Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.8
      1  1.8       cgd /*	$NetBSD: machdep.c,v 1.8 1995/08/03 01:04:03 cgd Exp $	*/
      2  1.1       cgd 
      3  1.1       cgd /*
      4  1.1       cgd  * Copyright (c) 1994, 1995 Carnegie-Mellon University.
      5  1.1       cgd  * All rights reserved.
      6  1.1       cgd  *
      7  1.1       cgd  * Author: Chris G. Demetriou
      8  1.1       cgd  *
      9  1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10  1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11  1.1       cgd  * notice and this permission notice appear in all copies of the
     12  1.1       cgd  * software, derivative works or modified versions, and any portions
     13  1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14  1.1       cgd  *
     15  1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17  1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  1.1       cgd  *
     19  1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20  1.1       cgd  *
     21  1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22  1.1       cgd  *  School of Computer Science
     23  1.1       cgd  *  Carnegie Mellon University
     24  1.1       cgd  *  Pittsburgh PA 15213-3890
     25  1.1       cgd  *
     26  1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27  1.1       cgd  * rights to redistribute these changes.
     28  1.1       cgd  */
     29  1.1       cgd 
     30  1.1       cgd #include <sys/param.h>
     31  1.1       cgd #include <sys/systm.h>
     32  1.1       cgd #include <sys/signalvar.h>
     33  1.1       cgd #include <sys/kernel.h>
     34  1.1       cgd #include <sys/map.h>
     35  1.1       cgd #include <sys/proc.h>
     36  1.1       cgd #include <sys/buf.h>
     37  1.1       cgd #include <sys/reboot.h>
     38  1.1       cgd #include <sys/conf.h>
     39  1.1       cgd #include <sys/file.h>
     40  1.1       cgd #ifdef REAL_CLISTS
     41  1.1       cgd #include <sys/clist.h>
     42  1.1       cgd #endif
     43  1.1       cgd #include <sys/callout.h>
     44  1.1       cgd #include <sys/malloc.h>
     45  1.1       cgd #include <sys/mbuf.h>
     46  1.1       cgd #include <sys/msgbuf.h>
     47  1.1       cgd #include <sys/ioctl.h>
     48  1.1       cgd #include <sys/tty.h>
     49  1.1       cgd #include <sys/user.h>
     50  1.1       cgd #include <sys/exec.h>
     51  1.1       cgd #include <sys/exec_ecoff.h>
     52  1.1       cgd #include <sys/sysctl.h>
     53  1.1       cgd #ifdef SYSVMSG
     54  1.1       cgd #include <sys/msg.h>
     55  1.1       cgd #endif
     56  1.1       cgd #ifdef SYSVSEM
     57  1.1       cgd #include <sys/sem.h>
     58  1.1       cgd #endif
     59  1.1       cgd #ifdef SYSVSHM
     60  1.1       cgd #include <sys/shm.h>
     61  1.1       cgd #endif
     62  1.1       cgd 
     63  1.1       cgd #include <sys/mount.h>
     64  1.1       cgd #include <sys/syscallargs.h>
     65  1.1       cgd 
     66  1.1       cgd #include <vm/vm_kern.h>
     67  1.1       cgd 
     68  1.1       cgd #include <dev/cons.h>
     69  1.1       cgd 
     70  1.1       cgd #include <machine/cpu.h>
     71  1.1       cgd #include <machine/reg.h>
     72  1.1       cgd #include <machine/rpb.h>
     73  1.1       cgd #include <machine/prom.h>
     74  1.1       cgd 
     75  1.8       cgd #ifdef DEC_3000_500
     76  1.8       cgd #include <alpha/alpha/dec_3000_500.h>
     77  1.8       cgd #endif
     78  1.8       cgd #ifdef DEC_3000_300
     79  1.8       cgd #include <alpha/alpha/dec_3000_300.h>
     80  1.8       cgd #endif
     81  1.8       cgd #ifdef DEC_2100_A50
     82  1.8       cgd #include <alpha/alpha/dec_2100_a50.h>
     83  1.8       cgd #endif
     84  1.8       cgd 
     85  1.1       cgd #include <net/netisr.h>
     86  1.1       cgd #include "ether.h"
     87  1.1       cgd 
     88  1.1       cgd #include "le.h"			/* XXX for le_iomem creation */
     89  1.1       cgd #include "esp.h"		/* XXX for esp_iomem creation */
     90  1.1       cgd 
     91  1.1       cgd vm_map_t buffer_map;
     92  1.1       cgd 
     93  1.7       cgd void dumpsys __P((void));
     94  1.7       cgd 
     95  1.1       cgd /*
     96  1.1       cgd  * Declare these as initialized data so we can patch them.
     97  1.1       cgd  */
     98  1.1       cgd int	nswbuf = 0;
     99  1.1       cgd #ifdef	NBUF
    100  1.1       cgd int	nbuf = NBUF;
    101  1.1       cgd #else
    102  1.1       cgd int	nbuf = 0;
    103  1.1       cgd #endif
    104  1.1       cgd #ifdef	BUFPAGES
    105  1.1       cgd int	bufpages = BUFPAGES;
    106  1.1       cgd #else
    107  1.1       cgd int	bufpages = 0;
    108  1.1       cgd #endif
    109  1.1       cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    110  1.1       cgd int	maxmem;			/* max memory per process */
    111  1.7       cgd 
    112  1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    113  1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    114  1.7       cgd int	firstusablepage;	/* first usable memory page */
    115  1.7       cgd int	lastusablepage;		/* last usable memory page */
    116  1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    117  1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    118  1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    119  1.1       cgd 
    120  1.1       cgd int	cputype;		/* system type, from the RPB */
    121  1.1       cgd 
    122  1.1       cgd /*
    123  1.1       cgd  * XXX We need an address to which we can assign things so that they
    124  1.1       cgd  * won't be optimized away because we didn't use the value.
    125  1.1       cgd  */
    126  1.1       cgd u_int32_t no_optimize;
    127  1.1       cgd 
    128  1.1       cgd /* the following is used externally (sysctl_hw) */
    129  1.1       cgd char	machine[] = "alpha";
    130  1.2       cgd char	*cpu_model;
    131  1.1       cgd char	*model_names[] = {
    132  1.2       cgd 	"UNKNOWN (0)",
    133  1.2       cgd 	"Alpha Demonstration Unit",
    134  1.2       cgd 	"DEC 4000 (\"Cobra\")",
    135  1.2       cgd 	"DEC 7000 (\"Ruby\")",
    136  1.2       cgd 	"DEC 3000/500 (\"Flamingo\") family",
    137  1.2       cgd 	"UNKNOWN (5)",
    138  1.2       cgd 	"DEC 2000/300 (\"Jensen\")",
    139  1.2       cgd 	"DEC 3000/300 (\"Pelican\")",
    140  1.2       cgd 	"UNKNOWN (8)",
    141  1.2       cgd 	"DEC 2100/A500 (\"Sable\")",
    142  1.2       cgd 	"AXPvme 64",
    143  1.2       cgd 	"AXPpci 33 (\"NoName\")",
    144  1.2       cgd 	"UNKNOWN (12)",
    145  1.7       cgd 	"DEC 2100/A50 (\"Avanti\") family",
    146  1.2       cgd 	"Mustang",
    147  1.2       cgd 	"DEC 1000 (\"Mikasa\")",
    148  1.1       cgd };
    149  1.1       cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    150  1.1       cgd 
    151  1.1       cgd struct	user *proc0paddr;
    152  1.1       cgd 
    153  1.1       cgd /* Number of machine cycles per microsecond */
    154  1.1       cgd u_int64_t	cycles_per_usec;
    155  1.1       cgd 
    156  1.1       cgd /* some memory areas for device DMA.  "ick." */
    157  1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    158  1.1       cgd caddr_t		esp_iomem;		/* XXX iomem for SCSI DMA */
    159  1.1       cgd 
    160  1.1       cgd /* Interrupt vectors (in locore) */
    161  1.1       cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    162  1.1       cgd 
    163  1.7       cgd /* number of cpus in the box.  really! */
    164  1.7       cgd int		ncpus;
    165  1.7       cgd 
    166  1.8       cgd /* various CPU-specific functions. */
    167  1.8       cgd char		*(*cpu_modelname) __P((void));
    168  1.8       cgd void		(*cpu_consinit) __P((char *));
    169  1.8       cgd dev_t		(*cpu_bootdev) __P((char *));
    170  1.8       cgd char		*cpu_iobus;
    171  1.8       cgd 
    172  1.8       cgd char *boot_file, *boot_flags, *boot_console, *boot_dev;
    173  1.8       cgd 
    174  1.1       cgd int
    175  1.1       cgd alpha_init(pfn, ptb, argc, argv, envp)
    176  1.1       cgd 	u_long pfn;		/* first free PFN number */
    177  1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    178  1.1       cgd 	u_long argc;
    179  1.1       cgd 	char *argv[], *envp[];
    180  1.1       cgd {
    181  1.2       cgd 	extern char _end[];
    182  1.1       cgd 	caddr_t start, v;
    183  1.1       cgd 	struct mddt *mddtp;
    184  1.7       cgd 	int i, mddtweird;
    185  1.1       cgd 	char *p;
    186  1.1       cgd 
    187  1.1       cgd 	/*
    188  1.1       cgd 	 * Turn off interrupts and floating point.
    189  1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    190  1.1       cgd 	 */
    191  1.1       cgd 	(void)splhigh();
    192  1.1       cgd 	pal_wrfen(0);
    193  1.1       cgd 	TBIA();
    194  1.1       cgd 	IMB();
    195  1.1       cgd 
    196  1.1       cgd 	/*
    197  1.1       cgd 	 * get address of the restart block, while we the bootstrap
    198  1.1       cgd 	 * mapping is still around.
    199  1.1       cgd 	 */
    200  1.1       cgd 	hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
    201  1.1       cgd 
    202  1.1       cgd 	/*
    203  1.1       cgd 	 * Remember how many cycles there are per microsecond,
    204  1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    205  1.1       cgd 	 */
    206  1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    207  1.1       cgd 
    208  1.1       cgd 	/*
    209  1.1       cgd 	 * Init the PROM interface, so we can use printf
    210  1.1       cgd 	 * until PROM mappings go away in consinit.
    211  1.1       cgd 	 */
    212  1.1       cgd 	init_prom_interface();
    213  1.1       cgd 
    214  1.1       cgd 	/*
    215  1.1       cgd 	 * Point interrupt/exception vectors to our own.
    216  1.1       cgd 	 */
    217  1.1       cgd 	pal_wrent(XentInt, 0);
    218  1.1       cgd 	pal_wrent(XentArith, 1);
    219  1.1       cgd 	pal_wrent(XentMM, 2);
    220  1.1       cgd 	pal_wrent(XentIF, 3);
    221  1.1       cgd 	pal_wrent(XentUna, 4);
    222  1.1       cgd 	pal_wrent(XentSys, 5);
    223  1.1       cgd 
    224  1.1       cgd 	/*
    225  1.1       cgd 	 * Find out how much memory is available, by looking at
    226  1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    227  1.7       cgd 	 * its best to detect things things that have never been seen
    228  1.7       cgd 	 * before...
    229  1.7       cgd 	 *
    230  1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    231  1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    232  1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    233  1.1       cgd 	 */
    234  1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    235  1.7       cgd 
    236  1.7       cgd 	/*
    237  1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    238  1.7       cgd 	 */
    239  1.7       cgd 	mddtweird = 0;
    240  1.7       cgd 
    241  1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    242  1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    243  1.7       cgd 	if (cnt != 2 && cnt != 3) {
    244  1.7       cgd 		printf("WARNING: weird number (%d) of mem clusters\n", cnt);
    245  1.7       cgd 		mddtweird = 1;
    246  1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    247  1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    248  1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    249  1.7       cgd 		mddtweird = 1;
    250  1.7       cgd 		printf("WARNING: %d mem clusters, but weird config\n", cnt);
    251  1.7       cgd 	}
    252  1.7       cgd 
    253  1.7       cgd 	for (i = 0; i < cnt; i++) {
    254  1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    255  1.7       cgd 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    256  1.7       cgd 			    i, usage(i));
    257  1.7       cgd 			mddtweird = 1;
    258  1.7       cgd 		}
    259  1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    260  1.7       cgd 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    261  1.7       cgd 			mddtweird = 1;
    262  1.7       cgd 		}
    263  1.7       cgd 		/* XXX other things to check? */
    264  1.7       cgd 	}
    265  1.7       cgd #undef cnt
    266  1.7       cgd #undef usage
    267  1.7       cgd 
    268  1.7       cgd 	if (mddtweird) {
    269  1.7       cgd 		printf("\n");
    270  1.7       cgd 		printf("complete memory cluster information:\n");
    271  1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    272  1.2       cgd 			printf("mddt %d:\n", i);
    273  1.2       cgd 			printf("\tpfn %lx\n",
    274  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    275  1.2       cgd 			printf("\tcnt %lx\n",
    276  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    277  1.2       cgd 			printf("\ttest %lx\n",
    278  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    279  1.2       cgd 			printf("\tbva %lx\n",
    280  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    281  1.2       cgd 			printf("\tbpa %lx\n",
    282  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    283  1.2       cgd 			printf("\tbcksum %lx\n",
    284  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    285  1.2       cgd 			printf("\tusage %lx\n",
    286  1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    287  1.2       cgd 		}
    288  1.7       cgd 		printf("\n");
    289  1.2       cgd 	}
    290  1.7       cgd 	/*
    291  1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    292  1.7       cgd 	 */
    293  1.2       cgd 
    294  1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    295  1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    296  1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    297  1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    298  1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    299  1.7       cgd 			unknownmem += pgcnt(i);
    300  1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    301  1.7       cgd 			resvmem += pgcnt(i);
    302  1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    303  1.7       cgd 			/*
    304  1.7       cgd 			 * assumes that the system cluster listed is
    305  1.7       cgd 			 * one we're in...
    306  1.7       cgd 			 */
    307  1.7       cgd 			if (physmem != resvmem) {
    308  1.7       cgd 				physmem += pgcnt(i);
    309  1.7       cgd 				firstusablepage =
    310  1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    311  1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    312  1.7       cgd 			} else
    313  1.7       cgd 				unusedmem += pgcnt(i);
    314  1.7       cgd 		}
    315  1.7       cgd #undef usage
    316  1.7       cgd #undef pgcnt
    317  1.1       cgd 	}
    318  1.7       cgd 	if (totalphysmem == 0)
    319  1.1       cgd 		panic("can't happen: system seems to have no memory!");
    320  1.1       cgd 	maxmem = physmem;
    321  1.1       cgd 
    322  1.7       cgd #if 0
    323  1.7       cgd 	printf("totalphysmem = %d\n", totalphysmem);
    324  1.7       cgd 	printf("physmem = %d\n", physmem);
    325  1.7       cgd 	printf("firstusablepage = %d\n", firstusablepage);
    326  1.7       cgd 	printf("lastusablepage = %d\n", lastusablepage);
    327  1.7       cgd 	printf("resvmem = %d\n", resvmem);
    328  1.7       cgd 	printf("unusedmem = %d\n", unusedmem);
    329  1.7       cgd 	printf("unknownmem = %d\n", unknownmem);
    330  1.7       cgd #endif
    331  1.7       cgd 
    332  1.1       cgd 	/*
    333  1.1       cgd 	 * find out this CPU's page size
    334  1.1       cgd 	 */
    335  1.1       cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    336  1.1       cgd 
    337  1.2       cgd 	v = (caddr_t)alpha_round_page(_end);
    338  1.1       cgd 	/*
    339  1.1       cgd 	 * Init mapping for u page(s) for proc 0
    340  1.1       cgd 	 */
    341  1.1       cgd 	start = v;
    342  1.1       cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    343  1.1       cgd 	v += UPAGES * NBPG;
    344  1.1       cgd 
    345  1.1       cgd 	/*
    346  1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    347  1.1       cgd 	 */
    348  1.1       cgd 	cputype = hwrpb->rpb_type;
    349  1.1       cgd 	switch (cputype) {
    350  1.2       cgd #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    351  1.1       cgd 	case ST_DEC_3000_500:
    352  1.8       cgd 		cpu_modelname = dec_3000_500_modelname;
    353  1.8       cgd 		cpu_consinit = dec_3000_500_consinit;
    354  1.8       cgd 		cpu_bootdev = dec_3000_500_bootdev;
    355  1.8       cgd 		cpu_iobus = "tc";
    356  1.2       cgd 		break;
    357  1.2       cgd #endif
    358  1.2       cgd 
    359  1.2       cgd #ifdef DEC_3000_300
    360  1.2       cgd 	case ST_DEC_3000_300:
    361  1.8       cgd 		cpu_modelname = dec_3000_300_modelname;
    362  1.8       cgd 		cpu_consinit = dec_3000_300_consinit;
    363  1.8       cgd 		cpu_bootdev = dec_3000_300_bootdev;
    364  1.8       cgd 		cpu_iobus = "tc";
    365  1.2       cgd 		break;
    366  1.2       cgd #endif
    367  1.2       cgd 
    368  1.2       cgd #ifdef DEC_2100_A50
    369  1.2       cgd 	case ST_DEC_2100_A50:
    370  1.8       cgd 		cpu_modelname = dec_2100_a50_modelname;
    371  1.8       cgd 		cpu_consinit = dec_2100_a50_consinit;
    372  1.8       cgd 		cpu_bootdev = dec_2100_a50_bootdev;
    373  1.8       cgd 		cpu_iobus = "apecs";
    374  1.2       cgd 		break;
    375  1.2       cgd #endif
    376  1.2       cgd 
    377  1.8       cgd #ifdef DEC_2000_300
    378  1.8       cgd 	case ST_DEC_2000_300:
    379  1.8       cgd 		cpu_modelname = dec_2000_300_modelname;
    380  1.8       cgd 		cpu_consinit = dec_2000_300_consinit;
    381  1.8       cgd 		cpu_bootdev = dec_2000_300_bootdev;
    382  1.8       cgd 		cpu_iobus = "ibus";
    383  1.8       cgd 	XXX DEC 2000/300 NOT SUPPORTED
    384  1.2       cgd #endif
    385  1.2       cgd 
    386  1.8       cgd #if defined(ADU) || defined(DEC_4000) || defined(DEC_7000) || \
    387  1.8       cgd     defined(DEC_2100_A500) || defined(DEC_AXPVME_64) || \
    388  1.8       cgd     defined(DEC_AXPPCI_33) || defined(DEC_MUSTANG) || \
    389  1.8       cgd     defined(DEC_1000)
    390  1.8       cgd 	THIS SYSTEM NOT SUPPORTED
    391  1.2       cgd #endif
    392  1.2       cgd 
    393  1.1       cgd 	default:
    394  1.1       cgd 		if (cputype > nmodel_names)
    395  1.1       cgd 			panic("Unknown system type %d", cputype);
    396  1.1       cgd 		else
    397  1.1       cgd 			panic("Support for %s system type not in kernel.",
    398  1.1       cgd 			    model_names[cputype]);
    399  1.1       cgd 	}
    400  1.8       cgd 
    401  1.8       cgd 	cpu_model = (*cpu_modelname)();
    402  1.2       cgd 	if (cpu_model == NULL)
    403  1.2       cgd 		cpu_model = model_names[cputype];
    404  1.1       cgd 
    405  1.1       cgd #if NLE > 0
    406  1.1       cgd 	/*
    407  1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    408  1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    409  1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    410  1.1       cgd 	 */
    411  1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    412  1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    413  1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    414  1.7       cgd 		le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
    415  1.1       cgd 	}
    416  1.1       cgd #endif /* NLE */
    417  1.1       cgd #if NESP > 0
    418  1.1       cgd 	/*
    419  1.1       cgd 	 * Ditto for the scsi chip. There is probably a way to make esp.c
    420  1.1       cgd 	 * do dma without these buffers, but it would require major
    421  1.1       cgd 	 * re-engineering of the esp driver.
    422  1.1       cgd 	 * They must be 8K in size and page aligned.
    423  1.1       cgd 	 */
    424  1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    425  1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    426  1.7       cgd 		lastusablepage -= btoc(NESP * 8192);
    427  1.7       cgd 		esp_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
    428  1.1       cgd 	}
    429  1.1       cgd #endif /* NESP */
    430  1.1       cgd 
    431  1.1       cgd 	/*
    432  1.1       cgd 	 * Initialize error message buffer (at end of core).
    433  1.1       cgd 	 */
    434  1.7       cgd 	lastusablepage -= btoc(sizeof (struct msgbuf));
    435  1.7       cgd 	msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
    436  1.1       cgd 	msgbufmapped = 1;
    437  1.1       cgd 
    438  1.1       cgd 	/*
    439  1.1       cgd 	 * Allocate space for system data structures.
    440  1.1       cgd 	 * The first available kernel virtual address is in "v".
    441  1.1       cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    442  1.1       cgd 	 *
    443  1.1       cgd 	 * These data structures are allocated here instead of cpu_startup()
    444  1.1       cgd 	 * because physical memory is directly addressable. We don't have
    445  1.1       cgd 	 * to map these into virtual address space.
    446  1.1       cgd 	 */
    447  1.1       cgd #define valloc(name, type, num) \
    448  1.1       cgd 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
    449  1.1       cgd #define valloclim(name, type, num, lim) \
    450  1.1       cgd 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
    451  1.1       cgd #ifdef REAL_CLISTS
    452  1.1       cgd 	valloc(cfree, struct cblock, nclist);
    453  1.1       cgd #endif
    454  1.1       cgd 	valloc(callout, struct callout, ncallout);
    455  1.1       cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    456  1.1       cgd #ifdef SYSVSHM
    457  1.1       cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    458  1.1       cgd #endif
    459  1.1       cgd #ifdef SYSVSEM
    460  1.1       cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    461  1.1       cgd 	valloc(sem, struct sem, seminfo.semmns);
    462  1.1       cgd 	/* This is pretty disgusting! */
    463  1.1       cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    464  1.1       cgd #endif
    465  1.1       cgd #ifdef SYSVMSG
    466  1.1       cgd 	valloc(msgpool, char, msginfo.msgmax);
    467  1.1       cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    468  1.1       cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    469  1.1       cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    470  1.1       cgd #endif
    471  1.1       cgd 
    472  1.1       cgd 	/*
    473  1.1       cgd 	 * Determine how many buffers to allocate.
    474  1.1       cgd 	 * We allocate the BSD standard of 10% of memory for the first
    475  1.1       cgd 	 * 2 Meg, and 5% of remaining memory for buffer space.  Insure a
    476  1.1       cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    477  1.1       cgd 	 * headers as file i/o buffers.
    478  1.1       cgd 	 */
    479  1.1       cgd 	if (bufpages == 0)
    480  1.7       cgd 		bufpages = (btoc(2 * 1024 * 1024) + physmem) /
    481  1.1       cgd 		    (20 * CLSIZE);
    482  1.1       cgd 	if (nbuf == 0) {
    483  1.1       cgd 		nbuf = bufpages;
    484  1.1       cgd 		if (nbuf < 16)
    485  1.1       cgd 			nbuf = 16;
    486  1.1       cgd 	}
    487  1.1       cgd 	if (nswbuf == 0) {
    488  1.1       cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    489  1.1       cgd 		if (nswbuf > 256)
    490  1.1       cgd 			nswbuf = 256;		/* sanity */
    491  1.1       cgd 	}
    492  1.1       cgd 	valloc(swbuf, struct buf, nswbuf);
    493  1.1       cgd 	valloc(buf, struct buf, nbuf);
    494  1.1       cgd 
    495  1.1       cgd 	/*
    496  1.1       cgd 	 * Clear allocated memory.
    497  1.1       cgd 	 */
    498  1.1       cgd 	bzero(start, v - start);
    499  1.1       cgd 
    500  1.1       cgd 	/*
    501  1.1       cgd 	 * Initialize the virtual memory system, and set the
    502  1.1       cgd 	 * page table base register in proc 0's PCB.
    503  1.1       cgd 	 */
    504  1.1       cgd 	pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
    505  1.1       cgd 
    506  1.1       cgd 	/*
    507  1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    508  1.3       cgd 	 * address.
    509  1.3       cgd 	 */
    510  1.3       cgd 	proc0.p_md.md_pcbpaddr =
    511  1.3       cgd 	    (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
    512  1.3       cgd 
    513  1.3       cgd 	/*
    514  1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    515  1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    516  1.3       cgd 	 */
    517  1.3       cgd 	proc0paddr->u_pcb.pcb_ksp =
    518  1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    519  1.3       cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
    520  1.1       cgd 
    521  1.1       cgd 	/*
    522  1.8       cgd 	 * figure out what arguments we have
    523  1.8       cgd 	 */
    524  1.8       cgd 	switch (argc) {
    525  1.8       cgd 	default:
    526  1.8       cgd 		printf("weird number of arguments from boot: %d\n", argc);
    527  1.8       cgd 		if (argc < 1)
    528  1.8       cgd 			break;
    529  1.8       cgd 		/* FALLTHRU */
    530  1.8       cgd 	case 4:
    531  1.8       cgd 		boot_dev = argv[3];
    532  1.8       cgd 		/* FALLTHRU */
    533  1.8       cgd 	case 3:
    534  1.8       cgd 		boot_console = argv[2];
    535  1.8       cgd 		/* FALLTHRU */
    536  1.8       cgd 	case 2:
    537  1.8       cgd 		boot_flags = argv[1];
    538  1.8       cgd 		/* FALLTHRU */
    539  1.8       cgd 	case 1:
    540  1.8       cgd 		boot_file = argv[0];
    541  1.8       cgd 		/* FALLTHRU */
    542  1.8       cgd 	}
    543  1.8       cgd 
    544  1.8       cgd 	/*
    545  1.1       cgd 	 * Look at arguments and compute bootdev.
    546  1.8       cgd 	 * XXX NOT HERE.
    547  1.1       cgd 	 */
    548  1.8       cgd #if 0
    549  1.8       cgd 	{							/* XXX */
    550  1.8       cgd 		extern dev_t bootdev;				/* XXX */
    551  1.8       cgd 		bootdev = (*cpu_bootdev)(boot_dev);
    552  1.8       cgd 	}							/* XXX */
    553  1.8       cgd #endif
    554  1.1       cgd 
    555  1.1       cgd 	/*
    556  1.1       cgd 	 * Look at arguments passed to us and compute boothowto.
    557  1.1       cgd 	 */
    558  1.8       cgd 	boothowto = RB_SINGLE;
    559  1.1       cgd #ifdef GENERIC
    560  1.8       cgd 	boothowto |= RB_ASKNAME;
    561  1.1       cgd #endif
    562  1.1       cgd #ifdef KADB
    563  1.1       cgd 	boothowto |= RB_KDB;
    564  1.1       cgd #endif
    565  1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    566  1.8       cgd 		switch (*p) {
    567  1.8       cgd 		case 'a': /* autoboot */
    568  1.8       cgd 		case 'A': /* DEC's notion of autoboot */
    569  1.8       cgd 			boothowto &= ~RB_SINGLE;
    570  1.8       cgd 			break;
    571  1.8       cgd 
    572  1.8       cgd 		case 'd': /* use compiled in default root */
    573  1.8       cgd 			boothowto |= RB_DFLTROOT;
    574  1.8       cgd 			break;
    575  1.8       cgd 
    576  1.8       cgd 		case 'm': /* mini root present in memory */
    577  1.8       cgd 			boothowto |= RB_MINIROOT;
    578  1.8       cgd 			break;
    579  1.8       cgd 
    580  1.8       cgd 		case 'n': /* ask for names */
    581  1.8       cgd 			boothowto |= RB_ASKNAME;
    582  1.8       cgd 			break;
    583  1.1       cgd 
    584  1.8       cgd 		case 'N': /* don't ask for names */
    585  1.8       cgd 			boothowto &= ~RB_ASKNAME;
    586  1.1       cgd 		}
    587  1.1       cgd 	}
    588  1.1       cgd 
    589  1.7       cgd 	/*
    590  1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    591  1.7       cgd 	 * Really.  We mean it.
    592  1.7       cgd 	 */
    593  1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    594  1.7       cgd 		struct pcs *pcsp;
    595  1.7       cgd 
    596  1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    597  1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    598  1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    599  1.7       cgd 			ncpus++;
    600  1.7       cgd 	}
    601  1.7       cgd 
    602  1.1       cgd 	return (0);
    603  1.1       cgd }
    604  1.1       cgd 
    605  1.1       cgd consinit()
    606  1.1       cgd {
    607  1.1       cgd 
    608  1.8       cgd 	cpu_consinit(boot_console);
    609  1.1       cgd 	pmap_unmap_prom();
    610  1.1       cgd }
    611  1.1       cgd 
    612  1.1       cgd cpu_startup()
    613  1.1       cgd {
    614  1.1       cgd 	register unsigned i;
    615  1.1       cgd 	register caddr_t v;
    616  1.1       cgd 	int base, residual;
    617  1.1       cgd 	vm_offset_t minaddr, maxaddr;
    618  1.1       cgd 	vm_size_t size;
    619  1.1       cgd #ifdef DEBUG
    620  1.1       cgd 	extern int pmapdebug;
    621  1.1       cgd 	int opmapdebug = pmapdebug;
    622  1.1       cgd 
    623  1.1       cgd 	pmapdebug = 0;
    624  1.1       cgd #endif
    625  1.1       cgd 
    626  1.1       cgd 	/*
    627  1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    628  1.1       cgd 	 */
    629  1.1       cgd 	printf(version);
    630  1.1       cgd 	identifycpu();
    631  1.7       cgd 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    632  1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    633  1.7       cgd 	if (unusedmem)
    634  1.7       cgd 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    635  1.7       cgd 	if (unknownmem)
    636  1.7       cgd 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    637  1.7       cgd 		    ctob(unknownmem));
    638  1.1       cgd 
    639  1.1       cgd 	/*
    640  1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    641  1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    642  1.1       cgd 	 * and usually occupy more virtual memory than physical.
    643  1.1       cgd 	 */
    644  1.1       cgd 	size = MAXBSIZE * nbuf;
    645  1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    646  1.1       cgd 	    &maxaddr, size, TRUE);
    647  1.1       cgd 	minaddr = (vm_offset_t)buffers;
    648  1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    649  1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    650  1.1       cgd 		panic("startup: cannot allocate buffers");
    651  1.1       cgd 	base = bufpages / nbuf;
    652  1.1       cgd 	residual = bufpages % nbuf;
    653  1.1       cgd 	for (i = 0; i < nbuf; i++) {
    654  1.1       cgd 		vm_size_t curbufsize;
    655  1.1       cgd 		vm_offset_t curbuf;
    656  1.1       cgd 
    657  1.1       cgd 		/*
    658  1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    659  1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    660  1.1       cgd 		 *
    661  1.1       cgd 		 * The rest of each buffer occupies virtual space,
    662  1.1       cgd 		 * but has no physical memory allocated for it.
    663  1.1       cgd 		 */
    664  1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    665  1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    666  1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    667  1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    668  1.1       cgd 	}
    669  1.1       cgd 	/*
    670  1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    671  1.1       cgd 	 * limits the number of processes exec'ing at any time.
    672  1.1       cgd 	 */
    673  1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    674  1.1       cgd 				 16 * NCARGS, TRUE);
    675  1.1       cgd 
    676  1.1       cgd 	/*
    677  1.1       cgd 	 * Allocate a submap for physio
    678  1.1       cgd 	 */
    679  1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    680  1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    681  1.1       cgd 
    682  1.1       cgd 	/*
    683  1.1       cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    684  1.1       cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    685  1.1       cgd 	 */
    686  1.1       cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    687  1.1       cgd 	    M_MBUF, M_NOWAIT);
    688  1.1       cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    689  1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    690  1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    691  1.1       cgd 	/*
    692  1.1       cgd 	 * Initialize callouts
    693  1.1       cgd 	 */
    694  1.1       cgd 	callfree = callout;
    695  1.1       cgd 	for (i = 1; i < ncallout; i++)
    696  1.1       cgd 		callout[i-1].c_next = &callout[i];
    697  1.1       cgd 	callout[i-1].c_next = NULL;
    698  1.1       cgd 
    699  1.1       cgd #ifdef DEBUG
    700  1.1       cgd 	pmapdebug = opmapdebug;
    701  1.1       cgd #endif
    702  1.1       cgd 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    703  1.1       cgd 	printf("using %ld buffers containing %ld bytes of memory\n",
    704  1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    705  1.1       cgd 
    706  1.1       cgd 	/*
    707  1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    708  1.1       cgd 	 */
    709  1.1       cgd 	bufinit();
    710  1.1       cgd 
    711  1.1       cgd 	/*
    712  1.1       cgd 	 * Configure the system.
    713  1.1       cgd 	 */
    714  1.1       cgd 	configure();
    715  1.1       cgd }
    716  1.1       cgd 
    717  1.1       cgd identifycpu()
    718  1.1       cgd {
    719  1.1       cgd 
    720  1.7       cgd 	/*
    721  1.7       cgd 	 * print out CPU identification information.
    722  1.7       cgd 	 */
    723  1.7       cgd 	printf("%s, %dMHz\n", cpu_model,
    724  1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    725  1.7       cgd 	printf("%d byte page size, %d processor%s.\n",
    726  1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    727  1.7       cgd #if 0
    728  1.7       cgd 	/* this isn't defined for any systems that we run on? */
    729  1.7       cgd 	printf("serial number 0x%lx 0x%lx\n",
    730  1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    731  1.7       cgd 
    732  1.7       cgd 	/* and these aren't particularly useful! */
    733  1.1       cgd 	printf("variation: 0x%lx, revision 0x%lx\n",
    734  1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    735  1.7       cgd #endif
    736  1.1       cgd }
    737  1.1       cgd 
    738  1.1       cgd int	waittime = -1;
    739  1.7       cgd struct pcb dumppcb;
    740  1.1       cgd 
    741  1.1       cgd boot(howto)
    742  1.1       cgd 	int howto;
    743  1.1       cgd {
    744  1.1       cgd 	extern int cold;
    745  1.1       cgd 
    746  1.1       cgd 	/* If system is cold, just halt. */
    747  1.1       cgd 	if (cold) {
    748  1.1       cgd 		howto |= RB_HALT;
    749  1.1       cgd 		goto haltsys;
    750  1.1       cgd 	}
    751  1.1       cgd 
    752  1.7       cgd 	boothowto = howto;
    753  1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    754  1.1       cgd 		waittime = 0;
    755  1.7       cgd 		vfs_shutdown();
    756  1.1       cgd 		/*
    757  1.1       cgd 		 * If we've been adjusting the clock, the todr
    758  1.1       cgd 		 * will be out of synch; adjust it now.
    759  1.1       cgd 		 */
    760  1.1       cgd 		resettodr();
    761  1.1       cgd 	}
    762  1.1       cgd 
    763  1.1       cgd 	/* Disable interrupts. */
    764  1.1       cgd 	splhigh();
    765  1.1       cgd 
    766  1.7       cgd 	/* If rebooting and a dump is requested do it. */
    767  1.7       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    768  1.7       cgd 		savectx(&dumppcb, 0);
    769  1.1       cgd 		dumpsys();
    770  1.7       cgd 	}
    771  1.6       cgd 
    772  1.6       cgd 	/* run any shutdown hooks */
    773  1.6       cgd 	doshutdownhooks();
    774  1.1       cgd 
    775  1.1       cgd haltsys:
    776  1.7       cgd 
    777  1.7       cgd #ifdef BOOTKEY
    778  1.7       cgd 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    779  1.7       cgd 	cngetc();
    780  1.7       cgd 	printf("\n");
    781  1.7       cgd #endif
    782  1.7       cgd 
    783  1.1       cgd 	/* Finally, halt/reboot the system. */
    784  1.1       cgd 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    785  1.1       cgd 	prom_halt(howto & RB_HALT);
    786  1.1       cgd 	/*NOTREACHED*/
    787  1.1       cgd }
    788  1.1       cgd 
    789  1.7       cgd /*
    790  1.7       cgd  * These variables are needed by /sbin/savecore
    791  1.7       cgd  */
    792  1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    793  1.7       cgd int 	dumpsize = 0;		/* pages */
    794  1.7       cgd long	dumplo = 0; 		/* blocks */
    795  1.7       cgd 
    796  1.7       cgd /*
    797  1.7       cgd  * This is called by configure to set dumplo and dumpsize.
    798  1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    799  1.7       cgd  * in case there might be a disk label stored there.
    800  1.7       cgd  * If there is extra space, put dump at the end to
    801  1.7       cgd  * reduce the chance that swapping trashes it.
    802  1.7       cgd  */
    803  1.7       cgd void
    804  1.7       cgd dumpconf()
    805  1.7       cgd {
    806  1.7       cgd 	int nblks;	/* size of dump area */
    807  1.7       cgd 	int maj;
    808  1.7       cgd 
    809  1.7       cgd 	if (dumpdev == NODEV)
    810  1.7       cgd 		return;
    811  1.7       cgd 	maj = major(dumpdev);
    812  1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    813  1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    814  1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    815  1.7       cgd 		return;
    816  1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    817  1.7       cgd 	if (nblks <= ctod(1))
    818  1.7       cgd 		return;
    819  1.7       cgd 
    820  1.7       cgd 	/* XXX XXX XXX STARTING MEMORY LOCATION */
    821  1.7       cgd 	dumpsize = physmem;
    822  1.7       cgd 
    823  1.7       cgd 	/* Always skip the first CLBYTES, in case there is a label there. */
    824  1.7       cgd 	if (dumplo < ctod(1))
    825  1.7       cgd 		dumplo = ctod(1);
    826  1.7       cgd 
    827  1.7       cgd 	/* Put dump at end of partition, and make it fit. */
    828  1.7       cgd 	if (dumpsize > dtoc(nblks - dumplo))
    829  1.7       cgd 		dumpsize = dtoc(nblks - dumplo);
    830  1.7       cgd 	if (dumplo < nblks - ctod(dumpsize))
    831  1.7       cgd 		dumplo = nblks - ctod(dumpsize);
    832  1.7       cgd }
    833  1.7       cgd 
    834  1.7       cgd /*
    835  1.7       cgd  * Doadump comes here after turning off memory management and
    836  1.7       cgd  * getting on the dump stack, either when called above, or by
    837  1.7       cgd  * the auto-restart code.
    838  1.7       cgd  */
    839  1.7       cgd void
    840  1.7       cgd dumpsys()
    841  1.7       cgd {
    842  1.7       cgd 
    843  1.7       cgd 	msgbufmapped = 0;
    844  1.7       cgd 	if (dumpdev == NODEV)
    845  1.7       cgd 		return;
    846  1.7       cgd 	if (dumpsize == 0) {
    847  1.7       cgd 		dumpconf();
    848  1.7       cgd 		if (dumpsize == 0)
    849  1.7       cgd 			return;
    850  1.7       cgd 	}
    851  1.7       cgd 	printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
    852  1.7       cgd 
    853  1.7       cgd 	printf("dump ");
    854  1.7       cgd 	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
    855  1.7       cgd 
    856  1.7       cgd 	case ENXIO:
    857  1.7       cgd 		printf("device bad\n");
    858  1.7       cgd 		break;
    859  1.7       cgd 
    860  1.7       cgd 	case EFAULT:
    861  1.7       cgd 		printf("device not ready\n");
    862  1.7       cgd 		break;
    863  1.7       cgd 
    864  1.7       cgd 	case EINVAL:
    865  1.7       cgd 		printf("area improper\n");
    866  1.7       cgd 		break;
    867  1.7       cgd 
    868  1.7       cgd 	case EIO:
    869  1.7       cgd 		printf("i/o error\n");
    870  1.7       cgd 		break;
    871  1.7       cgd 
    872  1.7       cgd 	case EINTR:
    873  1.7       cgd 		printf("aborted from console\n");
    874  1.7       cgd 		break;
    875  1.7       cgd 
    876  1.7       cgd 	default:
    877  1.7       cgd 		printf("succeeded\n");
    878  1.7       cgd 		break;
    879  1.7       cgd 	}
    880  1.7       cgd 	printf("\n\n");
    881  1.7       cgd 	delay(1000);
    882  1.7       cgd }
    883  1.7       cgd 
    884  1.1       cgd void
    885  1.1       cgd frametoreg(framep, regp)
    886  1.1       cgd 	struct trapframe *framep;
    887  1.1       cgd 	struct reg *regp;
    888  1.1       cgd {
    889  1.1       cgd 
    890  1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    891  1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    892  1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    893  1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    894  1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    895  1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    896  1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    897  1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    898  1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    899  1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    900  1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    901  1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    902  1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    903  1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    904  1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    905  1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    906  1.1       cgd 	regp->r_regs[R_A0] = framep->tf_a0;
    907  1.1       cgd 	regp->r_regs[R_A1] = framep->tf_a1;
    908  1.1       cgd 	regp->r_regs[R_A2] = framep->tf_a2;
    909  1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    910  1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    911  1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    912  1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    913  1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    914  1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    915  1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    916  1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    917  1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    918  1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    919  1.1       cgd 	regp->r_regs[R_GP] = framep->tf_gp;
    920  1.1       cgd 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    921  1.1       cgd 	regp->r_regs[R_ZERO] = 0;
    922  1.1       cgd }
    923  1.1       cgd 
    924  1.1       cgd void
    925  1.1       cgd regtoframe(regp, framep)
    926  1.1       cgd 	struct reg *regp;
    927  1.1       cgd 	struct trapframe *framep;
    928  1.1       cgd {
    929  1.1       cgd 
    930  1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    931  1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    932  1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    933  1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    934  1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    935  1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    936  1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    937  1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    938  1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    939  1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    940  1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    941  1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    942  1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    943  1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    944  1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    945  1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    946  1.1       cgd 	framep->tf_a0 = regp->r_regs[R_A0];
    947  1.1       cgd 	framep->tf_a1 = regp->r_regs[R_A1];
    948  1.1       cgd 	framep->tf_a2 = regp->r_regs[R_A2];
    949  1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    950  1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    951  1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    952  1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    953  1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    954  1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    955  1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    956  1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    957  1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    958  1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    959  1.1       cgd 	framep->tf_gp = regp->r_regs[R_GP];
    960  1.1       cgd 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    961  1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
    962  1.1       cgd }
    963  1.1       cgd 
    964  1.1       cgd void
    965  1.1       cgd printregs(regp)
    966  1.1       cgd 	struct reg *regp;
    967  1.1       cgd {
    968  1.1       cgd 	int i;
    969  1.1       cgd 
    970  1.1       cgd 	for (i = 0; i < 32; i++)
    971  1.1       cgd 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    972  1.1       cgd 		   i & 1 ? "\n" : "\t");
    973  1.1       cgd }
    974  1.1       cgd 
    975  1.1       cgd void
    976  1.1       cgd regdump(framep)
    977  1.1       cgd 	struct trapframe *framep;
    978  1.1       cgd {
    979  1.1       cgd 	struct reg reg;
    980  1.1       cgd 
    981  1.1       cgd 	frametoreg(framep, &reg);
    982  1.1       cgd 	printf("REGISTERS:\n");
    983  1.1       cgd 	printregs(&reg);
    984  1.1       cgd }
    985  1.1       cgd 
    986  1.1       cgd #ifdef DEBUG
    987  1.1       cgd int sigdebug = 0;
    988  1.1       cgd int sigpid = 0;
    989  1.1       cgd #define	SDB_FOLLOW	0x01
    990  1.1       cgd #define	SDB_KSTACK	0x02
    991  1.1       cgd #endif
    992  1.1       cgd 
    993  1.1       cgd /*
    994  1.1       cgd  * Send an interrupt to process.
    995  1.1       cgd  */
    996  1.1       cgd void
    997  1.1       cgd sendsig(catcher, sig, mask, code)
    998  1.1       cgd 	sig_t catcher;
    999  1.1       cgd 	int sig, mask;
   1000  1.1       cgd 	u_long code;
   1001  1.1       cgd {
   1002  1.1       cgd 	struct proc *p = curproc;
   1003  1.1       cgd 	struct sigcontext *scp, ksc;
   1004  1.1       cgd 	struct trapframe *frame;
   1005  1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1006  1.1       cgd 	int oonstack, fsize, rndfsize;
   1007  1.1       cgd 	extern char sigcode[], esigcode[];
   1008  1.1       cgd 	extern struct proc *fpcurproc;
   1009  1.1       cgd 
   1010  1.1       cgd 	frame = p->p_md.md_tf;
   1011  1.1       cgd 	oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
   1012  1.1       cgd 	fsize = sizeof ksc;
   1013  1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1014  1.1       cgd 	/*
   1015  1.1       cgd 	 * Allocate and validate space for the signal handler
   1016  1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1017  1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1018  1.1       cgd 	 * will fail if the process has not already allocated
   1019  1.1       cgd 	 * the space with a `brk'.
   1020  1.1       cgd 	 */
   1021  1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1022  1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1023  1.1       cgd 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
   1024  1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1025  1.1       cgd 		psp->ps_sigstk.ss_flags |= SA_ONSTACK;
   1026  1.1       cgd 	} else
   1027  1.1       cgd 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
   1028  1.1       cgd 		    rndfsize);
   1029  1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1030  1.1       cgd 		(void)grow(p, (u_long)scp);
   1031  1.1       cgd #ifdef DEBUG
   1032  1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1033  1.1       cgd 		printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
   1034  1.1       cgd 		    sig, &oonstack, scp);
   1035  1.1       cgd #endif
   1036  1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1037  1.1       cgd #ifdef DEBUG
   1038  1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1039  1.1       cgd 			printf("sendsig(%d): useracc failed on sig %d\n",
   1040  1.1       cgd 			    p->p_pid, sig);
   1041  1.1       cgd #endif
   1042  1.1       cgd 		/*
   1043  1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1044  1.1       cgd 		 * instruction to halt it in its tracks.
   1045  1.1       cgd 		 */
   1046  1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1047  1.1       cgd 		sig = sigmask(SIGILL);
   1048  1.1       cgd 		p->p_sigignore &= ~sig;
   1049  1.1       cgd 		p->p_sigcatch &= ~sig;
   1050  1.1       cgd 		p->p_sigmask &= ~sig;
   1051  1.1       cgd 		psignal(p, SIGILL);
   1052  1.1       cgd 		return;
   1053  1.1       cgd 	}
   1054  1.1       cgd 
   1055  1.1       cgd 	/*
   1056  1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1057  1.1       cgd 	 */
   1058  1.1       cgd 	ksc.sc_onstack = oonstack;
   1059  1.1       cgd 	ksc.sc_mask = mask;
   1060  1.1       cgd 	ksc.sc_pc = frame->tf_pc;
   1061  1.1       cgd 	ksc.sc_ps = frame->tf_ps;
   1062  1.1       cgd 
   1063  1.1       cgd 	/* copy the registers. */
   1064  1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1065  1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1066  1.1       cgd 
   1067  1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1068  1.1       cgd 	if (p == fpcurproc) {
   1069  1.1       cgd 		pal_wrfen(1);
   1070  1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1071  1.1       cgd 		pal_wrfen(0);
   1072  1.1       cgd 		fpcurproc = NULL;
   1073  1.1       cgd 	}
   1074  1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1075  1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1076  1.1       cgd 	    sizeof(struct fpreg));
   1077  1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1078  1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1079  1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1080  1.1       cgd 
   1081  1.1       cgd 
   1082  1.1       cgd #ifdef COMPAT_OSF1
   1083  1.1       cgd 	/*
   1084  1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1085  1.1       cgd 	 */
   1086  1.1       cgd #endif
   1087  1.1       cgd 
   1088  1.1       cgd 	/*
   1089  1.1       cgd 	 * copy the frame out to userland.
   1090  1.1       cgd 	 */
   1091  1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1092  1.1       cgd #ifdef DEBUG
   1093  1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1094  1.1       cgd 		printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
   1095  1.1       cgd 		    scp, code);
   1096  1.1       cgd #endif
   1097  1.1       cgd 
   1098  1.1       cgd 	/*
   1099  1.1       cgd 	 * Set up the registers to return to sigcode.
   1100  1.1       cgd 	 */
   1101  1.1       cgd 	frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1102  1.1       cgd 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
   1103  1.1       cgd 	frame->tf_a0 = sig;
   1104  1.1       cgd 	frame->tf_a1 = code;
   1105  1.1       cgd 	frame->tf_a2 = (u_int64_t)scp;
   1106  1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1107  1.1       cgd 
   1108  1.1       cgd #ifdef DEBUG
   1109  1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1110  1.1       cgd 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1111  1.1       cgd 		    frame->tf_pc, frame->tf_regs[FRAME_A3]);
   1112  1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1113  1.1       cgd 		printf("sendsig(%d): sig %d returns\n",
   1114  1.1       cgd 		    p->p_pid, sig);
   1115  1.1       cgd #endif
   1116  1.1       cgd }
   1117  1.1       cgd 
   1118  1.1       cgd /*
   1119  1.1       cgd  * System call to cleanup state after a signal
   1120  1.1       cgd  * has been taken.  Reset signal mask and
   1121  1.1       cgd  * stack state from context left by sendsig (above).
   1122  1.1       cgd  * Return to previous pc and psl as specified by
   1123  1.1       cgd  * context left by sendsig. Check carefully to
   1124  1.1       cgd  * make sure that the user has not modified the
   1125  1.1       cgd  * psl to gain improper priviledges or to cause
   1126  1.1       cgd  * a machine fault.
   1127  1.1       cgd  */
   1128  1.1       cgd /* ARGSUSED */
   1129  1.1       cgd sigreturn(p, uap, retval)
   1130  1.1       cgd 	struct proc *p;
   1131  1.1       cgd 	struct sigreturn_args /* {
   1132  1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1133  1.1       cgd 	} */ *uap;
   1134  1.1       cgd 	register_t *retval;
   1135  1.1       cgd {
   1136  1.1       cgd 	struct sigcontext *scp, ksc;
   1137  1.1       cgd 	extern struct proc *fpcurproc;
   1138  1.1       cgd 
   1139  1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1140  1.1       cgd #ifdef DEBUG
   1141  1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1142  1.1       cgd 	    printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
   1143  1.1       cgd #endif
   1144  1.1       cgd 
   1145  1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1146  1.1       cgd 		return (EINVAL);
   1147  1.1       cgd 
   1148  1.1       cgd 	/*
   1149  1.1       cgd 	 * Test and fetch the context structure.
   1150  1.1       cgd 	 * We grab it all at once for speed.
   1151  1.1       cgd 	 */
   1152  1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1153  1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1154  1.1       cgd 		return (EINVAL);
   1155  1.1       cgd 
   1156  1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1157  1.1       cgd 		return (EINVAL);
   1158  1.1       cgd 	/*
   1159  1.1       cgd 	 * Restore the user-supplied information
   1160  1.1       cgd 	 */
   1161  1.1       cgd 	if (ksc.sc_onstack)
   1162  1.1       cgd 		p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
   1163  1.1       cgd 	else
   1164  1.1       cgd 		p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
   1165  1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1166  1.1       cgd 
   1167  1.1       cgd 	p->p_md.md_tf->tf_pc = ksc.sc_pc;
   1168  1.1       cgd 	p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
   1169  1.1       cgd 
   1170  1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1171  1.1       cgd 
   1172  1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1173  1.1       cgd 	if (p == fpcurproc)
   1174  1.1       cgd 		fpcurproc = NULL;
   1175  1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1176  1.1       cgd 	    sizeof(struct fpreg));
   1177  1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1178  1.1       cgd 
   1179  1.1       cgd #ifdef DEBUG
   1180  1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1181  1.1       cgd 		printf("sigreturn(%d): returns\n", p->p_pid);
   1182  1.1       cgd #endif
   1183  1.1       cgd 	return (EJUSTRETURN);
   1184  1.1       cgd }
   1185  1.1       cgd 
   1186  1.1       cgd /*
   1187  1.1       cgd  * machine dependent system variables.
   1188  1.1       cgd  */
   1189  1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1190  1.1       cgd 	int *name;
   1191  1.1       cgd 	u_int namelen;
   1192  1.1       cgd 	void *oldp;
   1193  1.1       cgd 	size_t *oldlenp;
   1194  1.1       cgd 	void *newp;
   1195  1.1       cgd 	size_t newlen;
   1196  1.1       cgd 	struct proc *p;
   1197  1.1       cgd {
   1198  1.1       cgd 	dev_t consdev;
   1199  1.1       cgd 
   1200  1.1       cgd 	/* all sysctl names at this level are terminal */
   1201  1.1       cgd 	if (namelen != 1)
   1202  1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1203  1.1       cgd 
   1204  1.1       cgd 	switch (name[0]) {
   1205  1.1       cgd 	case CPU_CONSDEV:
   1206  1.1       cgd 		if (cn_tab != NULL)
   1207  1.1       cgd 			consdev = cn_tab->cn_dev;
   1208  1.1       cgd 		else
   1209  1.1       cgd 			consdev = NODEV;
   1210  1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1211  1.1       cgd 			sizeof consdev));
   1212  1.1       cgd 	default:
   1213  1.1       cgd 		return (EOPNOTSUPP);
   1214  1.1       cgd 	}
   1215  1.1       cgd 	/* NOTREACHED */
   1216  1.1       cgd }
   1217  1.1       cgd 
   1218  1.1       cgd /*
   1219  1.1       cgd  * Set registers on exec.
   1220  1.1       cgd  */
   1221  1.1       cgd void
   1222  1.5  christos setregs(p, pack, stack, retval)
   1223  1.1       cgd 	register struct proc *p;
   1224  1.5  christos 	struct exec_package *pack;
   1225  1.1       cgd 	u_long stack;
   1226  1.1       cgd 	register_t *retval;
   1227  1.1       cgd {
   1228  1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1229  1.1       cgd 	int i;
   1230  1.1       cgd 	extern struct proc *fpcurproc;
   1231  1.1       cgd 
   1232  1.1       cgd #ifdef DEBUG
   1233  1.1       cgd 	for (i = 0; i < FRAME_NSAVEREGS; i++)
   1234  1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1235  1.1       cgd 	tfp->tf_gp = 0xbabefacedeadbeef;
   1236  1.1       cgd 	tfp->tf_a0 = 0xbabefacedeadbeef;
   1237  1.1       cgd 	tfp->tf_a1 = 0xbabefacedeadbeef;
   1238  1.1       cgd 	tfp->tf_a2 = 0xbabefacedeadbeef;
   1239  1.1       cgd #else
   1240  1.1       cgd 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
   1241  1.1       cgd 	tfp->tf_gp = 0;
   1242  1.1       cgd 	tfp->tf_a0 = 0;
   1243  1.1       cgd 	tfp->tf_a1 = 0;
   1244  1.1       cgd 	tfp->tf_a2 = 0;
   1245  1.1       cgd #endif
   1246  1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1247  1.7       cgd #define FP_RN 2 /* XXX */
   1248  1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1249  1.1       cgd 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1250  1.1       cgd 	tfp->tf_ps = PSL_USERSET;
   1251  1.5  christos 	tfp->tf_pc = pack->ep_entry & ~3;
   1252  1.1       cgd 
   1253  1.1       cgd 	p->p_md.md_flags & ~MDP_FPUSED;
   1254  1.1       cgd 	if (fpcurproc == p)
   1255  1.1       cgd 		fpcurproc = NULL;
   1256  1.1       cgd 
   1257  1.1       cgd 	retval[0] = retval[1] = 0;
   1258  1.1       cgd }
   1259  1.1       cgd 
   1260  1.1       cgd void
   1261  1.1       cgd netintr()
   1262  1.1       cgd {
   1263  1.1       cgd #ifdef INET
   1264  1.1       cgd #if NETHER > 0
   1265  1.1       cgd 	if (netisr & (1 << NETISR_ARP)) {
   1266  1.1       cgd 		netisr &= ~(1 << NETISR_ARP);
   1267  1.1       cgd 		arpintr();
   1268  1.1       cgd 	}
   1269  1.1       cgd #endif
   1270  1.1       cgd 	if (netisr & (1 << NETISR_IP)) {
   1271  1.1       cgd 		netisr &= ~(1 << NETISR_IP);
   1272  1.1       cgd 		ipintr();
   1273  1.1       cgd 	}
   1274  1.1       cgd #endif
   1275  1.1       cgd #ifdef NS
   1276  1.1       cgd 	if (netisr & (1 << NETISR_NS)) {
   1277  1.1       cgd 		netisr &= ~(1 << NETISR_NS);
   1278  1.1       cgd 		nsintr();
   1279  1.1       cgd 	}
   1280  1.1       cgd #endif
   1281  1.1       cgd #ifdef ISO
   1282  1.1       cgd 	if (netisr & (1 << NETISR_ISO)) {
   1283  1.1       cgd 		netisr &= ~(1 << NETISR_ISO);
   1284  1.1       cgd 		clnlintr();
   1285  1.1       cgd 	}
   1286  1.1       cgd #endif
   1287  1.1       cgd #ifdef CCITT
   1288  1.1       cgd 	if (netisr & (1 << NETISR_CCITT)) {
   1289  1.1       cgd 		netisr &= ~(1 << NETISR_CCITT);
   1290  1.1       cgd 		ccittintr();
   1291  1.1       cgd 	}
   1292  1.1       cgd #endif
   1293  1.8       cgd #ifdef PPP
   1294  1.8       cgd 	if (netisr & (1 << NETISR_PPP)) {
   1295  1.8       cgd 		netisr &= ~(1 << NETISR_CCITT);
   1296  1.8       cgd 		pppintr();
   1297  1.8       cgd 	}
   1298  1.8       cgd #endif
   1299  1.1       cgd }
   1300  1.1       cgd 
   1301  1.1       cgd void
   1302  1.1       cgd do_sir()
   1303  1.1       cgd {
   1304  1.1       cgd 
   1305  1.1       cgd 	if (ssir & SIR_NET) {
   1306  1.1       cgd 		siroff(SIR_NET);
   1307  1.1       cgd 		cnt.v_soft++;
   1308  1.1       cgd 		netintr();
   1309  1.1       cgd 	}
   1310  1.1       cgd 	if (ssir & SIR_CLOCK) {
   1311  1.1       cgd 		siroff(SIR_CLOCK);
   1312  1.1       cgd 		cnt.v_soft++;
   1313  1.1       cgd 		softclock();
   1314  1.1       cgd 	}
   1315  1.1       cgd }
   1316  1.1       cgd 
   1317  1.1       cgd int
   1318  1.1       cgd spl0()
   1319  1.1       cgd {
   1320  1.1       cgd 
   1321  1.1       cgd 	if (ssir) {
   1322  1.1       cgd 		splsoft();
   1323  1.1       cgd 		do_sir();
   1324  1.1       cgd 	}
   1325  1.1       cgd 
   1326  1.1       cgd 	return (pal_swpipl(PSL_IPL_0));
   1327  1.1       cgd }
   1328  1.1       cgd 
   1329  1.1       cgd /*
   1330  1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1331  1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1332  1.1       cgd  * into queues, Remrq removes them from queues.  The running process is on
   1333  1.1       cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1334  1.1       cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1335  1.1       cgd  * queues.
   1336  1.1       cgd  */
   1337  1.1       cgd /*
   1338  1.1       cgd  * setrunqueue(p)
   1339  1.1       cgd  *	proc *p;
   1340  1.1       cgd  *
   1341  1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1342  1.1       cgd  */
   1343  1.1       cgd 
   1344  1.1       cgd void
   1345  1.1       cgd setrunqueue(p)
   1346  1.1       cgd 	struct proc *p;
   1347  1.1       cgd {
   1348  1.1       cgd 	int bit;
   1349  1.1       cgd 
   1350  1.1       cgd 	/* firewall: p->p_back must be NULL */
   1351  1.1       cgd 	if (p->p_back != NULL)
   1352  1.1       cgd 		panic("setrunqueue");
   1353  1.1       cgd 
   1354  1.1       cgd 	bit = p->p_priority >> 2;
   1355  1.1       cgd 	whichqs |= (1 << bit);
   1356  1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1357  1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1358  1.1       cgd 	p->p_back->p_forw = p;
   1359  1.1       cgd 	qs[bit].ph_rlink = p;
   1360  1.1       cgd }
   1361  1.1       cgd 
   1362  1.1       cgd /*
   1363  1.1       cgd  * Remrq(p)
   1364  1.1       cgd  *
   1365  1.1       cgd  * Call should be made at splclock().
   1366  1.1       cgd  */
   1367  1.1       cgd void
   1368  1.1       cgd remrq(p)
   1369  1.1       cgd 	struct proc *p;
   1370  1.1       cgd {
   1371  1.1       cgd 	int bit;
   1372  1.1       cgd 
   1373  1.1       cgd 	bit = p->p_priority >> 2;
   1374  1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1375  1.1       cgd 		panic("remrq");
   1376  1.1       cgd 
   1377  1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1378  1.1       cgd 	p->p_forw->p_back = p->p_back;
   1379  1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1380  1.1       cgd 
   1381  1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1382  1.1       cgd 		whichqs &= ~(1 << bit);
   1383  1.1       cgd }
   1384  1.1       cgd 
   1385  1.1       cgd /*
   1386  1.1       cgd  * Return the best possible estimate of the time in the timeval
   1387  1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1388  1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1389  1.1       cgd  * previous call.
   1390  1.1       cgd  */
   1391  1.1       cgd void
   1392  1.1       cgd microtime(tvp)
   1393  1.1       cgd 	register struct timeval *tvp;
   1394  1.1       cgd {
   1395  1.1       cgd 	int s = splclock();
   1396  1.1       cgd 	static struct timeval lasttime;
   1397  1.1       cgd 
   1398  1.1       cgd 	*tvp = time;
   1399  1.1       cgd #ifdef notdef
   1400  1.1       cgd 	tvp->tv_usec += clkread();
   1401  1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1402  1.1       cgd 		tvp->tv_sec++;
   1403  1.1       cgd 		tvp->tv_usec -= 1000000;
   1404  1.1       cgd 	}
   1405  1.1       cgd #endif
   1406  1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1407  1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1408  1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1409  1.1       cgd 		tvp->tv_sec++;
   1410  1.1       cgd 		tvp->tv_usec -= 1000000;
   1411  1.1       cgd 	}
   1412  1.1       cgd 	lasttime = *tvp;
   1413  1.1       cgd 	splx(s);
   1414  1.1       cgd }
   1415  1.1       cgd 
   1416  1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1417  1.1       cgd void
   1418  1.5  christos cpu_exec_ecoff_setregs(p, pack, stack, retval)
   1419  1.1       cgd 	struct proc *p;
   1420  1.5  christos 	struct exec_package *pack;
   1421  1.5  christos 	u_long stack;
   1422  1.5  christos 	register_t *retval;
   1423  1.1       cgd {
   1424  1.1       cgd 	struct ecoff_aouthdr *eap;
   1425  1.1       cgd 
   1426  1.5  christos 	setregs(p, pack, stack, retval);
   1427  1.1       cgd 
   1428  1.1       cgd 	eap = (struct ecoff_aouthdr *)
   1429  1.5  christos 	    ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
   1430  1.1       cgd 	p->p_md.md_tf->tf_gp = eap->ea_gp_value;
   1431  1.1       cgd }
   1432  1.1       cgd 
   1433  1.1       cgd /*
   1434  1.1       cgd  * cpu_exec_ecoff_hook():
   1435  1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1436  1.1       cgd  *
   1437  1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1438  1.1       cgd  *
   1439  1.1       cgd  */
   1440  1.1       cgd int
   1441  1.1       cgd cpu_exec_ecoff_hook(p, epp, eap)
   1442  1.1       cgd 	struct proc *p;
   1443  1.1       cgd 	struct exec_package *epp;
   1444  1.1       cgd 	struct ecoff_aouthdr *eap;
   1445  1.1       cgd {
   1446  1.1       cgd 	struct ecoff_filehdr *efp = epp->ep_hdr;
   1447  1.5  christos 	extern struct emul emul_netbsd;
   1448  1.5  christos #ifdef COMPAT_OSF1
   1449  1.5  christos 	extern struct emul emul_osf1;
   1450  1.5  christos #endif
   1451  1.1       cgd 
   1452  1.1       cgd 	switch (efp->ef_magic) {
   1453  1.5  christos #ifdef COMPAT_OSF1
   1454  1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1455  1.5  christos 		epp->ep_emul = &emul_osf1;
   1456  1.1       cgd 		break;
   1457  1.5  christos #endif
   1458  1.1       cgd 
   1459  1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1460  1.5  christos 		epp->ep_emul = &emul_netbsd;
   1461  1.1       cgd 		break;
   1462  1.1       cgd 
   1463  1.1       cgd #ifdef DIAGNOSTIC
   1464  1.1       cgd 	default:
   1465  1.1       cgd 		panic("cpu_exec_ecoff_hook: can't get here from there.");
   1466  1.1       cgd #endif
   1467  1.1       cgd 	}
   1468  1.1       cgd 	return 0;
   1469  1.1       cgd }
   1470  1.1       cgd #endif
   1471  1.7       cgd 
   1472  1.7       cgd vm_offset_t
   1473  1.7       cgd vtophys(vaddr)
   1474  1.7       cgd 	vm_offset_t vaddr;
   1475  1.7       cgd {
   1476  1.7       cgd 	vm_offset_t paddr;
   1477  1.7       cgd 
   1478  1.7       cgd 	if (vaddr < K0SEG_BEGIN) {
   1479  1.7       cgd 		printf("vtophys: invalid vaddr 0x%lx", vaddr);
   1480  1.7       cgd 		paddr = vaddr;
   1481  1.7       cgd 	} else if (vaddr < K0SEG_END)
   1482  1.7       cgd 		paddr = k0segtophys(vaddr);
   1483  1.7       cgd 	else
   1484  1.7       cgd 		paddr = vatopa(vaddr);
   1485  1.7       cgd 
   1486  1.7       cgd #if 0
   1487  1.7       cgd 	printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
   1488  1.7       cgd #endif
   1489  1.7       cgd 
   1490  1.7       cgd 	return (paddr);
   1491  1.7       cgd }
   1492