machdep.c revision 1.7 1 1.7 cgd /* $NetBSD: machdep.c,v 1.7 1995/06/28 02:45:07 cgd Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.1 cgd * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.1 cgd
30 1.1 cgd #include <sys/param.h>
31 1.1 cgd #include <sys/systm.h>
32 1.1 cgd #include <sys/signalvar.h>
33 1.1 cgd #include <sys/kernel.h>
34 1.1 cgd #include <sys/map.h>
35 1.1 cgd #include <sys/proc.h>
36 1.1 cgd #include <sys/buf.h>
37 1.1 cgd #include <sys/reboot.h>
38 1.1 cgd #include <sys/conf.h>
39 1.1 cgd #include <sys/file.h>
40 1.1 cgd #ifdef REAL_CLISTS
41 1.1 cgd #include <sys/clist.h>
42 1.1 cgd #endif
43 1.1 cgd #include <sys/callout.h>
44 1.1 cgd #include <sys/malloc.h>
45 1.1 cgd #include <sys/mbuf.h>
46 1.1 cgd #include <sys/msgbuf.h>
47 1.1 cgd #include <sys/ioctl.h>
48 1.1 cgd #include <sys/tty.h>
49 1.1 cgd #include <sys/user.h>
50 1.1 cgd #include <sys/exec.h>
51 1.1 cgd #include <sys/exec_ecoff.h>
52 1.1 cgd #include <sys/sysctl.h>
53 1.1 cgd #ifdef SYSVMSG
54 1.1 cgd #include <sys/msg.h>
55 1.1 cgd #endif
56 1.1 cgd #ifdef SYSVSEM
57 1.1 cgd #include <sys/sem.h>
58 1.1 cgd #endif
59 1.1 cgd #ifdef SYSVSHM
60 1.1 cgd #include <sys/shm.h>
61 1.1 cgd #endif
62 1.1 cgd
63 1.1 cgd #include <sys/mount.h>
64 1.1 cgd #include <sys/syscallargs.h>
65 1.1 cgd
66 1.1 cgd #include <vm/vm_kern.h>
67 1.1 cgd
68 1.1 cgd #include <dev/cons.h>
69 1.1 cgd
70 1.1 cgd #include <machine/cpu.h>
71 1.1 cgd #include <machine/reg.h>
72 1.1 cgd #include <machine/rpb.h>
73 1.1 cgd #include <machine/prom.h>
74 1.1 cgd
75 1.1 cgd #include <net/netisr.h>
76 1.1 cgd #include "ether.h"
77 1.1 cgd
78 1.1 cgd #include "le.h" /* XXX for le_iomem creation */
79 1.1 cgd #include "esp.h" /* XXX for esp_iomem creation */
80 1.1 cgd
81 1.1 cgd vm_map_t buffer_map;
82 1.1 cgd
83 1.7 cgd void dumpsys __P((void));
84 1.7 cgd
85 1.1 cgd /*
86 1.1 cgd * Declare these as initialized data so we can patch them.
87 1.1 cgd */
88 1.1 cgd int nswbuf = 0;
89 1.1 cgd #ifdef NBUF
90 1.1 cgd int nbuf = NBUF;
91 1.1 cgd #else
92 1.1 cgd int nbuf = 0;
93 1.1 cgd #endif
94 1.1 cgd #ifdef BUFPAGES
95 1.1 cgd int bufpages = BUFPAGES;
96 1.1 cgd #else
97 1.1 cgd int bufpages = 0;
98 1.1 cgd #endif
99 1.1 cgd int msgbufmapped = 0; /* set when safe to use msgbuf */
100 1.1 cgd int maxmem; /* max memory per process */
101 1.7 cgd
102 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
103 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
104 1.7 cgd int firstusablepage; /* first usable memory page */
105 1.7 cgd int lastusablepage; /* last usable memory page */
106 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
107 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
108 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
109 1.1 cgd
110 1.1 cgd int cputype; /* system type, from the RPB */
111 1.1 cgd
112 1.1 cgd /*
113 1.1 cgd * XXX We need an address to which we can assign things so that they
114 1.1 cgd * won't be optimized away because we didn't use the value.
115 1.1 cgd */
116 1.1 cgd u_int32_t no_optimize;
117 1.1 cgd
118 1.1 cgd /* the following is used externally (sysctl_hw) */
119 1.1 cgd char machine[] = "alpha";
120 1.2 cgd char *cpu_model;
121 1.1 cgd char *model_names[] = {
122 1.2 cgd "UNKNOWN (0)",
123 1.2 cgd "Alpha Demonstration Unit",
124 1.2 cgd "DEC 4000 (\"Cobra\")",
125 1.2 cgd "DEC 7000 (\"Ruby\")",
126 1.2 cgd "DEC 3000/500 (\"Flamingo\") family",
127 1.2 cgd "UNKNOWN (5)",
128 1.2 cgd "DEC 2000/300 (\"Jensen\")",
129 1.2 cgd "DEC 3000/300 (\"Pelican\")",
130 1.2 cgd "UNKNOWN (8)",
131 1.2 cgd "DEC 2100/A500 (\"Sable\")",
132 1.2 cgd "AXPvme 64",
133 1.2 cgd "AXPpci 33 (\"NoName\")",
134 1.2 cgd "UNKNOWN (12)",
135 1.7 cgd "DEC 2100/A50 (\"Avanti\") family",
136 1.2 cgd "Mustang",
137 1.2 cgd "DEC 1000 (\"Mikasa\")",
138 1.1 cgd };
139 1.1 cgd int nmodel_names = sizeof model_names/sizeof model_names[0];
140 1.1 cgd
141 1.1 cgd struct user *proc0paddr;
142 1.1 cgd
143 1.1 cgd /* Number of machine cycles per microsecond */
144 1.1 cgd u_int64_t cycles_per_usec;
145 1.1 cgd
146 1.1 cgd /* some memory areas for device DMA. "ick." */
147 1.1 cgd caddr_t le_iomem; /* XXX iomem for LANCE DMA */
148 1.1 cgd caddr_t esp_iomem; /* XXX iomem for SCSI DMA */
149 1.1 cgd
150 1.1 cgd /* Interrupt vectors (in locore) */
151 1.1 cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
152 1.1 cgd
153 1.7 cgd /* number of cpus in the box. really! */
154 1.7 cgd int ncpus;
155 1.7 cgd
156 1.1 cgd int
157 1.1 cgd alpha_init(pfn, ptb, argc, argv, envp)
158 1.1 cgd u_long pfn; /* first free PFN number */
159 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
160 1.1 cgd u_long argc;
161 1.1 cgd char *argv[], *envp[];
162 1.1 cgd {
163 1.2 cgd extern char _end[];
164 1.1 cgd caddr_t start, v;
165 1.1 cgd struct mddt *mddtp;
166 1.7 cgd int i, mddtweird;
167 1.1 cgd char *p;
168 1.1 cgd
169 1.1 cgd /*
170 1.1 cgd * Turn off interrupts and floating point.
171 1.1 cgd * Make sure the instruction and data streams are consistent.
172 1.1 cgd */
173 1.1 cgd (void)splhigh();
174 1.1 cgd pal_wrfen(0);
175 1.1 cgd TBIA();
176 1.1 cgd IMB();
177 1.1 cgd
178 1.1 cgd /*
179 1.1 cgd * get address of the restart block, while we the bootstrap
180 1.1 cgd * mapping is still around.
181 1.1 cgd */
182 1.1 cgd hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
183 1.1 cgd
184 1.1 cgd /*
185 1.1 cgd * Remember how many cycles there are per microsecond,
186 1.7 cgd * so that we can use delay(). Round up, for safety.
187 1.1 cgd */
188 1.7 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
189 1.1 cgd
190 1.1 cgd /*
191 1.1 cgd * Init the PROM interface, so we can use printf
192 1.1 cgd * until PROM mappings go away in consinit.
193 1.1 cgd */
194 1.1 cgd init_prom_interface();
195 1.1 cgd
196 1.1 cgd /*
197 1.1 cgd * Point interrupt/exception vectors to our own.
198 1.1 cgd */
199 1.1 cgd pal_wrent(XentInt, 0);
200 1.1 cgd pal_wrent(XentArith, 1);
201 1.1 cgd pal_wrent(XentMM, 2);
202 1.1 cgd pal_wrent(XentIF, 3);
203 1.1 cgd pal_wrent(XentUna, 4);
204 1.1 cgd pal_wrent(XentSys, 5);
205 1.1 cgd
206 1.1 cgd /*
207 1.1 cgd * Find out how much memory is available, by looking at
208 1.7 cgd * the memory cluster descriptors. This also tries to do
209 1.7 cgd * its best to detect things things that have never been seen
210 1.7 cgd * before...
211 1.7 cgd *
212 1.1 cgd * XXX Assumes that the first "system" cluster is the
213 1.7 cgd * only one we can use. Is the second (etc.) system cluster
214 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
215 1.1 cgd */
216 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
217 1.7 cgd
218 1.7 cgd /*
219 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
220 1.7 cgd */
221 1.7 cgd mddtweird = 0;
222 1.7 cgd
223 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
224 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
225 1.7 cgd if (cnt != 2 && cnt != 3) {
226 1.7 cgd printf("WARNING: weird number (%d) of mem clusters\n", cnt);
227 1.7 cgd mddtweird = 1;
228 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
229 1.7 cgd usage(1) != MDDT_SYSTEM ||
230 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
231 1.7 cgd mddtweird = 1;
232 1.7 cgd printf("WARNING: %d mem clusters, but weird config\n", cnt);
233 1.7 cgd }
234 1.7 cgd
235 1.7 cgd for (i = 0; i < cnt; i++) {
236 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
237 1.7 cgd printf("WARNING: mem cluster %d has weird usage %lx\n",
238 1.7 cgd i, usage(i));
239 1.7 cgd mddtweird = 1;
240 1.7 cgd }
241 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
242 1.7 cgd printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
243 1.7 cgd mddtweird = 1;
244 1.7 cgd }
245 1.7 cgd /* XXX other things to check? */
246 1.7 cgd }
247 1.7 cgd #undef cnt
248 1.7 cgd #undef usage
249 1.7 cgd
250 1.7 cgd if (mddtweird) {
251 1.7 cgd printf("\n");
252 1.7 cgd printf("complete memory cluster information:\n");
253 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
254 1.2 cgd printf("mddt %d:\n", i);
255 1.2 cgd printf("\tpfn %lx\n",
256 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
257 1.2 cgd printf("\tcnt %lx\n",
258 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
259 1.2 cgd printf("\ttest %lx\n",
260 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
261 1.2 cgd printf("\tbva %lx\n",
262 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
263 1.2 cgd printf("\tbpa %lx\n",
264 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
265 1.2 cgd printf("\tbcksum %lx\n",
266 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
267 1.2 cgd printf("\tusage %lx\n",
268 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
269 1.2 cgd }
270 1.7 cgd printf("\n");
271 1.2 cgd }
272 1.7 cgd /*
273 1.7 cgd * END MDDT WEIRDNESS CHECKING
274 1.7 cgd */
275 1.2 cgd
276 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
277 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
278 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
279 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
280 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
281 1.7 cgd unknownmem += pgcnt(i);
282 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
283 1.7 cgd resvmem += pgcnt(i);
284 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
285 1.7 cgd /*
286 1.7 cgd * assumes that the system cluster listed is
287 1.7 cgd * one we're in...
288 1.7 cgd */
289 1.7 cgd if (physmem != resvmem) {
290 1.7 cgd physmem += pgcnt(i);
291 1.7 cgd firstusablepage =
292 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
293 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
294 1.7 cgd } else
295 1.7 cgd unusedmem += pgcnt(i);
296 1.7 cgd }
297 1.7 cgd #undef usage
298 1.7 cgd #undef pgcnt
299 1.1 cgd }
300 1.7 cgd if (totalphysmem == 0)
301 1.1 cgd panic("can't happen: system seems to have no memory!");
302 1.1 cgd maxmem = physmem;
303 1.1 cgd
304 1.7 cgd #if 0
305 1.7 cgd printf("totalphysmem = %d\n", totalphysmem);
306 1.7 cgd printf("physmem = %d\n", physmem);
307 1.7 cgd printf("firstusablepage = %d\n", firstusablepage);
308 1.7 cgd printf("lastusablepage = %d\n", lastusablepage);
309 1.7 cgd printf("resvmem = %d\n", resvmem);
310 1.7 cgd printf("unusedmem = %d\n", unusedmem);
311 1.7 cgd printf("unknownmem = %d\n", unknownmem);
312 1.7 cgd #endif
313 1.7 cgd
314 1.1 cgd /*
315 1.1 cgd * find out this CPU's page size
316 1.1 cgd */
317 1.1 cgd PAGE_SIZE = hwrpb->rpb_page_size;
318 1.1 cgd
319 1.2 cgd v = (caddr_t)alpha_round_page(_end);
320 1.1 cgd /*
321 1.1 cgd * Init mapping for u page(s) for proc 0
322 1.1 cgd */
323 1.1 cgd start = v;
324 1.1 cgd curproc->p_addr = proc0paddr = (struct user *)v;
325 1.1 cgd v += UPAGES * NBPG;
326 1.1 cgd
327 1.1 cgd /*
328 1.1 cgd * Find out what hardware we're on, and remember its type name.
329 1.1 cgd * XXX and start dealing with config?
330 1.1 cgd */
331 1.1 cgd cputype = hwrpb->rpb_type;
332 1.1 cgd switch (cputype) {
333 1.1 cgd #ifdef ADU
334 1.1 cgd case ST_ADU:
335 1.1 cgd THIS SYSTEM NOT SUPPORTED
336 1.2 cgd #endif
337 1.2 cgd
338 1.1 cgd #ifdef DEC_4000
339 1.1 cgd case ST_DEC_4000:
340 1.1 cgd THIS SYSTEM NOT SUPPORTED
341 1.2 cgd #endif
342 1.2 cgd
343 1.1 cgd #ifdef DEC_7000
344 1.1 cgd case ST_DEC_7000:
345 1.1 cgd THIS SYSTEM NOT SUPPORTED
346 1.2 cgd #endif
347 1.2 cgd
348 1.2 cgd #ifdef DEC_3000_500 /* and 400, [6-9]00 */
349 1.1 cgd case ST_DEC_3000_500:
350 1.2 cgd switch (hwrpb->rpb_variation & SV_ST_MASK) {
351 1.2 cgd case SV_ST_SANDPIPER:
352 1.2 cgd systype_sandpiper:
353 1.2 cgd cpu_model = "DEC 3000/400 (\"Sandpiper\")";
354 1.2 cgd break;
355 1.2 cgd
356 1.2 cgd case SV_ST_FLAMINGO:
357 1.2 cgd systype_flamingo:
358 1.2 cgd cpu_model = "DEC 3000/500 (\"Flamingo\")";
359 1.2 cgd break;
360 1.2 cgd
361 1.2 cgd case SV_ST_HOTPINK:
362 1.2 cgd cpu_model = "DEC 3000/500X (\"Hot Pink\")";
363 1.2 cgd break;
364 1.2 cgd
365 1.2 cgd case SV_ST_FLAMINGOPLUS:
366 1.2 cgd case SV_ST_ULTRA:
367 1.2 cgd cpu_model = "DEC 3000/800 (\"Flamingo+\")";
368 1.2 cgd break;
369 1.2 cgd
370 1.2 cgd case SV_ST_SANDPLUS:
371 1.2 cgd cpu_model = "DEC 3000/600 (\"Sandpiper+\")";
372 1.2 cgd break;
373 1.2 cgd
374 1.2 cgd case SV_ST_SANDPIPER45:
375 1.2 cgd cpu_model = "DEC 3000/700 (\"Sandpiper45\")";
376 1.2 cgd break;
377 1.2 cgd
378 1.2 cgd case SV_ST_FLAMINGO45:
379 1.2 cgd cpu_model = "DEC 3000/900 (\"Flamingo45\")";
380 1.2 cgd break;
381 1.2 cgd
382 1.2 cgd case SV_ST_RESERVED: /* this is how things used to be done */
383 1.2 cgd if (hwrpb->rpb_variation & SV_GRAPHICS)
384 1.2 cgd goto systype_flamingo;
385 1.2 cgd else
386 1.2 cgd goto systype_sandpiper;
387 1.2 cgd /* NOTREACHED */
388 1.2 cgd
389 1.2 cgd default:
390 1.2 cgd printf("unknown system variation %lx\n",
391 1.2 cgd hwrpb->rpb_variation & SV_ST_MASK);
392 1.2 cgd }
393 1.1 cgd break;
394 1.2 cgd #endif
395 1.2 cgd
396 1.1 cgd #ifdef DEC_2000_300
397 1.1 cgd case ST_DEC_2000_300:
398 1.2 cgd /* XXX XXX XXX */
399 1.2 cgd break;
400 1.2 cgd #endif
401 1.2 cgd
402 1.2 cgd #ifdef DEC_3000_300
403 1.2 cgd case ST_DEC_3000_300:
404 1.2 cgd switch (hwrpb->rpb_variation & SV_ST_MASK) {
405 1.2 cgd case SV_ST_PELICAN:
406 1.2 cgd cpu_model = "DEC 3000/300 (\"Pelican\")";
407 1.2 cgd break;
408 1.2 cgd
409 1.3 cgd case SV_ST_PELICA:
410 1.3 cgd cpu_model = "DEC 3000/300L (\"Pelica\")";
411 1.2 cgd break;
412 1.2 cgd
413 1.3 cgd case SV_ST_PELICANPLUS:
414 1.3 cgd cpu_model = "DEC 3000/300X (\"Pelican+\")";
415 1.2 cgd break;
416 1.2 cgd
417 1.3 cgd case SV_ST_PELICAPLUS:
418 1.3 cgd cpu_model = "DEC 3000/300LX (\"Pelica+\")";
419 1.2 cgd break;
420 1.2 cgd
421 1.2 cgd default:
422 1.2 cgd printf("unknown system variation %lx\n",
423 1.2 cgd hwrpb->rpb_variation & SV_ST_MASK);
424 1.2 cgd }
425 1.2 cgd break;
426 1.2 cgd #endif
427 1.2 cgd
428 1.2 cgd #ifdef DEC_2100_A500
429 1.2 cgd case ST_DEC_2100_A500:
430 1.2 cgd THIS SYSTEM NOT SUPPORTED
431 1.2 cgd #endif
432 1.2 cgd
433 1.2 cgd #ifdef DEC_AXPVME_64
434 1.2 cgd case ST_DEC_AXPVME_64:
435 1.1 cgd THIS SYSTEM NOT SUPPORTED
436 1.2 cgd #endif
437 1.2 cgd
438 1.2 cgd #ifdef DEC_AXPPCI_33
439 1.2 cgd case ST_DEC_AXPPCI_33:
440 1.2 cgd THIS SYSTEM NOT SUPPORTED
441 1.2 cgd #endif
442 1.2 cgd
443 1.2 cgd #ifdef DEC_2100_A50
444 1.2 cgd case ST_DEC_2100_A50:
445 1.7 cgd switch (hwrpb->rpb_variation & SV_ST_MASK) {
446 1.7 cgd case SV_ST_AVANTI:
447 1.7 cgd case SV_ST_AVANTI_XXX: /* XXX apparently the same? */
448 1.7 cgd cpu_model = "AlphaStation 400 4/233 (\"Avanti\")";
449 1.7 cgd break;
450 1.7 cgd
451 1.7 cgd case SV_ST_MUSTANG2_4_166:
452 1.7 cgd cpu_model = "AlphaStation 200 4/166 (\"Mustang II\")";
453 1.7 cgd break;
454 1.7 cgd
455 1.7 cgd case SV_ST_MUSTANG2_4_233:
456 1.7 cgd cpu_model = "AlphaStation 200 4/233 (\"Mustang II\")";
457 1.7 cgd break;
458 1.7 cgd
459 1.7 cgd case SV_ST_MUSTANG2_4_100:
460 1.7 cgd cpu_model = "AlphaStation 200 4/100 (\"Mustang II\")";
461 1.7 cgd break;
462 1.7 cgd
463 1.7 cgd default:
464 1.7 cgd printf("unknown system variation %lx\n",
465 1.7 cgd hwrpb->rpb_variation & SV_ST_MASK);
466 1.7 cgd }
467 1.2 cgd break;
468 1.2 cgd #endif
469 1.2 cgd
470 1.2 cgd #ifdef DEC_MUSTANG
471 1.2 cgd case ST_DEC_MUSTANG:
472 1.2 cgd THIS SYSTEM NOT SUPPORTED
473 1.2 cgd #endif
474 1.2 cgd
475 1.2 cgd #ifdef DEC_1000
476 1.2 cgd case ST_DEC_1000:
477 1.1 cgd THIS SYSTEM NOT SUPPORTED
478 1.2 cgd #endif
479 1.2 cgd
480 1.1 cgd default:
481 1.1 cgd if (cputype > nmodel_names)
482 1.1 cgd panic("Unknown system type %d", cputype);
483 1.1 cgd else
484 1.1 cgd panic("Support for %s system type not in kernel.",
485 1.1 cgd model_names[cputype]);
486 1.1 cgd }
487 1.2 cgd if (cpu_model == NULL)
488 1.2 cgd cpu_model = model_names[cputype];
489 1.1 cgd
490 1.1 cgd #if NLE > 0
491 1.1 cgd /*
492 1.1 cgd * Grab 128K at the top of physical memory for the lance chip
493 1.1 cgd * on machines where it does dma through the I/O ASIC.
494 1.1 cgd * It must be physically contiguous and aligned on a 128K boundary.
495 1.1 cgd */
496 1.1 cgd if (cputype == ST_DEC_3000_500 ||
497 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
498 1.7 cgd lastusablepage -= btoc(128 * 1024);
499 1.7 cgd le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
500 1.1 cgd }
501 1.1 cgd #endif /* NLE */
502 1.1 cgd #if NESP > 0
503 1.1 cgd /*
504 1.1 cgd * Ditto for the scsi chip. There is probably a way to make esp.c
505 1.1 cgd * do dma without these buffers, but it would require major
506 1.1 cgd * re-engineering of the esp driver.
507 1.1 cgd * They must be 8K in size and page aligned.
508 1.1 cgd */
509 1.1 cgd if (cputype == ST_DEC_3000_500 ||
510 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
511 1.7 cgd lastusablepage -= btoc(NESP * 8192);
512 1.7 cgd esp_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
513 1.1 cgd }
514 1.1 cgd #endif /* NESP */
515 1.1 cgd
516 1.1 cgd /*
517 1.1 cgd * Initialize error message buffer (at end of core).
518 1.1 cgd */
519 1.7 cgd lastusablepage -= btoc(sizeof (struct msgbuf));
520 1.7 cgd msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
521 1.1 cgd msgbufmapped = 1;
522 1.1 cgd
523 1.1 cgd /*
524 1.1 cgd * Allocate space for system data structures.
525 1.1 cgd * The first available kernel virtual address is in "v".
526 1.1 cgd * As pages of kernel virtual memory are allocated, "v" is incremented.
527 1.1 cgd *
528 1.1 cgd * These data structures are allocated here instead of cpu_startup()
529 1.1 cgd * because physical memory is directly addressable. We don't have
530 1.1 cgd * to map these into virtual address space.
531 1.1 cgd */
532 1.1 cgd #define valloc(name, type, num) \
533 1.1 cgd (name) = (type *)v; v = (caddr_t)((name)+(num))
534 1.1 cgd #define valloclim(name, type, num, lim) \
535 1.1 cgd (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
536 1.1 cgd #ifdef REAL_CLISTS
537 1.1 cgd valloc(cfree, struct cblock, nclist);
538 1.1 cgd #endif
539 1.1 cgd valloc(callout, struct callout, ncallout);
540 1.1 cgd valloc(swapmap, struct map, nswapmap = maxproc * 2);
541 1.1 cgd #ifdef SYSVSHM
542 1.1 cgd valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
543 1.1 cgd #endif
544 1.1 cgd #ifdef SYSVSEM
545 1.1 cgd valloc(sema, struct semid_ds, seminfo.semmni);
546 1.1 cgd valloc(sem, struct sem, seminfo.semmns);
547 1.1 cgd /* This is pretty disgusting! */
548 1.1 cgd valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
549 1.1 cgd #endif
550 1.1 cgd #ifdef SYSVMSG
551 1.1 cgd valloc(msgpool, char, msginfo.msgmax);
552 1.1 cgd valloc(msgmaps, struct msgmap, msginfo.msgseg);
553 1.1 cgd valloc(msghdrs, struct msg, msginfo.msgtql);
554 1.1 cgd valloc(msqids, struct msqid_ds, msginfo.msgmni);
555 1.1 cgd #endif
556 1.1 cgd
557 1.1 cgd /*
558 1.1 cgd * Determine how many buffers to allocate.
559 1.1 cgd * We allocate the BSD standard of 10% of memory for the first
560 1.1 cgd * 2 Meg, and 5% of remaining memory for buffer space. Insure a
561 1.1 cgd * minimum of 16 buffers. We allocate 1/2 as many swap buffer
562 1.1 cgd * headers as file i/o buffers.
563 1.1 cgd */
564 1.1 cgd if (bufpages == 0)
565 1.7 cgd bufpages = (btoc(2 * 1024 * 1024) + physmem) /
566 1.1 cgd (20 * CLSIZE);
567 1.1 cgd if (nbuf == 0) {
568 1.1 cgd nbuf = bufpages;
569 1.1 cgd if (nbuf < 16)
570 1.1 cgd nbuf = 16;
571 1.1 cgd }
572 1.1 cgd if (nswbuf == 0) {
573 1.1 cgd nswbuf = (nbuf / 2) &~ 1; /* force even */
574 1.1 cgd if (nswbuf > 256)
575 1.1 cgd nswbuf = 256; /* sanity */
576 1.1 cgd }
577 1.1 cgd valloc(swbuf, struct buf, nswbuf);
578 1.1 cgd valloc(buf, struct buf, nbuf);
579 1.1 cgd
580 1.1 cgd /*
581 1.1 cgd * Clear allocated memory.
582 1.1 cgd */
583 1.1 cgd bzero(start, v - start);
584 1.1 cgd
585 1.1 cgd /*
586 1.1 cgd * Initialize the virtual memory system, and set the
587 1.1 cgd * page table base register in proc 0's PCB.
588 1.1 cgd */
589 1.1 cgd pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
590 1.1 cgd
591 1.1 cgd /*
592 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
593 1.3 cgd * address.
594 1.3 cgd */
595 1.3 cgd proc0.p_md.md_pcbpaddr =
596 1.3 cgd (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
597 1.3 cgd
598 1.3 cgd /*
599 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
600 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
601 1.3 cgd */
602 1.3 cgd proc0paddr->u_pcb.pcb_ksp =
603 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
604 1.3 cgd proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
605 1.1 cgd
606 1.1 cgd /*
607 1.1 cgd * Look at arguments and compute bootdev.
608 1.1 cgd *
609 1.1 cgd * XXX
610 1.1 cgd * Boot currently doesn't pass any arguments concerning booting
611 1.1 cgd * or the root device.
612 1.1 cgd */
613 1.1 cgd { extern dev_t bootdev;
614 1.1 cgd bootdev = MAKEBOOTDEV(8, 0, 0, 0, 0); /* sd0a. XXX */
615 1.1 cgd }
616 1.1 cgd
617 1.1 cgd /*
618 1.1 cgd * Look at arguments passed to us and compute boothowto.
619 1.1 cgd */
620 1.1 cgd #ifdef GENERIC
621 1.1 cgd boothowto = RB_SINGLE | RB_ASKNAME;
622 1.1 cgd #else
623 1.1 cgd boothowto = RB_SINGLE;
624 1.1 cgd #endif
625 1.1 cgd #ifdef KADB
626 1.1 cgd boothowto |= RB_KDB;
627 1.1 cgd #endif
628 1.1 cgd
629 1.7 cgd #if 0
630 1.1 cgd printf("argc = %d\n", argc);
631 1.1 cgd printf("argv = %lx\n", argv);
632 1.1 cgd for (i = 0; i < argc; i++)
633 1.1 cgd printf("argv[%d] = (%lx) \"%s\"\n", i, argv[i], argv[i]);
634 1.7 cgd #endif
635 1.1 cgd
636 1.1 cgd if (argc > 1) {
637 1.1 cgd /* we have arguments. argv[1] is the flags. */
638 1.1 cgd for (p = argv[1]; *p != '\0'; p++) {
639 1.1 cgd switch (*p) {
640 1.1 cgd case 'a': /* autoboot */
641 1.1 cgd case 'A': /* DEC's notion of autoboot */
642 1.1 cgd boothowto &= ~RB_SINGLE;
643 1.1 cgd break;
644 1.1 cgd
645 1.1 cgd case 'd': /* use compiled in default root */
646 1.1 cgd boothowto |= RB_DFLTROOT;
647 1.1 cgd break;
648 1.1 cgd
649 1.1 cgd case 'm': /* mini root present in memory */
650 1.1 cgd boothowto |= RB_MINIROOT;
651 1.1 cgd break;
652 1.1 cgd
653 1.1 cgd case 'n': /* ask for names */
654 1.1 cgd boothowto |= RB_ASKNAME;
655 1.1 cgd break;
656 1.1 cgd
657 1.1 cgd case 'N': /* don't ask for names */
658 1.1 cgd boothowto &= ~RB_ASKNAME;
659 1.1 cgd }
660 1.1 cgd }
661 1.1 cgd }
662 1.1 cgd
663 1.7 cgd /*
664 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
665 1.7 cgd * Really. We mean it.
666 1.7 cgd */
667 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
668 1.7 cgd struct pcs *pcsp;
669 1.7 cgd
670 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
671 1.7 cgd (i * hwrpb->rpb_pcs_size));
672 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
673 1.7 cgd ncpus++;
674 1.7 cgd }
675 1.7 cgd
676 1.1 cgd return (0);
677 1.1 cgd }
678 1.1 cgd
679 1.1 cgd /* for cons.c */
680 1.1 cgd struct consdev constab[] = {
681 1.1 cgd { 0 },
682 1.1 cgd };
683 1.1 cgd
684 1.1 cgd consinit()
685 1.1 cgd {
686 1.1 cgd /* XXX SET UP THE CONSOLE TAB TO HAVE REASONABLE ENTRIES */
687 1.1 cgd /* XXX */
688 1.1 cgd
689 1.1 cgd /* XXX PICK A NEW CONSOLE DEVICE */
690 1.1 cgd /* cninit(); */
691 1.1 cgd
692 1.1 cgd pmap_unmap_prom();
693 1.1 cgd }
694 1.1 cgd
695 1.1 cgd cpu_startup()
696 1.1 cgd {
697 1.1 cgd register unsigned i;
698 1.1 cgd register caddr_t v;
699 1.1 cgd int base, residual;
700 1.1 cgd vm_offset_t minaddr, maxaddr;
701 1.1 cgd vm_size_t size;
702 1.1 cgd #ifdef DEBUG
703 1.1 cgd extern int pmapdebug;
704 1.1 cgd int opmapdebug = pmapdebug;
705 1.1 cgd
706 1.1 cgd pmapdebug = 0;
707 1.1 cgd #endif
708 1.1 cgd
709 1.1 cgd /*
710 1.1 cgd * Good {morning,afternoon,evening,night}.
711 1.1 cgd */
712 1.1 cgd printf(version);
713 1.1 cgd identifycpu();
714 1.7 cgd printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
715 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
716 1.7 cgd if (unusedmem)
717 1.7 cgd printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
718 1.7 cgd if (unknownmem)
719 1.7 cgd printf("WARNING: %d bytes of memory with unknown purpose\n",
720 1.7 cgd ctob(unknownmem));
721 1.1 cgd
722 1.1 cgd /*
723 1.1 cgd * Allocate virtual address space for file I/O buffers.
724 1.1 cgd * Note they are different than the array of headers, 'buf',
725 1.1 cgd * and usually occupy more virtual memory than physical.
726 1.1 cgd */
727 1.1 cgd size = MAXBSIZE * nbuf;
728 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
729 1.1 cgd &maxaddr, size, TRUE);
730 1.1 cgd minaddr = (vm_offset_t)buffers;
731 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
732 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
733 1.1 cgd panic("startup: cannot allocate buffers");
734 1.1 cgd base = bufpages / nbuf;
735 1.1 cgd residual = bufpages % nbuf;
736 1.1 cgd for (i = 0; i < nbuf; i++) {
737 1.1 cgd vm_size_t curbufsize;
738 1.1 cgd vm_offset_t curbuf;
739 1.1 cgd
740 1.1 cgd /*
741 1.1 cgd * First <residual> buffers get (base+1) physical pages
742 1.1 cgd * allocated for them. The rest get (base) physical pages.
743 1.1 cgd *
744 1.1 cgd * The rest of each buffer occupies virtual space,
745 1.1 cgd * but has no physical memory allocated for it.
746 1.1 cgd */
747 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
748 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
749 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
750 1.1 cgd vm_map_simplify(buffer_map, curbuf);
751 1.1 cgd }
752 1.1 cgd /*
753 1.1 cgd * Allocate a submap for exec arguments. This map effectively
754 1.1 cgd * limits the number of processes exec'ing at any time.
755 1.1 cgd */
756 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
757 1.1 cgd 16 * NCARGS, TRUE);
758 1.1 cgd
759 1.1 cgd /*
760 1.1 cgd * Allocate a submap for physio
761 1.1 cgd */
762 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
763 1.1 cgd VM_PHYS_SIZE, TRUE);
764 1.1 cgd
765 1.1 cgd /*
766 1.1 cgd * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
767 1.1 cgd * we use the more space efficient malloc in place of kmem_alloc.
768 1.1 cgd */
769 1.1 cgd mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
770 1.1 cgd M_MBUF, M_NOWAIT);
771 1.1 cgd bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
772 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
773 1.1 cgd VM_MBUF_SIZE, FALSE);
774 1.1 cgd /*
775 1.1 cgd * Initialize callouts
776 1.1 cgd */
777 1.1 cgd callfree = callout;
778 1.1 cgd for (i = 1; i < ncallout; i++)
779 1.1 cgd callout[i-1].c_next = &callout[i];
780 1.1 cgd callout[i-1].c_next = NULL;
781 1.1 cgd
782 1.1 cgd #ifdef DEBUG
783 1.1 cgd pmapdebug = opmapdebug;
784 1.1 cgd #endif
785 1.1 cgd printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
786 1.1 cgd printf("using %ld buffers containing %ld bytes of memory\n",
787 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
788 1.1 cgd
789 1.1 cgd /*
790 1.1 cgd * Set up buffers, so they can be used to read disk labels.
791 1.1 cgd */
792 1.1 cgd bufinit();
793 1.1 cgd
794 1.1 cgd /*
795 1.1 cgd * Configure the system.
796 1.1 cgd */
797 1.1 cgd configure();
798 1.1 cgd }
799 1.1 cgd
800 1.1 cgd identifycpu()
801 1.1 cgd {
802 1.1 cgd
803 1.7 cgd /*
804 1.7 cgd * print out CPU identification information.
805 1.7 cgd */
806 1.7 cgd printf("%s, %dMHz\n", cpu_model,
807 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
808 1.7 cgd printf("%d byte page size, %d processor%s.\n",
809 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
810 1.7 cgd #if 0
811 1.7 cgd /* this isn't defined for any systems that we run on? */
812 1.7 cgd printf("serial number 0x%lx 0x%lx\n",
813 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
814 1.7 cgd
815 1.7 cgd /* and these aren't particularly useful! */
816 1.1 cgd printf("variation: 0x%lx, revision 0x%lx\n",
817 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
818 1.7 cgd #endif
819 1.1 cgd }
820 1.1 cgd
821 1.1 cgd int waittime = -1;
822 1.7 cgd struct pcb dumppcb;
823 1.1 cgd
824 1.1 cgd boot(howto)
825 1.1 cgd int howto;
826 1.1 cgd {
827 1.1 cgd extern int cold;
828 1.1 cgd
829 1.1 cgd /* If system is cold, just halt. */
830 1.1 cgd if (cold) {
831 1.1 cgd howto |= RB_HALT;
832 1.1 cgd goto haltsys;
833 1.1 cgd }
834 1.1 cgd
835 1.7 cgd boothowto = howto;
836 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
837 1.1 cgd waittime = 0;
838 1.7 cgd vfs_shutdown();
839 1.1 cgd /*
840 1.1 cgd * If we've been adjusting the clock, the todr
841 1.1 cgd * will be out of synch; adjust it now.
842 1.1 cgd */
843 1.1 cgd resettodr();
844 1.1 cgd }
845 1.1 cgd
846 1.1 cgd /* Disable interrupts. */
847 1.1 cgd splhigh();
848 1.1 cgd
849 1.7 cgd /* If rebooting and a dump is requested do it. */
850 1.7 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
851 1.7 cgd savectx(&dumppcb, 0);
852 1.1 cgd dumpsys();
853 1.7 cgd }
854 1.6 cgd
855 1.6 cgd /* run any shutdown hooks */
856 1.6 cgd doshutdownhooks();
857 1.1 cgd
858 1.1 cgd haltsys:
859 1.7 cgd
860 1.7 cgd #ifdef BOOTKEY
861 1.7 cgd printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
862 1.7 cgd cngetc();
863 1.7 cgd printf("\n");
864 1.7 cgd #endif
865 1.7 cgd
866 1.1 cgd /* Finally, halt/reboot the system. */
867 1.1 cgd printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
868 1.1 cgd prom_halt(howto & RB_HALT);
869 1.1 cgd /*NOTREACHED*/
870 1.1 cgd }
871 1.1 cgd
872 1.7 cgd /*
873 1.7 cgd * These variables are needed by /sbin/savecore
874 1.7 cgd */
875 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
876 1.7 cgd int dumpsize = 0; /* pages */
877 1.7 cgd long dumplo = 0; /* blocks */
878 1.7 cgd
879 1.7 cgd /*
880 1.7 cgd * This is called by configure to set dumplo and dumpsize.
881 1.7 cgd * Dumps always skip the first CLBYTES of disk space
882 1.7 cgd * in case there might be a disk label stored there.
883 1.7 cgd * If there is extra space, put dump at the end to
884 1.7 cgd * reduce the chance that swapping trashes it.
885 1.7 cgd */
886 1.7 cgd void
887 1.7 cgd dumpconf()
888 1.7 cgd {
889 1.7 cgd int nblks; /* size of dump area */
890 1.7 cgd int maj;
891 1.7 cgd
892 1.7 cgd if (dumpdev == NODEV)
893 1.7 cgd return;
894 1.7 cgd maj = major(dumpdev);
895 1.7 cgd if (maj < 0 || maj >= nblkdev)
896 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
897 1.7 cgd if (bdevsw[maj].d_psize == NULL)
898 1.7 cgd return;
899 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
900 1.7 cgd if (nblks <= ctod(1))
901 1.7 cgd return;
902 1.7 cgd
903 1.7 cgd /* XXX XXX XXX STARTING MEMORY LOCATION */
904 1.7 cgd dumpsize = physmem;
905 1.7 cgd
906 1.7 cgd /* Always skip the first CLBYTES, in case there is a label there. */
907 1.7 cgd if (dumplo < ctod(1))
908 1.7 cgd dumplo = ctod(1);
909 1.7 cgd
910 1.7 cgd /* Put dump at end of partition, and make it fit. */
911 1.7 cgd if (dumpsize > dtoc(nblks - dumplo))
912 1.7 cgd dumpsize = dtoc(nblks - dumplo);
913 1.7 cgd if (dumplo < nblks - ctod(dumpsize))
914 1.7 cgd dumplo = nblks - ctod(dumpsize);
915 1.7 cgd }
916 1.7 cgd
917 1.7 cgd /*
918 1.7 cgd * Doadump comes here after turning off memory management and
919 1.7 cgd * getting on the dump stack, either when called above, or by
920 1.7 cgd * the auto-restart code.
921 1.7 cgd */
922 1.7 cgd void
923 1.7 cgd dumpsys()
924 1.7 cgd {
925 1.7 cgd
926 1.7 cgd msgbufmapped = 0;
927 1.7 cgd if (dumpdev == NODEV)
928 1.7 cgd return;
929 1.7 cgd if (dumpsize == 0) {
930 1.7 cgd dumpconf();
931 1.7 cgd if (dumpsize == 0)
932 1.7 cgd return;
933 1.7 cgd }
934 1.7 cgd printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
935 1.7 cgd
936 1.7 cgd printf("dump ");
937 1.7 cgd switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
938 1.7 cgd
939 1.7 cgd case ENXIO:
940 1.7 cgd printf("device bad\n");
941 1.7 cgd break;
942 1.7 cgd
943 1.7 cgd case EFAULT:
944 1.7 cgd printf("device not ready\n");
945 1.7 cgd break;
946 1.7 cgd
947 1.7 cgd case EINVAL:
948 1.7 cgd printf("area improper\n");
949 1.7 cgd break;
950 1.7 cgd
951 1.7 cgd case EIO:
952 1.7 cgd printf("i/o error\n");
953 1.7 cgd break;
954 1.7 cgd
955 1.7 cgd case EINTR:
956 1.7 cgd printf("aborted from console\n");
957 1.7 cgd break;
958 1.7 cgd
959 1.7 cgd default:
960 1.7 cgd printf("succeeded\n");
961 1.7 cgd break;
962 1.7 cgd }
963 1.7 cgd printf("\n\n");
964 1.7 cgd delay(1000);
965 1.7 cgd }
966 1.7 cgd
967 1.1 cgd void
968 1.1 cgd frametoreg(framep, regp)
969 1.1 cgd struct trapframe *framep;
970 1.1 cgd struct reg *regp;
971 1.1 cgd {
972 1.1 cgd
973 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
974 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
975 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
976 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
977 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
978 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
979 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
980 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
981 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
982 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
983 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
984 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
985 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
986 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
987 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
988 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
989 1.1 cgd regp->r_regs[R_A0] = framep->tf_a0;
990 1.1 cgd regp->r_regs[R_A1] = framep->tf_a1;
991 1.1 cgd regp->r_regs[R_A2] = framep->tf_a2;
992 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
993 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
994 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
995 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
996 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
997 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
998 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
999 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1000 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1001 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1002 1.1 cgd regp->r_regs[R_GP] = framep->tf_gp;
1003 1.1 cgd regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
1004 1.1 cgd regp->r_regs[R_ZERO] = 0;
1005 1.1 cgd }
1006 1.1 cgd
1007 1.1 cgd void
1008 1.1 cgd regtoframe(regp, framep)
1009 1.1 cgd struct reg *regp;
1010 1.1 cgd struct trapframe *framep;
1011 1.1 cgd {
1012 1.1 cgd
1013 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1014 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1015 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1016 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1017 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1018 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1019 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1020 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1021 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1022 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1023 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1024 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1025 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1026 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1027 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1028 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1029 1.1 cgd framep->tf_a0 = regp->r_regs[R_A0];
1030 1.1 cgd framep->tf_a1 = regp->r_regs[R_A1];
1031 1.1 cgd framep->tf_a2 = regp->r_regs[R_A2];
1032 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1033 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1034 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1035 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1036 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1037 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1038 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1039 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1040 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1041 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1042 1.1 cgd framep->tf_gp = regp->r_regs[R_GP];
1043 1.1 cgd framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
1044 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1045 1.1 cgd }
1046 1.1 cgd
1047 1.1 cgd void
1048 1.1 cgd printregs(regp)
1049 1.1 cgd struct reg *regp;
1050 1.1 cgd {
1051 1.1 cgd int i;
1052 1.1 cgd
1053 1.1 cgd for (i = 0; i < 32; i++)
1054 1.1 cgd printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1055 1.1 cgd i & 1 ? "\n" : "\t");
1056 1.1 cgd }
1057 1.1 cgd
1058 1.1 cgd void
1059 1.1 cgd regdump(framep)
1060 1.1 cgd struct trapframe *framep;
1061 1.1 cgd {
1062 1.1 cgd struct reg reg;
1063 1.1 cgd
1064 1.1 cgd frametoreg(framep, ®);
1065 1.1 cgd printf("REGISTERS:\n");
1066 1.1 cgd printregs(®);
1067 1.1 cgd }
1068 1.1 cgd
1069 1.1 cgd #ifdef DEBUG
1070 1.1 cgd int sigdebug = 0;
1071 1.1 cgd int sigpid = 0;
1072 1.1 cgd #define SDB_FOLLOW 0x01
1073 1.1 cgd #define SDB_KSTACK 0x02
1074 1.1 cgd #endif
1075 1.1 cgd
1076 1.1 cgd /*
1077 1.1 cgd * Send an interrupt to process.
1078 1.1 cgd */
1079 1.1 cgd void
1080 1.1 cgd sendsig(catcher, sig, mask, code)
1081 1.1 cgd sig_t catcher;
1082 1.1 cgd int sig, mask;
1083 1.1 cgd u_long code;
1084 1.1 cgd {
1085 1.1 cgd struct proc *p = curproc;
1086 1.1 cgd struct sigcontext *scp, ksc;
1087 1.1 cgd struct trapframe *frame;
1088 1.1 cgd struct sigacts *psp = p->p_sigacts;
1089 1.1 cgd int oonstack, fsize, rndfsize;
1090 1.1 cgd extern char sigcode[], esigcode[];
1091 1.1 cgd extern struct proc *fpcurproc;
1092 1.1 cgd
1093 1.1 cgd frame = p->p_md.md_tf;
1094 1.1 cgd oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
1095 1.1 cgd fsize = sizeof ksc;
1096 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1097 1.1 cgd /*
1098 1.1 cgd * Allocate and validate space for the signal handler
1099 1.1 cgd * context. Note that if the stack is in P0 space, the
1100 1.1 cgd * call to grow() is a nop, and the useracc() check
1101 1.1 cgd * will fail if the process has not already allocated
1102 1.1 cgd * the space with a `brk'.
1103 1.1 cgd */
1104 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1105 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1106 1.1 cgd scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
1107 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1108 1.1 cgd psp->ps_sigstk.ss_flags |= SA_ONSTACK;
1109 1.1 cgd } else
1110 1.1 cgd scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1111 1.1 cgd rndfsize);
1112 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1113 1.1 cgd (void)grow(p, (u_long)scp);
1114 1.1 cgd #ifdef DEBUG
1115 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1116 1.1 cgd printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1117 1.1 cgd sig, &oonstack, scp);
1118 1.1 cgd #endif
1119 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1120 1.1 cgd #ifdef DEBUG
1121 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1122 1.1 cgd printf("sendsig(%d): useracc failed on sig %d\n",
1123 1.1 cgd p->p_pid, sig);
1124 1.1 cgd #endif
1125 1.1 cgd /*
1126 1.1 cgd * Process has trashed its stack; give it an illegal
1127 1.1 cgd * instruction to halt it in its tracks.
1128 1.1 cgd */
1129 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1130 1.1 cgd sig = sigmask(SIGILL);
1131 1.1 cgd p->p_sigignore &= ~sig;
1132 1.1 cgd p->p_sigcatch &= ~sig;
1133 1.1 cgd p->p_sigmask &= ~sig;
1134 1.1 cgd psignal(p, SIGILL);
1135 1.1 cgd return;
1136 1.1 cgd }
1137 1.1 cgd
1138 1.1 cgd /*
1139 1.1 cgd * Build the signal context to be used by sigreturn.
1140 1.1 cgd */
1141 1.1 cgd ksc.sc_onstack = oonstack;
1142 1.1 cgd ksc.sc_mask = mask;
1143 1.1 cgd ksc.sc_pc = frame->tf_pc;
1144 1.1 cgd ksc.sc_ps = frame->tf_ps;
1145 1.1 cgd
1146 1.1 cgd /* copy the registers. */
1147 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1148 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1149 1.1 cgd
1150 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1151 1.1 cgd if (p == fpcurproc) {
1152 1.1 cgd pal_wrfen(1);
1153 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1154 1.1 cgd pal_wrfen(0);
1155 1.1 cgd fpcurproc = NULL;
1156 1.1 cgd }
1157 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1158 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1159 1.1 cgd sizeof(struct fpreg));
1160 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1161 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1162 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1163 1.1 cgd
1164 1.1 cgd
1165 1.1 cgd #ifdef COMPAT_OSF1
1166 1.1 cgd /*
1167 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1168 1.1 cgd */
1169 1.1 cgd #endif
1170 1.1 cgd
1171 1.1 cgd /*
1172 1.1 cgd * copy the frame out to userland.
1173 1.1 cgd */
1174 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1175 1.1 cgd #ifdef DEBUG
1176 1.1 cgd if (sigdebug & SDB_FOLLOW)
1177 1.1 cgd printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1178 1.1 cgd scp, code);
1179 1.1 cgd #endif
1180 1.1 cgd
1181 1.1 cgd /*
1182 1.1 cgd * Set up the registers to return to sigcode.
1183 1.1 cgd */
1184 1.1 cgd frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1185 1.1 cgd frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1186 1.1 cgd frame->tf_a0 = sig;
1187 1.1 cgd frame->tf_a1 = code;
1188 1.1 cgd frame->tf_a2 = (u_int64_t)scp;
1189 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1190 1.1 cgd
1191 1.1 cgd #ifdef DEBUG
1192 1.1 cgd if (sigdebug & SDB_FOLLOW)
1193 1.1 cgd printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1194 1.1 cgd frame->tf_pc, frame->tf_regs[FRAME_A3]);
1195 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1196 1.1 cgd printf("sendsig(%d): sig %d returns\n",
1197 1.1 cgd p->p_pid, sig);
1198 1.1 cgd #endif
1199 1.1 cgd }
1200 1.1 cgd
1201 1.1 cgd /*
1202 1.1 cgd * System call to cleanup state after a signal
1203 1.1 cgd * has been taken. Reset signal mask and
1204 1.1 cgd * stack state from context left by sendsig (above).
1205 1.1 cgd * Return to previous pc and psl as specified by
1206 1.1 cgd * context left by sendsig. Check carefully to
1207 1.1 cgd * make sure that the user has not modified the
1208 1.1 cgd * psl to gain improper priviledges or to cause
1209 1.1 cgd * a machine fault.
1210 1.1 cgd */
1211 1.1 cgd /* ARGSUSED */
1212 1.1 cgd sigreturn(p, uap, retval)
1213 1.1 cgd struct proc *p;
1214 1.1 cgd struct sigreturn_args /* {
1215 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1216 1.1 cgd } */ *uap;
1217 1.1 cgd register_t *retval;
1218 1.1 cgd {
1219 1.1 cgd struct sigcontext *scp, ksc;
1220 1.1 cgd extern struct proc *fpcurproc;
1221 1.1 cgd
1222 1.1 cgd scp = SCARG(uap, sigcntxp);
1223 1.1 cgd #ifdef DEBUG
1224 1.1 cgd if (sigdebug & SDB_FOLLOW)
1225 1.1 cgd printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1226 1.1 cgd #endif
1227 1.1 cgd
1228 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1229 1.1 cgd return (EINVAL);
1230 1.1 cgd
1231 1.1 cgd /*
1232 1.1 cgd * Test and fetch the context structure.
1233 1.1 cgd * We grab it all at once for speed.
1234 1.1 cgd */
1235 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1236 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1237 1.1 cgd return (EINVAL);
1238 1.1 cgd
1239 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1240 1.1 cgd return (EINVAL);
1241 1.1 cgd /*
1242 1.1 cgd * Restore the user-supplied information
1243 1.1 cgd */
1244 1.1 cgd if (ksc.sc_onstack)
1245 1.1 cgd p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
1246 1.1 cgd else
1247 1.1 cgd p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
1248 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1249 1.1 cgd
1250 1.1 cgd p->p_md.md_tf->tf_pc = ksc.sc_pc;
1251 1.1 cgd p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1252 1.1 cgd
1253 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1254 1.1 cgd
1255 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1256 1.1 cgd if (p == fpcurproc)
1257 1.1 cgd fpcurproc = NULL;
1258 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1259 1.1 cgd sizeof(struct fpreg));
1260 1.1 cgd /* XXX ksc.sc_fp_control ? */
1261 1.1 cgd
1262 1.1 cgd #ifdef DEBUG
1263 1.1 cgd if (sigdebug & SDB_FOLLOW)
1264 1.1 cgd printf("sigreturn(%d): returns\n", p->p_pid);
1265 1.1 cgd #endif
1266 1.1 cgd return (EJUSTRETURN);
1267 1.1 cgd }
1268 1.1 cgd
1269 1.1 cgd /*
1270 1.1 cgd * machine dependent system variables.
1271 1.1 cgd */
1272 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1273 1.1 cgd int *name;
1274 1.1 cgd u_int namelen;
1275 1.1 cgd void *oldp;
1276 1.1 cgd size_t *oldlenp;
1277 1.1 cgd void *newp;
1278 1.1 cgd size_t newlen;
1279 1.1 cgd struct proc *p;
1280 1.1 cgd {
1281 1.1 cgd dev_t consdev;
1282 1.1 cgd
1283 1.1 cgd /* all sysctl names at this level are terminal */
1284 1.1 cgd if (namelen != 1)
1285 1.1 cgd return (ENOTDIR); /* overloaded */
1286 1.1 cgd
1287 1.1 cgd switch (name[0]) {
1288 1.1 cgd case CPU_CONSDEV:
1289 1.1 cgd if (cn_tab != NULL)
1290 1.1 cgd consdev = cn_tab->cn_dev;
1291 1.1 cgd else
1292 1.1 cgd consdev = NODEV;
1293 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1294 1.1 cgd sizeof consdev));
1295 1.1 cgd default:
1296 1.1 cgd return (EOPNOTSUPP);
1297 1.1 cgd }
1298 1.1 cgd /* NOTREACHED */
1299 1.1 cgd }
1300 1.1 cgd
1301 1.1 cgd /*
1302 1.1 cgd * Set registers on exec.
1303 1.1 cgd */
1304 1.1 cgd void
1305 1.5 christos setregs(p, pack, stack, retval)
1306 1.1 cgd register struct proc *p;
1307 1.5 christos struct exec_package *pack;
1308 1.1 cgd u_long stack;
1309 1.1 cgd register_t *retval;
1310 1.1 cgd {
1311 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1312 1.1 cgd int i;
1313 1.1 cgd extern struct proc *fpcurproc;
1314 1.1 cgd
1315 1.1 cgd #ifdef DEBUG
1316 1.1 cgd for (i = 0; i < FRAME_NSAVEREGS; i++)
1317 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1318 1.1 cgd tfp->tf_gp = 0xbabefacedeadbeef;
1319 1.1 cgd tfp->tf_a0 = 0xbabefacedeadbeef;
1320 1.1 cgd tfp->tf_a1 = 0xbabefacedeadbeef;
1321 1.1 cgd tfp->tf_a2 = 0xbabefacedeadbeef;
1322 1.1 cgd #else
1323 1.1 cgd bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1324 1.1 cgd tfp->tf_gp = 0;
1325 1.1 cgd tfp->tf_a0 = 0;
1326 1.1 cgd tfp->tf_a1 = 0;
1327 1.1 cgd tfp->tf_a2 = 0;
1328 1.1 cgd #endif
1329 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1330 1.7 cgd #define FP_RN 2 /* XXX */
1331 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1332 1.1 cgd tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1333 1.1 cgd tfp->tf_ps = PSL_USERSET;
1334 1.5 christos tfp->tf_pc = pack->ep_entry & ~3;
1335 1.1 cgd
1336 1.1 cgd p->p_md.md_flags & ~MDP_FPUSED;
1337 1.1 cgd if (fpcurproc == p)
1338 1.1 cgd fpcurproc = NULL;
1339 1.1 cgd
1340 1.1 cgd retval[0] = retval[1] = 0;
1341 1.1 cgd }
1342 1.1 cgd
1343 1.1 cgd void
1344 1.1 cgd netintr()
1345 1.1 cgd {
1346 1.1 cgd #ifdef INET
1347 1.1 cgd #if NETHER > 0
1348 1.1 cgd if (netisr & (1 << NETISR_ARP)) {
1349 1.1 cgd netisr &= ~(1 << NETISR_ARP);
1350 1.1 cgd arpintr();
1351 1.1 cgd }
1352 1.1 cgd #endif
1353 1.1 cgd if (netisr & (1 << NETISR_IP)) {
1354 1.1 cgd netisr &= ~(1 << NETISR_IP);
1355 1.1 cgd ipintr();
1356 1.1 cgd }
1357 1.1 cgd #endif
1358 1.1 cgd #ifdef NS
1359 1.1 cgd if (netisr & (1 << NETISR_NS)) {
1360 1.1 cgd netisr &= ~(1 << NETISR_NS);
1361 1.1 cgd nsintr();
1362 1.1 cgd }
1363 1.1 cgd #endif
1364 1.1 cgd #ifdef ISO
1365 1.1 cgd if (netisr & (1 << NETISR_ISO)) {
1366 1.1 cgd netisr &= ~(1 << NETISR_ISO);
1367 1.1 cgd clnlintr();
1368 1.1 cgd }
1369 1.1 cgd #endif
1370 1.1 cgd #ifdef CCITT
1371 1.1 cgd if (netisr & (1 << NETISR_CCITT)) {
1372 1.1 cgd netisr &= ~(1 << NETISR_CCITT);
1373 1.1 cgd ccittintr();
1374 1.1 cgd }
1375 1.1 cgd #endif
1376 1.1 cgd }
1377 1.1 cgd
1378 1.1 cgd void
1379 1.1 cgd do_sir()
1380 1.1 cgd {
1381 1.1 cgd
1382 1.1 cgd if (ssir & SIR_NET) {
1383 1.1 cgd siroff(SIR_NET);
1384 1.1 cgd cnt.v_soft++;
1385 1.1 cgd netintr();
1386 1.1 cgd }
1387 1.1 cgd if (ssir & SIR_CLOCK) {
1388 1.1 cgd siroff(SIR_CLOCK);
1389 1.1 cgd cnt.v_soft++;
1390 1.1 cgd softclock();
1391 1.1 cgd }
1392 1.1 cgd }
1393 1.1 cgd
1394 1.1 cgd int
1395 1.1 cgd spl0()
1396 1.1 cgd {
1397 1.1 cgd
1398 1.1 cgd if (ssir) {
1399 1.1 cgd splsoft();
1400 1.1 cgd do_sir();
1401 1.1 cgd }
1402 1.1 cgd
1403 1.1 cgd return (pal_swpipl(PSL_IPL_0));
1404 1.1 cgd }
1405 1.1 cgd
1406 1.1 cgd /*
1407 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1408 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1409 1.1 cgd * into queues, Remrq removes them from queues. The running process is on
1410 1.1 cgd * no queue, other processes are on a queue related to p->p_priority, divided
1411 1.1 cgd * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1412 1.1 cgd * queues.
1413 1.1 cgd */
1414 1.1 cgd /*
1415 1.1 cgd * setrunqueue(p)
1416 1.1 cgd * proc *p;
1417 1.1 cgd *
1418 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1419 1.1 cgd */
1420 1.1 cgd
1421 1.1 cgd void
1422 1.1 cgd setrunqueue(p)
1423 1.1 cgd struct proc *p;
1424 1.1 cgd {
1425 1.1 cgd int bit;
1426 1.1 cgd
1427 1.1 cgd /* firewall: p->p_back must be NULL */
1428 1.1 cgd if (p->p_back != NULL)
1429 1.1 cgd panic("setrunqueue");
1430 1.1 cgd
1431 1.1 cgd bit = p->p_priority >> 2;
1432 1.1 cgd whichqs |= (1 << bit);
1433 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1434 1.1 cgd p->p_back = qs[bit].ph_rlink;
1435 1.1 cgd p->p_back->p_forw = p;
1436 1.1 cgd qs[bit].ph_rlink = p;
1437 1.1 cgd }
1438 1.1 cgd
1439 1.1 cgd /*
1440 1.1 cgd * Remrq(p)
1441 1.1 cgd *
1442 1.1 cgd * Call should be made at splclock().
1443 1.1 cgd */
1444 1.1 cgd void
1445 1.1 cgd remrq(p)
1446 1.1 cgd struct proc *p;
1447 1.1 cgd {
1448 1.1 cgd int bit;
1449 1.1 cgd
1450 1.1 cgd bit = p->p_priority >> 2;
1451 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1452 1.1 cgd panic("remrq");
1453 1.1 cgd
1454 1.1 cgd p->p_back->p_forw = p->p_forw;
1455 1.1 cgd p->p_forw->p_back = p->p_back;
1456 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1457 1.1 cgd
1458 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1459 1.1 cgd whichqs &= ~(1 << bit);
1460 1.1 cgd }
1461 1.1 cgd
1462 1.1 cgd /*
1463 1.1 cgd * Return the best possible estimate of the time in the timeval
1464 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1465 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1466 1.1 cgd * previous call.
1467 1.1 cgd */
1468 1.1 cgd void
1469 1.1 cgd microtime(tvp)
1470 1.1 cgd register struct timeval *tvp;
1471 1.1 cgd {
1472 1.1 cgd int s = splclock();
1473 1.1 cgd static struct timeval lasttime;
1474 1.1 cgd
1475 1.1 cgd *tvp = time;
1476 1.1 cgd #ifdef notdef
1477 1.1 cgd tvp->tv_usec += clkread();
1478 1.1 cgd while (tvp->tv_usec > 1000000) {
1479 1.1 cgd tvp->tv_sec++;
1480 1.1 cgd tvp->tv_usec -= 1000000;
1481 1.1 cgd }
1482 1.1 cgd #endif
1483 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1484 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1485 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1486 1.1 cgd tvp->tv_sec++;
1487 1.1 cgd tvp->tv_usec -= 1000000;
1488 1.1 cgd }
1489 1.1 cgd lasttime = *tvp;
1490 1.1 cgd splx(s);
1491 1.1 cgd }
1492 1.1 cgd
1493 1.1 cgd #ifdef COMPAT_OSF1
1494 1.1 cgd void
1495 1.5 christos cpu_exec_ecoff_setregs(p, pack, stack, retval)
1496 1.1 cgd struct proc *p;
1497 1.5 christos struct exec_package *pack;
1498 1.5 christos u_long stack;
1499 1.5 christos register_t *retval;
1500 1.1 cgd {
1501 1.1 cgd struct ecoff_aouthdr *eap;
1502 1.1 cgd
1503 1.5 christos setregs(p, pack, stack, retval);
1504 1.1 cgd
1505 1.1 cgd eap = (struct ecoff_aouthdr *)
1506 1.5 christos ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
1507 1.1 cgd p->p_md.md_tf->tf_gp = eap->ea_gp_value;
1508 1.1 cgd }
1509 1.1 cgd
1510 1.1 cgd /*
1511 1.1 cgd * cpu_exec_ecoff_hook():
1512 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1513 1.1 cgd *
1514 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1515 1.1 cgd *
1516 1.1 cgd */
1517 1.1 cgd int
1518 1.1 cgd cpu_exec_ecoff_hook(p, epp, eap)
1519 1.1 cgd struct proc *p;
1520 1.1 cgd struct exec_package *epp;
1521 1.1 cgd struct ecoff_aouthdr *eap;
1522 1.1 cgd {
1523 1.1 cgd struct ecoff_filehdr *efp = epp->ep_hdr;
1524 1.5 christos extern struct emul emul_netbsd;
1525 1.5 christos #ifdef COMPAT_OSF1
1526 1.5 christos extern struct emul emul_osf1;
1527 1.5 christos #endif
1528 1.1 cgd
1529 1.1 cgd switch (efp->ef_magic) {
1530 1.5 christos #ifdef COMPAT_OSF1
1531 1.1 cgd case ECOFF_MAGIC_ALPHA:
1532 1.5 christos epp->ep_emul = &emul_osf1;
1533 1.1 cgd break;
1534 1.5 christos #endif
1535 1.1 cgd
1536 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1537 1.5 christos epp->ep_emul = &emul_netbsd;
1538 1.1 cgd break;
1539 1.1 cgd
1540 1.1 cgd #ifdef DIAGNOSTIC
1541 1.1 cgd default:
1542 1.1 cgd panic("cpu_exec_ecoff_hook: can't get here from there.");
1543 1.1 cgd #endif
1544 1.1 cgd }
1545 1.1 cgd return 0;
1546 1.1 cgd }
1547 1.1 cgd #endif
1548 1.7 cgd
1549 1.7 cgd vm_offset_t
1550 1.7 cgd vtophys(vaddr)
1551 1.7 cgd vm_offset_t vaddr;
1552 1.7 cgd {
1553 1.7 cgd vm_offset_t paddr;
1554 1.7 cgd
1555 1.7 cgd if (vaddr < K0SEG_BEGIN) {
1556 1.7 cgd printf("vtophys: invalid vaddr 0x%lx", vaddr);
1557 1.7 cgd paddr = vaddr;
1558 1.7 cgd } else if (vaddr < K0SEG_END)
1559 1.7 cgd paddr = k0segtophys(vaddr);
1560 1.7 cgd else
1561 1.7 cgd paddr = vatopa(vaddr);
1562 1.7 cgd
1563 1.7 cgd #if 0
1564 1.7 cgd printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1565 1.7 cgd #endif
1566 1.7 cgd
1567 1.7 cgd return (paddr);
1568 1.7 cgd }
1569