",
    163   1.1       cgd };
    164   1.1       cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    165   1.1       cgd 
    166   1.1       cgd struct	user *proc0paddr;
    167   1.1       cgd 
    168   1.1       cgd /* Number of machine cycles per microsecond */
    169   1.1       cgd u_int64_t	cycles_per_usec;
    170   1.1       cgd 
    171   1.1       cgd /* some memory areas for device DMA.  "ick." */
    172   1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    173   1.1       cgd 
    174   1.1       cgd /* Interrupt vectors (in locore) */
    175   1.1       cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    176   1.1       cgd 
    177   1.7       cgd /* number of cpus in the box.  really! */
    178   1.7       cgd int		ncpus;
    179   1.7       cgd 
    180   1.8       cgd /* various CPU-specific functions. */
    181   1.8       cgd char		*(*cpu_modelname) __P((void));
    182  1.24       cgd void		(*cpu_consinit) __P((void));
    183  1.28       cgd void		(*cpu_device_register) __P((struct device *dev, void *aux));
    184   1.8       cgd char		*cpu_iobus;
    185   1.8       cgd 
    186  1.25       cgd char boot_flags[64];
    187   1.8       cgd 
    188  1.30       cgd /* for cpu_sysctl() */
    189  1.36       cgd char	root_device[17];
    190  1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    191  1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    192  1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    193  1.30       cgd 
    194  1.36       cgd void	identifycpu();
    195  1.33       cgd 
    196   1.1       cgd int
    197  1.25       cgd alpha_init(pfn, ptb)
    198   1.1       cgd 	u_long pfn;		/* first free PFN number */
    199   1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    200   1.1       cgd {
    201   1.2       cgd 	extern char _end[];
    202   1.1       cgd 	caddr_t start, v;
    203   1.1       cgd 	struct mddt *mddtp;
    204   1.7       cgd 	int i, mddtweird;
    205   1.1       cgd 	char *p;
    206   1.1       cgd 
    207   1.1       cgd 	/*
    208   1.1       cgd 	 * Turn off interrupts and floating point.
    209   1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    210   1.1       cgd 	 */
    211   1.1       cgd 	(void)splhigh();
    212  1.32       cgd 	alpha_pal_wrfen(0);
    213  1.37       cgd 	ALPHA_TBIA();
    214  1.32       cgd 	alpha_pal_imb();
    215   1.1       cgd 
    216   1.1       cgd 	/*
    217   1.1       cgd 	 * get address of the restart block, while we the bootstrap
    218   1.1       cgd 	 * mapping is still around.
    219   1.1       cgd 	 */
    220  1.32       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    221  1.32       cgd 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    222   1.1       cgd 
    223   1.1       cgd 	/*
    224   1.1       cgd 	 * Remember how many cycles there are per microsecond,
    225   1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    226   1.1       cgd 	 */
    227   1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    228   1.1       cgd 
    229   1.1       cgd 	/*
    230   1.1       cgd 	 * Init the PROM interface, so we can use printf
    231   1.1       cgd 	 * until PROM mappings go away in consinit.
    232   1.1       cgd 	 */
    233   1.1       cgd 	init_prom_interface();
    234   1.1       cgd 
    235   1.1       cgd 	/*
    236   1.1       cgd 	 * Point interrupt/exception vectors to our own.
    237   1.1       cgd 	 */
    238  1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    239  1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    240  1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    241  1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    242  1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    243  1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    244  1.36       cgd 
    245  1.36       cgd 	/*
    246  1.36       cgd 	 * Disable System and Processor Correctable Error reporting.
    247  1.36       cgd 	 * Clear pending machine checks and error reports, etc.
    248  1.36       cgd 	 */
    249  1.40       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
    250   1.1       cgd 
    251   1.1       cgd 	/*
    252   1.1       cgd 	 * Find out how much memory is available, by looking at
    253   1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    254   1.7       cgd 	 * its best to detect things things that have never been seen
    255   1.7       cgd 	 * before...
    256   1.7       cgd 	 *
    257   1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    258   1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    259   1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    260   1.1       cgd 	 */
    261   1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    262   1.7       cgd 
    263   1.7       cgd 	/*
    264   1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    265   1.7       cgd 	 */
    266   1.7       cgd 	mddtweird = 0;
    267   1.7       cgd 
    268   1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    269   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    270   1.7       cgd 	if (cnt != 2 && cnt != 3) {
    271  1.33       cgd 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    272   1.7       cgd 		mddtweird = 1;
    273   1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    274   1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    275   1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    276   1.7       cgd 		mddtweird = 1;
    277  1.33       cgd 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    278   1.7       cgd 	}
    279   1.7       cgd 
    280   1.7       cgd 	for (i = 0; i < cnt; i++) {
    281   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    282   1.7       cgd 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    283   1.7       cgd 			    i, usage(i));
    284   1.7       cgd 			mddtweird = 1;
    285   1.7       cgd 		}
    286   1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    287   1.7       cgd 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    288   1.7       cgd 			mddtweird = 1;
    289   1.7       cgd 		}
    290   1.7       cgd 		/* XXX other things to check? */
    291   1.7       cgd 	}
    292   1.7       cgd #undef cnt
    293   1.7       cgd #undef usage
    294   1.7       cgd 
    295   1.7       cgd 	if (mddtweird) {
    296   1.7       cgd 		printf("\n");
    297   1.7       cgd 		printf("complete memory cluster information:\n");
    298   1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    299   1.2       cgd 			printf("mddt %d:\n", i);
    300   1.2       cgd 			printf("\tpfn %lx\n",
    301   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    302   1.2       cgd 			printf("\tcnt %lx\n",
    303   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    304   1.2       cgd 			printf("\ttest %lx\n",
    305   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    306   1.2       cgd 			printf("\tbva %lx\n",
    307   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    308   1.2       cgd 			printf("\tbpa %lx\n",
    309   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    310   1.2       cgd 			printf("\tbcksum %lx\n",
    311   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    312   1.2       cgd 			printf("\tusage %lx\n",
    313   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    314   1.2       cgd 		}
    315   1.7       cgd 		printf("\n");
    316   1.2       cgd 	}
    317   1.7       cgd 	/*
    318   1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    319   1.7       cgd 	 */
    320   1.2       cgd 
    321   1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    322   1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    323   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    324   1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    325   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    326   1.7       cgd 			unknownmem += pgcnt(i);
    327   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    328   1.7       cgd 			resvmem += pgcnt(i);
    329   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    330   1.7       cgd 			/*
    331   1.7       cgd 			 * assumes that the system cluster listed is
    332   1.7       cgd 			 * one we're in...
    333   1.7       cgd 			 */
    334   1.7       cgd 			if (physmem != resvmem) {
    335   1.7       cgd 				physmem += pgcnt(i);
    336   1.7       cgd 				firstusablepage =
    337   1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    338   1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    339   1.7       cgd 			} else
    340   1.7       cgd 				unusedmem += pgcnt(i);
    341   1.7       cgd 		}
    342   1.7       cgd #undef usage
    343   1.7       cgd #undef pgcnt
    344   1.1       cgd 	}
    345   1.7       cgd 	if (totalphysmem == 0)
    346   1.1       cgd 		panic("can't happen: system seems to have no memory!");
    347   1.1       cgd 	maxmem = physmem;
    348   1.1       cgd 
    349   1.7       cgd #if 0
    350   1.7       cgd 	printf("totalphysmem = %d\n", totalphysmem);
    351   1.7       cgd 	printf("physmem = %d\n", physmem);
    352   1.7       cgd 	printf("firstusablepage = %d\n", firstusablepage);
    353   1.7       cgd 	printf("lastusablepage = %d\n", lastusablepage);
    354   1.7       cgd 	printf("resvmem = %d\n", resvmem);
    355   1.7       cgd 	printf("unusedmem = %d\n", unusedmem);
    356   1.7       cgd 	printf("unknownmem = %d\n", unknownmem);
    357   1.7       cgd #endif
    358   1.7       cgd 
    359   1.1       cgd 	/*
    360   1.1       cgd 	 * find out this CPU's page size
    361   1.1       cgd 	 */
    362   1.1       cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    363  1.12       cgd 	if (PAGE_SIZE != 8192)
    364  1.12       cgd 		panic("page size %d != 8192?!", PAGE_SIZE);
    365   1.1       cgd 
    366   1.2       cgd 	v = (caddr_t)alpha_round_page(_end);
    367   1.1       cgd 	/*
    368   1.1       cgd 	 * Init mapping for u page(s) for proc 0
    369   1.1       cgd 	 */
    370   1.1       cgd 	start = v;
    371   1.1       cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    372   1.1       cgd 	v += UPAGES * NBPG;
    373   1.1       cgd 
    374   1.1       cgd 	/*
    375   1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    376   1.1       cgd 	 */
    377   1.1       cgd 	cputype = hwrpb->rpb_type;
    378   1.1       cgd 	switch (cputype) {
    379   1.2       cgd #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    380   1.1       cgd 	case ST_DEC_3000_500:
    381   1.8       cgd 		cpu_modelname = dec_3000_500_modelname;
    382   1.8       cgd 		cpu_consinit = dec_3000_500_consinit;
    383  1.28       cgd 		cpu_device_register = dec_3000_500_device_register;
    384  1.13       cgd 		cpu_iobus = "tcasic";
    385   1.2       cgd 		break;
    386   1.2       cgd #endif
    387   1.2       cgd 
    388   1.2       cgd #ifdef DEC_3000_300
    389   1.2       cgd 	case ST_DEC_3000_300:
    390   1.8       cgd 		cpu_modelname = dec_3000_300_modelname;
    391   1.8       cgd 		cpu_consinit = dec_3000_300_consinit;
    392  1.28       cgd 		cpu_device_register = dec_3000_300_device_register;
    393  1.13       cgd 		cpu_iobus = "tcasic";
    394   1.2       cgd 		break;
    395   1.2       cgd #endif
    396   1.2       cgd 
    397   1.2       cgd #ifdef DEC_2100_A50
    398   1.2       cgd 	case ST_DEC_2100_A50:
    399   1.8       cgd 		cpu_modelname = dec_2100_a50_modelname;
    400   1.8       cgd 		cpu_consinit = dec_2100_a50_consinit;
    401  1.28       cgd 		cpu_device_register = dec_2100_a50_device_register;
    402   1.8       cgd 		cpu_iobus = "apecs";
    403   1.2       cgd 		break;
    404   1.2       cgd #endif
    405   1.2       cgd 
    406  1.12       cgd #ifdef DEC_KN20AA
    407  1.12       cgd 	case ST_DEC_KN20AA:
    408  1.12       cgd 		cpu_modelname = dec_kn20aa_modelname;
    409  1.12       cgd 		cpu_consinit = dec_kn20aa_consinit;
    410  1.28       cgd 		cpu_device_register = dec_kn20aa_device_register;
    411  1.12       cgd 		cpu_iobus = "cia";
    412  1.12       cgd 		break;
    413  1.12       cgd #endif
    414  1.12       cgd 
    415  1.12       cgd #ifdef DEC_AXPPCI_33
    416  1.12       cgd 	case ST_DEC_AXPPCI_33:
    417  1.12       cgd 		cpu_modelname = dec_axppci_33_modelname;
    418  1.12       cgd 		cpu_consinit = dec_axppci_33_consinit;
    419  1.28       cgd 		cpu_device_register = dec_axppci_33_device_register;
    420  1.12       cgd 		cpu_iobus = "lca";
    421  1.12       cgd 		break;
    422  1.12       cgd #endif
    423  1.12       cgd 
    424   1.8       cgd #ifdef DEC_2000_300
    425   1.8       cgd 	case ST_DEC_2000_300:
    426   1.8       cgd 		cpu_modelname = dec_2000_300_modelname;
    427   1.8       cgd 		cpu_consinit = dec_2000_300_consinit;
    428  1.28       cgd 		cpu_device_register = dec_2000_300_device_register;
    429   1.8       cgd 		cpu_iobus = "ibus";
    430   1.8       cgd 	XXX DEC 2000/300 NOT SUPPORTED
    431  1.12       cgd 		break;
    432   1.2       cgd #endif
    433   1.2       cgd 
    434  1.12       cgd #ifdef DEC_21000
    435  1.12       cgd 	case ST_DEC_21000:
    436  1.12       cgd 		cpu_modelname = dec_21000_modelname;
    437  1.12       cgd 		cpu_consinit = dec_21000_consinit;
    438  1.28       cgd 		cpu_device_register = dec_21000_device_register;
    439  1.12       cgd 		cpu_iobus = "tlsb";
    440  1.27       cgd 	XXX DEC 21000 NOT SUPPORTED
    441  1.12       cgd 		break;
    442   1.2       cgd #endif
    443   1.2       cgd 
    444   1.1       cgd 	default:
    445   1.1       cgd 		if (cputype > nmodel_names)
    446   1.1       cgd 			panic("Unknown system type %d", cputype);
    447   1.1       cgd 		else
    448   1.1       cgd 			panic("Support for %s system type not in kernel.",
    449   1.1       cgd 			    model_names[cputype]);
    450   1.1       cgd 	}
    451   1.8       cgd 
    452  1.29       cgd 	if ((*cpu_modelname)() != NULL)
    453  1.29       cgd 		strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
    454  1.29       cgd 	else
    455  1.29       cgd 		strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
    456  1.29       cgd 	cpu_model[sizeof cpu_model - 1] = '\0';
    457   1.1       cgd 
    458  1.17       cgd #if NLE_IOASIC > 0
    459   1.1       cgd 	/*
    460   1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    461   1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    462   1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    463  1.17       cgd 	 *
    464  1.17       cgd 	 * Note that since this is conditional on the presence of
    465  1.17       cgd 	 * IOASIC-attached 'le' units in the kernel config, the
    466  1.17       cgd 	 * message buffer may move on these systems.  This shouldn't
    467  1.17       cgd 	 * be a problem, because once people have a kernel config that
    468  1.17       cgd 	 * they use, they're going to stick with it.
    469   1.1       cgd 	 */
    470   1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    471   1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    472   1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    473  1.32       cgd 		le_iomem =
    474  1.32       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    475   1.1       cgd 	}
    476  1.17       cgd #endif /* NLE_IOASIC */
    477   1.1       cgd 
    478   1.1       cgd 	/*
    479   1.1       cgd 	 * Initialize error message buffer (at end of core).
    480   1.1       cgd 	 */
    481   1.7       cgd 	lastusablepage -= btoc(sizeof (struct msgbuf));
    482  1.32       cgd 	msgbufp =
    483  1.32       cgd 	    (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    484   1.1       cgd 	msgbufmapped = 1;
    485   1.1       cgd 
    486   1.1       cgd 	/*
    487   1.1       cgd 	 * Allocate space for system data structures.
    488   1.1       cgd 	 * The first available kernel virtual address is in "v".
    489   1.1       cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    490   1.1       cgd 	 *
    491   1.1       cgd 	 * These data structures are allocated here instead of cpu_startup()
    492   1.1       cgd 	 * because physical memory is directly addressable. We don't have
    493   1.1       cgd 	 * to map these into virtual address space.
    494   1.1       cgd 	 */
    495   1.1       cgd #define valloc(name, type, num) \
    496  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    497   1.1       cgd #define valloclim(name, type, num, lim) \
    498  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    499   1.1       cgd #ifdef REAL_CLISTS
    500   1.1       cgd 	valloc(cfree, struct cblock, nclist);
    501   1.1       cgd #endif
    502   1.1       cgd 	valloc(callout, struct callout, ncallout);
    503   1.1       cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    504   1.1       cgd #ifdef SYSVSHM
    505   1.1       cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    506   1.1       cgd #endif
    507   1.1       cgd #ifdef SYSVSEM
    508   1.1       cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    509   1.1       cgd 	valloc(sem, struct sem, seminfo.semmns);
    510   1.1       cgd 	/* This is pretty disgusting! */
    511   1.1       cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    512   1.1       cgd #endif
    513   1.1       cgd #ifdef SYSVMSG
    514   1.1       cgd 	valloc(msgpool, char, msginfo.msgmax);
    515   1.1       cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    516   1.1       cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    517   1.1       cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    518   1.1       cgd #endif
    519   1.1       cgd 
    520   1.1       cgd 	/*
    521   1.1       cgd 	 * Determine how many buffers to allocate.
    522  1.31       cgd 	 * We allocate 10% of memory for buffer space.  Insure a
    523   1.1       cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    524   1.1       cgd 	 * headers as file i/o buffers.
    525   1.1       cgd 	 */
    526   1.1       cgd 	if (bufpages == 0)
    527  1.31       cgd 		bufpages = (physmem * 10) / (CLSIZE * 100);
    528   1.1       cgd 	if (nbuf == 0) {
    529   1.1       cgd 		nbuf = bufpages;
    530   1.1       cgd 		if (nbuf < 16)
    531   1.1       cgd 			nbuf = 16;
    532   1.1       cgd 	}
    533   1.1       cgd 	if (nswbuf == 0) {
    534   1.1       cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    535   1.1       cgd 		if (nswbuf > 256)
    536   1.1       cgd 			nswbuf = 256;		/* sanity */
    537   1.1       cgd 	}
    538   1.1       cgd 	valloc(swbuf, struct buf, nswbuf);
    539   1.1       cgd 	valloc(buf, struct buf, nbuf);
    540   1.1       cgd 
    541   1.1       cgd 	/*
    542   1.1       cgd 	 * Clear allocated memory.
    543   1.1       cgd 	 */
    544   1.1       cgd 	bzero(start, v - start);
    545   1.1       cgd 
    546   1.1       cgd 	/*
    547   1.1       cgd 	 * Initialize the virtual memory system, and set the
    548   1.1       cgd 	 * page table base register in proc 0's PCB.
    549   1.1       cgd 	 */
    550  1.40       cgd #ifndef NEW_PMAP
    551  1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    552  1.40       cgd #else
    553  1.40       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    554  1.40       cgd 	    hwrpb->rpb_max_asn);
    555  1.40       cgd #endif
    556   1.1       cgd 
    557   1.1       cgd 	/*
    558   1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    559   1.3       cgd 	 * address.
    560   1.3       cgd 	 */
    561   1.3       cgd 	proc0.p_md.md_pcbpaddr =
    562  1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    563   1.3       cgd 
    564   1.3       cgd 	/*
    565   1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    566   1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    567   1.3       cgd 	 */
    568  1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    569   1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    570  1.33       cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    571  1.38       cgd 
    572  1.40       cgd #ifdef NEW_PMAP
    573  1.40       cgd 	pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    574  1.38       cgd #endif
    575   1.1       cgd 
    576   1.1       cgd 	/*
    577  1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    578   1.8       cgd 	 */
    579  1.25       cgd 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    580  1.25       cgd #if 0
    581  1.25       cgd 	printf("boot flags = \"%s\"\n", boot_flags);
    582  1.25       cgd #endif
    583   1.1       cgd 
    584   1.8       cgd 	boothowto = RB_SINGLE;
    585   1.1       cgd #ifdef KADB
    586   1.1       cgd 	boothowto |= RB_KDB;
    587   1.1       cgd #endif
    588   1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    589  1.26       cgd 		/*
    590  1.26       cgd 		 * Note that we'd really like to differentiate case here,
    591  1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    592  1.26       cgd 		 * says that we shouldn't.
    593  1.26       cgd 		 */
    594   1.8       cgd 		switch (*p) {
    595  1.26       cgd 		case 'a': /* autoboot */
    596  1.26       cgd 		case 'A':
    597  1.26       cgd 			boothowto &= ~RB_SINGLE;
    598  1.21       cgd 			break;
    599  1.21       cgd 
    600  1.36       cgd 		case 'h': /* always halt, never reboot */
    601  1.36       cgd 		case 'H':
    602  1.36       cgd 			boothowto |= RB_HALT;
    603   1.8       cgd 			break;
    604   1.8       cgd 
    605  1.21       cgd #if 0
    606   1.8       cgd 		case 'm': /* mini root present in memory */
    607  1.26       cgd 		case 'M':
    608   1.8       cgd 			boothowto |= RB_MINIROOT;
    609   1.8       cgd 			break;
    610  1.21       cgd #endif
    611  1.36       cgd 
    612  1.36       cgd 		case 'n': /* askname */
    613  1.36       cgd 		case 'N':
    614  1.36       cgd 			boothowto |= RB_ASKNAME;
    615  1.36       cgd 			break;
    616   1.1       cgd 		}
    617   1.1       cgd 	}
    618   1.1       cgd 
    619   1.7       cgd 	/*
    620   1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    621   1.7       cgd 	 * Really.  We mean it.
    622   1.7       cgd 	 */
    623   1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    624   1.7       cgd 		struct pcs *pcsp;
    625   1.7       cgd 
    626   1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    627   1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    628   1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    629   1.7       cgd 			ncpus++;
    630   1.7       cgd 	}
    631   1.7       cgd 
    632   1.1       cgd 	return (0);
    633   1.1       cgd }
    634   1.1       cgd 
    635  1.18       cgd void
    636   1.1       cgd consinit()
    637   1.1       cgd {
    638   1.1       cgd 
    639  1.24       cgd 	(*cpu_consinit)();
    640   1.1       cgd 	pmap_unmap_prom();
    641   1.1       cgd }
    642   1.1       cgd 
    643  1.18       cgd void
    644   1.1       cgd cpu_startup()
    645   1.1       cgd {
    646   1.1       cgd 	register unsigned i;
    647   1.1       cgd 	int base, residual;
    648   1.1       cgd 	vm_offset_t minaddr, maxaddr;
    649   1.1       cgd 	vm_size_t size;
    650  1.40       cgd #if defined(DEBUG)
    651   1.1       cgd 	extern int pmapdebug;
    652   1.1       cgd 	int opmapdebug = pmapdebug;
    653   1.1       cgd 
    654   1.1       cgd 	pmapdebug = 0;
    655   1.1       cgd #endif
    656   1.1       cgd 
    657   1.1       cgd 	/*
    658   1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    659   1.1       cgd 	 */
    660   1.1       cgd 	printf(version);
    661   1.1       cgd 	identifycpu();
    662   1.7       cgd 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    663   1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    664   1.7       cgd 	if (unusedmem)
    665   1.7       cgd 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    666   1.7       cgd 	if (unknownmem)
    667   1.7       cgd 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    668   1.7       cgd 		    ctob(unknownmem));
    669   1.1       cgd 
    670   1.1       cgd 	/*
    671   1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    672   1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    673   1.1       cgd 	 * and usually occupy more virtual memory than physical.
    674   1.1       cgd 	 */
    675   1.1       cgd 	size = MAXBSIZE * nbuf;
    676   1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    677   1.1       cgd 	    &maxaddr, size, TRUE);
    678   1.1       cgd 	minaddr = (vm_offset_t)buffers;
    679   1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    680   1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    681   1.1       cgd 		panic("startup: cannot allocate buffers");
    682   1.1       cgd 	base = bufpages / nbuf;
    683   1.1       cgd 	residual = bufpages % nbuf;
    684   1.1       cgd 	for (i = 0; i < nbuf; i++) {
    685   1.1       cgd 		vm_size_t curbufsize;
    686   1.1       cgd 		vm_offset_t curbuf;
    687   1.1       cgd 
    688   1.1       cgd 		/*
    689   1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    690   1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    691   1.1       cgd 		 *
    692   1.1       cgd 		 * The rest of each buffer occupies virtual space,
    693   1.1       cgd 		 * but has no physical memory allocated for it.
    694   1.1       cgd 		 */
    695   1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    696   1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    697   1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    698   1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    699   1.1       cgd 	}
    700   1.1       cgd 	/*
    701   1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    702   1.1       cgd 	 * limits the number of processes exec'ing at any time.
    703   1.1       cgd 	 */
    704   1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    705   1.1       cgd 				 16 * NCARGS, TRUE);
    706   1.1       cgd 
    707   1.1       cgd 	/*
    708   1.1       cgd 	 * Allocate a submap for physio
    709   1.1       cgd 	 */
    710   1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    711   1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    712   1.1       cgd 
    713   1.1       cgd 	/*
    714   1.1       cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    715   1.1       cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    716   1.1       cgd 	 */
    717   1.1       cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    718   1.1       cgd 	    M_MBUF, M_NOWAIT);
    719   1.1       cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    720   1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    721   1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    722   1.1       cgd 	/*
    723   1.1       cgd 	 * Initialize callouts
    724   1.1       cgd 	 */
    725   1.1       cgd 	callfree = callout;
    726   1.1       cgd 	for (i = 1; i < ncallout; i++)
    727   1.1       cgd 		callout[i-1].c_next = &callout[i];
    728   1.1       cgd 	callout[i-1].c_next = NULL;
    729   1.1       cgd 
    730  1.40       cgd #if defined(DEBUG)
    731   1.1       cgd 	pmapdebug = opmapdebug;
    732   1.1       cgd #endif
    733   1.1       cgd 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    734   1.1       cgd 	printf("using %ld buffers containing %ld bytes of memory\n",
    735   1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    736   1.1       cgd 
    737   1.1       cgd 	/*
    738   1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    739   1.1       cgd 	 */
    740   1.1       cgd 	bufinit();
    741   1.1       cgd 
    742   1.1       cgd 	/*
    743   1.1       cgd 	 * Configure the system.
    744   1.1       cgd 	 */
    745   1.1       cgd 	configure();
    746   1.1       cgd }
    747   1.1       cgd 
    748  1.33       cgd void
    749   1.1       cgd identifycpu()
    750   1.1       cgd {
    751   1.1       cgd 
    752   1.7       cgd 	/*
    753   1.7       cgd 	 * print out CPU identification information.
    754   1.7       cgd 	 */
    755  1.33       cgd 	printf("%s, %ldMHz\n", cpu_model,
    756   1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    757  1.33       cgd 	printf("%ld byte page size, %d processor%s.\n",
    758   1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    759   1.7       cgd #if 0
    760   1.7       cgd 	/* this isn't defined for any systems that we run on? */
    761   1.7       cgd 	printf("serial number 0x%lx 0x%lx\n",
    762   1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    763   1.7       cgd 
    764   1.7       cgd 	/* and these aren't particularly useful! */
    765   1.1       cgd 	printf("variation: 0x%lx, revision 0x%lx\n",
    766   1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    767   1.7       cgd #endif
    768   1.1       cgd }
    769   1.1       cgd 
    770   1.1       cgd int	waittime = -1;
    771   1.7       cgd struct pcb dumppcb;
    772   1.1       cgd 
    773  1.18       cgd void
    774  1.39       mrg boot(howto, bootstr)
    775   1.1       cgd 	int howto;
    776  1.39       mrg 	char *bootstr;
    777   1.1       cgd {
    778   1.1       cgd 	extern int cold;
    779   1.1       cgd 
    780   1.1       cgd 	/* If system is cold, just halt. */
    781   1.1       cgd 	if (cold) {
    782   1.1       cgd 		howto |= RB_HALT;
    783   1.1       cgd 		goto haltsys;
    784   1.1       cgd 	}
    785   1.1       cgd 
    786  1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
    787  1.36       cgd 	if ((boothowto & RB_HALT) != 0)
    788  1.36       cgd 		howto |= RB_HALT;
    789  1.36       cgd 
    790   1.7       cgd 	boothowto = howto;
    791   1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    792   1.1       cgd 		waittime = 0;
    793   1.7       cgd 		vfs_shutdown();
    794   1.1       cgd 		/*
    795   1.1       cgd 		 * If we've been adjusting the clock, the todr
    796   1.1       cgd 		 * will be out of synch; adjust it now.
    797   1.1       cgd 		 */
    798   1.1       cgd 		resettodr();
    799   1.1       cgd 	}
    800   1.1       cgd 
    801   1.1       cgd 	/* Disable interrupts. */
    802   1.1       cgd 	splhigh();
    803   1.1       cgd 
    804   1.7       cgd 	/* If rebooting and a dump is requested do it. */
    805   1.7       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    806   1.7       cgd 		savectx(&dumppcb, 0);
    807   1.1       cgd 		dumpsys();
    808   1.7       cgd 	}
    809   1.6       cgd 
    810  1.12       cgd haltsys:
    811  1.12       cgd 
    812   1.6       cgd 	/* run any shutdown hooks */
    813   1.6       cgd 	doshutdownhooks();
    814   1.1       cgd 
    815   1.7       cgd #ifdef BOOTKEY
    816   1.7       cgd 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    817   1.7       cgd 	cngetc();
    818   1.7       cgd 	printf("\n");
    819   1.7       cgd #endif
    820   1.7       cgd 
    821   1.1       cgd 	/* Finally, halt/reboot the system. */
    822   1.1       cgd 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    823   1.1       cgd 	prom_halt(howto & RB_HALT);
    824   1.1       cgd 	/*NOTREACHED*/
    825   1.1       cgd }
    826   1.1       cgd 
    827   1.7       cgd /*
    828   1.7       cgd  * These variables are needed by /sbin/savecore
    829   1.7       cgd  */
    830   1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    831   1.7       cgd int 	dumpsize = 0;		/* pages */
    832   1.7       cgd long	dumplo = 0; 		/* blocks */
    833   1.7       cgd 
    834   1.7       cgd /*
    835   1.7       cgd  * This is called by configure to set dumplo and dumpsize.
    836   1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    837   1.7       cgd  * in case there might be a disk label stored there.
    838   1.7       cgd  * If there is extra space, put dump at the end to
    839   1.7       cgd  * reduce the chance that swapping trashes it.
    840   1.7       cgd  */
    841   1.7       cgd void
    842   1.7       cgd dumpconf()
    843   1.7       cgd {
    844   1.7       cgd 	int nblks;	/* size of dump area */
    845   1.7       cgd 	int maj;
    846   1.7       cgd 
    847   1.7       cgd 	if (dumpdev == NODEV)
    848   1.7       cgd 		return;
    849   1.7       cgd 	maj = major(dumpdev);
    850   1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    851   1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    852   1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    853   1.7       cgd 		return;
    854   1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    855   1.7       cgd 	if (nblks <= ctod(1))
    856   1.7       cgd 		return;
    857   1.7       cgd 
    858   1.7       cgd 	/* XXX XXX XXX STARTING MEMORY LOCATION */
    859   1.7       cgd 	dumpsize = physmem;
    860   1.7       cgd 
    861   1.7       cgd 	/* Always skip the first CLBYTES, in case there is a label there. */
    862   1.7       cgd 	if (dumplo < ctod(1))
    863   1.7       cgd 		dumplo = ctod(1);
    864   1.7       cgd 
    865   1.7       cgd 	/* Put dump at end of partition, and make it fit. */
    866   1.7       cgd 	if (dumpsize > dtoc(nblks - dumplo))
    867   1.7       cgd 		dumpsize = dtoc(nblks - dumplo);
    868   1.7       cgd 	if (dumplo < nblks - ctod(dumpsize))
    869   1.7       cgd 		dumplo = nblks - ctod(dumpsize);
    870   1.7       cgd }
    871   1.7       cgd 
    872   1.7       cgd /*
    873   1.7       cgd  * Doadump comes here after turning off memory management and
    874   1.7       cgd  * getting on the dump stack, either when called above, or by
    875   1.7       cgd  * the auto-restart code.
    876   1.7       cgd  */
    877   1.7       cgd void
    878   1.7       cgd dumpsys()
    879   1.7       cgd {
    880   1.7       cgd 
    881   1.7       cgd 	msgbufmapped = 0;
    882   1.7       cgd 	if (dumpdev == NODEV)
    883   1.7       cgd 		return;
    884   1.7       cgd 	if (dumpsize == 0) {
    885   1.7       cgd 		dumpconf();
    886   1.7       cgd 		if (dumpsize == 0)
    887   1.7       cgd 			return;
    888   1.7       cgd 	}
    889  1.33       cgd 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
    890   1.7       cgd 
    891   1.7       cgd 	printf("dump ");
    892   1.7       cgd 	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
    893   1.7       cgd 
    894   1.7       cgd 	case ENXIO:
    895   1.7       cgd 		printf("device bad\n");
    896   1.7       cgd 		break;
    897   1.7       cgd 
    898   1.7       cgd 	case EFAULT:
    899   1.7       cgd 		printf("device not ready\n");
    900   1.7       cgd 		break;
    901   1.7       cgd 
    902   1.7       cgd 	case EINVAL:
    903   1.7       cgd 		printf("area improper\n");
    904   1.7       cgd 		break;
    905   1.7       cgd 
    906   1.7       cgd 	case EIO:
    907   1.7       cgd 		printf("i/o error\n");
    908   1.7       cgd 		break;
    909   1.7       cgd 
    910   1.7       cgd 	case EINTR:
    911   1.7       cgd 		printf("aborted from console\n");
    912   1.7       cgd 		break;
    913   1.7       cgd 
    914   1.7       cgd 	default:
    915   1.7       cgd 		printf("succeeded\n");
    916   1.7       cgd 		break;
    917   1.7       cgd 	}
    918   1.7       cgd 	printf("\n\n");
    919   1.7       cgd 	delay(1000);
    920   1.7       cgd }
    921   1.7       cgd 
    922   1.1       cgd void
    923   1.1       cgd frametoreg(framep, regp)
    924   1.1       cgd 	struct trapframe *framep;
    925   1.1       cgd 	struct reg *regp;
    926   1.1       cgd {
    927   1.1       cgd 
    928   1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    929   1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    930   1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    931   1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    932   1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    933   1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    934   1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    935   1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    936   1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    937   1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    938   1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    939   1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    940   1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    941   1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    942   1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    943   1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    944  1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
    945  1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
    946  1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
    947   1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    948   1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    949   1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    950   1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    951   1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    952   1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    953   1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    954   1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    955   1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    956   1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    957  1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
    958  1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
    959   1.1       cgd 	regp->r_regs[R_ZERO] = 0;
    960   1.1       cgd }
    961   1.1       cgd 
    962   1.1       cgd void
    963   1.1       cgd regtoframe(regp, framep)
    964   1.1       cgd 	struct reg *regp;
    965   1.1       cgd 	struct trapframe *framep;
    966   1.1       cgd {
    967   1.1       cgd 
    968   1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    969   1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    970   1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    971   1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    972   1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    973   1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    974   1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    975   1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    976   1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    977   1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    978   1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    979   1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    980   1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    981   1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    982   1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    983   1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    984  1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
    985  1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
    986  1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
    987   1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    988   1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    989   1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    990   1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    991   1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    992   1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    993   1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    994   1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    995   1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    996   1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    997  1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
    998  1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
    999   1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1000   1.1       cgd }
   1001   1.1       cgd 
   1002   1.1       cgd void
   1003   1.1       cgd printregs(regp)
   1004   1.1       cgd 	struct reg *regp;
   1005   1.1       cgd {
   1006   1.1       cgd 	int i;
   1007   1.1       cgd 
   1008   1.1       cgd 	for (i = 0; i < 32; i++)
   1009   1.1       cgd 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1010   1.1       cgd 		   i & 1 ? "\n" : "\t");
   1011   1.1       cgd }
   1012   1.1       cgd 
   1013   1.1       cgd void
   1014   1.1       cgd regdump(framep)
   1015   1.1       cgd 	struct trapframe *framep;
   1016   1.1       cgd {
   1017   1.1       cgd 	struct reg reg;
   1018   1.1       cgd 
   1019   1.1       cgd 	frametoreg(framep, &reg);
   1020  1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1021  1.35       cgd 
   1022   1.1       cgd 	printf("REGISTERS:\n");
   1023   1.1       cgd 	printregs(&reg);
   1024   1.1       cgd }
   1025   1.1       cgd 
   1026   1.1       cgd #ifdef DEBUG
   1027   1.1       cgd int sigdebug = 0;
   1028   1.1       cgd int sigpid = 0;
   1029   1.1       cgd #define	SDB_FOLLOW	0x01
   1030   1.1       cgd #define	SDB_KSTACK	0x02
   1031   1.1       cgd #endif
   1032   1.1       cgd 
   1033   1.1       cgd /*
   1034   1.1       cgd  * Send an interrupt to process.
   1035   1.1       cgd  */
   1036   1.1       cgd void
   1037   1.1       cgd sendsig(catcher, sig, mask, code)
   1038   1.1       cgd 	sig_t catcher;
   1039   1.1       cgd 	int sig, mask;
   1040   1.1       cgd 	u_long code;
   1041   1.1       cgd {
   1042   1.1       cgd 	struct proc *p = curproc;
   1043   1.1       cgd 	struct sigcontext *scp, ksc;
   1044   1.1       cgd 	struct trapframe *frame;
   1045   1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1046   1.1       cgd 	int oonstack, fsize, rndfsize;
   1047   1.1       cgd 	extern char sigcode[], esigcode[];
   1048   1.1       cgd 	extern struct proc *fpcurproc;
   1049   1.1       cgd 
   1050   1.1       cgd 	frame = p->p_md.md_tf;
   1051   1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1052   1.1       cgd 	fsize = sizeof ksc;
   1053   1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1054   1.1       cgd 	/*
   1055   1.1       cgd 	 * Allocate and validate space for the signal handler
   1056   1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1057   1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1058   1.1       cgd 	 * will fail if the process has not already allocated
   1059   1.1       cgd 	 * the space with a `brk'.
   1060   1.1       cgd 	 */
   1061   1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1062   1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1063  1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1064   1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1065   1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1066   1.1       cgd 	} else
   1067  1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1068   1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1069   1.1       cgd 		(void)grow(p, (u_long)scp);
   1070   1.1       cgd #ifdef DEBUG
   1071   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1072  1.33       cgd 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1073   1.1       cgd 		    sig, &oonstack, scp);
   1074   1.1       cgd #endif
   1075   1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1076   1.1       cgd #ifdef DEBUG
   1077   1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1078   1.1       cgd 			printf("sendsig(%d): useracc failed on sig %d\n",
   1079   1.1       cgd 			    p->p_pid, sig);
   1080   1.1       cgd #endif
   1081   1.1       cgd 		/*
   1082   1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1083   1.1       cgd 		 * instruction to halt it in its tracks.
   1084   1.1       cgd 		 */
   1085   1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1086   1.1       cgd 		sig = sigmask(SIGILL);
   1087   1.1       cgd 		p->p_sigignore &= ~sig;
   1088   1.1       cgd 		p->p_sigcatch &= ~sig;
   1089   1.1       cgd 		p->p_sigmask &= ~sig;
   1090   1.1       cgd 		psignal(p, SIGILL);
   1091   1.1       cgd 		return;
   1092   1.1       cgd 	}
   1093   1.1       cgd 
   1094   1.1       cgd 	/*
   1095   1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1096   1.1       cgd 	 */
   1097   1.1       cgd 	ksc.sc_onstack = oonstack;
   1098   1.1       cgd 	ksc.sc_mask = mask;
   1099  1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1100  1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1101   1.1       cgd 
   1102   1.1       cgd 	/* copy the registers. */
   1103   1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1104   1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1105  1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1106   1.1       cgd 
   1107   1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1108   1.1       cgd 	if (p == fpcurproc) {
   1109  1.32       cgd 		alpha_pal_wrfen(1);
   1110   1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1111  1.32       cgd 		alpha_pal_wrfen(0);
   1112   1.1       cgd 		fpcurproc = NULL;
   1113   1.1       cgd 	}
   1114   1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1115   1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1116   1.1       cgd 	    sizeof(struct fpreg));
   1117   1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1118   1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1119   1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1120   1.1       cgd 
   1121   1.1       cgd 
   1122   1.1       cgd #ifdef COMPAT_OSF1
   1123   1.1       cgd 	/*
   1124   1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1125   1.1       cgd 	 */
   1126   1.1       cgd #endif
   1127   1.1       cgd 
   1128   1.1       cgd 	/*
   1129   1.1       cgd 	 * copy the frame out to userland.
   1130   1.1       cgd 	 */
   1131   1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1132   1.1       cgd #ifdef DEBUG
   1133   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1134  1.33       cgd 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1135   1.1       cgd 		    scp, code);
   1136   1.1       cgd #endif
   1137   1.1       cgd 
   1138   1.1       cgd 	/*
   1139   1.1       cgd 	 * Set up the registers to return to sigcode.
   1140   1.1       cgd 	 */
   1141  1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1142  1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1143  1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1144  1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1145  1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1146   1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1147  1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1148   1.1       cgd 
   1149   1.1       cgd #ifdef DEBUG
   1150   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1151   1.1       cgd 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1152  1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1153   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1154   1.1       cgd 		printf("sendsig(%d): sig %d returns\n",
   1155   1.1       cgd 		    p->p_pid, sig);
   1156   1.1       cgd #endif
   1157   1.1       cgd }
   1158   1.1       cgd 
   1159   1.1       cgd /*
   1160   1.1       cgd  * System call to cleanup state after a signal
   1161   1.1       cgd  * has been taken.  Reset signal mask and
   1162   1.1       cgd  * stack state from context left by sendsig (above).
   1163   1.1       cgd  * Return to previous pc and psl as specified by
   1164   1.1       cgd  * context left by sendsig. Check carefully to
   1165   1.1       cgd  * make sure that the user has not modified the
   1166   1.1       cgd  * psl to gain improper priviledges or to cause
   1167   1.1       cgd  * a machine fault.
   1168   1.1       cgd  */
   1169   1.1       cgd /* ARGSUSED */
   1170  1.11   mycroft int
   1171  1.11   mycroft sys_sigreturn(p, v, retval)
   1172   1.1       cgd 	struct proc *p;
   1173  1.10   thorpej 	void *v;
   1174  1.10   thorpej 	register_t *retval;
   1175  1.10   thorpej {
   1176  1.11   mycroft 	struct sys_sigreturn_args /* {
   1177   1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1178  1.10   thorpej 	} */ *uap = v;
   1179   1.1       cgd 	struct sigcontext *scp, ksc;
   1180   1.1       cgd 	extern struct proc *fpcurproc;
   1181   1.1       cgd 
   1182   1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1183   1.1       cgd #ifdef DEBUG
   1184   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1185  1.33       cgd 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1186   1.1       cgd #endif
   1187   1.1       cgd 
   1188   1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1189   1.1       cgd 		return (EINVAL);
   1190   1.1       cgd 
   1191   1.1       cgd 	/*
   1192   1.1       cgd 	 * Test and fetch the context structure.
   1193   1.1       cgd 	 * We grab it all at once for speed.
   1194   1.1       cgd 	 */
   1195   1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1196   1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1197   1.1       cgd 		return (EINVAL);
   1198   1.1       cgd 
   1199   1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1200   1.1       cgd 		return (EINVAL);
   1201   1.1       cgd 	/*
   1202   1.1       cgd 	 * Restore the user-supplied information
   1203   1.1       cgd 	 */
   1204   1.1       cgd 	if (ksc.sc_onstack)
   1205   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1206   1.1       cgd 	else
   1207   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1208   1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1209   1.1       cgd 
   1210  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1211  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1212  1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1213   1.1       cgd 
   1214   1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1215  1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1216   1.1       cgd 
   1217   1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1218   1.1       cgd 	if (p == fpcurproc)
   1219   1.1       cgd 		fpcurproc = NULL;
   1220   1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1221   1.1       cgd 	    sizeof(struct fpreg));
   1222   1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1223   1.1       cgd 
   1224   1.1       cgd #ifdef DEBUG
   1225   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1226   1.1       cgd 		printf("sigreturn(%d): returns\n", p->p_pid);
   1227   1.1       cgd #endif
   1228   1.1       cgd 	return (EJUSTRETURN);
   1229   1.1       cgd }
   1230   1.1       cgd 
   1231   1.1       cgd /*
   1232   1.1       cgd  * machine dependent system variables.
   1233   1.1       cgd  */
   1234  1.33       cgd int
   1235   1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1236   1.1       cgd 	int *name;
   1237   1.1       cgd 	u_int namelen;
   1238   1.1       cgd 	void *oldp;
   1239   1.1       cgd 	size_t *oldlenp;
   1240   1.1       cgd 	void *newp;
   1241   1.1       cgd 	size_t newlen;
   1242   1.1       cgd 	struct proc *p;
   1243   1.1       cgd {
   1244   1.1       cgd 	dev_t consdev;
   1245   1.1       cgd 
   1246   1.1       cgd 	/* all sysctl names at this level are terminal */
   1247   1.1       cgd 	if (namelen != 1)
   1248   1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1249   1.1       cgd 
   1250   1.1       cgd 	switch (name[0]) {
   1251   1.1       cgd 	case CPU_CONSDEV:
   1252   1.1       cgd 		if (cn_tab != NULL)
   1253   1.1       cgd 			consdev = cn_tab->cn_dev;
   1254   1.1       cgd 		else
   1255   1.1       cgd 			consdev = NODEV;
   1256   1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1257   1.1       cgd 			sizeof consdev));
   1258  1.30       cgd 
   1259  1.30       cgd 	case CPU_ROOT_DEVICE:
   1260  1.30       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
   1261  1.36       cgd 
   1262  1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1263  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1264  1.36       cgd 		    &alpha_unaligned_print));
   1265  1.36       cgd 
   1266  1.36       cgd 	case CPU_UNALIGNED_FIX:
   1267  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1268  1.36       cgd 		    &alpha_unaligned_fix));
   1269  1.36       cgd 
   1270  1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1271  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1272  1.36       cgd 		    &alpha_unaligned_sigbus));
   1273  1.30       cgd 
   1274   1.1       cgd 	default:
   1275   1.1       cgd 		return (EOPNOTSUPP);
   1276   1.1       cgd 	}
   1277   1.1       cgd 	/* NOTREACHED */
   1278   1.1       cgd }
   1279   1.1       cgd 
   1280   1.1       cgd /*
   1281   1.1       cgd  * Set registers on exec.
   1282   1.1       cgd  */
   1283   1.1       cgd void
   1284   1.5  christos setregs(p, pack, stack, retval)
   1285   1.1       cgd 	register struct proc *p;
   1286   1.5  christos 	struct exec_package *pack;
   1287   1.1       cgd 	u_long stack;
   1288   1.1       cgd 	register_t *retval;
   1289   1.1       cgd {
   1290   1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1291   1.1       cgd 	int i;
   1292   1.1       cgd 	extern struct proc *fpcurproc;
   1293   1.1       cgd 
   1294   1.1       cgd #ifdef DEBUG
   1295  1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1296   1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1297   1.1       cgd #else
   1298  1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1299   1.1       cgd #endif
   1300   1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1301   1.7       cgd #define FP_RN 2 /* XXX */
   1302   1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1303  1.35       cgd 	alpha_pal_wrusp(stack);
   1304  1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1305  1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1306  1.41       cgd 
   1307  1.41       cgd 	tfp->tf_regs[FRAME_A0] = stack;
   1308  1.41       cgd 	/* a1 and a2 already zeroed */
   1309  1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1310   1.1       cgd 
   1311  1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1312   1.1       cgd 	if (fpcurproc == p)
   1313   1.1       cgd 		fpcurproc = NULL;
   1314   1.1       cgd 
   1315   1.1       cgd 	retval[0] = retval[1] = 0;
   1316   1.1       cgd }
   1317   1.1       cgd 
   1318   1.1       cgd void
   1319   1.1       cgd netintr()
   1320   1.1       cgd {
   1321   1.1       cgd #ifdef INET
   1322   1.1       cgd #if NETHER > 0
   1323   1.1       cgd 	if (netisr & (1 << NETISR_ARP)) {
   1324   1.1       cgd 		netisr &= ~(1 << NETISR_ARP);
   1325   1.1       cgd 		arpintr();
   1326   1.1       cgd 	}
   1327   1.1       cgd #endif
   1328   1.1       cgd 	if (netisr & (1 << NETISR_IP)) {
   1329   1.1       cgd 		netisr &= ~(1 << NETISR_IP);
   1330   1.1       cgd 		ipintr();
   1331   1.1       cgd 	}
   1332   1.1       cgd #endif
   1333   1.1       cgd #ifdef NS
   1334   1.1       cgd 	if (netisr & (1 << NETISR_NS)) {
   1335   1.1       cgd 		netisr &= ~(1 << NETISR_NS);
   1336   1.1       cgd 		nsintr();
   1337   1.1       cgd 	}
   1338   1.1       cgd #endif
   1339   1.1       cgd #ifdef ISO
   1340   1.1       cgd 	if (netisr & (1 << NETISR_ISO)) {
   1341   1.1       cgd 		netisr &= ~(1 << NETISR_ISO);
   1342   1.1       cgd 		clnlintr();
   1343   1.1       cgd 	}
   1344   1.1       cgd #endif
   1345   1.1       cgd #ifdef CCITT
   1346   1.1       cgd 	if (netisr & (1 << NETISR_CCITT)) {
   1347   1.1       cgd 		netisr &= ~(1 << NETISR_CCITT);
   1348   1.1       cgd 		ccittintr();
   1349   1.1       cgd 	}
   1350   1.1       cgd #endif
   1351   1.8       cgd #ifdef PPP
   1352   1.8       cgd 	if (netisr & (1 << NETISR_PPP)) {
   1353  1.20       cgd 		netisr &= ~(1 << NETISR_PPP);
   1354   1.8       cgd 		pppintr();
   1355   1.8       cgd 	}
   1356   1.8       cgd #endif
   1357   1.1       cgd }
   1358   1.1       cgd 
   1359   1.1       cgd void
   1360   1.1       cgd do_sir()
   1361   1.1       cgd {
   1362   1.1       cgd 
   1363   1.1       cgd 	if (ssir & SIR_NET) {
   1364   1.1       cgd 		siroff(SIR_NET);
   1365   1.1       cgd 		cnt.v_soft++;
   1366   1.1       cgd 		netintr();
   1367   1.1       cgd 	}
   1368   1.1       cgd 	if (ssir & SIR_CLOCK) {
   1369   1.1       cgd 		siroff(SIR_CLOCK);
   1370   1.1       cgd 		cnt.v_soft++;
   1371   1.1       cgd 		softclock();
   1372   1.1       cgd 	}
   1373   1.1       cgd }
   1374   1.1       cgd 
   1375   1.1       cgd int
   1376   1.1       cgd spl0()
   1377   1.1       cgd {
   1378   1.1       cgd 
   1379   1.1       cgd 	if (ssir) {
   1380   1.1       cgd 		splsoft();
   1381   1.1       cgd 		do_sir();
   1382   1.1       cgd 	}
   1383   1.1       cgd 
   1384  1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1385   1.1       cgd }
   1386   1.1       cgd 
   1387   1.1       cgd /*
   1388   1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1389   1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1390   1.1       cgd  * into queues, Remrq removes them from queues.  The running process is on
   1391   1.1       cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1392   1.1       cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1393   1.1       cgd  * queues.
   1394   1.1       cgd  */
   1395   1.1       cgd /*
   1396   1.1       cgd  * setrunqueue(p)
   1397   1.1       cgd  *	proc *p;
   1398   1.1       cgd  *
   1399   1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1400   1.1       cgd  */
   1401   1.1       cgd 
   1402   1.1       cgd void
   1403   1.1       cgd setrunqueue(p)
   1404   1.1       cgd 	struct proc *p;
   1405   1.1       cgd {
   1406   1.1       cgd 	int bit;
   1407   1.1       cgd 
   1408   1.1       cgd 	/* firewall: p->p_back must be NULL */
   1409   1.1       cgd 	if (p->p_back != NULL)
   1410   1.1       cgd 		panic("setrunqueue");
   1411   1.1       cgd 
   1412   1.1       cgd 	bit = p->p_priority >> 2;
   1413   1.1       cgd 	whichqs |= (1 << bit);
   1414   1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1415   1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1416   1.1       cgd 	p->p_back->p_forw = p;
   1417   1.1       cgd 	qs[bit].ph_rlink = p;
   1418   1.1       cgd }
   1419   1.1       cgd 
   1420   1.1       cgd /*
   1421   1.1       cgd  * Remrq(p)
   1422   1.1       cgd  *
   1423   1.1       cgd  * Call should be made at splclock().
   1424   1.1       cgd  */
   1425   1.1       cgd void
   1426   1.1       cgd remrq(p)
   1427   1.1       cgd 	struct proc *p;
   1428   1.1       cgd {
   1429   1.1       cgd 	int bit;
   1430   1.1       cgd 
   1431   1.1       cgd 	bit = p->p_priority >> 2;
   1432   1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1433   1.1       cgd 		panic("remrq");
   1434   1.1       cgd 
   1435   1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1436   1.1       cgd 	p->p_forw->p_back = p->p_back;
   1437   1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1438   1.1       cgd 
   1439   1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1440   1.1       cgd 		whichqs &= ~(1 << bit);
   1441   1.1       cgd }
   1442   1.1       cgd 
   1443   1.1       cgd /*
   1444   1.1       cgd  * Return the best possible estimate of the time in the timeval
   1445   1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1446   1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1447   1.1       cgd  * previous call.
   1448   1.1       cgd  */
   1449   1.1       cgd void
   1450   1.1       cgd microtime(tvp)
   1451   1.1       cgd 	register struct timeval *tvp;
   1452   1.1       cgd {
   1453   1.1       cgd 	int s = splclock();
   1454   1.1       cgd 	static struct timeval lasttime;
   1455   1.1       cgd 
   1456   1.1       cgd 	*tvp = time;
   1457   1.1       cgd #ifdef notdef
   1458   1.1       cgd 	tvp->tv_usec += clkread();
   1459   1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1460   1.1       cgd 		tvp->tv_sec++;
   1461   1.1       cgd 		tvp->tv_usec -= 1000000;
   1462   1.1       cgd 	}
   1463   1.1       cgd #endif
   1464   1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1465   1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1466   1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1467   1.1       cgd 		tvp->tv_sec++;
   1468   1.1       cgd 		tvp->tv_usec -= 1000000;
   1469   1.1       cgd 	}
   1470   1.1       cgd 	lasttime = *tvp;
   1471   1.1       cgd 	splx(s);
   1472  1.15       cgd }
   1473  1.15       cgd 
   1474  1.15       cgd /*
   1475  1.15       cgd  * Wait "n" microseconds.
   1476  1.15       cgd  */
   1477  1.32       cgd void
   1478  1.15       cgd delay(n)
   1479  1.32       cgd 	unsigned long n;
   1480  1.15       cgd {
   1481  1.15       cgd 	long N = cycles_per_usec * (n);
   1482  1.15       cgd 
   1483  1.15       cgd 	while (N > 0)				/* XXX */
   1484  1.15       cgd 		N -= 3;				/* XXX */
   1485   1.1       cgd }
   1486   1.1       cgd 
   1487   1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1488   1.1       cgd void
   1489  1.19       cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1490   1.1       cgd 	struct proc *p;
   1491  1.19       cgd 	struct exec_package *epp;
   1492   1.5  christos 	u_long stack;
   1493   1.5  christos 	register_t *retval;
   1494   1.1       cgd {
   1495  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1496   1.1       cgd 
   1497  1.19       cgd 	setregs(p, epp, stack, retval);
   1498  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1499   1.1       cgd }
   1500   1.1       cgd 
   1501   1.1       cgd /*
   1502   1.1       cgd  * cpu_exec_ecoff_hook():
   1503   1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1504   1.1       cgd  *
   1505   1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1506   1.1       cgd  *
   1507   1.1       cgd  */
   1508   1.1       cgd int
   1509  1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1510   1.1       cgd 	struct proc *p;
   1511   1.1       cgd 	struct exec_package *epp;
   1512   1.1       cgd {
   1513  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1514   1.5  christos 	extern struct emul emul_netbsd;
   1515   1.5  christos #ifdef COMPAT_OSF1
   1516   1.5  christos 	extern struct emul emul_osf1;
   1517   1.5  christos #endif
   1518   1.1       cgd 
   1519  1.19       cgd 	switch (execp->f.f_magic) {
   1520   1.5  christos #ifdef COMPAT_OSF1
   1521   1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1522   1.5  christos 		epp->ep_emul = &emul_osf1;
   1523   1.1       cgd 		break;
   1524   1.5  christos #endif
   1525   1.1       cgd 
   1526   1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1527   1.5  christos 		epp->ep_emul = &emul_netbsd;
   1528   1.1       cgd 		break;
   1529   1.1       cgd 
   1530   1.1       cgd 	default:
   1531  1.12       cgd 		return ENOEXEC;
   1532   1.1       cgd 	}
   1533   1.1       cgd 	return 0;
   1534   1.1       cgd }
   1535   1.1       cgd #endif
   1536