machdep.c revision 1.49 1 1.49 cgd /* $NetBSD: machdep.c,v 1.49 1996/10/18 20:35:23 cgd Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.1 cgd
30 1.1 cgd #include <sys/param.h>
31 1.1 cgd #include <sys/systm.h>
32 1.1 cgd #include <sys/signalvar.h>
33 1.1 cgd #include <sys/kernel.h>
34 1.1 cgd #include <sys/map.h>
35 1.1 cgd #include <sys/proc.h>
36 1.1 cgd #include <sys/buf.h>
37 1.1 cgd #include <sys/reboot.h>
38 1.28 cgd #include <sys/device.h>
39 1.1 cgd #include <sys/conf.h>
40 1.1 cgd #include <sys/file.h>
41 1.1 cgd #ifdef REAL_CLISTS
42 1.1 cgd #include <sys/clist.h>
43 1.1 cgd #endif
44 1.1 cgd #include <sys/callout.h>
45 1.1 cgd #include <sys/malloc.h>
46 1.1 cgd #include <sys/mbuf.h>
47 1.1 cgd #include <sys/msgbuf.h>
48 1.1 cgd #include <sys/ioctl.h>
49 1.1 cgd #include <sys/tty.h>
50 1.1 cgd #include <sys/user.h>
51 1.1 cgd #include <sys/exec.h>
52 1.1 cgd #include <sys/exec_ecoff.h>
53 1.1 cgd #include <sys/sysctl.h>
54 1.43 cgd #include <sys/core.h>
55 1.43 cgd #include <sys/kcore.h>
56 1.43 cgd #include <machine/kcore.h>
57 1.1 cgd #ifdef SYSVMSG
58 1.1 cgd #include <sys/msg.h>
59 1.1 cgd #endif
60 1.1 cgd #ifdef SYSVSEM
61 1.1 cgd #include <sys/sem.h>
62 1.1 cgd #endif
63 1.1 cgd #ifdef SYSVSHM
64 1.1 cgd #include <sys/shm.h>
65 1.1 cgd #endif
66 1.1 cgd
67 1.1 cgd #include <sys/mount.h>
68 1.1 cgd #include <sys/syscallargs.h>
69 1.1 cgd
70 1.1 cgd #include <vm/vm_kern.h>
71 1.1 cgd
72 1.1 cgd #include <dev/cons.h>
73 1.1 cgd
74 1.1 cgd #include <machine/cpu.h>
75 1.1 cgd #include <machine/reg.h>
76 1.1 cgd #include <machine/rpb.h>
77 1.1 cgd #include <machine/prom.h>
78 1.1 cgd
79 1.8 cgd #ifdef DEC_3000_500
80 1.8 cgd #include <alpha/alpha/dec_3000_500.h>
81 1.8 cgd #endif
82 1.8 cgd #ifdef DEC_3000_300
83 1.8 cgd #include <alpha/alpha/dec_3000_300.h>
84 1.8 cgd #endif
85 1.8 cgd #ifdef DEC_2100_A50
86 1.8 cgd #include <alpha/alpha/dec_2100_a50.h>
87 1.8 cgd #endif
88 1.12 cgd #ifdef DEC_KN20AA
89 1.12 cgd #include <alpha/alpha/dec_kn20aa.h>
90 1.12 cgd #endif
91 1.12 cgd #ifdef DEC_AXPPCI_33
92 1.12 cgd #include <alpha/alpha/dec_axppci_33.h>
93 1.12 cgd #endif
94 1.12 cgd #ifdef DEC_21000
95 1.12 cgd #include <alpha/alpha/dec_21000.h>
96 1.12 cgd #endif
97 1.8 cgd
98 1.49 cgd #include <net/netisr.h>
99 1.33 cgd #include <net/if.h>
100 1.49 cgd
101 1.49 cgd #ifdef INET
102 1.33 cgd #include <netinet/in.h>
103 1.49 cgd #include <netinet/if_ether.h>
104 1.33 cgd #include <netinet/ip_var.h>
105 1.49 cgd #endif
106 1.49 cgd #ifdef NS
107 1.49 cgd #include <netns/ns_var.h>
108 1.49 cgd #endif
109 1.49 cgd #ifdef ISO
110 1.49 cgd #include <netiso/iso.h>
111 1.49 cgd #include <netiso/clnp.h>
112 1.49 cgd #endif
113 1.49 cgd #include "ppp.h"
114 1.49 cgd #if NPPP > 0
115 1.49 cgd #include <net/ppp_defs.h>
116 1.49 cgd #include <net/if_ppp.h>
117 1.49 cgd #endif
118 1.1 cgd
119 1.17 cgd #include "le_ioasic.h" /* for le_iomem creation */
120 1.1 cgd
121 1.1 cgd vm_map_t buffer_map;
122 1.1 cgd
123 1.7 cgd void dumpsys __P((void));
124 1.7 cgd
125 1.1 cgd /*
126 1.1 cgd * Declare these as initialized data so we can patch them.
127 1.1 cgd */
128 1.1 cgd int nswbuf = 0;
129 1.1 cgd #ifdef NBUF
130 1.1 cgd int nbuf = NBUF;
131 1.1 cgd #else
132 1.1 cgd int nbuf = 0;
133 1.1 cgd #endif
134 1.1 cgd #ifdef BUFPAGES
135 1.1 cgd int bufpages = BUFPAGES;
136 1.1 cgd #else
137 1.1 cgd int bufpages = 0;
138 1.1 cgd #endif
139 1.1 cgd int msgbufmapped = 0; /* set when safe to use msgbuf */
140 1.1 cgd int maxmem; /* max memory per process */
141 1.7 cgd
142 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
143 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
144 1.7 cgd int firstusablepage; /* first usable memory page */
145 1.7 cgd int lastusablepage; /* last usable memory page */
146 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
147 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
148 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
149 1.1 cgd
150 1.1 cgd int cputype; /* system type, from the RPB */
151 1.1 cgd
152 1.1 cgd /*
153 1.1 cgd * XXX We need an address to which we can assign things so that they
154 1.1 cgd * won't be optimized away because we didn't use the value.
155 1.1 cgd */
156 1.1 cgd u_int32_t no_optimize;
157 1.1 cgd
158 1.1 cgd /* the following is used externally (sysctl_hw) */
159 1.1 cgd char machine[] = "alpha";
160 1.29 cgd char cpu_model[128];
161 1.1 cgd char *model_names[] = {
162 1.2 cgd "UNKNOWN (0)",
163 1.2 cgd "Alpha Demonstration Unit",
164 1.2 cgd "DEC 4000 (\"Cobra\")",
165 1.2 cgd "DEC 7000 (\"Ruby\")",
166 1.2 cgd "DEC 3000/500 (\"Flamingo\") family",
167 1.2 cgd "UNKNOWN (5)",
168 1.2 cgd "DEC 2000/300 (\"Jensen\")",
169 1.2 cgd "DEC 3000/300 (\"Pelican\")",
170 1.2 cgd "UNKNOWN (8)",
171 1.2 cgd "DEC 2100/A500 (\"Sable\")",
172 1.2 cgd "AXPvme 64",
173 1.2 cgd "AXPpci 33 (\"NoName\")",
174 1.12 cgd "DEC 21000 (\"TurboLaser\")",
175 1.7 cgd "DEC 2100/A50 (\"Avanti\") family",
176 1.2 cgd "Mustang",
177 1.12 cgd "DEC KN20AA",
178 1.12 cgd "UNKNOWN (16)",
179 1.2 cgd "DEC 1000 (\"Mikasa\")",
180 1.1 cgd };
181 1.1 cgd int nmodel_names = sizeof model_names/sizeof model_names[0];
182 1.1 cgd
183 1.1 cgd struct user *proc0paddr;
184 1.1 cgd
185 1.1 cgd /* Number of machine cycles per microsecond */
186 1.1 cgd u_int64_t cycles_per_usec;
187 1.1 cgd
188 1.1 cgd /* some memory areas for device DMA. "ick." */
189 1.1 cgd caddr_t le_iomem; /* XXX iomem for LANCE DMA */
190 1.1 cgd
191 1.1 cgd /* Interrupt vectors (in locore) */
192 1.1 cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
193 1.1 cgd
194 1.7 cgd /* number of cpus in the box. really! */
195 1.7 cgd int ncpus;
196 1.7 cgd
197 1.8 cgd /* various CPU-specific functions. */
198 1.8 cgd char *(*cpu_modelname) __P((void));
199 1.24 cgd void (*cpu_consinit) __P((void));
200 1.28 cgd void (*cpu_device_register) __P((struct device *dev, void *aux));
201 1.8 cgd char *cpu_iobus;
202 1.8 cgd
203 1.25 cgd char boot_flags[64];
204 1.8 cgd
205 1.30 cgd /* for cpu_sysctl() */
206 1.36 cgd char root_device[17];
207 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
208 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
209 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
210 1.30 cgd
211 1.36 cgd void identifycpu();
212 1.33 cgd
213 1.1 cgd int
214 1.25 cgd alpha_init(pfn, ptb)
215 1.1 cgd u_long pfn; /* first free PFN number */
216 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
217 1.1 cgd {
218 1.2 cgd extern char _end[];
219 1.1 cgd caddr_t start, v;
220 1.1 cgd struct mddt *mddtp;
221 1.7 cgd int i, mddtweird;
222 1.1 cgd char *p;
223 1.1 cgd
224 1.1 cgd /*
225 1.1 cgd * Turn off interrupts and floating point.
226 1.1 cgd * Make sure the instruction and data streams are consistent.
227 1.1 cgd */
228 1.1 cgd (void)splhigh();
229 1.32 cgd alpha_pal_wrfen(0);
230 1.37 cgd ALPHA_TBIA();
231 1.32 cgd alpha_pal_imb();
232 1.1 cgd
233 1.1 cgd /*
234 1.1 cgd * get address of the restart block, while we the bootstrap
235 1.1 cgd * mapping is still around.
236 1.1 cgd */
237 1.32 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
238 1.32 cgd (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
239 1.1 cgd
240 1.1 cgd /*
241 1.1 cgd * Remember how many cycles there are per microsecond,
242 1.7 cgd * so that we can use delay(). Round up, for safety.
243 1.1 cgd */
244 1.7 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
245 1.1 cgd
246 1.1 cgd /*
247 1.1 cgd * Init the PROM interface, so we can use printf
248 1.1 cgd * until PROM mappings go away in consinit.
249 1.1 cgd */
250 1.1 cgd init_prom_interface();
251 1.1 cgd
252 1.1 cgd /*
253 1.1 cgd * Point interrupt/exception vectors to our own.
254 1.1 cgd */
255 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
256 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
257 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
258 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
259 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
260 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
261 1.36 cgd
262 1.36 cgd /*
263 1.36 cgd * Disable System and Processor Correctable Error reporting.
264 1.36 cgd * Clear pending machine checks and error reports, etc.
265 1.36 cgd */
266 1.40 cgd alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
267 1.1 cgd
268 1.1 cgd /*
269 1.1 cgd * Find out how much memory is available, by looking at
270 1.7 cgd * the memory cluster descriptors. This also tries to do
271 1.7 cgd * its best to detect things things that have never been seen
272 1.7 cgd * before...
273 1.7 cgd *
274 1.1 cgd * XXX Assumes that the first "system" cluster is the
275 1.7 cgd * only one we can use. Is the second (etc.) system cluster
276 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
277 1.1 cgd */
278 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
279 1.7 cgd
280 1.7 cgd /*
281 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
282 1.7 cgd */
283 1.7 cgd mddtweird = 0;
284 1.7 cgd
285 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
286 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
287 1.7 cgd if (cnt != 2 && cnt != 3) {
288 1.46 christos printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
289 1.7 cgd mddtweird = 1;
290 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
291 1.7 cgd usage(1) != MDDT_SYSTEM ||
292 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
293 1.7 cgd mddtweird = 1;
294 1.46 christos printf("WARNING: %ld mem clusters, but weird config\n", cnt);
295 1.7 cgd }
296 1.7 cgd
297 1.7 cgd for (i = 0; i < cnt; i++) {
298 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
299 1.46 christos printf("WARNING: mem cluster %d has weird usage %lx\n",
300 1.7 cgd i, usage(i));
301 1.7 cgd mddtweird = 1;
302 1.7 cgd }
303 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
304 1.46 christos printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
305 1.7 cgd mddtweird = 1;
306 1.7 cgd }
307 1.7 cgd /* XXX other things to check? */
308 1.7 cgd }
309 1.7 cgd #undef cnt
310 1.7 cgd #undef usage
311 1.7 cgd
312 1.7 cgd if (mddtweird) {
313 1.46 christos printf("\n");
314 1.46 christos printf("complete memory cluster information:\n");
315 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
316 1.46 christos printf("mddt %d:\n", i);
317 1.46 christos printf("\tpfn %lx\n",
318 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
319 1.46 christos printf("\tcnt %lx\n",
320 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
321 1.46 christos printf("\ttest %lx\n",
322 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
323 1.46 christos printf("\tbva %lx\n",
324 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
325 1.46 christos printf("\tbpa %lx\n",
326 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
327 1.46 christos printf("\tbcksum %lx\n",
328 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
329 1.46 christos printf("\tusage %lx\n",
330 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
331 1.2 cgd }
332 1.46 christos printf("\n");
333 1.2 cgd }
334 1.7 cgd /*
335 1.7 cgd * END MDDT WEIRDNESS CHECKING
336 1.7 cgd */
337 1.2 cgd
338 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
339 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
340 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
341 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
342 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
343 1.7 cgd unknownmem += pgcnt(i);
344 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
345 1.7 cgd resvmem += pgcnt(i);
346 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
347 1.7 cgd /*
348 1.7 cgd * assumes that the system cluster listed is
349 1.7 cgd * one we're in...
350 1.7 cgd */
351 1.7 cgd if (physmem != resvmem) {
352 1.7 cgd physmem += pgcnt(i);
353 1.7 cgd firstusablepage =
354 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
355 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
356 1.7 cgd } else
357 1.7 cgd unusedmem += pgcnt(i);
358 1.7 cgd }
359 1.7 cgd #undef usage
360 1.7 cgd #undef pgcnt
361 1.1 cgd }
362 1.7 cgd if (totalphysmem == 0)
363 1.1 cgd panic("can't happen: system seems to have no memory!");
364 1.1 cgd maxmem = physmem;
365 1.1 cgd
366 1.7 cgd #if 0
367 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
368 1.46 christos printf("physmem = %d\n", physmem);
369 1.46 christos printf("firstusablepage = %d\n", firstusablepage);
370 1.46 christos printf("lastusablepage = %d\n", lastusablepage);
371 1.46 christos printf("resvmem = %d\n", resvmem);
372 1.46 christos printf("unusedmem = %d\n", unusedmem);
373 1.46 christos printf("unknownmem = %d\n", unknownmem);
374 1.7 cgd #endif
375 1.7 cgd
376 1.1 cgd /*
377 1.1 cgd * find out this CPU's page size
378 1.1 cgd */
379 1.1 cgd PAGE_SIZE = hwrpb->rpb_page_size;
380 1.12 cgd if (PAGE_SIZE != 8192)
381 1.12 cgd panic("page size %d != 8192?!", PAGE_SIZE);
382 1.1 cgd
383 1.2 cgd v = (caddr_t)alpha_round_page(_end);
384 1.1 cgd /*
385 1.1 cgd * Init mapping for u page(s) for proc 0
386 1.1 cgd */
387 1.1 cgd start = v;
388 1.1 cgd curproc->p_addr = proc0paddr = (struct user *)v;
389 1.1 cgd v += UPAGES * NBPG;
390 1.1 cgd
391 1.1 cgd /*
392 1.1 cgd * Find out what hardware we're on, and remember its type name.
393 1.1 cgd */
394 1.1 cgd cputype = hwrpb->rpb_type;
395 1.1 cgd switch (cputype) {
396 1.2 cgd #ifdef DEC_3000_500 /* and 400, [6-9]00 */
397 1.1 cgd case ST_DEC_3000_500:
398 1.8 cgd cpu_modelname = dec_3000_500_modelname;
399 1.8 cgd cpu_consinit = dec_3000_500_consinit;
400 1.28 cgd cpu_device_register = dec_3000_500_device_register;
401 1.13 cgd cpu_iobus = "tcasic";
402 1.2 cgd break;
403 1.2 cgd #endif
404 1.2 cgd
405 1.2 cgd #ifdef DEC_3000_300
406 1.2 cgd case ST_DEC_3000_300:
407 1.8 cgd cpu_modelname = dec_3000_300_modelname;
408 1.8 cgd cpu_consinit = dec_3000_300_consinit;
409 1.28 cgd cpu_device_register = dec_3000_300_device_register;
410 1.13 cgd cpu_iobus = "tcasic";
411 1.2 cgd break;
412 1.2 cgd #endif
413 1.2 cgd
414 1.2 cgd #ifdef DEC_2100_A50
415 1.2 cgd case ST_DEC_2100_A50:
416 1.8 cgd cpu_modelname = dec_2100_a50_modelname;
417 1.8 cgd cpu_consinit = dec_2100_a50_consinit;
418 1.28 cgd cpu_device_register = dec_2100_a50_device_register;
419 1.8 cgd cpu_iobus = "apecs";
420 1.2 cgd break;
421 1.2 cgd #endif
422 1.2 cgd
423 1.12 cgd #ifdef DEC_KN20AA
424 1.12 cgd case ST_DEC_KN20AA:
425 1.12 cgd cpu_modelname = dec_kn20aa_modelname;
426 1.12 cgd cpu_consinit = dec_kn20aa_consinit;
427 1.28 cgd cpu_device_register = dec_kn20aa_device_register;
428 1.12 cgd cpu_iobus = "cia";
429 1.12 cgd break;
430 1.12 cgd #endif
431 1.12 cgd
432 1.12 cgd #ifdef DEC_AXPPCI_33
433 1.12 cgd case ST_DEC_AXPPCI_33:
434 1.12 cgd cpu_modelname = dec_axppci_33_modelname;
435 1.12 cgd cpu_consinit = dec_axppci_33_consinit;
436 1.28 cgd cpu_device_register = dec_axppci_33_device_register;
437 1.12 cgd cpu_iobus = "lca";
438 1.12 cgd break;
439 1.12 cgd #endif
440 1.12 cgd
441 1.8 cgd #ifdef DEC_2000_300
442 1.8 cgd case ST_DEC_2000_300:
443 1.8 cgd cpu_modelname = dec_2000_300_modelname;
444 1.8 cgd cpu_consinit = dec_2000_300_consinit;
445 1.28 cgd cpu_device_register = dec_2000_300_device_register;
446 1.8 cgd cpu_iobus = "ibus";
447 1.8 cgd XXX DEC 2000/300 NOT SUPPORTED
448 1.12 cgd break;
449 1.2 cgd #endif
450 1.2 cgd
451 1.12 cgd #ifdef DEC_21000
452 1.12 cgd case ST_DEC_21000:
453 1.12 cgd cpu_modelname = dec_21000_modelname;
454 1.12 cgd cpu_consinit = dec_21000_consinit;
455 1.28 cgd cpu_device_register = dec_21000_device_register;
456 1.12 cgd cpu_iobus = "tlsb";
457 1.27 cgd XXX DEC 21000 NOT SUPPORTED
458 1.12 cgd break;
459 1.2 cgd #endif
460 1.2 cgd
461 1.1 cgd default:
462 1.1 cgd if (cputype > nmodel_names)
463 1.1 cgd panic("Unknown system type %d", cputype);
464 1.1 cgd else
465 1.1 cgd panic("Support for %s system type not in kernel.",
466 1.1 cgd model_names[cputype]);
467 1.1 cgd }
468 1.8 cgd
469 1.29 cgd if ((*cpu_modelname)() != NULL)
470 1.29 cgd strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
471 1.29 cgd else
472 1.29 cgd strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
473 1.29 cgd cpu_model[sizeof cpu_model - 1] = '\0';
474 1.1 cgd
475 1.17 cgd #if NLE_IOASIC > 0
476 1.1 cgd /*
477 1.1 cgd * Grab 128K at the top of physical memory for the lance chip
478 1.1 cgd * on machines where it does dma through the I/O ASIC.
479 1.1 cgd * It must be physically contiguous and aligned on a 128K boundary.
480 1.17 cgd *
481 1.17 cgd * Note that since this is conditional on the presence of
482 1.17 cgd * IOASIC-attached 'le' units in the kernel config, the
483 1.17 cgd * message buffer may move on these systems. This shouldn't
484 1.17 cgd * be a problem, because once people have a kernel config that
485 1.17 cgd * they use, they're going to stick with it.
486 1.1 cgd */
487 1.1 cgd if (cputype == ST_DEC_3000_500 ||
488 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
489 1.7 cgd lastusablepage -= btoc(128 * 1024);
490 1.32 cgd le_iomem =
491 1.32 cgd (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
492 1.1 cgd }
493 1.17 cgd #endif /* NLE_IOASIC */
494 1.1 cgd
495 1.1 cgd /*
496 1.1 cgd * Initialize error message buffer (at end of core).
497 1.1 cgd */
498 1.7 cgd lastusablepage -= btoc(sizeof (struct msgbuf));
499 1.32 cgd msgbufp =
500 1.32 cgd (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
501 1.1 cgd msgbufmapped = 1;
502 1.1 cgd
503 1.1 cgd /*
504 1.1 cgd * Allocate space for system data structures.
505 1.1 cgd * The first available kernel virtual address is in "v".
506 1.1 cgd * As pages of kernel virtual memory are allocated, "v" is incremented.
507 1.1 cgd *
508 1.1 cgd * These data structures are allocated here instead of cpu_startup()
509 1.1 cgd * because physical memory is directly addressable. We don't have
510 1.1 cgd * to map these into virtual address space.
511 1.1 cgd */
512 1.1 cgd #define valloc(name, type, num) \
513 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
514 1.1 cgd #define valloclim(name, type, num, lim) \
515 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
516 1.1 cgd #ifdef REAL_CLISTS
517 1.1 cgd valloc(cfree, struct cblock, nclist);
518 1.1 cgd #endif
519 1.1 cgd valloc(callout, struct callout, ncallout);
520 1.1 cgd valloc(swapmap, struct map, nswapmap = maxproc * 2);
521 1.1 cgd #ifdef SYSVSHM
522 1.1 cgd valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
523 1.1 cgd #endif
524 1.1 cgd #ifdef SYSVSEM
525 1.1 cgd valloc(sema, struct semid_ds, seminfo.semmni);
526 1.1 cgd valloc(sem, struct sem, seminfo.semmns);
527 1.1 cgd /* This is pretty disgusting! */
528 1.1 cgd valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
529 1.1 cgd #endif
530 1.1 cgd #ifdef SYSVMSG
531 1.1 cgd valloc(msgpool, char, msginfo.msgmax);
532 1.1 cgd valloc(msgmaps, struct msgmap, msginfo.msgseg);
533 1.1 cgd valloc(msghdrs, struct msg, msginfo.msgtql);
534 1.1 cgd valloc(msqids, struct msqid_ds, msginfo.msgmni);
535 1.1 cgd #endif
536 1.1 cgd
537 1.1 cgd /*
538 1.1 cgd * Determine how many buffers to allocate.
539 1.31 cgd * We allocate 10% of memory for buffer space. Insure a
540 1.1 cgd * minimum of 16 buffers. We allocate 1/2 as many swap buffer
541 1.1 cgd * headers as file i/o buffers.
542 1.1 cgd */
543 1.1 cgd if (bufpages == 0)
544 1.31 cgd bufpages = (physmem * 10) / (CLSIZE * 100);
545 1.1 cgd if (nbuf == 0) {
546 1.1 cgd nbuf = bufpages;
547 1.1 cgd if (nbuf < 16)
548 1.1 cgd nbuf = 16;
549 1.1 cgd }
550 1.1 cgd if (nswbuf == 0) {
551 1.1 cgd nswbuf = (nbuf / 2) &~ 1; /* force even */
552 1.1 cgd if (nswbuf > 256)
553 1.1 cgd nswbuf = 256; /* sanity */
554 1.1 cgd }
555 1.1 cgd valloc(swbuf, struct buf, nswbuf);
556 1.1 cgd valloc(buf, struct buf, nbuf);
557 1.1 cgd
558 1.1 cgd /*
559 1.1 cgd * Clear allocated memory.
560 1.1 cgd */
561 1.1 cgd bzero(start, v - start);
562 1.1 cgd
563 1.1 cgd /*
564 1.1 cgd * Initialize the virtual memory system, and set the
565 1.1 cgd * page table base register in proc 0's PCB.
566 1.1 cgd */
567 1.40 cgd #ifndef NEW_PMAP
568 1.32 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
569 1.40 cgd #else
570 1.40 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
571 1.40 cgd hwrpb->rpb_max_asn);
572 1.40 cgd #endif
573 1.1 cgd
574 1.1 cgd /*
575 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
576 1.3 cgd * address.
577 1.3 cgd */
578 1.3 cgd proc0.p_md.md_pcbpaddr =
579 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
580 1.3 cgd
581 1.3 cgd /*
582 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
583 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
584 1.3 cgd */
585 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
586 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
587 1.33 cgd proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
588 1.38 cgd
589 1.40 cgd #ifdef NEW_PMAP
590 1.40 cgd pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
591 1.38 cgd #endif
592 1.1 cgd
593 1.1 cgd /*
594 1.25 cgd * Look at arguments passed to us and compute boothowto.
595 1.8 cgd */
596 1.25 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
597 1.25 cgd #if 0
598 1.46 christos printf("boot flags = \"%s\"\n", boot_flags);
599 1.25 cgd #endif
600 1.1 cgd
601 1.8 cgd boothowto = RB_SINGLE;
602 1.1 cgd #ifdef KADB
603 1.1 cgd boothowto |= RB_KDB;
604 1.1 cgd #endif
605 1.8 cgd for (p = boot_flags; p && *p != '\0'; p++) {
606 1.26 cgd /*
607 1.26 cgd * Note that we'd really like to differentiate case here,
608 1.26 cgd * but the Alpha AXP Architecture Reference Manual
609 1.26 cgd * says that we shouldn't.
610 1.26 cgd */
611 1.8 cgd switch (*p) {
612 1.26 cgd case 'a': /* autoboot */
613 1.26 cgd case 'A':
614 1.26 cgd boothowto &= ~RB_SINGLE;
615 1.21 cgd break;
616 1.21 cgd
617 1.43 cgd #ifdef DEBUG
618 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
619 1.43 cgd case 'C':
620 1.43 cgd boothowto |= RB_DUMP;
621 1.43 cgd break;
622 1.43 cgd #endif
623 1.43 cgd
624 1.36 cgd case 'h': /* always halt, never reboot */
625 1.36 cgd case 'H':
626 1.36 cgd boothowto |= RB_HALT;
627 1.8 cgd break;
628 1.8 cgd
629 1.21 cgd #if 0
630 1.8 cgd case 'm': /* mini root present in memory */
631 1.26 cgd case 'M':
632 1.8 cgd boothowto |= RB_MINIROOT;
633 1.8 cgd break;
634 1.21 cgd #endif
635 1.36 cgd
636 1.36 cgd case 'n': /* askname */
637 1.36 cgd case 'N':
638 1.36 cgd boothowto |= RB_ASKNAME;
639 1.36 cgd break;
640 1.1 cgd }
641 1.1 cgd }
642 1.1 cgd
643 1.7 cgd /*
644 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
645 1.7 cgd * Really. We mean it.
646 1.7 cgd */
647 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
648 1.7 cgd struct pcs *pcsp;
649 1.7 cgd
650 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
651 1.7 cgd (i * hwrpb->rpb_pcs_size));
652 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
653 1.7 cgd ncpus++;
654 1.7 cgd }
655 1.7 cgd
656 1.1 cgd return (0);
657 1.1 cgd }
658 1.1 cgd
659 1.18 cgd void
660 1.1 cgd consinit()
661 1.1 cgd {
662 1.1 cgd
663 1.24 cgd (*cpu_consinit)();
664 1.1 cgd pmap_unmap_prom();
665 1.1 cgd }
666 1.1 cgd
667 1.18 cgd void
668 1.1 cgd cpu_startup()
669 1.1 cgd {
670 1.1 cgd register unsigned i;
671 1.1 cgd int base, residual;
672 1.1 cgd vm_offset_t minaddr, maxaddr;
673 1.1 cgd vm_size_t size;
674 1.40 cgd #if defined(DEBUG)
675 1.1 cgd extern int pmapdebug;
676 1.1 cgd int opmapdebug = pmapdebug;
677 1.1 cgd
678 1.1 cgd pmapdebug = 0;
679 1.1 cgd #endif
680 1.1 cgd
681 1.1 cgd /*
682 1.1 cgd * Good {morning,afternoon,evening,night}.
683 1.1 cgd */
684 1.46 christos printf(version);
685 1.1 cgd identifycpu();
686 1.46 christos printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
687 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
688 1.7 cgd if (unusedmem)
689 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
690 1.7 cgd if (unknownmem)
691 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
692 1.7 cgd ctob(unknownmem));
693 1.1 cgd
694 1.1 cgd /*
695 1.1 cgd * Allocate virtual address space for file I/O buffers.
696 1.1 cgd * Note they are different than the array of headers, 'buf',
697 1.1 cgd * and usually occupy more virtual memory than physical.
698 1.1 cgd */
699 1.1 cgd size = MAXBSIZE * nbuf;
700 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
701 1.1 cgd &maxaddr, size, TRUE);
702 1.1 cgd minaddr = (vm_offset_t)buffers;
703 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
704 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
705 1.1 cgd panic("startup: cannot allocate buffers");
706 1.1 cgd base = bufpages / nbuf;
707 1.1 cgd residual = bufpages % nbuf;
708 1.1 cgd for (i = 0; i < nbuf; i++) {
709 1.1 cgd vm_size_t curbufsize;
710 1.1 cgd vm_offset_t curbuf;
711 1.1 cgd
712 1.1 cgd /*
713 1.1 cgd * First <residual> buffers get (base+1) physical pages
714 1.1 cgd * allocated for them. The rest get (base) physical pages.
715 1.1 cgd *
716 1.1 cgd * The rest of each buffer occupies virtual space,
717 1.1 cgd * but has no physical memory allocated for it.
718 1.1 cgd */
719 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
720 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
721 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
722 1.1 cgd vm_map_simplify(buffer_map, curbuf);
723 1.1 cgd }
724 1.1 cgd /*
725 1.1 cgd * Allocate a submap for exec arguments. This map effectively
726 1.1 cgd * limits the number of processes exec'ing at any time.
727 1.1 cgd */
728 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
729 1.1 cgd 16 * NCARGS, TRUE);
730 1.1 cgd
731 1.1 cgd /*
732 1.1 cgd * Allocate a submap for physio
733 1.1 cgd */
734 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
735 1.1 cgd VM_PHYS_SIZE, TRUE);
736 1.1 cgd
737 1.1 cgd /*
738 1.1 cgd * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
739 1.1 cgd * we use the more space efficient malloc in place of kmem_alloc.
740 1.1 cgd */
741 1.1 cgd mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
742 1.1 cgd M_MBUF, M_NOWAIT);
743 1.1 cgd bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
744 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
745 1.1 cgd VM_MBUF_SIZE, FALSE);
746 1.1 cgd /*
747 1.1 cgd * Initialize callouts
748 1.1 cgd */
749 1.1 cgd callfree = callout;
750 1.1 cgd for (i = 1; i < ncallout; i++)
751 1.1 cgd callout[i-1].c_next = &callout[i];
752 1.1 cgd callout[i-1].c_next = NULL;
753 1.1 cgd
754 1.40 cgd #if defined(DEBUG)
755 1.1 cgd pmapdebug = opmapdebug;
756 1.1 cgd #endif
757 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
758 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
759 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
760 1.1 cgd
761 1.1 cgd /*
762 1.1 cgd * Set up buffers, so they can be used to read disk labels.
763 1.1 cgd */
764 1.1 cgd bufinit();
765 1.1 cgd
766 1.1 cgd /*
767 1.1 cgd * Configure the system.
768 1.1 cgd */
769 1.1 cgd configure();
770 1.48 cgd
771 1.48 cgd /*
772 1.48 cgd * Note that bootstrapping is finished, and set the HWRPB up
773 1.48 cgd * to do restarts.
774 1.48 cgd */
775 1.48 cgd hwrbp_restart_setup();
776 1.1 cgd }
777 1.1 cgd
778 1.33 cgd void
779 1.1 cgd identifycpu()
780 1.1 cgd {
781 1.1 cgd
782 1.7 cgd /*
783 1.7 cgd * print out CPU identification information.
784 1.7 cgd */
785 1.46 christos printf("%s, %ldMHz\n", cpu_model,
786 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
787 1.46 christos printf("%ld byte page size, %d processor%s.\n",
788 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
789 1.7 cgd #if 0
790 1.7 cgd /* this isn't defined for any systems that we run on? */
791 1.46 christos printf("serial number 0x%lx 0x%lx\n",
792 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
793 1.7 cgd
794 1.7 cgd /* and these aren't particularly useful! */
795 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
796 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
797 1.7 cgd #endif
798 1.1 cgd }
799 1.1 cgd
800 1.1 cgd int waittime = -1;
801 1.7 cgd struct pcb dumppcb;
802 1.1 cgd
803 1.18 cgd void
804 1.39 mrg boot(howto, bootstr)
805 1.1 cgd int howto;
806 1.39 mrg char *bootstr;
807 1.1 cgd {
808 1.1 cgd extern int cold;
809 1.1 cgd
810 1.1 cgd /* If system is cold, just halt. */
811 1.1 cgd if (cold) {
812 1.1 cgd howto |= RB_HALT;
813 1.1 cgd goto haltsys;
814 1.1 cgd }
815 1.1 cgd
816 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
817 1.36 cgd if ((boothowto & RB_HALT) != 0)
818 1.36 cgd howto |= RB_HALT;
819 1.36 cgd
820 1.7 cgd boothowto = howto;
821 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
822 1.1 cgd waittime = 0;
823 1.7 cgd vfs_shutdown();
824 1.1 cgd /*
825 1.1 cgd * If we've been adjusting the clock, the todr
826 1.1 cgd * will be out of synch; adjust it now.
827 1.1 cgd */
828 1.1 cgd resettodr();
829 1.1 cgd }
830 1.1 cgd
831 1.1 cgd /* Disable interrupts. */
832 1.1 cgd splhigh();
833 1.1 cgd
834 1.7 cgd /* If rebooting and a dump is requested do it. */
835 1.42 cgd #if 0
836 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
837 1.42 cgd #else
838 1.42 cgd if (howto & RB_DUMP)
839 1.42 cgd #endif
840 1.1 cgd dumpsys();
841 1.6 cgd
842 1.12 cgd haltsys:
843 1.12 cgd
844 1.6 cgd /* run any shutdown hooks */
845 1.6 cgd doshutdownhooks();
846 1.1 cgd
847 1.7 cgd #ifdef BOOTKEY
848 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
849 1.7 cgd cngetc();
850 1.46 christos printf("\n");
851 1.7 cgd #endif
852 1.7 cgd
853 1.1 cgd /* Finally, halt/reboot the system. */
854 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
855 1.1 cgd prom_halt(howto & RB_HALT);
856 1.1 cgd /*NOTREACHED*/
857 1.1 cgd }
858 1.1 cgd
859 1.7 cgd /*
860 1.7 cgd * These variables are needed by /sbin/savecore
861 1.7 cgd */
862 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
863 1.7 cgd int dumpsize = 0; /* pages */
864 1.7 cgd long dumplo = 0; /* blocks */
865 1.7 cgd
866 1.7 cgd /*
867 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
868 1.43 cgd */
869 1.43 cgd int
870 1.43 cgd cpu_dumpsize()
871 1.43 cgd {
872 1.43 cgd int size;
873 1.43 cgd
874 1.43 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
875 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
876 1.43 cgd return -1;
877 1.43 cgd
878 1.43 cgd return (1);
879 1.43 cgd }
880 1.43 cgd
881 1.43 cgd /*
882 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
883 1.43 cgd */
884 1.43 cgd int
885 1.43 cgd cpu_dump()
886 1.43 cgd {
887 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
888 1.43 cgd long buf[dbtob(1) / sizeof (long)];
889 1.43 cgd kcore_seg_t *segp;
890 1.43 cgd cpu_kcore_hdr_t *cpuhdrp;
891 1.43 cgd
892 1.43 cgd dump = bdevsw[major(dumpdev)].d_dump;
893 1.43 cgd
894 1.43 cgd segp = (kcore_seg_t *)buf;
895 1.43 cgd cpuhdrp =
896 1.43 cgd (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
897 1.43 cgd
898 1.43 cgd /*
899 1.43 cgd * Generate a segment header.
900 1.43 cgd */
901 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
902 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
903 1.43 cgd
904 1.43 cgd /*
905 1.43 cgd * Add the machine-dependent header info
906 1.43 cgd */
907 1.44 cgd cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
908 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
909 1.43 cgd cpuhdrp->core_seg.start = ctob(firstusablepage);
910 1.43 cgd cpuhdrp->core_seg.size = ctob(physmem);
911 1.43 cgd
912 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
913 1.43 cgd }
914 1.43 cgd
915 1.43 cgd /*
916 1.7 cgd * This is called by configure to set dumplo and dumpsize.
917 1.7 cgd * Dumps always skip the first CLBYTES of disk space
918 1.7 cgd * in case there might be a disk label stored there.
919 1.7 cgd * If there is extra space, put dump at the end to
920 1.7 cgd * reduce the chance that swapping trashes it.
921 1.7 cgd */
922 1.7 cgd void
923 1.7 cgd dumpconf()
924 1.7 cgd {
925 1.43 cgd int nblks, dumpblks; /* size of dump area */
926 1.7 cgd int maj;
927 1.7 cgd
928 1.7 cgd if (dumpdev == NODEV)
929 1.43 cgd goto bad;
930 1.7 cgd maj = major(dumpdev);
931 1.7 cgd if (maj < 0 || maj >= nblkdev)
932 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
933 1.7 cgd if (bdevsw[maj].d_psize == NULL)
934 1.43 cgd goto bad;
935 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
936 1.7 cgd if (nblks <= ctod(1))
937 1.43 cgd goto bad;
938 1.43 cgd
939 1.43 cgd dumpblks = cpu_dumpsize();
940 1.43 cgd if (dumpblks < 0)
941 1.43 cgd goto bad;
942 1.43 cgd dumpblks += ctod(physmem);
943 1.43 cgd
944 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
945 1.43 cgd if (dumpblks > (nblks - ctod(1)))
946 1.43 cgd goto bad;
947 1.43 cgd
948 1.43 cgd /* Put dump at end of partition */
949 1.43 cgd dumplo = nblks - dumpblks;
950 1.7 cgd
951 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
952 1.7 cgd dumpsize = physmem;
953 1.43 cgd return;
954 1.7 cgd
955 1.43 cgd bad:
956 1.43 cgd dumpsize = 0;
957 1.43 cgd return;
958 1.7 cgd }
959 1.7 cgd
960 1.7 cgd /*
961 1.42 cgd * Dump the kernel's image to the swap partition.
962 1.7 cgd */
963 1.42 cgd #define BYTES_PER_DUMP NBPG
964 1.42 cgd
965 1.7 cgd void
966 1.7 cgd dumpsys()
967 1.7 cgd {
968 1.42 cgd unsigned bytes, i, n;
969 1.42 cgd int maddr, psize;
970 1.42 cgd daddr_t blkno;
971 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
972 1.42 cgd int error;
973 1.42 cgd
974 1.42 cgd /* Save registers. */
975 1.42 cgd savectx(&dumppcb);
976 1.7 cgd
977 1.42 cgd msgbufmapped = 0; /* don't record dump msgs in msgbuf */
978 1.7 cgd if (dumpdev == NODEV)
979 1.7 cgd return;
980 1.42 cgd
981 1.42 cgd /*
982 1.42 cgd * For dumps during autoconfiguration,
983 1.42 cgd * if dump device has already configured...
984 1.42 cgd */
985 1.42 cgd if (dumpsize == 0)
986 1.7 cgd dumpconf();
987 1.47 cgd if (dumplo <= 0) {
988 1.46 christos printf("\ndump to dev %x not possible\n", dumpdev);
989 1.42 cgd return;
990 1.43 cgd }
991 1.46 christos printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
992 1.7 cgd
993 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
994 1.46 christos printf("dump ");
995 1.42 cgd if (psize == -1) {
996 1.46 christos printf("area unavailable\n");
997 1.42 cgd return;
998 1.42 cgd }
999 1.42 cgd
1000 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1001 1.42 cgd
1002 1.43 cgd if ((error = cpu_dump()) != 0)
1003 1.43 cgd goto err;
1004 1.43 cgd
1005 1.43 cgd bytes = ctob(physmem);
1006 1.42 cgd maddr = ctob(firstusablepage);
1007 1.43 cgd blkno = dumplo + cpu_dumpsize();
1008 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1009 1.42 cgd error = 0;
1010 1.42 cgd for (i = 0; i < bytes; i += n) {
1011 1.42 cgd
1012 1.42 cgd /* Print out how many MBs we to go. */
1013 1.42 cgd n = bytes - i;
1014 1.42 cgd if (n && (n % (1024*1024)) == 0)
1015 1.46 christos printf("%d ", n / (1024 * 1024));
1016 1.42 cgd
1017 1.42 cgd /* Limit size for next transfer. */
1018 1.42 cgd if (n > BYTES_PER_DUMP)
1019 1.42 cgd n = BYTES_PER_DUMP;
1020 1.42 cgd
1021 1.42 cgd error = (*dump)(dumpdev, blkno,
1022 1.42 cgd (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1023 1.42 cgd if (error)
1024 1.42 cgd break;
1025 1.42 cgd maddr += n;
1026 1.42 cgd blkno += btodb(n); /* XXX? */
1027 1.42 cgd
1028 1.42 cgd /* XXX should look for keystrokes, to cancel. */
1029 1.42 cgd }
1030 1.42 cgd
1031 1.43 cgd err:
1032 1.42 cgd switch (error) {
1033 1.7 cgd
1034 1.7 cgd case ENXIO:
1035 1.46 christos printf("device bad\n");
1036 1.7 cgd break;
1037 1.7 cgd
1038 1.7 cgd case EFAULT:
1039 1.46 christos printf("device not ready\n");
1040 1.7 cgd break;
1041 1.7 cgd
1042 1.7 cgd case EINVAL:
1043 1.46 christos printf("area improper\n");
1044 1.7 cgd break;
1045 1.7 cgd
1046 1.7 cgd case EIO:
1047 1.46 christos printf("i/o error\n");
1048 1.7 cgd break;
1049 1.7 cgd
1050 1.7 cgd case EINTR:
1051 1.46 christos printf("aborted from console\n");
1052 1.7 cgd break;
1053 1.7 cgd
1054 1.42 cgd case 0:
1055 1.46 christos printf("succeeded\n");
1056 1.42 cgd break;
1057 1.42 cgd
1058 1.7 cgd default:
1059 1.46 christos printf("error %d\n", error);
1060 1.7 cgd break;
1061 1.7 cgd }
1062 1.46 christos printf("\n\n");
1063 1.7 cgd delay(1000);
1064 1.7 cgd }
1065 1.7 cgd
1066 1.1 cgd void
1067 1.1 cgd frametoreg(framep, regp)
1068 1.1 cgd struct trapframe *framep;
1069 1.1 cgd struct reg *regp;
1070 1.1 cgd {
1071 1.1 cgd
1072 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1073 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1074 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1075 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1076 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1077 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1078 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1079 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1080 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1081 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1082 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1083 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1084 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1085 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1086 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1087 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1088 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1089 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1090 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1091 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1092 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1093 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1094 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1095 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1096 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1097 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1098 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1099 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1100 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1101 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1102 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1103 1.1 cgd regp->r_regs[R_ZERO] = 0;
1104 1.1 cgd }
1105 1.1 cgd
1106 1.1 cgd void
1107 1.1 cgd regtoframe(regp, framep)
1108 1.1 cgd struct reg *regp;
1109 1.1 cgd struct trapframe *framep;
1110 1.1 cgd {
1111 1.1 cgd
1112 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1113 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1114 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1115 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1116 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1117 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1118 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1119 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1120 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1121 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1122 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1123 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1124 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1125 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1126 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1127 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1128 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1129 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1130 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1131 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1132 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1133 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1134 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1135 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1136 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1137 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1138 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1139 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1140 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1141 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1142 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1143 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1144 1.1 cgd }
1145 1.1 cgd
1146 1.1 cgd void
1147 1.1 cgd printregs(regp)
1148 1.1 cgd struct reg *regp;
1149 1.1 cgd {
1150 1.1 cgd int i;
1151 1.1 cgd
1152 1.1 cgd for (i = 0; i < 32; i++)
1153 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1154 1.1 cgd i & 1 ? "\n" : "\t");
1155 1.1 cgd }
1156 1.1 cgd
1157 1.1 cgd void
1158 1.1 cgd regdump(framep)
1159 1.1 cgd struct trapframe *framep;
1160 1.1 cgd {
1161 1.1 cgd struct reg reg;
1162 1.1 cgd
1163 1.1 cgd frametoreg(framep, ®);
1164 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1165 1.35 cgd
1166 1.46 christos printf("REGISTERS:\n");
1167 1.1 cgd printregs(®);
1168 1.1 cgd }
1169 1.1 cgd
1170 1.1 cgd #ifdef DEBUG
1171 1.1 cgd int sigdebug = 0;
1172 1.1 cgd int sigpid = 0;
1173 1.1 cgd #define SDB_FOLLOW 0x01
1174 1.1 cgd #define SDB_KSTACK 0x02
1175 1.1 cgd #endif
1176 1.1 cgd
1177 1.1 cgd /*
1178 1.1 cgd * Send an interrupt to process.
1179 1.1 cgd */
1180 1.1 cgd void
1181 1.1 cgd sendsig(catcher, sig, mask, code)
1182 1.1 cgd sig_t catcher;
1183 1.1 cgd int sig, mask;
1184 1.1 cgd u_long code;
1185 1.1 cgd {
1186 1.1 cgd struct proc *p = curproc;
1187 1.1 cgd struct sigcontext *scp, ksc;
1188 1.1 cgd struct trapframe *frame;
1189 1.1 cgd struct sigacts *psp = p->p_sigacts;
1190 1.1 cgd int oonstack, fsize, rndfsize;
1191 1.1 cgd extern char sigcode[], esigcode[];
1192 1.1 cgd extern struct proc *fpcurproc;
1193 1.1 cgd
1194 1.1 cgd frame = p->p_md.md_tf;
1195 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1196 1.1 cgd fsize = sizeof ksc;
1197 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1198 1.1 cgd /*
1199 1.1 cgd * Allocate and validate space for the signal handler
1200 1.1 cgd * context. Note that if the stack is in P0 space, the
1201 1.1 cgd * call to grow() is a nop, and the useracc() check
1202 1.1 cgd * will fail if the process has not already allocated
1203 1.1 cgd * the space with a `brk'.
1204 1.1 cgd */
1205 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1206 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1207 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1208 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1209 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1210 1.1 cgd } else
1211 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1212 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1213 1.1 cgd (void)grow(p, (u_long)scp);
1214 1.1 cgd #ifdef DEBUG
1215 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1216 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1217 1.1 cgd sig, &oonstack, scp);
1218 1.1 cgd #endif
1219 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1220 1.1 cgd #ifdef DEBUG
1221 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1222 1.46 christos printf("sendsig(%d): useracc failed on sig %d\n",
1223 1.1 cgd p->p_pid, sig);
1224 1.1 cgd #endif
1225 1.1 cgd /*
1226 1.1 cgd * Process has trashed its stack; give it an illegal
1227 1.1 cgd * instruction to halt it in its tracks.
1228 1.1 cgd */
1229 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1230 1.1 cgd sig = sigmask(SIGILL);
1231 1.1 cgd p->p_sigignore &= ~sig;
1232 1.1 cgd p->p_sigcatch &= ~sig;
1233 1.1 cgd p->p_sigmask &= ~sig;
1234 1.1 cgd psignal(p, SIGILL);
1235 1.1 cgd return;
1236 1.1 cgd }
1237 1.1 cgd
1238 1.1 cgd /*
1239 1.1 cgd * Build the signal context to be used by sigreturn.
1240 1.1 cgd */
1241 1.1 cgd ksc.sc_onstack = oonstack;
1242 1.1 cgd ksc.sc_mask = mask;
1243 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1244 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1245 1.1 cgd
1246 1.1 cgd /* copy the registers. */
1247 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1248 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1249 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1250 1.1 cgd
1251 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1252 1.1 cgd if (p == fpcurproc) {
1253 1.32 cgd alpha_pal_wrfen(1);
1254 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1255 1.32 cgd alpha_pal_wrfen(0);
1256 1.1 cgd fpcurproc = NULL;
1257 1.1 cgd }
1258 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1259 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1260 1.1 cgd sizeof(struct fpreg));
1261 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1262 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1263 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1264 1.1 cgd
1265 1.1 cgd
1266 1.1 cgd #ifdef COMPAT_OSF1
1267 1.1 cgd /*
1268 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1269 1.1 cgd */
1270 1.1 cgd #endif
1271 1.1 cgd
1272 1.1 cgd /*
1273 1.1 cgd * copy the frame out to userland.
1274 1.1 cgd */
1275 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1276 1.1 cgd #ifdef DEBUG
1277 1.1 cgd if (sigdebug & SDB_FOLLOW)
1278 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1279 1.1 cgd scp, code);
1280 1.1 cgd #endif
1281 1.1 cgd
1282 1.1 cgd /*
1283 1.1 cgd * Set up the registers to return to sigcode.
1284 1.1 cgd */
1285 1.34 cgd frame->tf_regs[FRAME_PC] =
1286 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1287 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1288 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1289 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1290 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1291 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1292 1.1 cgd
1293 1.1 cgd #ifdef DEBUG
1294 1.1 cgd if (sigdebug & SDB_FOLLOW)
1295 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1296 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1297 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1298 1.46 christos printf("sendsig(%d): sig %d returns\n",
1299 1.1 cgd p->p_pid, sig);
1300 1.1 cgd #endif
1301 1.1 cgd }
1302 1.1 cgd
1303 1.1 cgd /*
1304 1.1 cgd * System call to cleanup state after a signal
1305 1.1 cgd * has been taken. Reset signal mask and
1306 1.1 cgd * stack state from context left by sendsig (above).
1307 1.1 cgd * Return to previous pc and psl as specified by
1308 1.1 cgd * context left by sendsig. Check carefully to
1309 1.1 cgd * make sure that the user has not modified the
1310 1.1 cgd * psl to gain improper priviledges or to cause
1311 1.1 cgd * a machine fault.
1312 1.1 cgd */
1313 1.1 cgd /* ARGSUSED */
1314 1.11 mycroft int
1315 1.11 mycroft sys_sigreturn(p, v, retval)
1316 1.1 cgd struct proc *p;
1317 1.10 thorpej void *v;
1318 1.10 thorpej register_t *retval;
1319 1.10 thorpej {
1320 1.11 mycroft struct sys_sigreturn_args /* {
1321 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1322 1.10 thorpej } */ *uap = v;
1323 1.1 cgd struct sigcontext *scp, ksc;
1324 1.1 cgd extern struct proc *fpcurproc;
1325 1.1 cgd
1326 1.1 cgd scp = SCARG(uap, sigcntxp);
1327 1.1 cgd #ifdef DEBUG
1328 1.1 cgd if (sigdebug & SDB_FOLLOW)
1329 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1330 1.1 cgd #endif
1331 1.1 cgd
1332 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1333 1.1 cgd return (EINVAL);
1334 1.1 cgd
1335 1.1 cgd /*
1336 1.1 cgd * Test and fetch the context structure.
1337 1.1 cgd * We grab it all at once for speed.
1338 1.1 cgd */
1339 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1340 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1341 1.1 cgd return (EINVAL);
1342 1.1 cgd
1343 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1344 1.1 cgd return (EINVAL);
1345 1.1 cgd /*
1346 1.1 cgd * Restore the user-supplied information
1347 1.1 cgd */
1348 1.1 cgd if (ksc.sc_onstack)
1349 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1350 1.1 cgd else
1351 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1352 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1353 1.1 cgd
1354 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1355 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1356 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1357 1.1 cgd
1358 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1359 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1360 1.1 cgd
1361 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1362 1.1 cgd if (p == fpcurproc)
1363 1.1 cgd fpcurproc = NULL;
1364 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1365 1.1 cgd sizeof(struct fpreg));
1366 1.1 cgd /* XXX ksc.sc_fp_control ? */
1367 1.1 cgd
1368 1.1 cgd #ifdef DEBUG
1369 1.1 cgd if (sigdebug & SDB_FOLLOW)
1370 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1371 1.1 cgd #endif
1372 1.1 cgd return (EJUSTRETURN);
1373 1.1 cgd }
1374 1.1 cgd
1375 1.1 cgd /*
1376 1.1 cgd * machine dependent system variables.
1377 1.1 cgd */
1378 1.33 cgd int
1379 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1380 1.1 cgd int *name;
1381 1.1 cgd u_int namelen;
1382 1.1 cgd void *oldp;
1383 1.1 cgd size_t *oldlenp;
1384 1.1 cgd void *newp;
1385 1.1 cgd size_t newlen;
1386 1.1 cgd struct proc *p;
1387 1.1 cgd {
1388 1.1 cgd dev_t consdev;
1389 1.1 cgd
1390 1.1 cgd /* all sysctl names at this level are terminal */
1391 1.1 cgd if (namelen != 1)
1392 1.1 cgd return (ENOTDIR); /* overloaded */
1393 1.1 cgd
1394 1.1 cgd switch (name[0]) {
1395 1.1 cgd case CPU_CONSDEV:
1396 1.1 cgd if (cn_tab != NULL)
1397 1.1 cgd consdev = cn_tab->cn_dev;
1398 1.1 cgd else
1399 1.1 cgd consdev = NODEV;
1400 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1401 1.1 cgd sizeof consdev));
1402 1.30 cgd
1403 1.30 cgd case CPU_ROOT_DEVICE:
1404 1.30 cgd return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1405 1.36 cgd
1406 1.36 cgd case CPU_UNALIGNED_PRINT:
1407 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1408 1.36 cgd &alpha_unaligned_print));
1409 1.36 cgd
1410 1.36 cgd case CPU_UNALIGNED_FIX:
1411 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1412 1.36 cgd &alpha_unaligned_fix));
1413 1.36 cgd
1414 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1415 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1416 1.36 cgd &alpha_unaligned_sigbus));
1417 1.30 cgd
1418 1.1 cgd default:
1419 1.1 cgd return (EOPNOTSUPP);
1420 1.1 cgd }
1421 1.1 cgd /* NOTREACHED */
1422 1.1 cgd }
1423 1.1 cgd
1424 1.1 cgd /*
1425 1.1 cgd * Set registers on exec.
1426 1.1 cgd */
1427 1.1 cgd void
1428 1.5 christos setregs(p, pack, stack, retval)
1429 1.1 cgd register struct proc *p;
1430 1.5 christos struct exec_package *pack;
1431 1.1 cgd u_long stack;
1432 1.1 cgd register_t *retval;
1433 1.1 cgd {
1434 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1435 1.1 cgd int i;
1436 1.1 cgd extern struct proc *fpcurproc;
1437 1.43 cgd
1438 1.43 cgd #ifdef DEBUG
1439 1.43 cgd /*
1440 1.43 cgd * Crash and dump, if the user requested it.
1441 1.43 cgd */
1442 1.43 cgd if (boothowto & RB_DUMP)
1443 1.43 cgd panic("crash requested by boot flags");
1444 1.43 cgd #endif
1445 1.1 cgd
1446 1.1 cgd #ifdef DEBUG
1447 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1448 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1449 1.1 cgd #else
1450 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1451 1.1 cgd #endif
1452 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1453 1.7 cgd #define FP_RN 2 /* XXX */
1454 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1455 1.35 cgd alpha_pal_wrusp(stack);
1456 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1457 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1458 1.41 cgd
1459 1.41 cgd tfp->tf_regs[FRAME_A0] = stack;
1460 1.41 cgd /* a1 and a2 already zeroed */
1461 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1462 1.1 cgd
1463 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1464 1.1 cgd if (fpcurproc == p)
1465 1.1 cgd fpcurproc = NULL;
1466 1.1 cgd
1467 1.1 cgd retval[0] = retval[1] = 0;
1468 1.1 cgd }
1469 1.1 cgd
1470 1.1 cgd void
1471 1.1 cgd netintr()
1472 1.1 cgd {
1473 1.49 cgd int n, s;
1474 1.49 cgd
1475 1.49 cgd s = splhigh();
1476 1.49 cgd n = netisr;
1477 1.49 cgd netisr = 0;
1478 1.49 cgd splx(s);
1479 1.49 cgd
1480 1.49 cgd #define DONETISR(bit, fn) \
1481 1.49 cgd do { \
1482 1.49 cgd if (n & (1 << (bit))) \
1483 1.49 cgd fn; \
1484 1.49 cgd } while (0)
1485 1.49 cgd
1486 1.1 cgd #ifdef INET
1487 1.49 cgd DONETISR(NETISR_ARP, arpintr());
1488 1.49 cgd DONETISR(NETISR_IP, ipintr());
1489 1.1 cgd #endif
1490 1.1 cgd #ifdef NS
1491 1.49 cgd DONETISR(NETISR_NS, nsintr());
1492 1.1 cgd #endif
1493 1.1 cgd #ifdef ISO
1494 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
1495 1.1 cgd #endif
1496 1.1 cgd #ifdef CCITT
1497 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
1498 1.49 cgd #endif
1499 1.49 cgd #ifdef NATM
1500 1.49 cgd DONETISR(NETISR_NATM, natmintr());
1501 1.1 cgd #endif
1502 1.49 cgd #if NPPP > 1
1503 1.49 cgd DONETISR(NETISR_PPP, pppintr());
1504 1.8 cgd #endif
1505 1.49 cgd
1506 1.49 cgd #undef DONETISR
1507 1.1 cgd }
1508 1.1 cgd
1509 1.1 cgd void
1510 1.1 cgd do_sir()
1511 1.1 cgd {
1512 1.1 cgd
1513 1.1 cgd if (ssir & SIR_NET) {
1514 1.1 cgd siroff(SIR_NET);
1515 1.1 cgd cnt.v_soft++;
1516 1.1 cgd netintr();
1517 1.1 cgd }
1518 1.1 cgd if (ssir & SIR_CLOCK) {
1519 1.1 cgd siroff(SIR_CLOCK);
1520 1.1 cgd cnt.v_soft++;
1521 1.1 cgd softclock();
1522 1.1 cgd }
1523 1.1 cgd }
1524 1.1 cgd
1525 1.1 cgd int
1526 1.1 cgd spl0()
1527 1.1 cgd {
1528 1.1 cgd
1529 1.1 cgd if (ssir) {
1530 1.1 cgd splsoft();
1531 1.1 cgd do_sir();
1532 1.1 cgd }
1533 1.1 cgd
1534 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1535 1.1 cgd }
1536 1.1 cgd
1537 1.1 cgd /*
1538 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1539 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1540 1.1 cgd * into queues, Remrq removes them from queues. The running process is on
1541 1.1 cgd * no queue, other processes are on a queue related to p->p_priority, divided
1542 1.1 cgd * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1543 1.1 cgd * queues.
1544 1.1 cgd */
1545 1.1 cgd /*
1546 1.1 cgd * setrunqueue(p)
1547 1.1 cgd * proc *p;
1548 1.1 cgd *
1549 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1550 1.1 cgd */
1551 1.1 cgd
1552 1.1 cgd void
1553 1.1 cgd setrunqueue(p)
1554 1.1 cgd struct proc *p;
1555 1.1 cgd {
1556 1.1 cgd int bit;
1557 1.1 cgd
1558 1.1 cgd /* firewall: p->p_back must be NULL */
1559 1.1 cgd if (p->p_back != NULL)
1560 1.1 cgd panic("setrunqueue");
1561 1.1 cgd
1562 1.1 cgd bit = p->p_priority >> 2;
1563 1.1 cgd whichqs |= (1 << bit);
1564 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1565 1.1 cgd p->p_back = qs[bit].ph_rlink;
1566 1.1 cgd p->p_back->p_forw = p;
1567 1.1 cgd qs[bit].ph_rlink = p;
1568 1.1 cgd }
1569 1.1 cgd
1570 1.1 cgd /*
1571 1.1 cgd * Remrq(p)
1572 1.1 cgd *
1573 1.1 cgd * Call should be made at splclock().
1574 1.1 cgd */
1575 1.1 cgd void
1576 1.1 cgd remrq(p)
1577 1.1 cgd struct proc *p;
1578 1.1 cgd {
1579 1.1 cgd int bit;
1580 1.1 cgd
1581 1.1 cgd bit = p->p_priority >> 2;
1582 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1583 1.1 cgd panic("remrq");
1584 1.1 cgd
1585 1.1 cgd p->p_back->p_forw = p->p_forw;
1586 1.1 cgd p->p_forw->p_back = p->p_back;
1587 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1588 1.1 cgd
1589 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1590 1.1 cgd whichqs &= ~(1 << bit);
1591 1.1 cgd }
1592 1.1 cgd
1593 1.1 cgd /*
1594 1.1 cgd * Return the best possible estimate of the time in the timeval
1595 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1596 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1597 1.1 cgd * previous call.
1598 1.1 cgd */
1599 1.1 cgd void
1600 1.1 cgd microtime(tvp)
1601 1.1 cgd register struct timeval *tvp;
1602 1.1 cgd {
1603 1.1 cgd int s = splclock();
1604 1.1 cgd static struct timeval lasttime;
1605 1.1 cgd
1606 1.1 cgd *tvp = time;
1607 1.1 cgd #ifdef notdef
1608 1.1 cgd tvp->tv_usec += clkread();
1609 1.1 cgd while (tvp->tv_usec > 1000000) {
1610 1.1 cgd tvp->tv_sec++;
1611 1.1 cgd tvp->tv_usec -= 1000000;
1612 1.1 cgd }
1613 1.1 cgd #endif
1614 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1615 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1616 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1617 1.1 cgd tvp->tv_sec++;
1618 1.1 cgd tvp->tv_usec -= 1000000;
1619 1.1 cgd }
1620 1.1 cgd lasttime = *tvp;
1621 1.1 cgd splx(s);
1622 1.15 cgd }
1623 1.15 cgd
1624 1.15 cgd /*
1625 1.15 cgd * Wait "n" microseconds.
1626 1.15 cgd */
1627 1.32 cgd void
1628 1.15 cgd delay(n)
1629 1.32 cgd unsigned long n;
1630 1.15 cgd {
1631 1.15 cgd long N = cycles_per_usec * (n);
1632 1.15 cgd
1633 1.15 cgd while (N > 0) /* XXX */
1634 1.15 cgd N -= 3; /* XXX */
1635 1.1 cgd }
1636 1.1 cgd
1637 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1638 1.1 cgd void
1639 1.19 cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
1640 1.1 cgd struct proc *p;
1641 1.19 cgd struct exec_package *epp;
1642 1.5 christos u_long stack;
1643 1.5 christos register_t *retval;
1644 1.1 cgd {
1645 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1646 1.1 cgd
1647 1.19 cgd setregs(p, epp, stack, retval);
1648 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1649 1.1 cgd }
1650 1.1 cgd
1651 1.1 cgd /*
1652 1.1 cgd * cpu_exec_ecoff_hook():
1653 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1654 1.1 cgd *
1655 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1656 1.1 cgd *
1657 1.1 cgd */
1658 1.1 cgd int
1659 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1660 1.1 cgd struct proc *p;
1661 1.1 cgd struct exec_package *epp;
1662 1.1 cgd {
1663 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1664 1.5 christos extern struct emul emul_netbsd;
1665 1.5 christos #ifdef COMPAT_OSF1
1666 1.5 christos extern struct emul emul_osf1;
1667 1.5 christos #endif
1668 1.1 cgd
1669 1.19 cgd switch (execp->f.f_magic) {
1670 1.5 christos #ifdef COMPAT_OSF1
1671 1.1 cgd case ECOFF_MAGIC_ALPHA:
1672 1.5 christos epp->ep_emul = &emul_osf1;
1673 1.1 cgd break;
1674 1.5 christos #endif
1675 1.1 cgd
1676 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1677 1.5 christos epp->ep_emul = &emul_netbsd;
1678 1.1 cgd break;
1679 1.1 cgd
1680 1.1 cgd default:
1681 1.12 cgd return ENOEXEC;
1682 1.1 cgd }
1683 1.1 cgd return 0;
1684 1.1 cgd }
1685 1.1 cgd #endif
1686