Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.49
      1  1.49       cgd /*	$NetBSD: machdep.c,v 1.49 1996/10/18 20:35:23 cgd Exp $	*/
      2   1.1       cgd 
      3   1.1       cgd /*
      4  1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5   1.1       cgd  * All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Author: Chris G. Demetriou
      8   1.1       cgd  *
      9   1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10   1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11   1.1       cgd  * notice and this permission notice appear in all copies of the
     12   1.1       cgd  * software, derivative works or modified versions, and any portions
     13   1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14   1.1       cgd  *
     15   1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16   1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17   1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18   1.1       cgd  *
     19   1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20   1.1       cgd  *
     21   1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22   1.1       cgd  *  School of Computer Science
     23   1.1       cgd  *  Carnegie Mellon University
     24   1.1       cgd  *  Pittsburgh PA 15213-3890
     25   1.1       cgd  *
     26   1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27   1.1       cgd  * rights to redistribute these changes.
     28   1.1       cgd  */
     29   1.1       cgd 
     30   1.1       cgd #include <sys/param.h>
     31   1.1       cgd #include <sys/systm.h>
     32   1.1       cgd #include <sys/signalvar.h>
     33   1.1       cgd #include <sys/kernel.h>
     34   1.1       cgd #include <sys/map.h>
     35   1.1       cgd #include <sys/proc.h>
     36   1.1       cgd #include <sys/buf.h>
     37   1.1       cgd #include <sys/reboot.h>
     38  1.28       cgd #include <sys/device.h>
     39   1.1       cgd #include <sys/conf.h>
     40   1.1       cgd #include <sys/file.h>
     41   1.1       cgd #ifdef REAL_CLISTS
     42   1.1       cgd #include <sys/clist.h>
     43   1.1       cgd #endif
     44   1.1       cgd #include <sys/callout.h>
     45   1.1       cgd #include <sys/malloc.h>
     46   1.1       cgd #include <sys/mbuf.h>
     47   1.1       cgd #include <sys/msgbuf.h>
     48   1.1       cgd #include <sys/ioctl.h>
     49   1.1       cgd #include <sys/tty.h>
     50   1.1       cgd #include <sys/user.h>
     51   1.1       cgd #include <sys/exec.h>
     52   1.1       cgd #include <sys/exec_ecoff.h>
     53   1.1       cgd #include <sys/sysctl.h>
     54  1.43       cgd #include <sys/core.h>
     55  1.43       cgd #include <sys/kcore.h>
     56  1.43       cgd #include <machine/kcore.h>
     57   1.1       cgd #ifdef SYSVMSG
     58   1.1       cgd #include <sys/msg.h>
     59   1.1       cgd #endif
     60   1.1       cgd #ifdef SYSVSEM
     61   1.1       cgd #include <sys/sem.h>
     62   1.1       cgd #endif
     63   1.1       cgd #ifdef SYSVSHM
     64   1.1       cgd #include <sys/shm.h>
     65   1.1       cgd #endif
     66   1.1       cgd 
     67   1.1       cgd #include <sys/mount.h>
     68   1.1       cgd #include <sys/syscallargs.h>
     69   1.1       cgd 
     70   1.1       cgd #include <vm/vm_kern.h>
     71   1.1       cgd 
     72   1.1       cgd #include <dev/cons.h>
     73   1.1       cgd 
     74   1.1       cgd #include <machine/cpu.h>
     75   1.1       cgd #include <machine/reg.h>
     76   1.1       cgd #include <machine/rpb.h>
     77   1.1       cgd #include <machine/prom.h>
     78   1.1       cgd 
     79   1.8       cgd #ifdef DEC_3000_500
     80   1.8       cgd #include <alpha/alpha/dec_3000_500.h>
     81   1.8       cgd #endif
     82   1.8       cgd #ifdef DEC_3000_300
     83   1.8       cgd #include <alpha/alpha/dec_3000_300.h>
     84   1.8       cgd #endif
     85   1.8       cgd #ifdef DEC_2100_A50
     86   1.8       cgd #include <alpha/alpha/dec_2100_a50.h>
     87   1.8       cgd #endif
     88  1.12       cgd #ifdef DEC_KN20AA
     89  1.12       cgd #include <alpha/alpha/dec_kn20aa.h>
     90  1.12       cgd #endif
     91  1.12       cgd #ifdef DEC_AXPPCI_33
     92  1.12       cgd #include <alpha/alpha/dec_axppci_33.h>
     93  1.12       cgd #endif
     94  1.12       cgd #ifdef DEC_21000
     95  1.12       cgd #include <alpha/alpha/dec_21000.h>
     96  1.12       cgd #endif
     97   1.8       cgd 
     98  1.49       cgd #include <net/netisr.h>
     99  1.33       cgd #include <net/if.h>
    100  1.49       cgd 
    101  1.49       cgd #ifdef INET
    102  1.33       cgd #include <netinet/in.h>
    103  1.49       cgd #include <netinet/if_ether.h>
    104  1.33       cgd #include <netinet/ip_var.h>
    105  1.49       cgd #endif
    106  1.49       cgd #ifdef NS
    107  1.49       cgd #include <netns/ns_var.h>
    108  1.49       cgd #endif
    109  1.49       cgd #ifdef ISO
    110  1.49       cgd #include <netiso/iso.h>
    111  1.49       cgd #include <netiso/clnp.h>
    112  1.49       cgd #endif
    113  1.49       cgd #include "ppp.h"
    114  1.49       cgd #if NPPP > 0
    115  1.49       cgd #include <net/ppp_defs.h>
    116  1.49       cgd #include <net/if_ppp.h>
    117  1.49       cgd #endif
    118   1.1       cgd 
    119  1.17       cgd #include "le_ioasic.h"			/* for le_iomem creation */
    120   1.1       cgd 
    121   1.1       cgd vm_map_t buffer_map;
    122   1.1       cgd 
    123   1.7       cgd void dumpsys __P((void));
    124   1.7       cgd 
    125   1.1       cgd /*
    126   1.1       cgd  * Declare these as initialized data so we can patch them.
    127   1.1       cgd  */
    128   1.1       cgd int	nswbuf = 0;
    129   1.1       cgd #ifdef	NBUF
    130   1.1       cgd int	nbuf = NBUF;
    131   1.1       cgd #else
    132   1.1       cgd int	nbuf = 0;
    133   1.1       cgd #endif
    134   1.1       cgd #ifdef	BUFPAGES
    135   1.1       cgd int	bufpages = BUFPAGES;
    136   1.1       cgd #else
    137   1.1       cgd int	bufpages = 0;
    138   1.1       cgd #endif
    139   1.1       cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    140   1.1       cgd int	maxmem;			/* max memory per process */
    141   1.7       cgd 
    142   1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    143   1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    144   1.7       cgd int	firstusablepage;	/* first usable memory page */
    145   1.7       cgd int	lastusablepage;		/* last usable memory page */
    146   1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    147   1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    148   1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    149   1.1       cgd 
    150   1.1       cgd int	cputype;		/* system type, from the RPB */
    151   1.1       cgd 
    152   1.1       cgd /*
    153   1.1       cgd  * XXX We need an address to which we can assign things so that they
    154   1.1       cgd  * won't be optimized away because we didn't use the value.
    155   1.1       cgd  */
    156   1.1       cgd u_int32_t no_optimize;
    157   1.1       cgd 
    158   1.1       cgd /* the following is used externally (sysctl_hw) */
    159   1.1       cgd char	machine[] = "alpha";
    160  1.29       cgd char	cpu_model[128];
    161   1.1       cgd char	*model_names[] = {
    162   1.2       cgd 	"UNKNOWN (0)",
    163   1.2       cgd 	"Alpha Demonstration Unit",
    164   1.2       cgd 	"DEC 4000 (\"Cobra\")",
    165   1.2       cgd 	"DEC 7000 (\"Ruby\")",
    166   1.2       cgd 	"DEC 3000/500 (\"Flamingo\") family",
    167   1.2       cgd 	"UNKNOWN (5)",
    168   1.2       cgd 	"DEC 2000/300 (\"Jensen\")",
    169   1.2       cgd 	"DEC 3000/300 (\"Pelican\")",
    170   1.2       cgd 	"UNKNOWN (8)",
    171   1.2       cgd 	"DEC 2100/A500 (\"Sable\")",
    172   1.2       cgd 	"AXPvme 64",
    173   1.2       cgd 	"AXPpci 33 (\"NoName\")",
    174  1.12       cgd 	"DEC 21000 (\"TurboLaser\")",
    175   1.7       cgd 	"DEC 2100/A50 (\"Avanti\") family",
    176   1.2       cgd 	"Mustang",
    177  1.12       cgd 	"DEC KN20AA",
    178  1.12       cgd 	"UNKNOWN (16)",
    179   1.2       cgd 	"DEC 1000 (\"Mikasa\")",
    180   1.1       cgd };
    181   1.1       cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    182   1.1       cgd 
    183   1.1       cgd struct	user *proc0paddr;
    184   1.1       cgd 
    185   1.1       cgd /* Number of machine cycles per microsecond */
    186   1.1       cgd u_int64_t	cycles_per_usec;
    187   1.1       cgd 
    188   1.1       cgd /* some memory areas for device DMA.  "ick." */
    189   1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    190   1.1       cgd 
    191   1.1       cgd /* Interrupt vectors (in locore) */
    192   1.1       cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    193   1.1       cgd 
    194   1.7       cgd /* number of cpus in the box.  really! */
    195   1.7       cgd int		ncpus;
    196   1.7       cgd 
    197   1.8       cgd /* various CPU-specific functions. */
    198   1.8       cgd char		*(*cpu_modelname) __P((void));
    199  1.24       cgd void		(*cpu_consinit) __P((void));
    200  1.28       cgd void		(*cpu_device_register) __P((struct device *dev, void *aux));
    201   1.8       cgd char		*cpu_iobus;
    202   1.8       cgd 
    203  1.25       cgd char boot_flags[64];
    204   1.8       cgd 
    205  1.30       cgd /* for cpu_sysctl() */
    206  1.36       cgd char	root_device[17];
    207  1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    208  1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    209  1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    210  1.30       cgd 
    211  1.36       cgd void	identifycpu();
    212  1.33       cgd 
    213   1.1       cgd int
    214  1.25       cgd alpha_init(pfn, ptb)
    215   1.1       cgd 	u_long pfn;		/* first free PFN number */
    216   1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    217   1.1       cgd {
    218   1.2       cgd 	extern char _end[];
    219   1.1       cgd 	caddr_t start, v;
    220   1.1       cgd 	struct mddt *mddtp;
    221   1.7       cgd 	int i, mddtweird;
    222   1.1       cgd 	char *p;
    223   1.1       cgd 
    224   1.1       cgd 	/*
    225   1.1       cgd 	 * Turn off interrupts and floating point.
    226   1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    227   1.1       cgd 	 */
    228   1.1       cgd 	(void)splhigh();
    229  1.32       cgd 	alpha_pal_wrfen(0);
    230  1.37       cgd 	ALPHA_TBIA();
    231  1.32       cgd 	alpha_pal_imb();
    232   1.1       cgd 
    233   1.1       cgd 	/*
    234   1.1       cgd 	 * get address of the restart block, while we the bootstrap
    235   1.1       cgd 	 * mapping is still around.
    236   1.1       cgd 	 */
    237  1.32       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    238  1.32       cgd 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    239   1.1       cgd 
    240   1.1       cgd 	/*
    241   1.1       cgd 	 * Remember how many cycles there are per microsecond,
    242   1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    243   1.1       cgd 	 */
    244   1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    245   1.1       cgd 
    246   1.1       cgd 	/*
    247   1.1       cgd 	 * Init the PROM interface, so we can use printf
    248   1.1       cgd 	 * until PROM mappings go away in consinit.
    249   1.1       cgd 	 */
    250   1.1       cgd 	init_prom_interface();
    251   1.1       cgd 
    252   1.1       cgd 	/*
    253   1.1       cgd 	 * Point interrupt/exception vectors to our own.
    254   1.1       cgd 	 */
    255  1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    256  1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    257  1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    258  1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    259  1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    260  1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    261  1.36       cgd 
    262  1.36       cgd 	/*
    263  1.36       cgd 	 * Disable System and Processor Correctable Error reporting.
    264  1.36       cgd 	 * Clear pending machine checks and error reports, etc.
    265  1.36       cgd 	 */
    266  1.40       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
    267   1.1       cgd 
    268   1.1       cgd 	/*
    269   1.1       cgd 	 * Find out how much memory is available, by looking at
    270   1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    271   1.7       cgd 	 * its best to detect things things that have never been seen
    272   1.7       cgd 	 * before...
    273   1.7       cgd 	 *
    274   1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    275   1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    276   1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    277   1.1       cgd 	 */
    278   1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    279   1.7       cgd 
    280   1.7       cgd 	/*
    281   1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    282   1.7       cgd 	 */
    283   1.7       cgd 	mddtweird = 0;
    284   1.7       cgd 
    285   1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    286   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    287   1.7       cgd 	if (cnt != 2 && cnt != 3) {
    288  1.46  christos 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    289   1.7       cgd 		mddtweird = 1;
    290   1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    291   1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    292   1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    293   1.7       cgd 		mddtweird = 1;
    294  1.46  christos 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    295   1.7       cgd 	}
    296   1.7       cgd 
    297   1.7       cgd 	for (i = 0; i < cnt; i++) {
    298   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    299  1.46  christos 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    300   1.7       cgd 			    i, usage(i));
    301   1.7       cgd 			mddtweird = 1;
    302   1.7       cgd 		}
    303   1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    304  1.46  christos 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    305   1.7       cgd 			mddtweird = 1;
    306   1.7       cgd 		}
    307   1.7       cgd 		/* XXX other things to check? */
    308   1.7       cgd 	}
    309   1.7       cgd #undef cnt
    310   1.7       cgd #undef usage
    311   1.7       cgd 
    312   1.7       cgd 	if (mddtweird) {
    313  1.46  christos 		printf("\n");
    314  1.46  christos 		printf("complete memory cluster information:\n");
    315   1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    316  1.46  christos 			printf("mddt %d:\n", i);
    317  1.46  christos 			printf("\tpfn %lx\n",
    318   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    319  1.46  christos 			printf("\tcnt %lx\n",
    320   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    321  1.46  christos 			printf("\ttest %lx\n",
    322   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    323  1.46  christos 			printf("\tbva %lx\n",
    324   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    325  1.46  christos 			printf("\tbpa %lx\n",
    326   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    327  1.46  christos 			printf("\tbcksum %lx\n",
    328   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    329  1.46  christos 			printf("\tusage %lx\n",
    330   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    331   1.2       cgd 		}
    332  1.46  christos 		printf("\n");
    333   1.2       cgd 	}
    334   1.7       cgd 	/*
    335   1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    336   1.7       cgd 	 */
    337   1.2       cgd 
    338   1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    339   1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    340   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    341   1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    342   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    343   1.7       cgd 			unknownmem += pgcnt(i);
    344   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    345   1.7       cgd 			resvmem += pgcnt(i);
    346   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    347   1.7       cgd 			/*
    348   1.7       cgd 			 * assumes that the system cluster listed is
    349   1.7       cgd 			 * one we're in...
    350   1.7       cgd 			 */
    351   1.7       cgd 			if (physmem != resvmem) {
    352   1.7       cgd 				physmem += pgcnt(i);
    353   1.7       cgd 				firstusablepage =
    354   1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    355   1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    356   1.7       cgd 			} else
    357   1.7       cgd 				unusedmem += pgcnt(i);
    358   1.7       cgd 		}
    359   1.7       cgd #undef usage
    360   1.7       cgd #undef pgcnt
    361   1.1       cgd 	}
    362   1.7       cgd 	if (totalphysmem == 0)
    363   1.1       cgd 		panic("can't happen: system seems to have no memory!");
    364   1.1       cgd 	maxmem = physmem;
    365   1.1       cgd 
    366   1.7       cgd #if 0
    367  1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    368  1.46  christos 	printf("physmem = %d\n", physmem);
    369  1.46  christos 	printf("firstusablepage = %d\n", firstusablepage);
    370  1.46  christos 	printf("lastusablepage = %d\n", lastusablepage);
    371  1.46  christos 	printf("resvmem = %d\n", resvmem);
    372  1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    373  1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    374   1.7       cgd #endif
    375   1.7       cgd 
    376   1.1       cgd 	/*
    377   1.1       cgd 	 * find out this CPU's page size
    378   1.1       cgd 	 */
    379   1.1       cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    380  1.12       cgd 	if (PAGE_SIZE != 8192)
    381  1.12       cgd 		panic("page size %d != 8192?!", PAGE_SIZE);
    382   1.1       cgd 
    383   1.2       cgd 	v = (caddr_t)alpha_round_page(_end);
    384   1.1       cgd 	/*
    385   1.1       cgd 	 * Init mapping for u page(s) for proc 0
    386   1.1       cgd 	 */
    387   1.1       cgd 	start = v;
    388   1.1       cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    389   1.1       cgd 	v += UPAGES * NBPG;
    390   1.1       cgd 
    391   1.1       cgd 	/*
    392   1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    393   1.1       cgd 	 */
    394   1.1       cgd 	cputype = hwrpb->rpb_type;
    395   1.1       cgd 	switch (cputype) {
    396   1.2       cgd #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    397   1.1       cgd 	case ST_DEC_3000_500:
    398   1.8       cgd 		cpu_modelname = dec_3000_500_modelname;
    399   1.8       cgd 		cpu_consinit = dec_3000_500_consinit;
    400  1.28       cgd 		cpu_device_register = dec_3000_500_device_register;
    401  1.13       cgd 		cpu_iobus = "tcasic";
    402   1.2       cgd 		break;
    403   1.2       cgd #endif
    404   1.2       cgd 
    405   1.2       cgd #ifdef DEC_3000_300
    406   1.2       cgd 	case ST_DEC_3000_300:
    407   1.8       cgd 		cpu_modelname = dec_3000_300_modelname;
    408   1.8       cgd 		cpu_consinit = dec_3000_300_consinit;
    409  1.28       cgd 		cpu_device_register = dec_3000_300_device_register;
    410  1.13       cgd 		cpu_iobus = "tcasic";
    411   1.2       cgd 		break;
    412   1.2       cgd #endif
    413   1.2       cgd 
    414   1.2       cgd #ifdef DEC_2100_A50
    415   1.2       cgd 	case ST_DEC_2100_A50:
    416   1.8       cgd 		cpu_modelname = dec_2100_a50_modelname;
    417   1.8       cgd 		cpu_consinit = dec_2100_a50_consinit;
    418  1.28       cgd 		cpu_device_register = dec_2100_a50_device_register;
    419   1.8       cgd 		cpu_iobus = "apecs";
    420   1.2       cgd 		break;
    421   1.2       cgd #endif
    422   1.2       cgd 
    423  1.12       cgd #ifdef DEC_KN20AA
    424  1.12       cgd 	case ST_DEC_KN20AA:
    425  1.12       cgd 		cpu_modelname = dec_kn20aa_modelname;
    426  1.12       cgd 		cpu_consinit = dec_kn20aa_consinit;
    427  1.28       cgd 		cpu_device_register = dec_kn20aa_device_register;
    428  1.12       cgd 		cpu_iobus = "cia";
    429  1.12       cgd 		break;
    430  1.12       cgd #endif
    431  1.12       cgd 
    432  1.12       cgd #ifdef DEC_AXPPCI_33
    433  1.12       cgd 	case ST_DEC_AXPPCI_33:
    434  1.12       cgd 		cpu_modelname = dec_axppci_33_modelname;
    435  1.12       cgd 		cpu_consinit = dec_axppci_33_consinit;
    436  1.28       cgd 		cpu_device_register = dec_axppci_33_device_register;
    437  1.12       cgd 		cpu_iobus = "lca";
    438  1.12       cgd 		break;
    439  1.12       cgd #endif
    440  1.12       cgd 
    441   1.8       cgd #ifdef DEC_2000_300
    442   1.8       cgd 	case ST_DEC_2000_300:
    443   1.8       cgd 		cpu_modelname = dec_2000_300_modelname;
    444   1.8       cgd 		cpu_consinit = dec_2000_300_consinit;
    445  1.28       cgd 		cpu_device_register = dec_2000_300_device_register;
    446   1.8       cgd 		cpu_iobus = "ibus";
    447   1.8       cgd 	XXX DEC 2000/300 NOT SUPPORTED
    448  1.12       cgd 		break;
    449   1.2       cgd #endif
    450   1.2       cgd 
    451  1.12       cgd #ifdef DEC_21000
    452  1.12       cgd 	case ST_DEC_21000:
    453  1.12       cgd 		cpu_modelname = dec_21000_modelname;
    454  1.12       cgd 		cpu_consinit = dec_21000_consinit;
    455  1.28       cgd 		cpu_device_register = dec_21000_device_register;
    456  1.12       cgd 		cpu_iobus = "tlsb";
    457  1.27       cgd 	XXX DEC 21000 NOT SUPPORTED
    458  1.12       cgd 		break;
    459   1.2       cgd #endif
    460   1.2       cgd 
    461   1.1       cgd 	default:
    462   1.1       cgd 		if (cputype > nmodel_names)
    463   1.1       cgd 			panic("Unknown system type %d", cputype);
    464   1.1       cgd 		else
    465   1.1       cgd 			panic("Support for %s system type not in kernel.",
    466   1.1       cgd 			    model_names[cputype]);
    467   1.1       cgd 	}
    468   1.8       cgd 
    469  1.29       cgd 	if ((*cpu_modelname)() != NULL)
    470  1.29       cgd 		strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
    471  1.29       cgd 	else
    472  1.29       cgd 		strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
    473  1.29       cgd 	cpu_model[sizeof cpu_model - 1] = '\0';
    474   1.1       cgd 
    475  1.17       cgd #if NLE_IOASIC > 0
    476   1.1       cgd 	/*
    477   1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    478   1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    479   1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    480  1.17       cgd 	 *
    481  1.17       cgd 	 * Note that since this is conditional on the presence of
    482  1.17       cgd 	 * IOASIC-attached 'le' units in the kernel config, the
    483  1.17       cgd 	 * message buffer may move on these systems.  This shouldn't
    484  1.17       cgd 	 * be a problem, because once people have a kernel config that
    485  1.17       cgd 	 * they use, they're going to stick with it.
    486   1.1       cgd 	 */
    487   1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    488   1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    489   1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    490  1.32       cgd 		le_iomem =
    491  1.32       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    492   1.1       cgd 	}
    493  1.17       cgd #endif /* NLE_IOASIC */
    494   1.1       cgd 
    495   1.1       cgd 	/*
    496   1.1       cgd 	 * Initialize error message buffer (at end of core).
    497   1.1       cgd 	 */
    498   1.7       cgd 	lastusablepage -= btoc(sizeof (struct msgbuf));
    499  1.32       cgd 	msgbufp =
    500  1.32       cgd 	    (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    501   1.1       cgd 	msgbufmapped = 1;
    502   1.1       cgd 
    503   1.1       cgd 	/*
    504   1.1       cgd 	 * Allocate space for system data structures.
    505   1.1       cgd 	 * The first available kernel virtual address is in "v".
    506   1.1       cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    507   1.1       cgd 	 *
    508   1.1       cgd 	 * These data structures are allocated here instead of cpu_startup()
    509   1.1       cgd 	 * because physical memory is directly addressable. We don't have
    510   1.1       cgd 	 * to map these into virtual address space.
    511   1.1       cgd 	 */
    512   1.1       cgd #define valloc(name, type, num) \
    513  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    514   1.1       cgd #define valloclim(name, type, num, lim) \
    515  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    516   1.1       cgd #ifdef REAL_CLISTS
    517   1.1       cgd 	valloc(cfree, struct cblock, nclist);
    518   1.1       cgd #endif
    519   1.1       cgd 	valloc(callout, struct callout, ncallout);
    520   1.1       cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    521   1.1       cgd #ifdef SYSVSHM
    522   1.1       cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    523   1.1       cgd #endif
    524   1.1       cgd #ifdef SYSVSEM
    525   1.1       cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    526   1.1       cgd 	valloc(sem, struct sem, seminfo.semmns);
    527   1.1       cgd 	/* This is pretty disgusting! */
    528   1.1       cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    529   1.1       cgd #endif
    530   1.1       cgd #ifdef SYSVMSG
    531   1.1       cgd 	valloc(msgpool, char, msginfo.msgmax);
    532   1.1       cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    533   1.1       cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    534   1.1       cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    535   1.1       cgd #endif
    536   1.1       cgd 
    537   1.1       cgd 	/*
    538   1.1       cgd 	 * Determine how many buffers to allocate.
    539  1.31       cgd 	 * We allocate 10% of memory for buffer space.  Insure a
    540   1.1       cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    541   1.1       cgd 	 * headers as file i/o buffers.
    542   1.1       cgd 	 */
    543   1.1       cgd 	if (bufpages == 0)
    544  1.31       cgd 		bufpages = (physmem * 10) / (CLSIZE * 100);
    545   1.1       cgd 	if (nbuf == 0) {
    546   1.1       cgd 		nbuf = bufpages;
    547   1.1       cgd 		if (nbuf < 16)
    548   1.1       cgd 			nbuf = 16;
    549   1.1       cgd 	}
    550   1.1       cgd 	if (nswbuf == 0) {
    551   1.1       cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    552   1.1       cgd 		if (nswbuf > 256)
    553   1.1       cgd 			nswbuf = 256;		/* sanity */
    554   1.1       cgd 	}
    555   1.1       cgd 	valloc(swbuf, struct buf, nswbuf);
    556   1.1       cgd 	valloc(buf, struct buf, nbuf);
    557   1.1       cgd 
    558   1.1       cgd 	/*
    559   1.1       cgd 	 * Clear allocated memory.
    560   1.1       cgd 	 */
    561   1.1       cgd 	bzero(start, v - start);
    562   1.1       cgd 
    563   1.1       cgd 	/*
    564   1.1       cgd 	 * Initialize the virtual memory system, and set the
    565   1.1       cgd 	 * page table base register in proc 0's PCB.
    566   1.1       cgd 	 */
    567  1.40       cgd #ifndef NEW_PMAP
    568  1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    569  1.40       cgd #else
    570  1.40       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    571  1.40       cgd 	    hwrpb->rpb_max_asn);
    572  1.40       cgd #endif
    573   1.1       cgd 
    574   1.1       cgd 	/*
    575   1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    576   1.3       cgd 	 * address.
    577   1.3       cgd 	 */
    578   1.3       cgd 	proc0.p_md.md_pcbpaddr =
    579  1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    580   1.3       cgd 
    581   1.3       cgd 	/*
    582   1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    583   1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    584   1.3       cgd 	 */
    585  1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    586   1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    587  1.33       cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    588  1.38       cgd 
    589  1.40       cgd #ifdef NEW_PMAP
    590  1.40       cgd 	pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    591  1.38       cgd #endif
    592   1.1       cgd 
    593   1.1       cgd 	/*
    594  1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    595   1.8       cgd 	 */
    596  1.25       cgd 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    597  1.25       cgd #if 0
    598  1.46  christos 	printf("boot flags = \"%s\"\n", boot_flags);
    599  1.25       cgd #endif
    600   1.1       cgd 
    601   1.8       cgd 	boothowto = RB_SINGLE;
    602   1.1       cgd #ifdef KADB
    603   1.1       cgd 	boothowto |= RB_KDB;
    604   1.1       cgd #endif
    605   1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    606  1.26       cgd 		/*
    607  1.26       cgd 		 * Note that we'd really like to differentiate case here,
    608  1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    609  1.26       cgd 		 * says that we shouldn't.
    610  1.26       cgd 		 */
    611   1.8       cgd 		switch (*p) {
    612  1.26       cgd 		case 'a': /* autoboot */
    613  1.26       cgd 		case 'A':
    614  1.26       cgd 			boothowto &= ~RB_SINGLE;
    615  1.21       cgd 			break;
    616  1.21       cgd 
    617  1.43       cgd #ifdef DEBUG
    618  1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    619  1.43       cgd 		case 'C':
    620  1.43       cgd 			boothowto |= RB_DUMP;
    621  1.43       cgd 			break;
    622  1.43       cgd #endif
    623  1.43       cgd 
    624  1.36       cgd 		case 'h': /* always halt, never reboot */
    625  1.36       cgd 		case 'H':
    626  1.36       cgd 			boothowto |= RB_HALT;
    627   1.8       cgd 			break;
    628   1.8       cgd 
    629  1.21       cgd #if 0
    630   1.8       cgd 		case 'm': /* mini root present in memory */
    631  1.26       cgd 		case 'M':
    632   1.8       cgd 			boothowto |= RB_MINIROOT;
    633   1.8       cgd 			break;
    634  1.21       cgd #endif
    635  1.36       cgd 
    636  1.36       cgd 		case 'n': /* askname */
    637  1.36       cgd 		case 'N':
    638  1.36       cgd 			boothowto |= RB_ASKNAME;
    639  1.36       cgd 			break;
    640   1.1       cgd 		}
    641   1.1       cgd 	}
    642   1.1       cgd 
    643   1.7       cgd 	/*
    644   1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    645   1.7       cgd 	 * Really.  We mean it.
    646   1.7       cgd 	 */
    647   1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    648   1.7       cgd 		struct pcs *pcsp;
    649   1.7       cgd 
    650   1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    651   1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    652   1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    653   1.7       cgd 			ncpus++;
    654   1.7       cgd 	}
    655   1.7       cgd 
    656   1.1       cgd 	return (0);
    657   1.1       cgd }
    658   1.1       cgd 
    659  1.18       cgd void
    660   1.1       cgd consinit()
    661   1.1       cgd {
    662   1.1       cgd 
    663  1.24       cgd 	(*cpu_consinit)();
    664   1.1       cgd 	pmap_unmap_prom();
    665   1.1       cgd }
    666   1.1       cgd 
    667  1.18       cgd void
    668   1.1       cgd cpu_startup()
    669   1.1       cgd {
    670   1.1       cgd 	register unsigned i;
    671   1.1       cgd 	int base, residual;
    672   1.1       cgd 	vm_offset_t minaddr, maxaddr;
    673   1.1       cgd 	vm_size_t size;
    674  1.40       cgd #if defined(DEBUG)
    675   1.1       cgd 	extern int pmapdebug;
    676   1.1       cgd 	int opmapdebug = pmapdebug;
    677   1.1       cgd 
    678   1.1       cgd 	pmapdebug = 0;
    679   1.1       cgd #endif
    680   1.1       cgd 
    681   1.1       cgd 	/*
    682   1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    683   1.1       cgd 	 */
    684  1.46  christos 	printf(version);
    685   1.1       cgd 	identifycpu();
    686  1.46  christos 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    687   1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    688   1.7       cgd 	if (unusedmem)
    689  1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    690   1.7       cgd 	if (unknownmem)
    691  1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    692   1.7       cgd 		    ctob(unknownmem));
    693   1.1       cgd 
    694   1.1       cgd 	/*
    695   1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    696   1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    697   1.1       cgd 	 * and usually occupy more virtual memory than physical.
    698   1.1       cgd 	 */
    699   1.1       cgd 	size = MAXBSIZE * nbuf;
    700   1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    701   1.1       cgd 	    &maxaddr, size, TRUE);
    702   1.1       cgd 	minaddr = (vm_offset_t)buffers;
    703   1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    704   1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    705   1.1       cgd 		panic("startup: cannot allocate buffers");
    706   1.1       cgd 	base = bufpages / nbuf;
    707   1.1       cgd 	residual = bufpages % nbuf;
    708   1.1       cgd 	for (i = 0; i < nbuf; i++) {
    709   1.1       cgd 		vm_size_t curbufsize;
    710   1.1       cgd 		vm_offset_t curbuf;
    711   1.1       cgd 
    712   1.1       cgd 		/*
    713   1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    714   1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    715   1.1       cgd 		 *
    716   1.1       cgd 		 * The rest of each buffer occupies virtual space,
    717   1.1       cgd 		 * but has no physical memory allocated for it.
    718   1.1       cgd 		 */
    719   1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    720   1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    721   1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    722   1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    723   1.1       cgd 	}
    724   1.1       cgd 	/*
    725   1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    726   1.1       cgd 	 * limits the number of processes exec'ing at any time.
    727   1.1       cgd 	 */
    728   1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    729   1.1       cgd 				 16 * NCARGS, TRUE);
    730   1.1       cgd 
    731   1.1       cgd 	/*
    732   1.1       cgd 	 * Allocate a submap for physio
    733   1.1       cgd 	 */
    734   1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    735   1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    736   1.1       cgd 
    737   1.1       cgd 	/*
    738   1.1       cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    739   1.1       cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    740   1.1       cgd 	 */
    741   1.1       cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    742   1.1       cgd 	    M_MBUF, M_NOWAIT);
    743   1.1       cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    744   1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    745   1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    746   1.1       cgd 	/*
    747   1.1       cgd 	 * Initialize callouts
    748   1.1       cgd 	 */
    749   1.1       cgd 	callfree = callout;
    750   1.1       cgd 	for (i = 1; i < ncallout; i++)
    751   1.1       cgd 		callout[i-1].c_next = &callout[i];
    752   1.1       cgd 	callout[i-1].c_next = NULL;
    753   1.1       cgd 
    754  1.40       cgd #if defined(DEBUG)
    755   1.1       cgd 	pmapdebug = opmapdebug;
    756   1.1       cgd #endif
    757  1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    758  1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
    759   1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    760   1.1       cgd 
    761   1.1       cgd 	/*
    762   1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    763   1.1       cgd 	 */
    764   1.1       cgd 	bufinit();
    765   1.1       cgd 
    766   1.1       cgd 	/*
    767   1.1       cgd 	 * Configure the system.
    768   1.1       cgd 	 */
    769   1.1       cgd 	configure();
    770  1.48       cgd 
    771  1.48       cgd 	/*
    772  1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
    773  1.48       cgd 	 * to do restarts.
    774  1.48       cgd 	 */
    775  1.48       cgd 	hwrbp_restart_setup();
    776   1.1       cgd }
    777   1.1       cgd 
    778  1.33       cgd void
    779   1.1       cgd identifycpu()
    780   1.1       cgd {
    781   1.1       cgd 
    782   1.7       cgd 	/*
    783   1.7       cgd 	 * print out CPU identification information.
    784   1.7       cgd 	 */
    785  1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
    786   1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    787  1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    788   1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    789   1.7       cgd #if 0
    790   1.7       cgd 	/* this isn't defined for any systems that we run on? */
    791  1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    792   1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    793   1.7       cgd 
    794   1.7       cgd 	/* and these aren't particularly useful! */
    795  1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    796   1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    797   1.7       cgd #endif
    798   1.1       cgd }
    799   1.1       cgd 
    800   1.1       cgd int	waittime = -1;
    801   1.7       cgd struct pcb dumppcb;
    802   1.1       cgd 
    803  1.18       cgd void
    804  1.39       mrg boot(howto, bootstr)
    805   1.1       cgd 	int howto;
    806  1.39       mrg 	char *bootstr;
    807   1.1       cgd {
    808   1.1       cgd 	extern int cold;
    809   1.1       cgd 
    810   1.1       cgd 	/* If system is cold, just halt. */
    811   1.1       cgd 	if (cold) {
    812   1.1       cgd 		howto |= RB_HALT;
    813   1.1       cgd 		goto haltsys;
    814   1.1       cgd 	}
    815   1.1       cgd 
    816  1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
    817  1.36       cgd 	if ((boothowto & RB_HALT) != 0)
    818  1.36       cgd 		howto |= RB_HALT;
    819  1.36       cgd 
    820   1.7       cgd 	boothowto = howto;
    821   1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    822   1.1       cgd 		waittime = 0;
    823   1.7       cgd 		vfs_shutdown();
    824   1.1       cgd 		/*
    825   1.1       cgd 		 * If we've been adjusting the clock, the todr
    826   1.1       cgd 		 * will be out of synch; adjust it now.
    827   1.1       cgd 		 */
    828   1.1       cgd 		resettodr();
    829   1.1       cgd 	}
    830   1.1       cgd 
    831   1.1       cgd 	/* Disable interrupts. */
    832   1.1       cgd 	splhigh();
    833   1.1       cgd 
    834   1.7       cgd 	/* If rebooting and a dump is requested do it. */
    835  1.42       cgd #if 0
    836  1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    837  1.42       cgd #else
    838  1.42       cgd 	if (howto & RB_DUMP)
    839  1.42       cgd #endif
    840   1.1       cgd 		dumpsys();
    841   1.6       cgd 
    842  1.12       cgd haltsys:
    843  1.12       cgd 
    844   1.6       cgd 	/* run any shutdown hooks */
    845   1.6       cgd 	doshutdownhooks();
    846   1.1       cgd 
    847   1.7       cgd #ifdef BOOTKEY
    848  1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    849   1.7       cgd 	cngetc();
    850  1.46  christos 	printf("\n");
    851   1.7       cgd #endif
    852   1.7       cgd 
    853   1.1       cgd 	/* Finally, halt/reboot the system. */
    854  1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    855   1.1       cgd 	prom_halt(howto & RB_HALT);
    856   1.1       cgd 	/*NOTREACHED*/
    857   1.1       cgd }
    858   1.1       cgd 
    859   1.7       cgd /*
    860   1.7       cgd  * These variables are needed by /sbin/savecore
    861   1.7       cgd  */
    862   1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    863   1.7       cgd int 	dumpsize = 0;		/* pages */
    864   1.7       cgd long	dumplo = 0; 		/* blocks */
    865   1.7       cgd 
    866   1.7       cgd /*
    867  1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
    868  1.43       cgd  */
    869  1.43       cgd int
    870  1.43       cgd cpu_dumpsize()
    871  1.43       cgd {
    872  1.43       cgd 	int size;
    873  1.43       cgd 
    874  1.43       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
    875  1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
    876  1.43       cgd 		return -1;
    877  1.43       cgd 
    878  1.43       cgd 	return (1);
    879  1.43       cgd }
    880  1.43       cgd 
    881  1.43       cgd /*
    882  1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
    883  1.43       cgd  */
    884  1.43       cgd int
    885  1.43       cgd cpu_dump()
    886  1.43       cgd {
    887  1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    888  1.43       cgd 	long buf[dbtob(1) / sizeof (long)];
    889  1.43       cgd 	kcore_seg_t	*segp;
    890  1.43       cgd 	cpu_kcore_hdr_t	*cpuhdrp;
    891  1.43       cgd 
    892  1.43       cgd         dump = bdevsw[major(dumpdev)].d_dump;
    893  1.43       cgd 
    894  1.43       cgd 	segp = (kcore_seg_t *)buf;
    895  1.43       cgd 	cpuhdrp =
    896  1.43       cgd 	    (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
    897  1.43       cgd 
    898  1.43       cgd 	/*
    899  1.43       cgd 	 * Generate a segment header.
    900  1.43       cgd 	 */
    901  1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
    902  1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
    903  1.43       cgd 
    904  1.43       cgd 	/*
    905  1.43       cgd 	 * Add the machine-dependent header info
    906  1.43       cgd 	 */
    907  1.44       cgd 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
    908  1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
    909  1.43       cgd 	cpuhdrp->core_seg.start = ctob(firstusablepage);
    910  1.43       cgd 	cpuhdrp->core_seg.size = ctob(physmem);
    911  1.43       cgd 
    912  1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
    913  1.43       cgd }
    914  1.43       cgd 
    915  1.43       cgd /*
    916   1.7       cgd  * This is called by configure to set dumplo and dumpsize.
    917   1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    918   1.7       cgd  * in case there might be a disk label stored there.
    919   1.7       cgd  * If there is extra space, put dump at the end to
    920   1.7       cgd  * reduce the chance that swapping trashes it.
    921   1.7       cgd  */
    922   1.7       cgd void
    923   1.7       cgd dumpconf()
    924   1.7       cgd {
    925  1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
    926   1.7       cgd 	int maj;
    927   1.7       cgd 
    928   1.7       cgd 	if (dumpdev == NODEV)
    929  1.43       cgd 		goto bad;
    930   1.7       cgd 	maj = major(dumpdev);
    931   1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    932   1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    933   1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    934  1.43       cgd 		goto bad;
    935   1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    936   1.7       cgd 	if (nblks <= ctod(1))
    937  1.43       cgd 		goto bad;
    938  1.43       cgd 
    939  1.43       cgd 	dumpblks = cpu_dumpsize();
    940  1.43       cgd 	if (dumpblks < 0)
    941  1.43       cgd 		goto bad;
    942  1.43       cgd 	dumpblks += ctod(physmem);
    943  1.43       cgd 
    944  1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
    945  1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
    946  1.43       cgd 		goto bad;
    947  1.43       cgd 
    948  1.43       cgd 	/* Put dump at end of partition */
    949  1.43       cgd 	dumplo = nblks - dumpblks;
    950   1.7       cgd 
    951  1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
    952   1.7       cgd 	dumpsize = physmem;
    953  1.43       cgd 	return;
    954   1.7       cgd 
    955  1.43       cgd bad:
    956  1.43       cgd 	dumpsize = 0;
    957  1.43       cgd 	return;
    958   1.7       cgd }
    959   1.7       cgd 
    960   1.7       cgd /*
    961  1.42       cgd  * Dump the kernel's image to the swap partition.
    962   1.7       cgd  */
    963  1.42       cgd #define	BYTES_PER_DUMP	NBPG
    964  1.42       cgd 
    965   1.7       cgd void
    966   1.7       cgd dumpsys()
    967   1.7       cgd {
    968  1.42       cgd 	unsigned bytes, i, n;
    969  1.42       cgd 	int maddr, psize;
    970  1.42       cgd 	daddr_t blkno;
    971  1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    972  1.42       cgd 	int error;
    973  1.42       cgd 
    974  1.42       cgd 	/* Save registers. */
    975  1.42       cgd 	savectx(&dumppcb);
    976   1.7       cgd 
    977  1.42       cgd 	msgbufmapped = 0;	/* don't record dump msgs in msgbuf */
    978   1.7       cgd 	if (dumpdev == NODEV)
    979   1.7       cgd 		return;
    980  1.42       cgd 
    981  1.42       cgd 	/*
    982  1.42       cgd 	 * For dumps during autoconfiguration,
    983  1.42       cgd 	 * if dump device has already configured...
    984  1.42       cgd 	 */
    985  1.42       cgd 	if (dumpsize == 0)
    986   1.7       cgd 		dumpconf();
    987  1.47       cgd 	if (dumplo <= 0) {
    988  1.46  christos 		printf("\ndump to dev %x not possible\n", dumpdev);
    989  1.42       cgd 		return;
    990  1.43       cgd 	}
    991  1.46  christos 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
    992   1.7       cgd 
    993  1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
    994  1.46  christos 	printf("dump ");
    995  1.42       cgd 	if (psize == -1) {
    996  1.46  christos 		printf("area unavailable\n");
    997  1.42       cgd 		return;
    998  1.42       cgd 	}
    999  1.42       cgd 
   1000  1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1001  1.42       cgd 
   1002  1.43       cgd 	if ((error = cpu_dump()) != 0)
   1003  1.43       cgd 		goto err;
   1004  1.43       cgd 
   1005  1.43       cgd 	bytes = ctob(physmem);
   1006  1.42       cgd 	maddr = ctob(firstusablepage);
   1007  1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1008  1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1009  1.42       cgd 	error = 0;
   1010  1.42       cgd 	for (i = 0; i < bytes; i += n) {
   1011  1.42       cgd 
   1012  1.42       cgd 		/* Print out how many MBs we to go. */
   1013  1.42       cgd 		n = bytes - i;
   1014  1.42       cgd 		if (n && (n % (1024*1024)) == 0)
   1015  1.46  christos 			printf("%d ", n / (1024 * 1024));
   1016  1.42       cgd 
   1017  1.42       cgd 		/* Limit size for next transfer. */
   1018  1.42       cgd 		if (n > BYTES_PER_DUMP)
   1019  1.42       cgd 			n =  BYTES_PER_DUMP;
   1020  1.42       cgd 
   1021  1.42       cgd 		error = (*dump)(dumpdev, blkno,
   1022  1.42       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1023  1.42       cgd 		if (error)
   1024  1.42       cgd 			break;
   1025  1.42       cgd 		maddr += n;
   1026  1.42       cgd 		blkno += btodb(n);			/* XXX? */
   1027  1.42       cgd 
   1028  1.42       cgd 		/* XXX should look for keystrokes, to cancel. */
   1029  1.42       cgd 	}
   1030  1.42       cgd 
   1031  1.43       cgd err:
   1032  1.42       cgd 	switch (error) {
   1033   1.7       cgd 
   1034   1.7       cgd 	case ENXIO:
   1035  1.46  christos 		printf("device bad\n");
   1036   1.7       cgd 		break;
   1037   1.7       cgd 
   1038   1.7       cgd 	case EFAULT:
   1039  1.46  christos 		printf("device not ready\n");
   1040   1.7       cgd 		break;
   1041   1.7       cgd 
   1042   1.7       cgd 	case EINVAL:
   1043  1.46  christos 		printf("area improper\n");
   1044   1.7       cgd 		break;
   1045   1.7       cgd 
   1046   1.7       cgd 	case EIO:
   1047  1.46  christos 		printf("i/o error\n");
   1048   1.7       cgd 		break;
   1049   1.7       cgd 
   1050   1.7       cgd 	case EINTR:
   1051  1.46  christos 		printf("aborted from console\n");
   1052   1.7       cgd 		break;
   1053   1.7       cgd 
   1054  1.42       cgd 	case 0:
   1055  1.46  christos 		printf("succeeded\n");
   1056  1.42       cgd 		break;
   1057  1.42       cgd 
   1058   1.7       cgd 	default:
   1059  1.46  christos 		printf("error %d\n", error);
   1060   1.7       cgd 		break;
   1061   1.7       cgd 	}
   1062  1.46  christos 	printf("\n\n");
   1063   1.7       cgd 	delay(1000);
   1064   1.7       cgd }
   1065   1.7       cgd 
   1066   1.1       cgd void
   1067   1.1       cgd frametoreg(framep, regp)
   1068   1.1       cgd 	struct trapframe *framep;
   1069   1.1       cgd 	struct reg *regp;
   1070   1.1       cgd {
   1071   1.1       cgd 
   1072   1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1073   1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1074   1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1075   1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1076   1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1077   1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1078   1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1079   1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1080   1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1081   1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1082   1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1083   1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1084   1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1085   1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1086   1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1087   1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1088  1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1089  1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1090  1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1091   1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1092   1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1093   1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1094   1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1095   1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1096   1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1097   1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1098   1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1099   1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1100   1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1101  1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1102  1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1103   1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1104   1.1       cgd }
   1105   1.1       cgd 
   1106   1.1       cgd void
   1107   1.1       cgd regtoframe(regp, framep)
   1108   1.1       cgd 	struct reg *regp;
   1109   1.1       cgd 	struct trapframe *framep;
   1110   1.1       cgd {
   1111   1.1       cgd 
   1112   1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1113   1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1114   1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1115   1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1116   1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1117   1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1118   1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1119   1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1120   1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1121   1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1122   1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1123   1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1124   1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1125   1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1126   1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1127   1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1128  1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1129  1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1130  1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1131   1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1132   1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1133   1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1134   1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1135   1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1136   1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1137   1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1138   1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1139   1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1140   1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1141  1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1142  1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1143   1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1144   1.1       cgd }
   1145   1.1       cgd 
   1146   1.1       cgd void
   1147   1.1       cgd printregs(regp)
   1148   1.1       cgd 	struct reg *regp;
   1149   1.1       cgd {
   1150   1.1       cgd 	int i;
   1151   1.1       cgd 
   1152   1.1       cgd 	for (i = 0; i < 32; i++)
   1153  1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1154   1.1       cgd 		   i & 1 ? "\n" : "\t");
   1155   1.1       cgd }
   1156   1.1       cgd 
   1157   1.1       cgd void
   1158   1.1       cgd regdump(framep)
   1159   1.1       cgd 	struct trapframe *framep;
   1160   1.1       cgd {
   1161   1.1       cgd 	struct reg reg;
   1162   1.1       cgd 
   1163   1.1       cgd 	frametoreg(framep, &reg);
   1164  1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1165  1.35       cgd 
   1166  1.46  christos 	printf("REGISTERS:\n");
   1167   1.1       cgd 	printregs(&reg);
   1168   1.1       cgd }
   1169   1.1       cgd 
   1170   1.1       cgd #ifdef DEBUG
   1171   1.1       cgd int sigdebug = 0;
   1172   1.1       cgd int sigpid = 0;
   1173   1.1       cgd #define	SDB_FOLLOW	0x01
   1174   1.1       cgd #define	SDB_KSTACK	0x02
   1175   1.1       cgd #endif
   1176   1.1       cgd 
   1177   1.1       cgd /*
   1178   1.1       cgd  * Send an interrupt to process.
   1179   1.1       cgd  */
   1180   1.1       cgd void
   1181   1.1       cgd sendsig(catcher, sig, mask, code)
   1182   1.1       cgd 	sig_t catcher;
   1183   1.1       cgd 	int sig, mask;
   1184   1.1       cgd 	u_long code;
   1185   1.1       cgd {
   1186   1.1       cgd 	struct proc *p = curproc;
   1187   1.1       cgd 	struct sigcontext *scp, ksc;
   1188   1.1       cgd 	struct trapframe *frame;
   1189   1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1190   1.1       cgd 	int oonstack, fsize, rndfsize;
   1191   1.1       cgd 	extern char sigcode[], esigcode[];
   1192   1.1       cgd 	extern struct proc *fpcurproc;
   1193   1.1       cgd 
   1194   1.1       cgd 	frame = p->p_md.md_tf;
   1195   1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1196   1.1       cgd 	fsize = sizeof ksc;
   1197   1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1198   1.1       cgd 	/*
   1199   1.1       cgd 	 * Allocate and validate space for the signal handler
   1200   1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1201   1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1202   1.1       cgd 	 * will fail if the process has not already allocated
   1203   1.1       cgd 	 * the space with a `brk'.
   1204   1.1       cgd 	 */
   1205   1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1206   1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1207  1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1208   1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1209   1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1210   1.1       cgd 	} else
   1211  1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1212   1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1213   1.1       cgd 		(void)grow(p, (u_long)scp);
   1214   1.1       cgd #ifdef DEBUG
   1215   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1216  1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1217   1.1       cgd 		    sig, &oonstack, scp);
   1218   1.1       cgd #endif
   1219   1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1220   1.1       cgd #ifdef DEBUG
   1221   1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1222  1.46  christos 			printf("sendsig(%d): useracc failed on sig %d\n",
   1223   1.1       cgd 			    p->p_pid, sig);
   1224   1.1       cgd #endif
   1225   1.1       cgd 		/*
   1226   1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1227   1.1       cgd 		 * instruction to halt it in its tracks.
   1228   1.1       cgd 		 */
   1229   1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1230   1.1       cgd 		sig = sigmask(SIGILL);
   1231   1.1       cgd 		p->p_sigignore &= ~sig;
   1232   1.1       cgd 		p->p_sigcatch &= ~sig;
   1233   1.1       cgd 		p->p_sigmask &= ~sig;
   1234   1.1       cgd 		psignal(p, SIGILL);
   1235   1.1       cgd 		return;
   1236   1.1       cgd 	}
   1237   1.1       cgd 
   1238   1.1       cgd 	/*
   1239   1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1240   1.1       cgd 	 */
   1241   1.1       cgd 	ksc.sc_onstack = oonstack;
   1242   1.1       cgd 	ksc.sc_mask = mask;
   1243  1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1244  1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1245   1.1       cgd 
   1246   1.1       cgd 	/* copy the registers. */
   1247   1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1248   1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1249  1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1250   1.1       cgd 
   1251   1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1252   1.1       cgd 	if (p == fpcurproc) {
   1253  1.32       cgd 		alpha_pal_wrfen(1);
   1254   1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1255  1.32       cgd 		alpha_pal_wrfen(0);
   1256   1.1       cgd 		fpcurproc = NULL;
   1257   1.1       cgd 	}
   1258   1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1259   1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1260   1.1       cgd 	    sizeof(struct fpreg));
   1261   1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1262   1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1263   1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1264   1.1       cgd 
   1265   1.1       cgd 
   1266   1.1       cgd #ifdef COMPAT_OSF1
   1267   1.1       cgd 	/*
   1268   1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1269   1.1       cgd 	 */
   1270   1.1       cgd #endif
   1271   1.1       cgd 
   1272   1.1       cgd 	/*
   1273   1.1       cgd 	 * copy the frame out to userland.
   1274   1.1       cgd 	 */
   1275   1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1276   1.1       cgd #ifdef DEBUG
   1277   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1278  1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1279   1.1       cgd 		    scp, code);
   1280   1.1       cgd #endif
   1281   1.1       cgd 
   1282   1.1       cgd 	/*
   1283   1.1       cgd 	 * Set up the registers to return to sigcode.
   1284   1.1       cgd 	 */
   1285  1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1286  1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1287  1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1288  1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1289  1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1290   1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1291  1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1292   1.1       cgd 
   1293   1.1       cgd #ifdef DEBUG
   1294   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1295  1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1296  1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1297   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1298  1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1299   1.1       cgd 		    p->p_pid, sig);
   1300   1.1       cgd #endif
   1301   1.1       cgd }
   1302   1.1       cgd 
   1303   1.1       cgd /*
   1304   1.1       cgd  * System call to cleanup state after a signal
   1305   1.1       cgd  * has been taken.  Reset signal mask and
   1306   1.1       cgd  * stack state from context left by sendsig (above).
   1307   1.1       cgd  * Return to previous pc and psl as specified by
   1308   1.1       cgd  * context left by sendsig. Check carefully to
   1309   1.1       cgd  * make sure that the user has not modified the
   1310   1.1       cgd  * psl to gain improper priviledges or to cause
   1311   1.1       cgd  * a machine fault.
   1312   1.1       cgd  */
   1313   1.1       cgd /* ARGSUSED */
   1314  1.11   mycroft int
   1315  1.11   mycroft sys_sigreturn(p, v, retval)
   1316   1.1       cgd 	struct proc *p;
   1317  1.10   thorpej 	void *v;
   1318  1.10   thorpej 	register_t *retval;
   1319  1.10   thorpej {
   1320  1.11   mycroft 	struct sys_sigreturn_args /* {
   1321   1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1322  1.10   thorpej 	} */ *uap = v;
   1323   1.1       cgd 	struct sigcontext *scp, ksc;
   1324   1.1       cgd 	extern struct proc *fpcurproc;
   1325   1.1       cgd 
   1326   1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1327   1.1       cgd #ifdef DEBUG
   1328   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1329  1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1330   1.1       cgd #endif
   1331   1.1       cgd 
   1332   1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1333   1.1       cgd 		return (EINVAL);
   1334   1.1       cgd 
   1335   1.1       cgd 	/*
   1336   1.1       cgd 	 * Test and fetch the context structure.
   1337   1.1       cgd 	 * We grab it all at once for speed.
   1338   1.1       cgd 	 */
   1339   1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1340   1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1341   1.1       cgd 		return (EINVAL);
   1342   1.1       cgd 
   1343   1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1344   1.1       cgd 		return (EINVAL);
   1345   1.1       cgd 	/*
   1346   1.1       cgd 	 * Restore the user-supplied information
   1347   1.1       cgd 	 */
   1348   1.1       cgd 	if (ksc.sc_onstack)
   1349   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1350   1.1       cgd 	else
   1351   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1352   1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1353   1.1       cgd 
   1354  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1355  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1356  1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1357   1.1       cgd 
   1358   1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1359  1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1360   1.1       cgd 
   1361   1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1362   1.1       cgd 	if (p == fpcurproc)
   1363   1.1       cgd 		fpcurproc = NULL;
   1364   1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1365   1.1       cgd 	    sizeof(struct fpreg));
   1366   1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1367   1.1       cgd 
   1368   1.1       cgd #ifdef DEBUG
   1369   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1370  1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1371   1.1       cgd #endif
   1372   1.1       cgd 	return (EJUSTRETURN);
   1373   1.1       cgd }
   1374   1.1       cgd 
   1375   1.1       cgd /*
   1376   1.1       cgd  * machine dependent system variables.
   1377   1.1       cgd  */
   1378  1.33       cgd int
   1379   1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1380   1.1       cgd 	int *name;
   1381   1.1       cgd 	u_int namelen;
   1382   1.1       cgd 	void *oldp;
   1383   1.1       cgd 	size_t *oldlenp;
   1384   1.1       cgd 	void *newp;
   1385   1.1       cgd 	size_t newlen;
   1386   1.1       cgd 	struct proc *p;
   1387   1.1       cgd {
   1388   1.1       cgd 	dev_t consdev;
   1389   1.1       cgd 
   1390   1.1       cgd 	/* all sysctl names at this level are terminal */
   1391   1.1       cgd 	if (namelen != 1)
   1392   1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1393   1.1       cgd 
   1394   1.1       cgd 	switch (name[0]) {
   1395   1.1       cgd 	case CPU_CONSDEV:
   1396   1.1       cgd 		if (cn_tab != NULL)
   1397   1.1       cgd 			consdev = cn_tab->cn_dev;
   1398   1.1       cgd 		else
   1399   1.1       cgd 			consdev = NODEV;
   1400   1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1401   1.1       cgd 			sizeof consdev));
   1402  1.30       cgd 
   1403  1.30       cgd 	case CPU_ROOT_DEVICE:
   1404  1.30       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
   1405  1.36       cgd 
   1406  1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1407  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1408  1.36       cgd 		    &alpha_unaligned_print));
   1409  1.36       cgd 
   1410  1.36       cgd 	case CPU_UNALIGNED_FIX:
   1411  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1412  1.36       cgd 		    &alpha_unaligned_fix));
   1413  1.36       cgd 
   1414  1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1415  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1416  1.36       cgd 		    &alpha_unaligned_sigbus));
   1417  1.30       cgd 
   1418   1.1       cgd 	default:
   1419   1.1       cgd 		return (EOPNOTSUPP);
   1420   1.1       cgd 	}
   1421   1.1       cgd 	/* NOTREACHED */
   1422   1.1       cgd }
   1423   1.1       cgd 
   1424   1.1       cgd /*
   1425   1.1       cgd  * Set registers on exec.
   1426   1.1       cgd  */
   1427   1.1       cgd void
   1428   1.5  christos setregs(p, pack, stack, retval)
   1429   1.1       cgd 	register struct proc *p;
   1430   1.5  christos 	struct exec_package *pack;
   1431   1.1       cgd 	u_long stack;
   1432   1.1       cgd 	register_t *retval;
   1433   1.1       cgd {
   1434   1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1435   1.1       cgd 	int i;
   1436   1.1       cgd 	extern struct proc *fpcurproc;
   1437  1.43       cgd 
   1438  1.43       cgd #ifdef DEBUG
   1439  1.43       cgd 	/*
   1440  1.43       cgd 	 * Crash and dump, if the user requested it.
   1441  1.43       cgd 	 */
   1442  1.43       cgd 	if (boothowto & RB_DUMP)
   1443  1.43       cgd 		panic("crash requested by boot flags");
   1444  1.43       cgd #endif
   1445   1.1       cgd 
   1446   1.1       cgd #ifdef DEBUG
   1447  1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1448   1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1449   1.1       cgd #else
   1450  1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1451   1.1       cgd #endif
   1452   1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1453   1.7       cgd #define FP_RN 2 /* XXX */
   1454   1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1455  1.35       cgd 	alpha_pal_wrusp(stack);
   1456  1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1457  1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1458  1.41       cgd 
   1459  1.41       cgd 	tfp->tf_regs[FRAME_A0] = stack;
   1460  1.41       cgd 	/* a1 and a2 already zeroed */
   1461  1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1462   1.1       cgd 
   1463  1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1464   1.1       cgd 	if (fpcurproc == p)
   1465   1.1       cgd 		fpcurproc = NULL;
   1466   1.1       cgd 
   1467   1.1       cgd 	retval[0] = retval[1] = 0;
   1468   1.1       cgd }
   1469   1.1       cgd 
   1470   1.1       cgd void
   1471   1.1       cgd netintr()
   1472   1.1       cgd {
   1473  1.49       cgd 	int n, s;
   1474  1.49       cgd 
   1475  1.49       cgd 	s = splhigh();
   1476  1.49       cgd 	n = netisr;
   1477  1.49       cgd 	netisr = 0;
   1478  1.49       cgd 	splx(s);
   1479  1.49       cgd 
   1480  1.49       cgd #define	DONETISR(bit, fn)						\
   1481  1.49       cgd 	do {								\
   1482  1.49       cgd 		if (n & (1 << (bit)))					\
   1483  1.49       cgd 			fn;						\
   1484  1.49       cgd 	} while (0)
   1485  1.49       cgd 
   1486   1.1       cgd #ifdef INET
   1487  1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1488  1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1489   1.1       cgd #endif
   1490   1.1       cgd #ifdef NS
   1491  1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1492   1.1       cgd #endif
   1493   1.1       cgd #ifdef ISO
   1494  1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1495   1.1       cgd #endif
   1496   1.1       cgd #ifdef CCITT
   1497  1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1498  1.49       cgd #endif
   1499  1.49       cgd #ifdef NATM
   1500  1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1501   1.1       cgd #endif
   1502  1.49       cgd #if NPPP > 1
   1503  1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1504   1.8       cgd #endif
   1505  1.49       cgd 
   1506  1.49       cgd #undef DONETISR
   1507   1.1       cgd }
   1508   1.1       cgd 
   1509   1.1       cgd void
   1510   1.1       cgd do_sir()
   1511   1.1       cgd {
   1512   1.1       cgd 
   1513   1.1       cgd 	if (ssir & SIR_NET) {
   1514   1.1       cgd 		siroff(SIR_NET);
   1515   1.1       cgd 		cnt.v_soft++;
   1516   1.1       cgd 		netintr();
   1517   1.1       cgd 	}
   1518   1.1       cgd 	if (ssir & SIR_CLOCK) {
   1519   1.1       cgd 		siroff(SIR_CLOCK);
   1520   1.1       cgd 		cnt.v_soft++;
   1521   1.1       cgd 		softclock();
   1522   1.1       cgd 	}
   1523   1.1       cgd }
   1524   1.1       cgd 
   1525   1.1       cgd int
   1526   1.1       cgd spl0()
   1527   1.1       cgd {
   1528   1.1       cgd 
   1529   1.1       cgd 	if (ssir) {
   1530   1.1       cgd 		splsoft();
   1531   1.1       cgd 		do_sir();
   1532   1.1       cgd 	}
   1533   1.1       cgd 
   1534  1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1535   1.1       cgd }
   1536   1.1       cgd 
   1537   1.1       cgd /*
   1538   1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1539   1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1540   1.1       cgd  * into queues, Remrq removes them from queues.  The running process is on
   1541   1.1       cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1542   1.1       cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1543   1.1       cgd  * queues.
   1544   1.1       cgd  */
   1545   1.1       cgd /*
   1546   1.1       cgd  * setrunqueue(p)
   1547   1.1       cgd  *	proc *p;
   1548   1.1       cgd  *
   1549   1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1550   1.1       cgd  */
   1551   1.1       cgd 
   1552   1.1       cgd void
   1553   1.1       cgd setrunqueue(p)
   1554   1.1       cgd 	struct proc *p;
   1555   1.1       cgd {
   1556   1.1       cgd 	int bit;
   1557   1.1       cgd 
   1558   1.1       cgd 	/* firewall: p->p_back must be NULL */
   1559   1.1       cgd 	if (p->p_back != NULL)
   1560   1.1       cgd 		panic("setrunqueue");
   1561   1.1       cgd 
   1562   1.1       cgd 	bit = p->p_priority >> 2;
   1563   1.1       cgd 	whichqs |= (1 << bit);
   1564   1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1565   1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1566   1.1       cgd 	p->p_back->p_forw = p;
   1567   1.1       cgd 	qs[bit].ph_rlink = p;
   1568   1.1       cgd }
   1569   1.1       cgd 
   1570   1.1       cgd /*
   1571   1.1       cgd  * Remrq(p)
   1572   1.1       cgd  *
   1573   1.1       cgd  * Call should be made at splclock().
   1574   1.1       cgd  */
   1575   1.1       cgd void
   1576   1.1       cgd remrq(p)
   1577   1.1       cgd 	struct proc *p;
   1578   1.1       cgd {
   1579   1.1       cgd 	int bit;
   1580   1.1       cgd 
   1581   1.1       cgd 	bit = p->p_priority >> 2;
   1582   1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1583   1.1       cgd 		panic("remrq");
   1584   1.1       cgd 
   1585   1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1586   1.1       cgd 	p->p_forw->p_back = p->p_back;
   1587   1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1588   1.1       cgd 
   1589   1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1590   1.1       cgd 		whichqs &= ~(1 << bit);
   1591   1.1       cgd }
   1592   1.1       cgd 
   1593   1.1       cgd /*
   1594   1.1       cgd  * Return the best possible estimate of the time in the timeval
   1595   1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1596   1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1597   1.1       cgd  * previous call.
   1598   1.1       cgd  */
   1599   1.1       cgd void
   1600   1.1       cgd microtime(tvp)
   1601   1.1       cgd 	register struct timeval *tvp;
   1602   1.1       cgd {
   1603   1.1       cgd 	int s = splclock();
   1604   1.1       cgd 	static struct timeval lasttime;
   1605   1.1       cgd 
   1606   1.1       cgd 	*tvp = time;
   1607   1.1       cgd #ifdef notdef
   1608   1.1       cgd 	tvp->tv_usec += clkread();
   1609   1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1610   1.1       cgd 		tvp->tv_sec++;
   1611   1.1       cgd 		tvp->tv_usec -= 1000000;
   1612   1.1       cgd 	}
   1613   1.1       cgd #endif
   1614   1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1615   1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1616   1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1617   1.1       cgd 		tvp->tv_sec++;
   1618   1.1       cgd 		tvp->tv_usec -= 1000000;
   1619   1.1       cgd 	}
   1620   1.1       cgd 	lasttime = *tvp;
   1621   1.1       cgd 	splx(s);
   1622  1.15       cgd }
   1623  1.15       cgd 
   1624  1.15       cgd /*
   1625  1.15       cgd  * Wait "n" microseconds.
   1626  1.15       cgd  */
   1627  1.32       cgd void
   1628  1.15       cgd delay(n)
   1629  1.32       cgd 	unsigned long n;
   1630  1.15       cgd {
   1631  1.15       cgd 	long N = cycles_per_usec * (n);
   1632  1.15       cgd 
   1633  1.15       cgd 	while (N > 0)				/* XXX */
   1634  1.15       cgd 		N -= 3;				/* XXX */
   1635   1.1       cgd }
   1636   1.1       cgd 
   1637   1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1638   1.1       cgd void
   1639  1.19       cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1640   1.1       cgd 	struct proc *p;
   1641  1.19       cgd 	struct exec_package *epp;
   1642   1.5  christos 	u_long stack;
   1643   1.5  christos 	register_t *retval;
   1644   1.1       cgd {
   1645  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1646   1.1       cgd 
   1647  1.19       cgd 	setregs(p, epp, stack, retval);
   1648  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1649   1.1       cgd }
   1650   1.1       cgd 
   1651   1.1       cgd /*
   1652   1.1       cgd  * cpu_exec_ecoff_hook():
   1653   1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1654   1.1       cgd  *
   1655   1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1656   1.1       cgd  *
   1657   1.1       cgd  */
   1658   1.1       cgd int
   1659  1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1660   1.1       cgd 	struct proc *p;
   1661   1.1       cgd 	struct exec_package *epp;
   1662   1.1       cgd {
   1663  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1664   1.5  christos 	extern struct emul emul_netbsd;
   1665   1.5  christos #ifdef COMPAT_OSF1
   1666   1.5  christos 	extern struct emul emul_osf1;
   1667   1.5  christos #endif
   1668   1.1       cgd 
   1669  1.19       cgd 	switch (execp->f.f_magic) {
   1670   1.5  christos #ifdef COMPAT_OSF1
   1671   1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1672   1.5  christos 		epp->ep_emul = &emul_osf1;
   1673   1.1       cgd 		break;
   1674   1.5  christos #endif
   1675   1.1       cgd 
   1676   1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1677   1.5  christos 		epp->ep_emul = &emul_netbsd;
   1678   1.1       cgd 		break;
   1679   1.1       cgd 
   1680   1.1       cgd 	default:
   1681  1.12       cgd 		return ENOEXEC;
   1682   1.1       cgd 	}
   1683   1.1       cgd 	return 0;
   1684   1.1       cgd }
   1685   1.1       cgd #endif
   1686