Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.72
      1  1.72       cgd /* $NetBSD: machdep.c,v 1.72 1997/04/07 05:40:45 cgd Exp $ */
      2   1.1       cgd 
      3   1.1       cgd /*
      4  1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5   1.1       cgd  * All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Author: Chris G. Demetriou
      8   1.1       cgd  *
      9   1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10   1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11   1.1       cgd  * notice and this permission notice appear in all copies of the
     12   1.1       cgd  * software, derivative works or modified versions, and any portions
     13   1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14   1.1       cgd  *
     15   1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16   1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17   1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18   1.1       cgd  *
     19   1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20   1.1       cgd  *
     21   1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22   1.1       cgd  *  School of Computer Science
     23   1.1       cgd  *  Carnegie Mellon University
     24   1.1       cgd  *  Pittsburgh PA 15213-3890
     25   1.1       cgd  *
     26   1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27   1.1       cgd  * rights to redistribute these changes.
     28   1.1       cgd  */
     29   1.1       cgd 
     30   1.1       cgd #include <sys/param.h>
     31   1.1       cgd #include <sys/systm.h>
     32   1.1       cgd #include <sys/signalvar.h>
     33   1.1       cgd #include <sys/kernel.h>
     34   1.1       cgd #include <sys/map.h>
     35   1.1       cgd #include <sys/proc.h>
     36   1.1       cgd #include <sys/buf.h>
     37   1.1       cgd #include <sys/reboot.h>
     38  1.28       cgd #include <sys/device.h>
     39   1.1       cgd #include <sys/conf.h>
     40   1.1       cgd #include <sys/file.h>
     41   1.1       cgd #ifdef REAL_CLISTS
     42   1.1       cgd #include <sys/clist.h>
     43   1.1       cgd #endif
     44   1.1       cgd #include <sys/callout.h>
     45   1.1       cgd #include <sys/malloc.h>
     46   1.1       cgd #include <sys/mbuf.h>
     47   1.1       cgd #include <sys/msgbuf.h>
     48   1.1       cgd #include <sys/ioctl.h>
     49   1.1       cgd #include <sys/tty.h>
     50   1.1       cgd #include <sys/user.h>
     51   1.1       cgd #include <sys/exec.h>
     52   1.1       cgd #include <sys/exec_ecoff.h>
     53   1.1       cgd #include <sys/sysctl.h>
     54  1.43       cgd #include <sys/core.h>
     55  1.43       cgd #include <sys/kcore.h>
     56  1.43       cgd #include <machine/kcore.h>
     57   1.1       cgd #ifdef SYSVMSG
     58   1.1       cgd #include <sys/msg.h>
     59   1.1       cgd #endif
     60   1.1       cgd #ifdef SYSVSEM
     61   1.1       cgd #include <sys/sem.h>
     62   1.1       cgd #endif
     63   1.1       cgd #ifdef SYSVSHM
     64   1.1       cgd #include <sys/shm.h>
     65   1.1       cgd #endif
     66   1.1       cgd 
     67   1.1       cgd #include <sys/mount.h>
     68   1.1       cgd #include <sys/syscallargs.h>
     69   1.1       cgd 
     70   1.1       cgd #include <vm/vm_kern.h>
     71   1.1       cgd 
     72   1.1       cgd #include <dev/cons.h>
     73   1.1       cgd 
     74   1.1       cgd #include <machine/cpu.h>
     75   1.1       cgd #include <machine/reg.h>
     76   1.1       cgd #include <machine/rpb.h>
     77   1.1       cgd #include <machine/prom.h>
     78  1.54       cgd #include <machine/cpuconf.h>
     79   1.8       cgd 
     80  1.49       cgd #include <net/netisr.h>
     81  1.33       cgd #include <net/if.h>
     82  1.49       cgd 
     83  1.49       cgd #ifdef INET
     84  1.33       cgd #include <netinet/in.h>
     85  1.72       cgd #include <netinet/ip_var.h>
     86  1.72       cgd #include "arp.h"
     87  1.72       cgd #if NARP > 0
     88  1.67        is #include <netinet/if_inarp.h>
     89  1.72       cgd #endif
     90  1.49       cgd #endif
     91  1.49       cgd #ifdef NS
     92  1.49       cgd #include <netns/ns_var.h>
     93  1.49       cgd #endif
     94  1.49       cgd #ifdef ISO
     95  1.49       cgd #include <netiso/iso.h>
     96  1.49       cgd #include <netiso/clnp.h>
     97  1.49       cgd #endif
     98  1.55       cgd #ifdef CCITT
     99  1.55       cgd #include <netccitt/x25.h>
    100  1.55       cgd #include <netccitt/pk.h>
    101  1.55       cgd #include <netccitt/pk_extern.h>
    102  1.55       cgd #endif
    103  1.55       cgd #ifdef NATM
    104  1.55       cgd #include <netnatm/natm.h>
    105  1.55       cgd #endif
    106  1.70  christos #ifdef NETATALK
    107  1.70  christos #include <netatalk/at_extern.h>
    108  1.70  christos #endif
    109  1.49       cgd #include "ppp.h"
    110  1.49       cgd #if NPPP > 0
    111  1.49       cgd #include <net/ppp_defs.h>
    112  1.49       cgd #include <net/if_ppp.h>
    113  1.49       cgd #endif
    114   1.1       cgd 
    115  1.17       cgd #include "le_ioasic.h"			/* for le_iomem creation */
    116   1.1       cgd 
    117   1.1       cgd vm_map_t buffer_map;
    118   1.1       cgd 
    119   1.1       cgd /*
    120   1.1       cgd  * Declare these as initialized data so we can patch them.
    121   1.1       cgd  */
    122   1.1       cgd int	nswbuf = 0;
    123   1.1       cgd #ifdef	NBUF
    124   1.1       cgd int	nbuf = NBUF;
    125   1.1       cgd #else
    126   1.1       cgd int	nbuf = 0;
    127   1.1       cgd #endif
    128   1.1       cgd #ifdef	BUFPAGES
    129   1.1       cgd int	bufpages = BUFPAGES;
    130   1.1       cgd #else
    131   1.1       cgd int	bufpages = 0;
    132   1.1       cgd #endif
    133   1.1       cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    134   1.1       cgd int	maxmem;			/* max memory per process */
    135   1.7       cgd 
    136   1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    137   1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    138   1.7       cgd int	firstusablepage;	/* first usable memory page */
    139   1.7       cgd int	lastusablepage;		/* last usable memory page */
    140   1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    141   1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    142   1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    143   1.1       cgd 
    144   1.1       cgd int	cputype;		/* system type, from the RPB */
    145   1.1       cgd 
    146   1.1       cgd /*
    147   1.1       cgd  * XXX We need an address to which we can assign things so that they
    148   1.1       cgd  * won't be optimized away because we didn't use the value.
    149   1.1       cgd  */
    150   1.1       cgd u_int32_t no_optimize;
    151   1.1       cgd 
    152   1.1       cgd /* the following is used externally (sysctl_hw) */
    153   1.1       cgd char	machine[] = "alpha";
    154  1.29       cgd char	cpu_model[128];
    155  1.54       cgd const struct cpusw *cpu_fn_switch;		/* function switch */
    156   1.1       cgd 
    157   1.1       cgd struct	user *proc0paddr;
    158   1.1       cgd 
    159   1.1       cgd /* Number of machine cycles per microsecond */
    160   1.1       cgd u_int64_t	cycles_per_usec;
    161   1.1       cgd 
    162   1.1       cgd /* some memory areas for device DMA.  "ick." */
    163   1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    164   1.1       cgd 
    165   1.7       cgd /* number of cpus in the box.  really! */
    166   1.7       cgd int		ncpus;
    167   1.7       cgd 
    168  1.25       cgd char boot_flags[64];
    169  1.61       cgd char booted_kernel[64];
    170   1.8       cgd 
    171  1.30       cgd /* for cpu_sysctl() */
    172  1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    173  1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    174  1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    175  1.30       cgd 
    176  1.55       cgd int	cpu_dump __P((void));
    177  1.55       cgd int	cpu_dumpsize __P((void));
    178  1.55       cgd void	dumpsys __P((void));
    179  1.55       cgd void	identifycpu __P((void));
    180  1.55       cgd void	netintr __P((void));
    181  1.55       cgd void	printregs __P((struct reg *));
    182  1.33       cgd 
    183  1.55       cgd void
    184  1.25       cgd alpha_init(pfn, ptb)
    185   1.1       cgd 	u_long pfn;		/* first free PFN number */
    186   1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    187   1.1       cgd {
    188   1.2       cgd 	extern char _end[];
    189   1.1       cgd 	caddr_t start, v;
    190   1.1       cgd 	struct mddt *mddtp;
    191   1.7       cgd 	int i, mddtweird;
    192   1.1       cgd 	char *p;
    193   1.1       cgd 
    194   1.1       cgd 	/*
    195   1.1       cgd 	 * Turn off interrupts and floating point.
    196   1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    197   1.1       cgd 	 */
    198   1.1       cgd 	(void)splhigh();
    199  1.32       cgd 	alpha_pal_wrfen(0);
    200  1.37       cgd 	ALPHA_TBIA();
    201  1.32       cgd 	alpha_pal_imb();
    202   1.1       cgd 
    203   1.1       cgd 	/*
    204   1.1       cgd 	 * get address of the restart block, while we the bootstrap
    205   1.1       cgd 	 * mapping is still around.
    206   1.1       cgd 	 */
    207  1.32       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    208  1.32       cgd 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    209   1.1       cgd 
    210   1.1       cgd 	/*
    211   1.1       cgd 	 * Remember how many cycles there are per microsecond,
    212   1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    213   1.1       cgd 	 */
    214   1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    215   1.1       cgd 
    216   1.1       cgd 	/*
    217   1.1       cgd 	 * Init the PROM interface, so we can use printf
    218   1.1       cgd 	 * until PROM mappings go away in consinit.
    219   1.1       cgd 	 */
    220   1.1       cgd 	init_prom_interface();
    221   1.1       cgd 
    222   1.1       cgd 	/*
    223   1.1       cgd 	 * Point interrupt/exception vectors to our own.
    224   1.1       cgd 	 */
    225  1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    226  1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    227  1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    228  1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    229  1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    230  1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    231  1.36       cgd 
    232  1.36       cgd 	/*
    233  1.36       cgd 	 * Disable System and Processor Correctable Error reporting.
    234  1.36       cgd 	 * Clear pending machine checks and error reports, etc.
    235  1.36       cgd 	 */
    236  1.40       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
    237   1.1       cgd 
    238   1.1       cgd 	/*
    239   1.1       cgd 	 * Find out how much memory is available, by looking at
    240   1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    241   1.7       cgd 	 * its best to detect things things that have never been seen
    242   1.7       cgd 	 * before...
    243   1.7       cgd 	 *
    244   1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    245   1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    246   1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    247   1.1       cgd 	 */
    248   1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    249   1.7       cgd 
    250   1.7       cgd 	/*
    251   1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    252   1.7       cgd 	 */
    253   1.7       cgd 	mddtweird = 0;
    254   1.7       cgd 
    255   1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    256   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    257   1.7       cgd 	if (cnt != 2 && cnt != 3) {
    258  1.46  christos 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    259   1.7       cgd 		mddtweird = 1;
    260   1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    261   1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    262   1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    263   1.7       cgd 		mddtweird = 1;
    264  1.46  christos 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    265   1.7       cgd 	}
    266   1.7       cgd 
    267   1.7       cgd 	for (i = 0; i < cnt; i++) {
    268   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    269  1.46  christos 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    270   1.7       cgd 			    i, usage(i));
    271   1.7       cgd 			mddtweird = 1;
    272   1.7       cgd 		}
    273   1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    274  1.46  christos 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    275   1.7       cgd 			mddtweird = 1;
    276   1.7       cgd 		}
    277   1.7       cgd 		/* XXX other things to check? */
    278   1.7       cgd 	}
    279   1.7       cgd #undef cnt
    280   1.7       cgd #undef usage
    281   1.7       cgd 
    282   1.7       cgd 	if (mddtweird) {
    283  1.46  christos 		printf("\n");
    284  1.46  christos 		printf("complete memory cluster information:\n");
    285   1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    286  1.46  christos 			printf("mddt %d:\n", i);
    287  1.46  christos 			printf("\tpfn %lx\n",
    288   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    289  1.46  christos 			printf("\tcnt %lx\n",
    290   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    291  1.46  christos 			printf("\ttest %lx\n",
    292   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    293  1.46  christos 			printf("\tbva %lx\n",
    294   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    295  1.46  christos 			printf("\tbpa %lx\n",
    296   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    297  1.46  christos 			printf("\tbcksum %lx\n",
    298   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    299  1.46  christos 			printf("\tusage %lx\n",
    300   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    301   1.2       cgd 		}
    302  1.46  christos 		printf("\n");
    303   1.2       cgd 	}
    304   1.7       cgd 	/*
    305   1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    306   1.7       cgd 	 */
    307   1.2       cgd 
    308   1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    309   1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    310   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    311   1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    312   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    313   1.7       cgd 			unknownmem += pgcnt(i);
    314   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    315   1.7       cgd 			resvmem += pgcnt(i);
    316   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    317   1.7       cgd 			/*
    318   1.7       cgd 			 * assumes that the system cluster listed is
    319   1.7       cgd 			 * one we're in...
    320   1.7       cgd 			 */
    321   1.7       cgd 			if (physmem != resvmem) {
    322   1.7       cgd 				physmem += pgcnt(i);
    323   1.7       cgd 				firstusablepage =
    324   1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    325   1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    326   1.7       cgd 			} else
    327   1.7       cgd 				unusedmem += pgcnt(i);
    328   1.7       cgd 		}
    329   1.7       cgd #undef usage
    330   1.7       cgd #undef pgcnt
    331   1.1       cgd 	}
    332   1.7       cgd 	if (totalphysmem == 0)
    333   1.1       cgd 		panic("can't happen: system seems to have no memory!");
    334   1.1       cgd 	maxmem = physmem;
    335   1.1       cgd 
    336   1.7       cgd #if 0
    337  1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    338  1.46  christos 	printf("physmem = %d\n", physmem);
    339  1.46  christos 	printf("firstusablepage = %d\n", firstusablepage);
    340  1.46  christos 	printf("lastusablepage = %d\n", lastusablepage);
    341  1.46  christos 	printf("resvmem = %d\n", resvmem);
    342  1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    343  1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    344   1.7       cgd #endif
    345   1.7       cgd 
    346   1.1       cgd 	/*
    347   1.1       cgd 	 * find out this CPU's page size
    348   1.1       cgd 	 */
    349   1.1       cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    350  1.12       cgd 	if (PAGE_SIZE != 8192)
    351  1.12       cgd 		panic("page size %d != 8192?!", PAGE_SIZE);
    352   1.1       cgd 
    353   1.2       cgd 	v = (caddr_t)alpha_round_page(_end);
    354   1.1       cgd 	/*
    355   1.1       cgd 	 * Init mapping for u page(s) for proc 0
    356   1.1       cgd 	 */
    357   1.1       cgd 	start = v;
    358   1.1       cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    359   1.1       cgd 	v += UPAGES * NBPG;
    360   1.1       cgd 
    361   1.1       cgd 	/*
    362   1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    363   1.1       cgd 	 */
    364   1.1       cgd 	cputype = hwrpb->rpb_type;
    365  1.54       cgd 	if (cputype < 0 || cputype > ncpusw) {
    366  1.54       cgd unknown_cputype:
    367  1.54       cgd 		printf("\n");
    368  1.54       cgd 		printf("Unknown system type %d.\n", cputype);
    369  1.54       cgd 		printf("\n");
    370  1.54       cgd 		panic("unknown system type");
    371  1.54       cgd 	}
    372  1.54       cgd 	cpu_fn_switch = &cpusw[cputype];
    373  1.54       cgd 	if (cpu_fn_switch->family == NULL)
    374  1.54       cgd 		goto unknown_cputype;
    375  1.54       cgd 	if (cpu_fn_switch->option == NULL) {
    376  1.54       cgd 		printf("\n");
    377  1.54       cgd 		printf("NetBSD does not currently support system type %d\n",
    378  1.54       cgd 		    cputype);
    379  1.54       cgd 		printf("(%s family).\n", cpu_fn_switch->family);
    380  1.54       cgd 		printf("\n");
    381  1.54       cgd 		panic("unsupported system type");
    382  1.54       cgd 	}
    383  1.54       cgd 	if (!cpu_fn_switch->present) {
    384  1.54       cgd 		printf("\n");
    385  1.54       cgd 		printf("Support for system type %d (%s family) is\n", cputype,
    386  1.54       cgd 		    cpu_fn_switch->family);
    387  1.57       cgd 		printf("not present in this kernel.  Build a kernel with \"options %s\"\n",
    388  1.54       cgd 		    cpu_fn_switch->option);
    389  1.57       cgd 		printf("to include support for this system type.\n");
    390  1.54       cgd 		printf("\n");
    391  1.54       cgd 		panic("support for system not present");
    392  1.54       cgd 	}
    393  1.54       cgd 
    394  1.54       cgd 	if ((*cpu_fn_switch->model_name)() != NULL)
    395  1.54       cgd 		strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
    396  1.54       cgd 		    sizeof cpu_model - 1);
    397  1.54       cgd 	else {
    398  1.54       cgd 		strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
    399  1.54       cgd 		strcat(cpu_model, " family");		/* XXX */
    400  1.54       cgd 	}
    401  1.29       cgd 	cpu_model[sizeof cpu_model - 1] = '\0';
    402  1.66       cgd 
    403  1.66       cgd 	/* XXX SANITY CHECKING.  SHOULD GO AWAY */
    404  1.66       cgd 	/* XXX We should always be running on the the primary. */
    405  1.66       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());		/*XXX*/
    406  1.66       cgd 	/* XXX On single-CPU boxes, the primary should always be CPU 0. */
    407  1.66       cgd 	if (cputype != ST_DEC_21000)					/*XXX*/
    408  1.66       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);			/*XXX*/
    409   1.1       cgd 
    410  1.17       cgd #if NLE_IOASIC > 0
    411   1.1       cgd 	/*
    412   1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    413   1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    414   1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    415  1.17       cgd 	 *
    416  1.17       cgd 	 * Note that since this is conditional on the presence of
    417  1.17       cgd 	 * IOASIC-attached 'le' units in the kernel config, the
    418  1.17       cgd 	 * message buffer may move on these systems.  This shouldn't
    419  1.17       cgd 	 * be a problem, because once people have a kernel config that
    420  1.17       cgd 	 * they use, they're going to stick with it.
    421   1.1       cgd 	 */
    422   1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    423   1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    424   1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    425  1.32       cgd 		le_iomem =
    426  1.32       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    427   1.1       cgd 	}
    428  1.17       cgd #endif /* NLE_IOASIC */
    429   1.1       cgd 
    430   1.1       cgd 	/*
    431   1.1       cgd 	 * Initialize error message buffer (at end of core).
    432   1.1       cgd 	 */
    433   1.7       cgd 	lastusablepage -= btoc(sizeof (struct msgbuf));
    434  1.32       cgd 	msgbufp =
    435  1.32       cgd 	    (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    436   1.1       cgd 	msgbufmapped = 1;
    437   1.1       cgd 
    438   1.1       cgd 	/*
    439   1.1       cgd 	 * Allocate space for system data structures.
    440   1.1       cgd 	 * The first available kernel virtual address is in "v".
    441   1.1       cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    442   1.1       cgd 	 *
    443   1.1       cgd 	 * These data structures are allocated here instead of cpu_startup()
    444   1.1       cgd 	 * because physical memory is directly addressable. We don't have
    445   1.1       cgd 	 * to map these into virtual address space.
    446   1.1       cgd 	 */
    447   1.1       cgd #define valloc(name, type, num) \
    448  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    449   1.1       cgd #define valloclim(name, type, num, lim) \
    450  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    451   1.1       cgd #ifdef REAL_CLISTS
    452   1.1       cgd 	valloc(cfree, struct cblock, nclist);
    453   1.1       cgd #endif
    454   1.1       cgd 	valloc(callout, struct callout, ncallout);
    455   1.1       cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    456   1.1       cgd #ifdef SYSVSHM
    457   1.1       cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    458   1.1       cgd #endif
    459   1.1       cgd #ifdef SYSVSEM
    460   1.1       cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    461   1.1       cgd 	valloc(sem, struct sem, seminfo.semmns);
    462   1.1       cgd 	/* This is pretty disgusting! */
    463   1.1       cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    464   1.1       cgd #endif
    465   1.1       cgd #ifdef SYSVMSG
    466   1.1       cgd 	valloc(msgpool, char, msginfo.msgmax);
    467   1.1       cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    468   1.1       cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    469   1.1       cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    470   1.1       cgd #endif
    471   1.1       cgd 
    472   1.1       cgd 	/*
    473   1.1       cgd 	 * Determine how many buffers to allocate.
    474  1.31       cgd 	 * We allocate 10% of memory for buffer space.  Insure a
    475   1.1       cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    476   1.1       cgd 	 * headers as file i/o buffers.
    477   1.1       cgd 	 */
    478   1.1       cgd 	if (bufpages == 0)
    479  1.31       cgd 		bufpages = (physmem * 10) / (CLSIZE * 100);
    480   1.1       cgd 	if (nbuf == 0) {
    481   1.1       cgd 		nbuf = bufpages;
    482   1.1       cgd 		if (nbuf < 16)
    483   1.1       cgd 			nbuf = 16;
    484   1.1       cgd 	}
    485   1.1       cgd 	if (nswbuf == 0) {
    486   1.1       cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    487   1.1       cgd 		if (nswbuf > 256)
    488   1.1       cgd 			nswbuf = 256;		/* sanity */
    489   1.1       cgd 	}
    490   1.1       cgd 	valloc(swbuf, struct buf, nswbuf);
    491   1.1       cgd 	valloc(buf, struct buf, nbuf);
    492   1.1       cgd 
    493   1.1       cgd 	/*
    494   1.1       cgd 	 * Clear allocated memory.
    495   1.1       cgd 	 */
    496   1.1       cgd 	bzero(start, v - start);
    497   1.1       cgd 
    498   1.1       cgd 	/*
    499   1.1       cgd 	 * Initialize the virtual memory system, and set the
    500   1.1       cgd 	 * page table base register in proc 0's PCB.
    501   1.1       cgd 	 */
    502  1.40       cgd #ifndef NEW_PMAP
    503  1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    504  1.40       cgd #else
    505  1.40       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    506  1.40       cgd 	    hwrpb->rpb_max_asn);
    507  1.40       cgd #endif
    508   1.1       cgd 
    509   1.1       cgd 	/*
    510   1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    511   1.3       cgd 	 * address.
    512   1.3       cgd 	 */
    513   1.3       cgd 	proc0.p_md.md_pcbpaddr =
    514  1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    515   1.3       cgd 
    516   1.3       cgd 	/*
    517   1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    518   1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    519   1.3       cgd 	 */
    520  1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    521   1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    522  1.33       cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    523  1.38       cgd 
    524  1.40       cgd #ifdef NEW_PMAP
    525  1.40       cgd 	pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    526  1.38       cgd #endif
    527   1.1       cgd 
    528   1.1       cgd 	/*
    529  1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    530  1.61       cgd 	 * Also, get kernel name so it can be used in user-land.
    531   1.8       cgd 	 */
    532  1.25       cgd 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    533  1.25       cgd #if 0
    534  1.46  christos 	printf("boot flags = \"%s\"\n", boot_flags);
    535  1.25       cgd #endif
    536  1.61       cgd 	prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
    537  1.61       cgd 	    sizeof(booted_kernel));
    538  1.61       cgd #if 0
    539  1.61       cgd 	printf("booted kernel = \"%s\"\n", booted_kernel);
    540  1.61       cgd #endif
    541   1.1       cgd 
    542   1.8       cgd 	boothowto = RB_SINGLE;
    543   1.1       cgd #ifdef KADB
    544   1.1       cgd 	boothowto |= RB_KDB;
    545   1.1       cgd #endif
    546   1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    547  1.26       cgd 		/*
    548  1.26       cgd 		 * Note that we'd really like to differentiate case here,
    549  1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    550  1.26       cgd 		 * says that we shouldn't.
    551  1.26       cgd 		 */
    552   1.8       cgd 		switch (*p) {
    553  1.26       cgd 		case 'a': /* autoboot */
    554  1.26       cgd 		case 'A':
    555  1.26       cgd 			boothowto &= ~RB_SINGLE;
    556  1.21       cgd 			break;
    557  1.21       cgd 
    558  1.43       cgd #ifdef DEBUG
    559  1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    560  1.43       cgd 		case 'C':
    561  1.43       cgd 			boothowto |= RB_DUMP;
    562  1.43       cgd 			break;
    563  1.43       cgd #endif
    564  1.43       cgd 
    565  1.36       cgd 		case 'h': /* always halt, never reboot */
    566  1.36       cgd 		case 'H':
    567  1.36       cgd 			boothowto |= RB_HALT;
    568   1.8       cgd 			break;
    569   1.8       cgd 
    570  1.21       cgd #if 0
    571   1.8       cgd 		case 'm': /* mini root present in memory */
    572  1.26       cgd 		case 'M':
    573   1.8       cgd 			boothowto |= RB_MINIROOT;
    574   1.8       cgd 			break;
    575  1.21       cgd #endif
    576  1.36       cgd 
    577  1.36       cgd 		case 'n': /* askname */
    578  1.36       cgd 		case 'N':
    579  1.36       cgd 			boothowto |= RB_ASKNAME;
    580  1.65       cgd 			break;
    581  1.65       cgd 
    582  1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    583  1.65       cgd 		case 'S':
    584  1.65       cgd 			boothowto |= RB_SINGLE;
    585  1.65       cgd 			break;
    586  1.65       cgd 
    587  1.65       cgd 		default:
    588  1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    589  1.36       cgd 			break;
    590   1.1       cgd 		}
    591   1.1       cgd 	}
    592   1.1       cgd 
    593   1.7       cgd 	/*
    594   1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    595   1.7       cgd 	 * Really.  We mean it.
    596   1.7       cgd 	 */
    597   1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    598   1.7       cgd 		struct pcs *pcsp;
    599   1.7       cgd 
    600   1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    601   1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    602   1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    603   1.7       cgd 			ncpus++;
    604   1.7       cgd 	}
    605   1.1       cgd }
    606   1.1       cgd 
    607  1.18       cgd void
    608   1.1       cgd consinit()
    609   1.1       cgd {
    610   1.1       cgd 
    611  1.54       cgd 	(*cpu_fn_switch->cons_init)();
    612   1.1       cgd 	pmap_unmap_prom();
    613   1.1       cgd }
    614   1.1       cgd 
    615  1.18       cgd void
    616   1.1       cgd cpu_startup()
    617   1.1       cgd {
    618   1.1       cgd 	register unsigned i;
    619   1.1       cgd 	int base, residual;
    620   1.1       cgd 	vm_offset_t minaddr, maxaddr;
    621   1.1       cgd 	vm_size_t size;
    622  1.40       cgd #if defined(DEBUG)
    623   1.1       cgd 	extern int pmapdebug;
    624   1.1       cgd 	int opmapdebug = pmapdebug;
    625   1.1       cgd 
    626   1.1       cgd 	pmapdebug = 0;
    627   1.1       cgd #endif
    628   1.1       cgd 
    629   1.1       cgd 	/*
    630   1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    631   1.1       cgd 	 */
    632  1.46  christos 	printf(version);
    633   1.1       cgd 	identifycpu();
    634  1.46  christos 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    635   1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    636   1.7       cgd 	if (unusedmem)
    637  1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    638   1.7       cgd 	if (unknownmem)
    639  1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    640   1.7       cgd 		    ctob(unknownmem));
    641   1.1       cgd 
    642   1.1       cgd 	/*
    643   1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    644   1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    645   1.1       cgd 	 * and usually occupy more virtual memory than physical.
    646   1.1       cgd 	 */
    647   1.1       cgd 	size = MAXBSIZE * nbuf;
    648   1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    649   1.1       cgd 	    &maxaddr, size, TRUE);
    650   1.1       cgd 	minaddr = (vm_offset_t)buffers;
    651   1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    652   1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    653   1.1       cgd 		panic("startup: cannot allocate buffers");
    654   1.1       cgd 	base = bufpages / nbuf;
    655   1.1       cgd 	residual = bufpages % nbuf;
    656   1.1       cgd 	for (i = 0; i < nbuf; i++) {
    657   1.1       cgd 		vm_size_t curbufsize;
    658   1.1       cgd 		vm_offset_t curbuf;
    659   1.1       cgd 
    660   1.1       cgd 		/*
    661   1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    662   1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    663   1.1       cgd 		 *
    664   1.1       cgd 		 * The rest of each buffer occupies virtual space,
    665   1.1       cgd 		 * but has no physical memory allocated for it.
    666   1.1       cgd 		 */
    667   1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    668   1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    669   1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    670   1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    671   1.1       cgd 	}
    672   1.1       cgd 	/*
    673   1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    674   1.1       cgd 	 * limits the number of processes exec'ing at any time.
    675   1.1       cgd 	 */
    676   1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    677   1.1       cgd 				 16 * NCARGS, TRUE);
    678   1.1       cgd 
    679   1.1       cgd 	/*
    680   1.1       cgd 	 * Allocate a submap for physio
    681   1.1       cgd 	 */
    682   1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    683   1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    684   1.1       cgd 
    685   1.1       cgd 	/*
    686  1.69   thorpej 	 * Finally, allocate mbuf cluster submap.
    687   1.1       cgd 	 */
    688   1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    689   1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    690   1.1       cgd 	/*
    691   1.1       cgd 	 * Initialize callouts
    692   1.1       cgd 	 */
    693   1.1       cgd 	callfree = callout;
    694   1.1       cgd 	for (i = 1; i < ncallout; i++)
    695   1.1       cgd 		callout[i-1].c_next = &callout[i];
    696   1.1       cgd 	callout[i-1].c_next = NULL;
    697   1.1       cgd 
    698  1.40       cgd #if defined(DEBUG)
    699   1.1       cgd 	pmapdebug = opmapdebug;
    700   1.1       cgd #endif
    701  1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    702  1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
    703   1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    704   1.1       cgd 
    705   1.1       cgd 	/*
    706   1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    707   1.1       cgd 	 */
    708   1.1       cgd 	bufinit();
    709   1.1       cgd 
    710   1.1       cgd 	/*
    711   1.1       cgd 	 * Configure the system.
    712   1.1       cgd 	 */
    713   1.1       cgd 	configure();
    714  1.48       cgd 
    715  1.48       cgd 	/*
    716  1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
    717  1.48       cgd 	 * to do restarts.
    718  1.48       cgd 	 */
    719  1.55       cgd 	hwrpb_restart_setup();
    720   1.1       cgd }
    721   1.1       cgd 
    722  1.33       cgd void
    723   1.1       cgd identifycpu()
    724   1.1       cgd {
    725   1.1       cgd 
    726   1.7       cgd 	/*
    727   1.7       cgd 	 * print out CPU identification information.
    728   1.7       cgd 	 */
    729  1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
    730   1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    731  1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    732   1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    733   1.7       cgd #if 0
    734   1.7       cgd 	/* this isn't defined for any systems that we run on? */
    735  1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    736   1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    737   1.7       cgd 
    738   1.7       cgd 	/* and these aren't particularly useful! */
    739  1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    740   1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    741   1.7       cgd #endif
    742   1.1       cgd }
    743   1.1       cgd 
    744   1.1       cgd int	waittime = -1;
    745   1.7       cgd struct pcb dumppcb;
    746   1.1       cgd 
    747  1.18       cgd void
    748  1.68       gwr cpu_reboot(howto, bootstr)
    749   1.1       cgd 	int howto;
    750  1.39       mrg 	char *bootstr;
    751   1.1       cgd {
    752   1.1       cgd 	extern int cold;
    753   1.1       cgd 
    754   1.1       cgd 	/* If system is cold, just halt. */
    755   1.1       cgd 	if (cold) {
    756   1.1       cgd 		howto |= RB_HALT;
    757   1.1       cgd 		goto haltsys;
    758   1.1       cgd 	}
    759   1.1       cgd 
    760  1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
    761  1.36       cgd 	if ((boothowto & RB_HALT) != 0)
    762  1.36       cgd 		howto |= RB_HALT;
    763  1.36       cgd 
    764   1.7       cgd 	boothowto = howto;
    765   1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    766   1.1       cgd 		waittime = 0;
    767   1.7       cgd 		vfs_shutdown();
    768   1.1       cgd 		/*
    769   1.1       cgd 		 * If we've been adjusting the clock, the todr
    770   1.1       cgd 		 * will be out of synch; adjust it now.
    771   1.1       cgd 		 */
    772   1.1       cgd 		resettodr();
    773   1.1       cgd 	}
    774   1.1       cgd 
    775   1.1       cgd 	/* Disable interrupts. */
    776   1.1       cgd 	splhigh();
    777   1.1       cgd 
    778   1.7       cgd 	/* If rebooting and a dump is requested do it. */
    779  1.42       cgd #if 0
    780  1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    781  1.42       cgd #else
    782  1.42       cgd 	if (howto & RB_DUMP)
    783  1.42       cgd #endif
    784   1.1       cgd 		dumpsys();
    785   1.6       cgd 
    786  1.12       cgd haltsys:
    787  1.12       cgd 
    788   1.6       cgd 	/* run any shutdown hooks */
    789   1.6       cgd 	doshutdownhooks();
    790   1.1       cgd 
    791   1.7       cgd #ifdef BOOTKEY
    792  1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    793   1.7       cgd 	cngetc();
    794  1.46  christos 	printf("\n");
    795   1.7       cgd #endif
    796   1.7       cgd 
    797   1.1       cgd 	/* Finally, halt/reboot the system. */
    798  1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    799   1.1       cgd 	prom_halt(howto & RB_HALT);
    800   1.1       cgd 	/*NOTREACHED*/
    801   1.1       cgd }
    802   1.1       cgd 
    803   1.7       cgd /*
    804   1.7       cgd  * These variables are needed by /sbin/savecore
    805   1.7       cgd  */
    806   1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    807   1.7       cgd int 	dumpsize = 0;		/* pages */
    808   1.7       cgd long	dumplo = 0; 		/* blocks */
    809   1.7       cgd 
    810   1.7       cgd /*
    811  1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
    812  1.43       cgd  */
    813  1.43       cgd int
    814  1.43       cgd cpu_dumpsize()
    815  1.43       cgd {
    816  1.43       cgd 	int size;
    817  1.43       cgd 
    818  1.43       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
    819  1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
    820  1.43       cgd 		return -1;
    821  1.43       cgd 
    822  1.43       cgd 	return (1);
    823  1.43       cgd }
    824  1.43       cgd 
    825  1.43       cgd /*
    826  1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
    827  1.43       cgd  */
    828  1.43       cgd int
    829  1.43       cgd cpu_dump()
    830  1.43       cgd {
    831  1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    832  1.43       cgd 	long buf[dbtob(1) / sizeof (long)];
    833  1.43       cgd 	kcore_seg_t	*segp;
    834  1.43       cgd 	cpu_kcore_hdr_t	*cpuhdrp;
    835  1.43       cgd 
    836  1.43       cgd         dump = bdevsw[major(dumpdev)].d_dump;
    837  1.43       cgd 
    838  1.43       cgd 	segp = (kcore_seg_t *)buf;
    839  1.43       cgd 	cpuhdrp =
    840  1.43       cgd 	    (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
    841  1.43       cgd 
    842  1.43       cgd 	/*
    843  1.43       cgd 	 * Generate a segment header.
    844  1.43       cgd 	 */
    845  1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
    846  1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
    847  1.43       cgd 
    848  1.43       cgd 	/*
    849  1.43       cgd 	 * Add the machine-dependent header info
    850  1.43       cgd 	 */
    851  1.44       cgd 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
    852  1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
    853  1.43       cgd 	cpuhdrp->core_seg.start = ctob(firstusablepage);
    854  1.43       cgd 	cpuhdrp->core_seg.size = ctob(physmem);
    855  1.43       cgd 
    856  1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
    857  1.43       cgd }
    858  1.43       cgd 
    859  1.43       cgd /*
    860  1.68       gwr  * This is called by main to set dumplo and dumpsize.
    861   1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    862   1.7       cgd  * in case there might be a disk label stored there.
    863   1.7       cgd  * If there is extra space, put dump at the end to
    864   1.7       cgd  * reduce the chance that swapping trashes it.
    865   1.7       cgd  */
    866   1.7       cgd void
    867  1.68       gwr cpu_dumpconf()
    868   1.7       cgd {
    869  1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
    870   1.7       cgd 	int maj;
    871   1.7       cgd 
    872   1.7       cgd 	if (dumpdev == NODEV)
    873  1.43       cgd 		goto bad;
    874   1.7       cgd 	maj = major(dumpdev);
    875   1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    876   1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    877   1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    878  1.43       cgd 		goto bad;
    879   1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    880   1.7       cgd 	if (nblks <= ctod(1))
    881  1.43       cgd 		goto bad;
    882  1.43       cgd 
    883  1.43       cgd 	dumpblks = cpu_dumpsize();
    884  1.43       cgd 	if (dumpblks < 0)
    885  1.43       cgd 		goto bad;
    886  1.43       cgd 	dumpblks += ctod(physmem);
    887  1.43       cgd 
    888  1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
    889  1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
    890  1.43       cgd 		goto bad;
    891  1.43       cgd 
    892  1.43       cgd 	/* Put dump at end of partition */
    893  1.43       cgd 	dumplo = nblks - dumpblks;
    894   1.7       cgd 
    895  1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
    896   1.7       cgd 	dumpsize = physmem;
    897  1.43       cgd 	return;
    898   1.7       cgd 
    899  1.43       cgd bad:
    900  1.43       cgd 	dumpsize = 0;
    901  1.43       cgd 	return;
    902   1.7       cgd }
    903   1.7       cgd 
    904   1.7       cgd /*
    905  1.42       cgd  * Dump the kernel's image to the swap partition.
    906   1.7       cgd  */
    907  1.42       cgd #define	BYTES_PER_DUMP	NBPG
    908  1.42       cgd 
    909   1.7       cgd void
    910   1.7       cgd dumpsys()
    911   1.7       cgd {
    912  1.42       cgd 	unsigned bytes, i, n;
    913  1.42       cgd 	int maddr, psize;
    914  1.42       cgd 	daddr_t blkno;
    915  1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    916  1.42       cgd 	int error;
    917  1.42       cgd 
    918  1.42       cgd 	/* Save registers. */
    919  1.42       cgd 	savectx(&dumppcb);
    920   1.7       cgd 
    921  1.42       cgd 	msgbufmapped = 0;	/* don't record dump msgs in msgbuf */
    922   1.7       cgd 	if (dumpdev == NODEV)
    923   1.7       cgd 		return;
    924  1.42       cgd 
    925  1.42       cgd 	/*
    926  1.42       cgd 	 * For dumps during autoconfiguration,
    927  1.42       cgd 	 * if dump device has already configured...
    928  1.42       cgd 	 */
    929  1.42       cgd 	if (dumpsize == 0)
    930  1.68       gwr 		cpu_dumpconf();
    931  1.47       cgd 	if (dumplo <= 0) {
    932  1.46  christos 		printf("\ndump to dev %x not possible\n", dumpdev);
    933  1.42       cgd 		return;
    934  1.43       cgd 	}
    935  1.46  christos 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
    936   1.7       cgd 
    937  1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
    938  1.46  christos 	printf("dump ");
    939  1.42       cgd 	if (psize == -1) {
    940  1.46  christos 		printf("area unavailable\n");
    941  1.42       cgd 		return;
    942  1.42       cgd 	}
    943  1.42       cgd 
    944  1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
    945  1.42       cgd 
    946  1.43       cgd 	if ((error = cpu_dump()) != 0)
    947  1.43       cgd 		goto err;
    948  1.43       cgd 
    949  1.43       cgd 	bytes = ctob(physmem);
    950  1.42       cgd 	maddr = ctob(firstusablepage);
    951  1.43       cgd 	blkno = dumplo + cpu_dumpsize();
    952  1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
    953  1.42       cgd 	error = 0;
    954  1.42       cgd 	for (i = 0; i < bytes; i += n) {
    955  1.42       cgd 
    956  1.42       cgd 		/* Print out how many MBs we to go. */
    957  1.42       cgd 		n = bytes - i;
    958  1.42       cgd 		if (n && (n % (1024*1024)) == 0)
    959  1.46  christos 			printf("%d ", n / (1024 * 1024));
    960  1.42       cgd 
    961  1.42       cgd 		/* Limit size for next transfer. */
    962  1.42       cgd 		if (n > BYTES_PER_DUMP)
    963  1.42       cgd 			n =  BYTES_PER_DUMP;
    964  1.42       cgd 
    965  1.42       cgd 		error = (*dump)(dumpdev, blkno,
    966  1.42       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
    967  1.42       cgd 		if (error)
    968  1.42       cgd 			break;
    969  1.42       cgd 		maddr += n;
    970  1.42       cgd 		blkno += btodb(n);			/* XXX? */
    971  1.42       cgd 
    972  1.42       cgd 		/* XXX should look for keystrokes, to cancel. */
    973  1.42       cgd 	}
    974  1.42       cgd 
    975  1.43       cgd err:
    976  1.42       cgd 	switch (error) {
    977   1.7       cgd 
    978   1.7       cgd 	case ENXIO:
    979  1.46  christos 		printf("device bad\n");
    980   1.7       cgd 		break;
    981   1.7       cgd 
    982   1.7       cgd 	case EFAULT:
    983  1.46  christos 		printf("device not ready\n");
    984   1.7       cgd 		break;
    985   1.7       cgd 
    986   1.7       cgd 	case EINVAL:
    987  1.46  christos 		printf("area improper\n");
    988   1.7       cgd 		break;
    989   1.7       cgd 
    990   1.7       cgd 	case EIO:
    991  1.46  christos 		printf("i/o error\n");
    992   1.7       cgd 		break;
    993   1.7       cgd 
    994   1.7       cgd 	case EINTR:
    995  1.46  christos 		printf("aborted from console\n");
    996   1.7       cgd 		break;
    997   1.7       cgd 
    998  1.42       cgd 	case 0:
    999  1.46  christos 		printf("succeeded\n");
   1000  1.42       cgd 		break;
   1001  1.42       cgd 
   1002   1.7       cgd 	default:
   1003  1.46  christos 		printf("error %d\n", error);
   1004   1.7       cgd 		break;
   1005   1.7       cgd 	}
   1006  1.46  christos 	printf("\n\n");
   1007   1.7       cgd 	delay(1000);
   1008   1.7       cgd }
   1009   1.7       cgd 
   1010   1.1       cgd void
   1011   1.1       cgd frametoreg(framep, regp)
   1012   1.1       cgd 	struct trapframe *framep;
   1013   1.1       cgd 	struct reg *regp;
   1014   1.1       cgd {
   1015   1.1       cgd 
   1016   1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1017   1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1018   1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1019   1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1020   1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1021   1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1022   1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1023   1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1024   1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1025   1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1026   1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1027   1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1028   1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1029   1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1030   1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1031   1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1032  1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1033  1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1034  1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1035   1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1036   1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1037   1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1038   1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1039   1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1040   1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1041   1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1042   1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1043   1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1044   1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1045  1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1046  1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1047   1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1048   1.1       cgd }
   1049   1.1       cgd 
   1050   1.1       cgd void
   1051   1.1       cgd regtoframe(regp, framep)
   1052   1.1       cgd 	struct reg *regp;
   1053   1.1       cgd 	struct trapframe *framep;
   1054   1.1       cgd {
   1055   1.1       cgd 
   1056   1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1057   1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1058   1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1059   1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1060   1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1061   1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1062   1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1063   1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1064   1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1065   1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1066   1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1067   1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1068   1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1069   1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1070   1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1071   1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1072  1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1073  1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1074  1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1075   1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1076   1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1077   1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1078   1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1079   1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1080   1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1081   1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1082   1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1083   1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1084   1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1085  1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1086  1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1087   1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1088   1.1       cgd }
   1089   1.1       cgd 
   1090   1.1       cgd void
   1091   1.1       cgd printregs(regp)
   1092   1.1       cgd 	struct reg *regp;
   1093   1.1       cgd {
   1094   1.1       cgd 	int i;
   1095   1.1       cgd 
   1096   1.1       cgd 	for (i = 0; i < 32; i++)
   1097  1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1098   1.1       cgd 		   i & 1 ? "\n" : "\t");
   1099   1.1       cgd }
   1100   1.1       cgd 
   1101   1.1       cgd void
   1102   1.1       cgd regdump(framep)
   1103   1.1       cgd 	struct trapframe *framep;
   1104   1.1       cgd {
   1105   1.1       cgd 	struct reg reg;
   1106   1.1       cgd 
   1107   1.1       cgd 	frametoreg(framep, &reg);
   1108  1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1109  1.35       cgd 
   1110  1.46  christos 	printf("REGISTERS:\n");
   1111   1.1       cgd 	printregs(&reg);
   1112   1.1       cgd }
   1113   1.1       cgd 
   1114   1.1       cgd #ifdef DEBUG
   1115   1.1       cgd int sigdebug = 0;
   1116   1.1       cgd int sigpid = 0;
   1117   1.1       cgd #define	SDB_FOLLOW	0x01
   1118   1.1       cgd #define	SDB_KSTACK	0x02
   1119   1.1       cgd #endif
   1120   1.1       cgd 
   1121   1.1       cgd /*
   1122   1.1       cgd  * Send an interrupt to process.
   1123   1.1       cgd  */
   1124   1.1       cgd void
   1125   1.1       cgd sendsig(catcher, sig, mask, code)
   1126   1.1       cgd 	sig_t catcher;
   1127   1.1       cgd 	int sig, mask;
   1128   1.1       cgd 	u_long code;
   1129   1.1       cgd {
   1130   1.1       cgd 	struct proc *p = curproc;
   1131   1.1       cgd 	struct sigcontext *scp, ksc;
   1132   1.1       cgd 	struct trapframe *frame;
   1133   1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1134   1.1       cgd 	int oonstack, fsize, rndfsize;
   1135   1.1       cgd 	extern char sigcode[], esigcode[];
   1136   1.1       cgd 	extern struct proc *fpcurproc;
   1137   1.1       cgd 
   1138   1.1       cgd 	frame = p->p_md.md_tf;
   1139   1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1140   1.1       cgd 	fsize = sizeof ksc;
   1141   1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1142   1.1       cgd 	/*
   1143   1.1       cgd 	 * Allocate and validate space for the signal handler
   1144   1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1145   1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1146   1.1       cgd 	 * will fail if the process has not already allocated
   1147   1.1       cgd 	 * the space with a `brk'.
   1148   1.1       cgd 	 */
   1149   1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1150   1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1151  1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1152   1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1153   1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1154   1.1       cgd 	} else
   1155  1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1156   1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1157   1.1       cgd 		(void)grow(p, (u_long)scp);
   1158   1.1       cgd #ifdef DEBUG
   1159   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1160  1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1161   1.1       cgd 		    sig, &oonstack, scp);
   1162   1.1       cgd #endif
   1163   1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1164   1.1       cgd #ifdef DEBUG
   1165   1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1166  1.46  christos 			printf("sendsig(%d): useracc failed on sig %d\n",
   1167   1.1       cgd 			    p->p_pid, sig);
   1168   1.1       cgd #endif
   1169   1.1       cgd 		/*
   1170   1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1171   1.1       cgd 		 * instruction to halt it in its tracks.
   1172   1.1       cgd 		 */
   1173   1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1174   1.1       cgd 		sig = sigmask(SIGILL);
   1175   1.1       cgd 		p->p_sigignore &= ~sig;
   1176   1.1       cgd 		p->p_sigcatch &= ~sig;
   1177   1.1       cgd 		p->p_sigmask &= ~sig;
   1178   1.1       cgd 		psignal(p, SIGILL);
   1179   1.1       cgd 		return;
   1180   1.1       cgd 	}
   1181   1.1       cgd 
   1182   1.1       cgd 	/*
   1183   1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1184   1.1       cgd 	 */
   1185   1.1       cgd 	ksc.sc_onstack = oonstack;
   1186   1.1       cgd 	ksc.sc_mask = mask;
   1187  1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1188  1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1189   1.1       cgd 
   1190   1.1       cgd 	/* copy the registers. */
   1191   1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1192   1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1193  1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1194   1.1       cgd 
   1195   1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1196   1.1       cgd 	if (p == fpcurproc) {
   1197  1.32       cgd 		alpha_pal_wrfen(1);
   1198   1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1199  1.32       cgd 		alpha_pal_wrfen(0);
   1200   1.1       cgd 		fpcurproc = NULL;
   1201   1.1       cgd 	}
   1202   1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1203   1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1204   1.1       cgd 	    sizeof(struct fpreg));
   1205   1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1206   1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1207   1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1208   1.1       cgd 
   1209   1.1       cgd 
   1210   1.1       cgd #ifdef COMPAT_OSF1
   1211   1.1       cgd 	/*
   1212   1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1213   1.1       cgd 	 */
   1214   1.1       cgd #endif
   1215   1.1       cgd 
   1216   1.1       cgd 	/*
   1217   1.1       cgd 	 * copy the frame out to userland.
   1218   1.1       cgd 	 */
   1219   1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1220   1.1       cgd #ifdef DEBUG
   1221   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1222  1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1223   1.1       cgd 		    scp, code);
   1224   1.1       cgd #endif
   1225   1.1       cgd 
   1226   1.1       cgd 	/*
   1227   1.1       cgd 	 * Set up the registers to return to sigcode.
   1228   1.1       cgd 	 */
   1229  1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1230  1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1231  1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1232  1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1233  1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1234   1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1235  1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1236   1.1       cgd 
   1237   1.1       cgd #ifdef DEBUG
   1238   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1239  1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1240  1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1241   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1242  1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1243   1.1       cgd 		    p->p_pid, sig);
   1244   1.1       cgd #endif
   1245   1.1       cgd }
   1246   1.1       cgd 
   1247   1.1       cgd /*
   1248   1.1       cgd  * System call to cleanup state after a signal
   1249   1.1       cgd  * has been taken.  Reset signal mask and
   1250   1.1       cgd  * stack state from context left by sendsig (above).
   1251   1.1       cgd  * Return to previous pc and psl as specified by
   1252   1.1       cgd  * context left by sendsig. Check carefully to
   1253   1.1       cgd  * make sure that the user has not modified the
   1254   1.1       cgd  * psl to gain improper priviledges or to cause
   1255   1.1       cgd  * a machine fault.
   1256   1.1       cgd  */
   1257   1.1       cgd /* ARGSUSED */
   1258  1.11   mycroft int
   1259  1.11   mycroft sys_sigreturn(p, v, retval)
   1260   1.1       cgd 	struct proc *p;
   1261  1.10   thorpej 	void *v;
   1262  1.10   thorpej 	register_t *retval;
   1263  1.10   thorpej {
   1264  1.11   mycroft 	struct sys_sigreturn_args /* {
   1265   1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1266  1.10   thorpej 	} */ *uap = v;
   1267   1.1       cgd 	struct sigcontext *scp, ksc;
   1268   1.1       cgd 	extern struct proc *fpcurproc;
   1269   1.1       cgd 
   1270   1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1271   1.1       cgd #ifdef DEBUG
   1272   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1273  1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1274   1.1       cgd #endif
   1275   1.1       cgd 
   1276   1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1277   1.1       cgd 		return (EINVAL);
   1278   1.1       cgd 
   1279   1.1       cgd 	/*
   1280   1.1       cgd 	 * Test and fetch the context structure.
   1281   1.1       cgd 	 * We grab it all at once for speed.
   1282   1.1       cgd 	 */
   1283   1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1284   1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1285   1.1       cgd 		return (EINVAL);
   1286   1.1       cgd 
   1287   1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1288   1.1       cgd 		return (EINVAL);
   1289   1.1       cgd 	/*
   1290   1.1       cgd 	 * Restore the user-supplied information
   1291   1.1       cgd 	 */
   1292   1.1       cgd 	if (ksc.sc_onstack)
   1293   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1294   1.1       cgd 	else
   1295   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1296   1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1297   1.1       cgd 
   1298  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1299  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1300  1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1301   1.1       cgd 
   1302   1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1303  1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1304   1.1       cgd 
   1305   1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1306   1.1       cgd 	if (p == fpcurproc)
   1307   1.1       cgd 		fpcurproc = NULL;
   1308   1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1309   1.1       cgd 	    sizeof(struct fpreg));
   1310   1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1311   1.1       cgd 
   1312   1.1       cgd #ifdef DEBUG
   1313   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1314  1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1315   1.1       cgd #endif
   1316   1.1       cgd 	return (EJUSTRETURN);
   1317   1.1       cgd }
   1318   1.1       cgd 
   1319   1.1       cgd /*
   1320   1.1       cgd  * machine dependent system variables.
   1321   1.1       cgd  */
   1322  1.33       cgd int
   1323   1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1324   1.1       cgd 	int *name;
   1325   1.1       cgd 	u_int namelen;
   1326   1.1       cgd 	void *oldp;
   1327   1.1       cgd 	size_t *oldlenp;
   1328   1.1       cgd 	void *newp;
   1329   1.1       cgd 	size_t newlen;
   1330   1.1       cgd 	struct proc *p;
   1331   1.1       cgd {
   1332   1.1       cgd 	dev_t consdev;
   1333   1.1       cgd 
   1334   1.1       cgd 	/* all sysctl names at this level are terminal */
   1335   1.1       cgd 	if (namelen != 1)
   1336   1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1337   1.1       cgd 
   1338   1.1       cgd 	switch (name[0]) {
   1339   1.1       cgd 	case CPU_CONSDEV:
   1340   1.1       cgd 		if (cn_tab != NULL)
   1341   1.1       cgd 			consdev = cn_tab->cn_dev;
   1342   1.1       cgd 		else
   1343   1.1       cgd 			consdev = NODEV;
   1344   1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1345   1.1       cgd 			sizeof consdev));
   1346  1.30       cgd 
   1347  1.30       cgd 	case CPU_ROOT_DEVICE:
   1348  1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1349  1.64   thorpej 		    root_device->dv_xname));
   1350  1.36       cgd 
   1351  1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1352  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1353  1.36       cgd 		    &alpha_unaligned_print));
   1354  1.36       cgd 
   1355  1.36       cgd 	case CPU_UNALIGNED_FIX:
   1356  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1357  1.36       cgd 		    &alpha_unaligned_fix));
   1358  1.36       cgd 
   1359  1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1360  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1361  1.36       cgd 		    &alpha_unaligned_sigbus));
   1362  1.61       cgd 
   1363  1.61       cgd 	case CPU_BOOTED_KERNEL:
   1364  1.61       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
   1365  1.30       cgd 
   1366   1.1       cgd 	default:
   1367   1.1       cgd 		return (EOPNOTSUPP);
   1368   1.1       cgd 	}
   1369   1.1       cgd 	/* NOTREACHED */
   1370   1.1       cgd }
   1371   1.1       cgd 
   1372   1.1       cgd /*
   1373   1.1       cgd  * Set registers on exec.
   1374   1.1       cgd  */
   1375   1.1       cgd void
   1376   1.5  christos setregs(p, pack, stack, retval)
   1377   1.1       cgd 	register struct proc *p;
   1378   1.5  christos 	struct exec_package *pack;
   1379   1.1       cgd 	u_long stack;
   1380   1.1       cgd 	register_t *retval;
   1381   1.1       cgd {
   1382   1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1383  1.56       cgd 	extern struct proc *fpcurproc;
   1384  1.56       cgd #ifdef DEBUG
   1385   1.1       cgd 	int i;
   1386  1.56       cgd #endif
   1387  1.43       cgd 
   1388  1.43       cgd #ifdef DEBUG
   1389  1.43       cgd 	/*
   1390  1.43       cgd 	 * Crash and dump, if the user requested it.
   1391  1.43       cgd 	 */
   1392  1.43       cgd 	if (boothowto & RB_DUMP)
   1393  1.43       cgd 		panic("crash requested by boot flags");
   1394  1.43       cgd #endif
   1395   1.1       cgd 
   1396   1.1       cgd #ifdef DEBUG
   1397  1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1398   1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1399   1.1       cgd #else
   1400  1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1401   1.1       cgd #endif
   1402   1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1403   1.7       cgd #define FP_RN 2 /* XXX */
   1404   1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1405  1.35       cgd 	alpha_pal_wrusp(stack);
   1406  1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1407  1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1408  1.41       cgd 
   1409  1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1410  1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1411  1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1412  1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1413  1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1414   1.1       cgd 
   1415  1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1416   1.1       cgd 	if (fpcurproc == p)
   1417   1.1       cgd 		fpcurproc = NULL;
   1418   1.1       cgd 
   1419   1.1       cgd 	retval[0] = retval[1] = 0;
   1420   1.1       cgd }
   1421   1.1       cgd 
   1422   1.1       cgd void
   1423   1.1       cgd netintr()
   1424   1.1       cgd {
   1425  1.49       cgd 	int n, s;
   1426  1.49       cgd 
   1427  1.49       cgd 	s = splhigh();
   1428  1.49       cgd 	n = netisr;
   1429  1.49       cgd 	netisr = 0;
   1430  1.49       cgd 	splx(s);
   1431  1.49       cgd 
   1432  1.49       cgd #define	DONETISR(bit, fn)						\
   1433  1.49       cgd 	do {								\
   1434  1.49       cgd 		if (n & (1 << (bit)))					\
   1435  1.49       cgd 			fn;						\
   1436  1.49       cgd 	} while (0)
   1437  1.49       cgd 
   1438   1.1       cgd #ifdef INET
   1439  1.72       cgd #if NARP > 0
   1440  1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1441  1.72       cgd #endif
   1442  1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1443  1.70  christos #endif
   1444  1.70  christos #ifdef NETATALK
   1445  1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1446   1.1       cgd #endif
   1447   1.1       cgd #ifdef NS
   1448  1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1449   1.1       cgd #endif
   1450   1.1       cgd #ifdef ISO
   1451  1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1452   1.1       cgd #endif
   1453   1.1       cgd #ifdef CCITT
   1454  1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1455  1.49       cgd #endif
   1456  1.49       cgd #ifdef NATM
   1457  1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1458   1.1       cgd #endif
   1459  1.49       cgd #if NPPP > 1
   1460  1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1461   1.8       cgd #endif
   1462  1.49       cgd 
   1463  1.49       cgd #undef DONETISR
   1464   1.1       cgd }
   1465   1.1       cgd 
   1466   1.1       cgd void
   1467   1.1       cgd do_sir()
   1468   1.1       cgd {
   1469  1.58       cgd 	u_int64_t n;
   1470   1.1       cgd 
   1471  1.59       cgd 	do {
   1472  1.60       cgd 		(void)splhigh();
   1473  1.58       cgd 		n = ssir;
   1474  1.58       cgd 		ssir = 0;
   1475  1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   1476  1.59       cgd 
   1477  1.59       cgd #define	DO_SIR(bit, fn)							\
   1478  1.59       cgd 		do {							\
   1479  1.60       cgd 			if (n & (bit)) {				\
   1480  1.59       cgd 				cnt.v_soft++;				\
   1481  1.59       cgd 				fn;					\
   1482  1.59       cgd 			}						\
   1483  1.59       cgd 		} while (0)
   1484  1.59       cgd 
   1485  1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1486  1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1487  1.60       cgd 
   1488  1.60       cgd #undef DO_SIR
   1489  1.59       cgd 	} while (ssir != 0);
   1490   1.1       cgd }
   1491   1.1       cgd 
   1492   1.1       cgd int
   1493   1.1       cgd spl0()
   1494   1.1       cgd {
   1495   1.1       cgd 
   1496  1.59       cgd 	if (ssir)
   1497  1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   1498   1.1       cgd 
   1499  1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1500   1.1       cgd }
   1501   1.1       cgd 
   1502   1.1       cgd /*
   1503   1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1504   1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1505  1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1506  1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1507  1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1508  1.52       cgd  * available queues.
   1509   1.1       cgd  */
   1510   1.1       cgd /*
   1511   1.1       cgd  * setrunqueue(p)
   1512   1.1       cgd  *	proc *p;
   1513   1.1       cgd  *
   1514   1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1515   1.1       cgd  */
   1516   1.1       cgd 
   1517   1.1       cgd void
   1518   1.1       cgd setrunqueue(p)
   1519   1.1       cgd 	struct proc *p;
   1520   1.1       cgd {
   1521   1.1       cgd 	int bit;
   1522   1.1       cgd 
   1523   1.1       cgd 	/* firewall: p->p_back must be NULL */
   1524   1.1       cgd 	if (p->p_back != NULL)
   1525   1.1       cgd 		panic("setrunqueue");
   1526   1.1       cgd 
   1527   1.1       cgd 	bit = p->p_priority >> 2;
   1528   1.1       cgd 	whichqs |= (1 << bit);
   1529   1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1530   1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1531   1.1       cgd 	p->p_back->p_forw = p;
   1532   1.1       cgd 	qs[bit].ph_rlink = p;
   1533   1.1       cgd }
   1534   1.1       cgd 
   1535   1.1       cgd /*
   1536  1.52       cgd  * remrunqueue(p)
   1537   1.1       cgd  *
   1538   1.1       cgd  * Call should be made at splclock().
   1539   1.1       cgd  */
   1540   1.1       cgd void
   1541  1.52       cgd remrunqueue(p)
   1542   1.1       cgd 	struct proc *p;
   1543   1.1       cgd {
   1544   1.1       cgd 	int bit;
   1545   1.1       cgd 
   1546   1.1       cgd 	bit = p->p_priority >> 2;
   1547   1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1548  1.52       cgd 		panic("remrunqueue");
   1549   1.1       cgd 
   1550   1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1551   1.1       cgd 	p->p_forw->p_back = p->p_back;
   1552   1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1553   1.1       cgd 
   1554   1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1555   1.1       cgd 		whichqs &= ~(1 << bit);
   1556   1.1       cgd }
   1557   1.1       cgd 
   1558   1.1       cgd /*
   1559   1.1       cgd  * Return the best possible estimate of the time in the timeval
   1560   1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1561   1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1562   1.1       cgd  * previous call.
   1563   1.1       cgd  */
   1564   1.1       cgd void
   1565   1.1       cgd microtime(tvp)
   1566   1.1       cgd 	register struct timeval *tvp;
   1567   1.1       cgd {
   1568   1.1       cgd 	int s = splclock();
   1569   1.1       cgd 	static struct timeval lasttime;
   1570   1.1       cgd 
   1571   1.1       cgd 	*tvp = time;
   1572   1.1       cgd #ifdef notdef
   1573   1.1       cgd 	tvp->tv_usec += clkread();
   1574   1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1575   1.1       cgd 		tvp->tv_sec++;
   1576   1.1       cgd 		tvp->tv_usec -= 1000000;
   1577   1.1       cgd 	}
   1578   1.1       cgd #endif
   1579   1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1580   1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1581   1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1582   1.1       cgd 		tvp->tv_sec++;
   1583   1.1       cgd 		tvp->tv_usec -= 1000000;
   1584   1.1       cgd 	}
   1585   1.1       cgd 	lasttime = *tvp;
   1586   1.1       cgd 	splx(s);
   1587  1.15       cgd }
   1588  1.15       cgd 
   1589  1.15       cgd /*
   1590  1.15       cgd  * Wait "n" microseconds.
   1591  1.15       cgd  */
   1592  1.32       cgd void
   1593  1.15       cgd delay(n)
   1594  1.32       cgd 	unsigned long n;
   1595  1.15       cgd {
   1596  1.15       cgd 	long N = cycles_per_usec * (n);
   1597  1.15       cgd 
   1598  1.15       cgd 	while (N > 0)				/* XXX */
   1599  1.15       cgd 		N -= 3;				/* XXX */
   1600   1.1       cgd }
   1601   1.1       cgd 
   1602   1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1603  1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1604  1.55       cgd 	    u_long, register_t *));
   1605  1.55       cgd 
   1606   1.1       cgd void
   1607  1.19       cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1608   1.1       cgd 	struct proc *p;
   1609  1.19       cgd 	struct exec_package *epp;
   1610   1.5  christos 	u_long stack;
   1611   1.5  christos 	register_t *retval;
   1612   1.1       cgd {
   1613  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1614   1.1       cgd 
   1615  1.19       cgd 	setregs(p, epp, stack, retval);
   1616  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1617   1.1       cgd }
   1618   1.1       cgd 
   1619   1.1       cgd /*
   1620   1.1       cgd  * cpu_exec_ecoff_hook():
   1621   1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1622   1.1       cgd  *
   1623   1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1624   1.1       cgd  *
   1625   1.1       cgd  */
   1626   1.1       cgd int
   1627  1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1628   1.1       cgd 	struct proc *p;
   1629   1.1       cgd 	struct exec_package *epp;
   1630   1.1       cgd {
   1631  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1632   1.5  christos 	extern struct emul emul_netbsd;
   1633   1.5  christos #ifdef COMPAT_OSF1
   1634   1.5  christos 	extern struct emul emul_osf1;
   1635   1.5  christos #endif
   1636   1.1       cgd 
   1637  1.19       cgd 	switch (execp->f.f_magic) {
   1638   1.5  christos #ifdef COMPAT_OSF1
   1639   1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1640   1.5  christos 		epp->ep_emul = &emul_osf1;
   1641   1.1       cgd 		break;
   1642   1.5  christos #endif
   1643   1.1       cgd 
   1644   1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1645   1.5  christos 		epp->ep_emul = &emul_netbsd;
   1646   1.1       cgd 		break;
   1647   1.1       cgd 
   1648   1.1       cgd 	default:
   1649  1.12       cgd 		return ENOEXEC;
   1650   1.1       cgd 	}
   1651   1.1       cgd 	return 0;
   1652   1.1       cgd }
   1653   1.1       cgd #endif
   1654  1.50       cgd 
   1655  1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1656  1.50       cgd vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   1657  1.50       cgd 								/* XXX */
   1658  1.50       cgd vm_offset_t							/* XXX */
   1659  1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1660  1.51       cgd 	vm_offset_t v;						/* XXX */
   1661  1.50       cgd {								/* XXX */
   1662  1.50       cgd 								/* XXX */
   1663  1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1664  1.50       cgd }								/* XXX */
   1665  1.50       cgd /* XXX XXX END XXX XXX */
   1666