Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.95
      1  1.95   thorpej /* $NetBSD: machdep.c,v 1.95 1998/01/09 21:34:47 thorpej Exp $ */
      2   1.1       cgd 
      3   1.1       cgd /*
      4  1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5   1.1       cgd  * All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Author: Chris G. Demetriou
      8   1.1       cgd  *
      9   1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10   1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11   1.1       cgd  * notice and this permission notice appear in all copies of the
     12   1.1       cgd  * software, derivative works or modified versions, and any portions
     13   1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14   1.1       cgd  *
     15   1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16   1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17   1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18   1.1       cgd  *
     19   1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20   1.1       cgd  *
     21   1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22   1.1       cgd  *  School of Computer Science
     23   1.1       cgd  *  Carnegie Mellon University
     24   1.1       cgd  *  Pittsburgh PA 15213-3890
     25   1.1       cgd  *
     26   1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27   1.1       cgd  * rights to redistribute these changes.
     28   1.1       cgd  */
     29  1.74       cgd 
     30  1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     31  1.75       cgd 
     32  1.95   thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.95 1998/01/09 21:34:47 thorpej Exp $");
     33   1.1       cgd 
     34   1.1       cgd #include <sys/param.h>
     35   1.1       cgd #include <sys/systm.h>
     36   1.1       cgd #include <sys/signalvar.h>
     37   1.1       cgd #include <sys/kernel.h>
     38   1.1       cgd #include <sys/map.h>
     39   1.1       cgd #include <sys/proc.h>
     40   1.1       cgd #include <sys/buf.h>
     41   1.1       cgd #include <sys/reboot.h>
     42  1.28       cgd #include <sys/device.h>
     43   1.1       cgd #include <sys/file.h>
     44   1.1       cgd #ifdef REAL_CLISTS
     45   1.1       cgd #include <sys/clist.h>
     46   1.1       cgd #endif
     47   1.1       cgd #include <sys/callout.h>
     48   1.1       cgd #include <sys/malloc.h>
     49   1.1       cgd #include <sys/mbuf.h>
     50   1.1       cgd #include <sys/msgbuf.h>
     51   1.1       cgd #include <sys/ioctl.h>
     52   1.1       cgd #include <sys/tty.h>
     53   1.1       cgd #include <sys/user.h>
     54   1.1       cgd #include <sys/exec.h>
     55   1.1       cgd #include <sys/exec_ecoff.h>
     56  1.91    mjacob #include <vm/vm.h>
     57   1.1       cgd #include <sys/sysctl.h>
     58  1.43       cgd #include <sys/core.h>
     59  1.43       cgd #include <sys/kcore.h>
     60  1.43       cgd #include <machine/kcore.h>
     61   1.1       cgd #ifdef SYSVMSG
     62   1.1       cgd #include <sys/msg.h>
     63   1.1       cgd #endif
     64   1.1       cgd #ifdef SYSVSEM
     65   1.1       cgd #include <sys/sem.h>
     66   1.1       cgd #endif
     67   1.1       cgd #ifdef SYSVSHM
     68   1.1       cgd #include <sys/shm.h>
     69   1.1       cgd #endif
     70   1.1       cgd 
     71   1.1       cgd #include <sys/mount.h>
     72   1.1       cgd #include <sys/syscallargs.h>
     73   1.1       cgd 
     74   1.1       cgd #include <vm/vm_kern.h>
     75   1.1       cgd 
     76   1.1       cgd #include <dev/cons.h>
     77   1.1       cgd 
     78  1.81   thorpej #include <machine/autoconf.h>
     79   1.1       cgd #include <machine/cpu.h>
     80   1.1       cgd #include <machine/reg.h>
     81   1.1       cgd #include <machine/rpb.h>
     82   1.1       cgd #include <machine/prom.h>
     83  1.73       cgd #include <machine/conf.h>
     84   1.8       cgd 
     85  1.49       cgd #include <net/netisr.h>
     86  1.33       cgd #include <net/if.h>
     87  1.49       cgd 
     88  1.49       cgd #ifdef INET
     89  1.33       cgd #include <netinet/in.h>
     90  1.72       cgd #include <netinet/ip_var.h>
     91  1.72       cgd #include "arp.h"
     92  1.72       cgd #if NARP > 0
     93  1.67        is #include <netinet/if_inarp.h>
     94  1.72       cgd #endif
     95  1.49       cgd #endif
     96  1.49       cgd #ifdef NS
     97  1.49       cgd #include <netns/ns_var.h>
     98  1.49       cgd #endif
     99  1.49       cgd #ifdef ISO
    100  1.49       cgd #include <netiso/iso.h>
    101  1.49       cgd #include <netiso/clnp.h>
    102  1.49       cgd #endif
    103  1.55       cgd #ifdef CCITT
    104  1.55       cgd #include <netccitt/x25.h>
    105  1.55       cgd #include <netccitt/pk.h>
    106  1.55       cgd #include <netccitt/pk_extern.h>
    107  1.55       cgd #endif
    108  1.55       cgd #ifdef NATM
    109  1.55       cgd #include <netnatm/natm.h>
    110  1.55       cgd #endif
    111  1.70  christos #ifdef NETATALK
    112  1.70  christos #include <netatalk/at_extern.h>
    113  1.70  christos #endif
    114  1.49       cgd #include "ppp.h"
    115  1.49       cgd #if NPPP > 0
    116  1.49       cgd #include <net/ppp_defs.h>
    117  1.49       cgd #include <net/if_ppp.h>
    118  1.49       cgd #endif
    119   1.1       cgd 
    120  1.81   thorpej #ifdef DDB
    121  1.81   thorpej #include <machine/db_machdep.h>
    122  1.81   thorpej #include <ddb/db_access.h>
    123  1.81   thorpej #include <ddb/db_sym.h>
    124  1.81   thorpej #include <ddb/db_extern.h>
    125  1.81   thorpej #include <ddb/db_interface.h>
    126  1.81   thorpej #endif
    127  1.81   thorpej 
    128  1.17       cgd #include "le_ioasic.h"			/* for le_iomem creation */
    129   1.1       cgd 
    130   1.1       cgd vm_map_t buffer_map;
    131   1.1       cgd 
    132   1.1       cgd /*
    133   1.1       cgd  * Declare these as initialized data so we can patch them.
    134   1.1       cgd  */
    135   1.1       cgd int	nswbuf = 0;
    136   1.1       cgd #ifdef	NBUF
    137   1.1       cgd int	nbuf = NBUF;
    138   1.1       cgd #else
    139   1.1       cgd int	nbuf = 0;
    140   1.1       cgd #endif
    141   1.1       cgd #ifdef	BUFPAGES
    142   1.1       cgd int	bufpages = BUFPAGES;
    143   1.1       cgd #else
    144   1.1       cgd int	bufpages = 0;
    145   1.1       cgd #endif
    146  1.86       leo caddr_t msgbufaddr;
    147  1.86       leo 
    148   1.1       cgd int	maxmem;			/* max memory per process */
    149   1.7       cgd 
    150   1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    151   1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    152   1.7       cgd int	firstusablepage;	/* first usable memory page */
    153   1.7       cgd int	lastusablepage;		/* last usable memory page */
    154   1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    155   1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    156   1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    157   1.1       cgd 
    158   1.1       cgd int	cputype;		/* system type, from the RPB */
    159   1.1       cgd 
    160   1.1       cgd /*
    161   1.1       cgd  * XXX We need an address to which we can assign things so that they
    162   1.1       cgd  * won't be optimized away because we didn't use the value.
    163   1.1       cgd  */
    164   1.1       cgd u_int32_t no_optimize;
    165   1.1       cgd 
    166   1.1       cgd /* the following is used externally (sysctl_hw) */
    167  1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    168  1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    169  1.29       cgd char	cpu_model[128];
    170   1.1       cgd 
    171   1.1       cgd struct	user *proc0paddr;
    172   1.1       cgd 
    173   1.1       cgd /* Number of machine cycles per microsecond */
    174   1.1       cgd u_int64_t	cycles_per_usec;
    175   1.1       cgd 
    176   1.1       cgd /* some memory areas for device DMA.  "ick." */
    177   1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    178   1.1       cgd 
    179   1.7       cgd /* number of cpus in the box.  really! */
    180   1.7       cgd int		ncpus;
    181   1.7       cgd 
    182  1.25       cgd char boot_flags[64];
    183  1.61       cgd char booted_kernel[64];
    184   1.8       cgd 
    185  1.81   thorpej int bootinfo_valid;
    186  1.81   thorpej struct bootinfo bootinfo;
    187  1.81   thorpej 
    188  1.89    mjacob struct platform platform;
    189  1.89    mjacob 
    190  1.90    mjacob u_int32_t vm_mbuf_size = (NMBCLUSTERS*MCLBYTES);
    191  1.90    mjacob u_int32_t vm_kmem_size = (NKMEMCLUSTERS*CLBYTES);
    192  1.90    mjacob u_int32_t vm_phys_size = (USRIOSIZE*CLBYTES);
    193  1.90    mjacob 
    194  1.81   thorpej #ifdef DDB
    195  1.81   thorpej /* start and end of kernel symbol table */
    196  1.81   thorpej void	*ksym_start, *ksym_end;
    197  1.81   thorpej #endif
    198  1.81   thorpej 
    199  1.30       cgd /* for cpu_sysctl() */
    200  1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    201  1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    202  1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    203  1.30       cgd 
    204  1.95   thorpej caddr_t	allocsys __P((caddr_t));
    205  1.55       cgd int	cpu_dump __P((void));
    206  1.55       cgd int	cpu_dumpsize __P((void));
    207  1.55       cgd void	dumpsys __P((void));
    208  1.55       cgd void	identifycpu __P((void));
    209  1.55       cgd void	netintr __P((void));
    210  1.55       cgd void	printregs __P((struct reg *));
    211  1.33       cgd 
    212  1.55       cgd void
    213  1.81   thorpej alpha_init(pfn, ptb, bim, bip)
    214   1.1       cgd 	u_long pfn;		/* first free PFN number */
    215   1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    216  1.81   thorpej 	u_long bim;		/* bootinfo magic */
    217  1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    218   1.1       cgd {
    219  1.95   thorpej 	extern char kernel_text[], _end[];
    220   1.1       cgd 	struct mddt *mddtp;
    221   1.7       cgd 	int i, mddtweird;
    222  1.95   thorpej 	vm_offset_t kernstart, kernend;
    223  1.95   thorpej 	vm_size_t size;
    224   1.1       cgd 	char *p;
    225  1.95   thorpej 	caddr_t v;
    226  1.95   thorpej 	caddr_t start, w;
    227   1.1       cgd 
    228   1.1       cgd 	/*
    229  1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    230   1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    231   1.1       cgd 	 */
    232  1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    233  1.32       cgd 	alpha_pal_wrfen(0);
    234  1.37       cgd 	ALPHA_TBIA();
    235  1.32       cgd 	alpha_pal_imb();
    236   1.1       cgd 
    237   1.1       cgd 	/*
    238   1.1       cgd 	 * get address of the restart block, while we the bootstrap
    239   1.1       cgd 	 * mapping is still around.
    240   1.1       cgd 	 */
    241  1.32       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    242  1.32       cgd 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    243   1.1       cgd 
    244   1.1       cgd 	/*
    245   1.1       cgd 	 * Remember how many cycles there are per microsecond,
    246   1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    247   1.1       cgd 	 */
    248   1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    249   1.1       cgd 
    250   1.1       cgd 	/*
    251   1.1       cgd 	 * Init the PROM interface, so we can use printf
    252   1.1       cgd 	 * until PROM mappings go away in consinit.
    253   1.1       cgd 	 */
    254   1.1       cgd 	init_prom_interface();
    255   1.1       cgd 
    256   1.1       cgd 	/*
    257  1.81   thorpej 	 * Check for a bootinfo from the boot program.
    258  1.81   thorpej 	 */
    259  1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    260  1.81   thorpej 		/*
    261  1.81   thorpej 		 * Have boot info.  Copy it to our own storage.
    262  1.81   thorpej 		 * We'll sanity-check it later.
    263  1.81   thorpej 		 */
    264  1.81   thorpej 		bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
    265  1.81   thorpej 		switch (bootinfo.version) {
    266  1.81   thorpej 		case 1:
    267  1.81   thorpej 			bootinfo_valid = 1;
    268  1.81   thorpej 			break;
    269  1.81   thorpej 
    270  1.81   thorpej 		default:
    271  1.82       cgd 			printf("warning: unknown bootinfo version %d\n",
    272  1.81   thorpej 			    bootinfo.version);
    273  1.81   thorpej 		}
    274  1.81   thorpej 	} else
    275  1.81   thorpej 		printf("warning: boot program did not pass bootinfo\n");
    276  1.81   thorpej 
    277  1.81   thorpej 	/*
    278   1.1       cgd 	 * Point interrupt/exception vectors to our own.
    279   1.1       cgd 	 */
    280  1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    281  1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    282  1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    283  1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    284  1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    285  1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    286  1.36       cgd 
    287  1.36       cgd 	/*
    288  1.76       cgd 	 * Clear pending machine checks and error reports, and enable
    289  1.76       cgd 	 * system- and processor-correctable error reporting.
    290  1.36       cgd 	 */
    291  1.76       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() &
    292  1.76       cgd 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    293   1.1       cgd 
    294   1.1       cgd 	/*
    295  1.95   thorpej 	 * find out this CPU's page size
    296  1.95   thorpej 	 */
    297  1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    298  1.95   thorpej 	if (PAGE_SIZE != 8192)
    299  1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    300  1.95   thorpej 
    301  1.95   thorpej 	/*
    302  1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    303  1.95   thorpej 	 */
    304  1.95   thorpej 	vm_set_page_size();
    305  1.95   thorpej 
    306  1.95   thorpej 	/*
    307  1.95   thorpej 	 * Find the beginning and end of the kernel.
    308  1.95   thorpej 	 */
    309  1.95   thorpej 	kernstart = trunc_page(kernel_text);
    310  1.95   thorpej #ifdef DDB
    311  1.95   thorpej 	if (bootinfo_valid) {
    312  1.95   thorpej 		/*
    313  1.95   thorpej 		 * Save the kernel symbol table.
    314  1.95   thorpej 		 */
    315  1.95   thorpej 		switch (bootinfo.version) {
    316  1.95   thorpej 		case 1:
    317  1.95   thorpej 			ksym_start = (void *)bootinfo.un.v1.ssym;
    318  1.95   thorpej 			ksym_end   = (void *)bootinfo.un.v1.esym;
    319  1.95   thorpej 			break;
    320  1.95   thorpej 		}
    321  1.95   thorpej 		kernend = (vm_offset_t)round_page(ksym_end);
    322  1.95   thorpej 	} else
    323  1.95   thorpej #endif
    324  1.95   thorpej 		kernend = (vm_offset_t)round_page(_end);
    325  1.95   thorpej 
    326  1.95   thorpej 	/*
    327   1.1       cgd 	 * Find out how much memory is available, by looking at
    328   1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    329   1.7       cgd 	 * its best to detect things things that have never been seen
    330   1.7       cgd 	 * before...
    331   1.7       cgd 	 *
    332   1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    333   1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    334   1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    335   1.1       cgd 	 */
    336   1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    337   1.7       cgd 
    338   1.7       cgd 	/*
    339   1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    340   1.7       cgd 	 */
    341   1.7       cgd 	mddtweird = 0;
    342   1.7       cgd 
    343   1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    344   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    345   1.7       cgd 	if (cnt != 2 && cnt != 3) {
    346  1.46  christos 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    347   1.7       cgd 		mddtweird = 1;
    348   1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    349   1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    350   1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    351   1.7       cgd 		mddtweird = 1;
    352  1.46  christos 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    353   1.7       cgd 	}
    354   1.7       cgd 
    355   1.7       cgd 	for (i = 0; i < cnt; i++) {
    356   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    357  1.46  christos 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    358   1.7       cgd 			    i, usage(i));
    359   1.7       cgd 			mddtweird = 1;
    360   1.7       cgd 		}
    361   1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    362  1.46  christos 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    363   1.7       cgd 			mddtweird = 1;
    364   1.7       cgd 		}
    365   1.7       cgd 		/* XXX other things to check? */
    366   1.7       cgd 	}
    367   1.7       cgd #undef cnt
    368   1.7       cgd #undef usage
    369   1.7       cgd 
    370   1.7       cgd 	if (mddtweird) {
    371  1.46  christos 		printf("\n");
    372  1.46  christos 		printf("complete memory cluster information:\n");
    373   1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    374  1.46  christos 			printf("mddt %d:\n", i);
    375  1.46  christos 			printf("\tpfn %lx\n",
    376   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    377  1.46  christos 			printf("\tcnt %lx\n",
    378   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    379  1.46  christos 			printf("\ttest %lx\n",
    380   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    381  1.46  christos 			printf("\tbva %lx\n",
    382   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    383  1.46  christos 			printf("\tbpa %lx\n",
    384   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    385  1.46  christos 			printf("\tbcksum %lx\n",
    386   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    387  1.46  christos 			printf("\tusage %lx\n",
    388   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    389   1.2       cgd 		}
    390  1.46  christos 		printf("\n");
    391   1.2       cgd 	}
    392   1.7       cgd 	/*
    393   1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    394   1.7       cgd 	 */
    395   1.2       cgd 
    396   1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    397   1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    398   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    399   1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    400   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    401   1.7       cgd 			unknownmem += pgcnt(i);
    402   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    403   1.7       cgd 			resvmem += pgcnt(i);
    404   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    405   1.7       cgd 			/*
    406   1.7       cgd 			 * assumes that the system cluster listed is
    407   1.7       cgd 			 * one we're in...
    408   1.7       cgd 			 */
    409   1.7       cgd 			if (physmem != resvmem) {
    410   1.7       cgd 				physmem += pgcnt(i);
    411   1.7       cgd 				firstusablepage =
    412   1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    413   1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    414   1.7       cgd 			} else
    415   1.7       cgd 				unusedmem += pgcnt(i);
    416   1.7       cgd 		}
    417   1.7       cgd #undef usage
    418   1.7       cgd #undef pgcnt
    419   1.1       cgd 	}
    420   1.7       cgd 	if (totalphysmem == 0)
    421   1.1       cgd 		panic("can't happen: system seems to have no memory!");
    422  1.88    mjacob #ifdef        LIMITMEM
    423  1.88    mjacob 	if (totalphysmem >= btoc(LIMITMEM << 20)) {
    424  1.88    mjacob 		u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
    425  1.88    mjacob 		printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
    426  1.88    mjacob 		physmem = totalphysmem = btoc(LIMITMEM << 20);
    427  1.88    mjacob 		unusedmem += ovf;
    428  1.88    mjacob 		lastusablepage = firstusablepage + physmem - 1;
    429  1.88    mjacob 	}
    430  1.88    mjacob #endif
    431   1.1       cgd 	maxmem = physmem;
    432   1.1       cgd 
    433   1.7       cgd #if 0
    434  1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    435  1.46  christos 	printf("physmem = %d\n", physmem);
    436  1.46  christos 	printf("firstusablepage = %d\n", firstusablepage);
    437  1.46  christos 	printf("lastusablepage = %d\n", lastusablepage);
    438  1.46  christos 	printf("resvmem = %d\n", resvmem);
    439  1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    440  1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    441   1.7       cgd #endif
    442  1.90    mjacob 
    443  1.90    mjacob 	/*
    444  1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    445  1.90    mjacob 	 * available would cause us to croak. This is completely
    446  1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    447  1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    448  1.90    mjacob 	 * about.
    449  1.90    mjacob  	 *
    450  1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    451  1.90    mjacob 	 */
    452  1.90    mjacob 	if (physmem >= btoc(128 << 20)) {
    453  1.90    mjacob 		vm_mbuf_size <<= 1;
    454  1.93    mjacob 		vm_kmem_size <<= 3;
    455  1.93    mjacob 		vm_phys_size <<= 2;
    456  1.90    mjacob 	}
    457   1.7       cgd 
    458   1.1       cgd 	/*
    459   1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    460   1.1       cgd 	 */
    461   1.1       cgd 	cputype = hwrpb->rpb_type;
    462  1.92   thorpej 	if (cputype >= ncpuinit) {
    463  1.92   thorpej 		platform_not_supported();
    464  1.89    mjacob 		/* NOTREACHED */
    465  1.54       cgd 	}
    466  1.92   thorpej 	(*cpuinit[cputype].init)();
    467  1.89    mjacob 	strcpy(cpu_model, platform.model);
    468  1.66       cgd 
    469  1.66       cgd 	/* XXX SANITY CHECKING.  SHOULD GO AWAY */
    470  1.66       cgd 	/* XXX We should always be running on the the primary. */
    471  1.66       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());		/*XXX*/
    472  1.66       cgd 	/* XXX On single-CPU boxes, the primary should always be CPU 0. */
    473  1.66       cgd 	if (cputype != ST_DEC_21000)					/*XXX*/
    474  1.66       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);			/*XXX*/
    475   1.1       cgd 
    476  1.17       cgd #if NLE_IOASIC > 0
    477   1.1       cgd 	/*
    478   1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    479   1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    480   1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    481  1.17       cgd 	 *
    482  1.17       cgd 	 * Note that since this is conditional on the presence of
    483  1.17       cgd 	 * IOASIC-attached 'le' units in the kernel config, the
    484  1.17       cgd 	 * message buffer may move on these systems.  This shouldn't
    485  1.17       cgd 	 * be a problem, because once people have a kernel config that
    486  1.17       cgd 	 * they use, they're going to stick with it.
    487   1.1       cgd 	 */
    488   1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    489   1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    490   1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    491  1.32       cgd 		le_iomem =
    492  1.32       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    493   1.1       cgd 	}
    494  1.17       cgd #endif /* NLE_IOASIC */
    495   1.1       cgd 
    496   1.1       cgd 	/*
    497   1.1       cgd 	 * Initialize error message buffer (at end of core).
    498   1.1       cgd 	 */
    499  1.86       leo 	lastusablepage -= btoc(MSGBUFSIZE);
    500  1.87    mjacob 	msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    501  1.86       leo 	initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
    502   1.1       cgd 
    503   1.1       cgd 	/*
    504  1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    505   1.1       cgd 	 */
    506  1.95   thorpej 	start = v = (caddr_t)kernend;
    507  1.95   thorpej 	curproc->p_addr = proc0paddr = (struct user *)v;
    508  1.95   thorpej 	v += UPAGES * NBPG;
    509   1.1       cgd 
    510   1.1       cgd 	/*
    511  1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    512  1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    513  1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    514  1.95   thorpej 	 * virtual address space.
    515  1.95   thorpej 	 */
    516  1.95   thorpej 	size = (vm_size_t)allocsys(0);
    517  1.95   thorpej 	w = allocsys(v);
    518  1.95   thorpej 	if ((w - v) != size)
    519  1.95   thorpej 		panic("alpha_init: table size inconsistency");
    520  1.95   thorpej 	v = w;
    521   1.1       cgd 
    522   1.1       cgd 	/*
    523   1.1       cgd 	 * Clear allocated memory.
    524   1.1       cgd 	 */
    525   1.1       cgd 	bzero(start, v - start);
    526   1.1       cgd 
    527   1.1       cgd 	/*
    528   1.1       cgd 	 * Initialize the virtual memory system, and set the
    529   1.1       cgd 	 * page table base register in proc 0's PCB.
    530   1.1       cgd 	 */
    531  1.40       cgd #ifndef NEW_PMAP
    532  1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    533  1.40       cgd #else
    534  1.40       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    535  1.40       cgd 	    hwrpb->rpb_max_asn);
    536  1.40       cgd #endif
    537   1.1       cgd 
    538   1.1       cgd 	/*
    539   1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    540   1.3       cgd 	 * address.
    541   1.3       cgd 	 */
    542   1.3       cgd 	proc0.p_md.md_pcbpaddr =
    543  1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    544   1.3       cgd 
    545   1.3       cgd 	/*
    546   1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    547   1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    548   1.3       cgd 	 */
    549  1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    550   1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    551  1.81   thorpej 	proc0.p_md.md_tf =
    552  1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    553  1.38       cgd 
    554  1.40       cgd #ifdef NEW_PMAP
    555  1.84   thorpej 	/*
    556  1.84   thorpej 	 * Set up the kernel address space in proc0's hwpcb.
    557  1.84   thorpej 	 */
    558  1.84   thorpej 	PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    559  1.38       cgd #endif
    560   1.1       cgd 
    561   1.1       cgd 	/*
    562  1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    563  1.61       cgd 	 * Also, get kernel name so it can be used in user-land.
    564   1.8       cgd 	 */
    565  1.81   thorpej 	if (bootinfo_valid) {
    566  1.81   thorpej 		switch (bootinfo.version) {
    567  1.81   thorpej 		case 1:
    568  1.81   thorpej 			bcopy(bootinfo.un.v1.boot_flags, boot_flags,
    569  1.81   thorpej 			    sizeof(boot_flags));
    570  1.81   thorpej 			bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
    571  1.81   thorpej 			    sizeof(booted_kernel));
    572  1.81   thorpej 		}
    573  1.81   thorpej 	} else {
    574  1.81   thorpej 		prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
    575  1.81   thorpej 		    sizeof(boot_flags));
    576  1.81   thorpej 		prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
    577  1.81   thorpej 		    sizeof(booted_kernel));
    578  1.81   thorpej 	}
    579  1.81   thorpej 
    580  1.25       cgd #if 0
    581  1.46  christos 	printf("boot flags = \"%s\"\n", boot_flags);
    582  1.61       cgd 	printf("booted kernel = \"%s\"\n", booted_kernel);
    583  1.61       cgd #endif
    584   1.1       cgd 
    585   1.8       cgd 	boothowto = RB_SINGLE;
    586   1.1       cgd #ifdef KADB
    587   1.1       cgd 	boothowto |= RB_KDB;
    588   1.1       cgd #endif
    589   1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    590  1.26       cgd 		/*
    591  1.26       cgd 		 * Note that we'd really like to differentiate case here,
    592  1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    593  1.26       cgd 		 * says that we shouldn't.
    594  1.26       cgd 		 */
    595   1.8       cgd 		switch (*p) {
    596  1.26       cgd 		case 'a': /* autoboot */
    597  1.26       cgd 		case 'A':
    598  1.26       cgd 			boothowto &= ~RB_SINGLE;
    599  1.21       cgd 			break;
    600  1.21       cgd 
    601  1.43       cgd #ifdef DEBUG
    602  1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    603  1.43       cgd 		case 'C':
    604  1.43       cgd 			boothowto |= RB_DUMP;
    605  1.43       cgd 			break;
    606  1.43       cgd #endif
    607  1.43       cgd 
    608  1.81   thorpej #if defined(KGDB) || defined(DDB)
    609  1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    610  1.81   thorpej 		case 'D':
    611  1.81   thorpej 			boothowto |= RB_KDB;
    612  1.81   thorpej 			break;
    613  1.81   thorpej #endif
    614  1.81   thorpej 
    615  1.36       cgd 		case 'h': /* always halt, never reboot */
    616  1.36       cgd 		case 'H':
    617  1.36       cgd 			boothowto |= RB_HALT;
    618   1.8       cgd 			break;
    619   1.8       cgd 
    620  1.21       cgd #if 0
    621   1.8       cgd 		case 'm': /* mini root present in memory */
    622  1.26       cgd 		case 'M':
    623   1.8       cgd 			boothowto |= RB_MINIROOT;
    624   1.8       cgd 			break;
    625  1.21       cgd #endif
    626  1.36       cgd 
    627  1.36       cgd 		case 'n': /* askname */
    628  1.36       cgd 		case 'N':
    629  1.36       cgd 			boothowto |= RB_ASKNAME;
    630  1.65       cgd 			break;
    631  1.65       cgd 
    632  1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    633  1.65       cgd 		case 'S':
    634  1.65       cgd 			boothowto |= RB_SINGLE;
    635  1.65       cgd 			break;
    636  1.65       cgd 
    637  1.65       cgd 		default:
    638  1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    639  1.36       cgd 			break;
    640   1.1       cgd 		}
    641   1.1       cgd 	}
    642   1.1       cgd 
    643   1.7       cgd 	/*
    644   1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    645   1.7       cgd 	 * Really.  We mean it.
    646   1.7       cgd 	 */
    647   1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    648   1.7       cgd 		struct pcs *pcsp;
    649   1.7       cgd 
    650   1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    651   1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    652   1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    653   1.7       cgd 			ncpus++;
    654   1.7       cgd 	}
    655  1.95   thorpej }
    656  1.95   thorpej 
    657  1.95   thorpej /*
    658  1.95   thorpej  * Allocate space for system data structures.  We are given
    659  1.95   thorpej  * a starting virtual address and we return a final virtual
    660  1.95   thorpej  * address; along the way we set each data structure pointer.
    661  1.95   thorpej  *
    662  1.95   thorpej  * We call allocsys() with 0 to find out how much space we want,
    663  1.95   thorpej  * allocate that much and fill it with zeroes, and the call
    664  1.95   thorpej  * allocsys() again with the correct base virtual address.
    665  1.95   thorpej  */
    666  1.95   thorpej caddr_t
    667  1.95   thorpej allocsys(v)
    668  1.95   thorpej 	caddr_t v;
    669  1.95   thorpej {
    670  1.95   thorpej 
    671  1.95   thorpej #define valloc(name, type, num) \
    672  1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    673  1.95   thorpej #define valloclim(name, type, num, lim) \
    674  1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    675  1.95   thorpej #ifdef REAL_CLISTS
    676  1.95   thorpej 	valloc(cfree, struct cblock, nclist);
    677  1.95   thorpej #endif
    678  1.95   thorpej 	valloc(callout, struct callout, ncallout);
    679  1.95   thorpej #ifdef SYSVSHM
    680  1.95   thorpej 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    681  1.95   thorpej #endif
    682  1.95   thorpej #ifdef SYSVSEM
    683  1.95   thorpej 	valloc(sema, struct semid_ds, seminfo.semmni);
    684  1.95   thorpej 	valloc(sem, struct sem, seminfo.semmns);
    685  1.95   thorpej 	/* This is pretty disgusting! */
    686  1.95   thorpej 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    687  1.95   thorpej #endif
    688  1.95   thorpej #ifdef SYSVMSG
    689  1.95   thorpej 	valloc(msgpool, char, msginfo.msgmax);
    690  1.95   thorpej 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    691  1.95   thorpej 	valloc(msghdrs, struct msg, msginfo.msgtql);
    692  1.95   thorpej 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    693  1.95   thorpej #endif
    694  1.95   thorpej 
    695  1.95   thorpej 	/*
    696  1.95   thorpej 	 * Determine how many buffers to allocate.
    697  1.95   thorpej 	 * We allocate 10% of memory for buffer space.  Insure a
    698  1.95   thorpej 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    699  1.95   thorpej 	 * headers as file i/o buffers.
    700  1.95   thorpej 	 */
    701  1.95   thorpej 	if (bufpages == 0)
    702  1.95   thorpej 		bufpages = (physmem * 10) / (CLSIZE * 100);
    703  1.95   thorpej 	if (nbuf == 0) {
    704  1.95   thorpej 		nbuf = bufpages;
    705  1.95   thorpej 		if (nbuf < 16)
    706  1.95   thorpej 			nbuf = 16;
    707  1.95   thorpej 	}
    708  1.95   thorpej 	if (nswbuf == 0) {
    709  1.95   thorpej 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    710  1.95   thorpej 		if (nswbuf > 256)
    711  1.95   thorpej 			nswbuf = 256;		/* sanity */
    712  1.95   thorpej 	}
    713  1.95   thorpej 	valloc(swbuf, struct buf, nswbuf);
    714  1.95   thorpej 	valloc(buf, struct buf, nbuf);
    715  1.95   thorpej 	return (v);
    716   1.1       cgd }
    717   1.1       cgd 
    718  1.18       cgd void
    719   1.1       cgd consinit()
    720   1.1       cgd {
    721  1.89    mjacob 	if (platform.cons_init)
    722  1.89    mjacob 		(*platform.cons_init)();
    723   1.1       cgd 	pmap_unmap_prom();
    724  1.81   thorpej 
    725  1.81   thorpej #ifdef DDB
    726  1.81   thorpej 	db_machine_init();
    727  1.81   thorpej 	ddb_init(ksym_start, ksym_end);
    728  1.81   thorpej 	if (boothowto & RB_KDB)
    729  1.81   thorpej 		Debugger();
    730  1.81   thorpej #endif
    731  1.81   thorpej #ifdef KGDB
    732  1.81   thorpej 	if (boothowto & RB_KDB)
    733  1.81   thorpej 		kgdb_connect(0);
    734  1.81   thorpej #endif
    735   1.1       cgd }
    736   1.1       cgd 
    737  1.18       cgd void
    738   1.1       cgd cpu_startup()
    739   1.1       cgd {
    740   1.1       cgd 	register unsigned i;
    741   1.1       cgd 	int base, residual;
    742   1.1       cgd 	vm_offset_t minaddr, maxaddr;
    743   1.1       cgd 	vm_size_t size;
    744  1.40       cgd #if defined(DEBUG)
    745   1.1       cgd 	extern int pmapdebug;
    746   1.1       cgd 	int opmapdebug = pmapdebug;
    747   1.1       cgd 
    748   1.1       cgd 	pmapdebug = 0;
    749   1.1       cgd #endif
    750   1.1       cgd 
    751   1.1       cgd 	/*
    752   1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    753   1.1       cgd 	 */
    754  1.46  christos 	printf(version);
    755   1.1       cgd 	identifycpu();
    756  1.88    mjacob 	printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
    757   1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    758   1.7       cgd 	if (unusedmem)
    759  1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    760   1.7       cgd 	if (unknownmem)
    761  1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    762   1.7       cgd 		    ctob(unknownmem));
    763   1.1       cgd 
    764   1.1       cgd 	/*
    765   1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    766   1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    767   1.1       cgd 	 * and usually occupy more virtual memory than physical.
    768   1.1       cgd 	 */
    769   1.1       cgd 	size = MAXBSIZE * nbuf;
    770   1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    771   1.1       cgd 	    &maxaddr, size, TRUE);
    772   1.1       cgd 	minaddr = (vm_offset_t)buffers;
    773   1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    774   1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    775   1.1       cgd 		panic("startup: cannot allocate buffers");
    776   1.1       cgd 	base = bufpages / nbuf;
    777   1.1       cgd 	residual = bufpages % nbuf;
    778   1.1       cgd 	for (i = 0; i < nbuf; i++) {
    779   1.1       cgd 		vm_size_t curbufsize;
    780   1.1       cgd 		vm_offset_t curbuf;
    781   1.1       cgd 
    782   1.1       cgd 		/*
    783   1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    784   1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    785   1.1       cgd 		 *
    786   1.1       cgd 		 * The rest of each buffer occupies virtual space,
    787   1.1       cgd 		 * but has no physical memory allocated for it.
    788   1.1       cgd 		 */
    789   1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    790   1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    791   1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    792   1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    793   1.1       cgd 	}
    794   1.1       cgd 	/*
    795   1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    796   1.1       cgd 	 * limits the number of processes exec'ing at any time.
    797   1.1       cgd 	 */
    798   1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    799   1.1       cgd 				 16 * NCARGS, TRUE);
    800   1.1       cgd 
    801   1.1       cgd 	/*
    802   1.1       cgd 	 * Allocate a submap for physio
    803   1.1       cgd 	 */
    804   1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    805   1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    806   1.1       cgd 
    807   1.1       cgd 	/*
    808  1.69   thorpej 	 * Finally, allocate mbuf cluster submap.
    809   1.1       cgd 	 */
    810   1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    811   1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    812   1.1       cgd 	/*
    813   1.1       cgd 	 * Initialize callouts
    814   1.1       cgd 	 */
    815   1.1       cgd 	callfree = callout;
    816   1.1       cgd 	for (i = 1; i < ncallout; i++)
    817   1.1       cgd 		callout[i-1].c_next = &callout[i];
    818   1.1       cgd 	callout[i-1].c_next = NULL;
    819   1.1       cgd 
    820  1.40       cgd #if defined(DEBUG)
    821   1.1       cgd 	pmapdebug = opmapdebug;
    822   1.1       cgd #endif
    823  1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    824  1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
    825   1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    826   1.1       cgd 
    827   1.1       cgd 	/*
    828   1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    829   1.1       cgd 	 */
    830   1.1       cgd 	bufinit();
    831   1.1       cgd 
    832   1.1       cgd 	/*
    833   1.1       cgd 	 * Configure the system.
    834   1.1       cgd 	 */
    835   1.1       cgd 	configure();
    836  1.48       cgd 
    837  1.48       cgd 	/*
    838  1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
    839  1.48       cgd 	 * to do restarts.
    840  1.48       cgd 	 */
    841  1.55       cgd 	hwrpb_restart_setup();
    842   1.1       cgd }
    843   1.1       cgd 
    844  1.33       cgd void
    845   1.1       cgd identifycpu()
    846   1.1       cgd {
    847   1.1       cgd 
    848   1.7       cgd 	/*
    849   1.7       cgd 	 * print out CPU identification information.
    850   1.7       cgd 	 */
    851  1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
    852   1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    853  1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    854   1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    855   1.7       cgd #if 0
    856   1.7       cgd 	/* this isn't defined for any systems that we run on? */
    857  1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    858   1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    859   1.7       cgd 
    860   1.7       cgd 	/* and these aren't particularly useful! */
    861  1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    862   1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    863   1.7       cgd #endif
    864   1.1       cgd }
    865   1.1       cgd 
    866   1.1       cgd int	waittime = -1;
    867   1.7       cgd struct pcb dumppcb;
    868   1.1       cgd 
    869  1.18       cgd void
    870  1.68       gwr cpu_reboot(howto, bootstr)
    871   1.1       cgd 	int howto;
    872  1.39       mrg 	char *bootstr;
    873   1.1       cgd {
    874   1.1       cgd 	extern int cold;
    875   1.1       cgd 
    876   1.1       cgd 	/* If system is cold, just halt. */
    877   1.1       cgd 	if (cold) {
    878   1.1       cgd 		howto |= RB_HALT;
    879   1.1       cgd 		goto haltsys;
    880   1.1       cgd 	}
    881   1.1       cgd 
    882  1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
    883  1.36       cgd 	if ((boothowto & RB_HALT) != 0)
    884  1.36       cgd 		howto |= RB_HALT;
    885  1.36       cgd 
    886   1.7       cgd 	boothowto = howto;
    887   1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    888   1.1       cgd 		waittime = 0;
    889   1.7       cgd 		vfs_shutdown();
    890   1.1       cgd 		/*
    891   1.1       cgd 		 * If we've been adjusting the clock, the todr
    892   1.1       cgd 		 * will be out of synch; adjust it now.
    893   1.1       cgd 		 */
    894   1.1       cgd 		resettodr();
    895   1.1       cgd 	}
    896   1.1       cgd 
    897   1.1       cgd 	/* Disable interrupts. */
    898   1.1       cgd 	splhigh();
    899   1.1       cgd 
    900   1.7       cgd 	/* If rebooting and a dump is requested do it. */
    901  1.42       cgd #if 0
    902  1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    903  1.42       cgd #else
    904  1.42       cgd 	if (howto & RB_DUMP)
    905  1.42       cgd #endif
    906   1.1       cgd 		dumpsys();
    907   1.6       cgd 
    908  1.12       cgd haltsys:
    909  1.12       cgd 
    910   1.6       cgd 	/* run any shutdown hooks */
    911   1.6       cgd 	doshutdownhooks();
    912   1.1       cgd 
    913   1.7       cgd #ifdef BOOTKEY
    914  1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    915   1.7       cgd 	cngetc();
    916  1.46  christos 	printf("\n");
    917   1.7       cgd #endif
    918   1.7       cgd 
    919   1.1       cgd 	/* Finally, halt/reboot the system. */
    920  1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    921   1.1       cgd 	prom_halt(howto & RB_HALT);
    922   1.1       cgd 	/*NOTREACHED*/
    923   1.1       cgd }
    924   1.1       cgd 
    925   1.7       cgd /*
    926   1.7       cgd  * These variables are needed by /sbin/savecore
    927   1.7       cgd  */
    928   1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    929   1.7       cgd int 	dumpsize = 0;		/* pages */
    930   1.7       cgd long	dumplo = 0; 		/* blocks */
    931   1.7       cgd 
    932   1.7       cgd /*
    933  1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
    934  1.43       cgd  */
    935  1.43       cgd int
    936  1.43       cgd cpu_dumpsize()
    937  1.43       cgd {
    938  1.43       cgd 	int size;
    939  1.43       cgd 
    940  1.43       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
    941  1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
    942  1.43       cgd 		return -1;
    943  1.43       cgd 
    944  1.43       cgd 	return (1);
    945  1.43       cgd }
    946  1.43       cgd 
    947  1.43       cgd /*
    948  1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
    949  1.43       cgd  */
    950  1.43       cgd int
    951  1.43       cgd cpu_dump()
    952  1.43       cgd {
    953  1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    954  1.43       cgd 	long buf[dbtob(1) / sizeof (long)];
    955  1.43       cgd 	kcore_seg_t	*segp;
    956  1.43       cgd 	cpu_kcore_hdr_t	*cpuhdrp;
    957  1.43       cgd 
    958  1.43       cgd         dump = bdevsw[major(dumpdev)].d_dump;
    959  1.43       cgd 
    960  1.43       cgd 	segp = (kcore_seg_t *)buf;
    961  1.43       cgd 	cpuhdrp =
    962  1.43       cgd 	    (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
    963  1.43       cgd 
    964  1.43       cgd 	/*
    965  1.43       cgd 	 * Generate a segment header.
    966  1.43       cgd 	 */
    967  1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
    968  1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
    969  1.43       cgd 
    970  1.43       cgd 	/*
    971  1.43       cgd 	 * Add the machine-dependent header info
    972  1.43       cgd 	 */
    973  1.44       cgd 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
    974  1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
    975  1.43       cgd 	cpuhdrp->core_seg.start = ctob(firstusablepage);
    976  1.43       cgd 	cpuhdrp->core_seg.size = ctob(physmem);
    977  1.43       cgd 
    978  1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
    979  1.43       cgd }
    980  1.43       cgd 
    981  1.43       cgd /*
    982  1.68       gwr  * This is called by main to set dumplo and dumpsize.
    983   1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    984   1.7       cgd  * in case there might be a disk label stored there.
    985   1.7       cgd  * If there is extra space, put dump at the end to
    986   1.7       cgd  * reduce the chance that swapping trashes it.
    987   1.7       cgd  */
    988   1.7       cgd void
    989  1.68       gwr cpu_dumpconf()
    990   1.7       cgd {
    991  1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
    992   1.7       cgd 	int maj;
    993   1.7       cgd 
    994   1.7       cgd 	if (dumpdev == NODEV)
    995  1.43       cgd 		goto bad;
    996   1.7       cgd 	maj = major(dumpdev);
    997   1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    998   1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    999   1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1000  1.43       cgd 		goto bad;
   1001   1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1002   1.7       cgd 	if (nblks <= ctod(1))
   1003  1.43       cgd 		goto bad;
   1004  1.43       cgd 
   1005  1.43       cgd 	dumpblks = cpu_dumpsize();
   1006  1.43       cgd 	if (dumpblks < 0)
   1007  1.43       cgd 		goto bad;
   1008  1.43       cgd 	dumpblks += ctod(physmem);
   1009  1.43       cgd 
   1010  1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1011  1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1012  1.43       cgd 		goto bad;
   1013  1.43       cgd 
   1014  1.43       cgd 	/* Put dump at end of partition */
   1015  1.43       cgd 	dumplo = nblks - dumpblks;
   1016   1.7       cgd 
   1017  1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1018   1.7       cgd 	dumpsize = physmem;
   1019  1.43       cgd 	return;
   1020   1.7       cgd 
   1021  1.43       cgd bad:
   1022  1.43       cgd 	dumpsize = 0;
   1023  1.43       cgd 	return;
   1024   1.7       cgd }
   1025   1.7       cgd 
   1026   1.7       cgd /*
   1027  1.42       cgd  * Dump the kernel's image to the swap partition.
   1028   1.7       cgd  */
   1029  1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1030  1.42       cgd 
   1031   1.7       cgd void
   1032   1.7       cgd dumpsys()
   1033   1.7       cgd {
   1034  1.42       cgd 	unsigned bytes, i, n;
   1035  1.42       cgd 	int maddr, psize;
   1036  1.42       cgd 	daddr_t blkno;
   1037  1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1038  1.42       cgd 	int error;
   1039  1.42       cgd 
   1040  1.42       cgd 	/* Save registers. */
   1041  1.42       cgd 	savectx(&dumppcb);
   1042   1.7       cgd 
   1043  1.42       cgd 	msgbufmapped = 0;	/* don't record dump msgs in msgbuf */
   1044   1.7       cgd 	if (dumpdev == NODEV)
   1045   1.7       cgd 		return;
   1046  1.42       cgd 
   1047  1.42       cgd 	/*
   1048  1.42       cgd 	 * For dumps during autoconfiguration,
   1049  1.42       cgd 	 * if dump device has already configured...
   1050  1.42       cgd 	 */
   1051  1.42       cgd 	if (dumpsize == 0)
   1052  1.68       gwr 		cpu_dumpconf();
   1053  1.47       cgd 	if (dumplo <= 0) {
   1054  1.46  christos 		printf("\ndump to dev %x not possible\n", dumpdev);
   1055  1.42       cgd 		return;
   1056  1.43       cgd 	}
   1057  1.46  christos 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
   1058   1.7       cgd 
   1059  1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1060  1.46  christos 	printf("dump ");
   1061  1.42       cgd 	if (psize == -1) {
   1062  1.46  christos 		printf("area unavailable\n");
   1063  1.42       cgd 		return;
   1064  1.42       cgd 	}
   1065  1.42       cgd 
   1066  1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1067  1.42       cgd 
   1068  1.43       cgd 	if ((error = cpu_dump()) != 0)
   1069  1.43       cgd 		goto err;
   1070  1.43       cgd 
   1071  1.43       cgd 	bytes = ctob(physmem);
   1072  1.42       cgd 	maddr = ctob(firstusablepage);
   1073  1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1074  1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1075  1.42       cgd 	error = 0;
   1076  1.42       cgd 	for (i = 0; i < bytes; i += n) {
   1077  1.42       cgd 
   1078  1.42       cgd 		/* Print out how many MBs we to go. */
   1079  1.42       cgd 		n = bytes - i;
   1080  1.42       cgd 		if (n && (n % (1024*1024)) == 0)
   1081  1.46  christos 			printf("%d ", n / (1024 * 1024));
   1082  1.42       cgd 
   1083  1.42       cgd 		/* Limit size for next transfer. */
   1084  1.42       cgd 		if (n > BYTES_PER_DUMP)
   1085  1.42       cgd 			n =  BYTES_PER_DUMP;
   1086  1.42       cgd 
   1087  1.42       cgd 		error = (*dump)(dumpdev, blkno,
   1088  1.42       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1089  1.42       cgd 		if (error)
   1090  1.42       cgd 			break;
   1091  1.42       cgd 		maddr += n;
   1092  1.42       cgd 		blkno += btodb(n);			/* XXX? */
   1093  1.42       cgd 
   1094  1.42       cgd 		/* XXX should look for keystrokes, to cancel. */
   1095  1.42       cgd 	}
   1096  1.42       cgd 
   1097  1.43       cgd err:
   1098  1.42       cgd 	switch (error) {
   1099   1.7       cgd 
   1100   1.7       cgd 	case ENXIO:
   1101  1.46  christos 		printf("device bad\n");
   1102   1.7       cgd 		break;
   1103   1.7       cgd 
   1104   1.7       cgd 	case EFAULT:
   1105  1.46  christos 		printf("device not ready\n");
   1106   1.7       cgd 		break;
   1107   1.7       cgd 
   1108   1.7       cgd 	case EINVAL:
   1109  1.46  christos 		printf("area improper\n");
   1110   1.7       cgd 		break;
   1111   1.7       cgd 
   1112   1.7       cgd 	case EIO:
   1113  1.46  christos 		printf("i/o error\n");
   1114   1.7       cgd 		break;
   1115   1.7       cgd 
   1116   1.7       cgd 	case EINTR:
   1117  1.46  christos 		printf("aborted from console\n");
   1118   1.7       cgd 		break;
   1119   1.7       cgd 
   1120  1.42       cgd 	case 0:
   1121  1.46  christos 		printf("succeeded\n");
   1122  1.42       cgd 		break;
   1123  1.42       cgd 
   1124   1.7       cgd 	default:
   1125  1.46  christos 		printf("error %d\n", error);
   1126   1.7       cgd 		break;
   1127   1.7       cgd 	}
   1128  1.46  christos 	printf("\n\n");
   1129   1.7       cgd 	delay(1000);
   1130   1.7       cgd }
   1131   1.7       cgd 
   1132   1.1       cgd void
   1133   1.1       cgd frametoreg(framep, regp)
   1134   1.1       cgd 	struct trapframe *framep;
   1135   1.1       cgd 	struct reg *regp;
   1136   1.1       cgd {
   1137   1.1       cgd 
   1138   1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1139   1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1140   1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1141   1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1142   1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1143   1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1144   1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1145   1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1146   1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1147   1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1148   1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1149   1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1150   1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1151   1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1152   1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1153   1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1154  1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1155  1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1156  1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1157   1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1158   1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1159   1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1160   1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1161   1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1162   1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1163   1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1164   1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1165   1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1166   1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1167  1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1168  1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1169   1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1170   1.1       cgd }
   1171   1.1       cgd 
   1172   1.1       cgd void
   1173   1.1       cgd regtoframe(regp, framep)
   1174   1.1       cgd 	struct reg *regp;
   1175   1.1       cgd 	struct trapframe *framep;
   1176   1.1       cgd {
   1177   1.1       cgd 
   1178   1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1179   1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1180   1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1181   1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1182   1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1183   1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1184   1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1185   1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1186   1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1187   1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1188   1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1189   1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1190   1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1191   1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1192   1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1193   1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1194  1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1195  1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1196  1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1197   1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1198   1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1199   1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1200   1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1201   1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1202   1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1203   1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1204   1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1205   1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1206   1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1207  1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1208  1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1209   1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1210   1.1       cgd }
   1211   1.1       cgd 
   1212   1.1       cgd void
   1213   1.1       cgd printregs(regp)
   1214   1.1       cgd 	struct reg *regp;
   1215   1.1       cgd {
   1216   1.1       cgd 	int i;
   1217   1.1       cgd 
   1218   1.1       cgd 	for (i = 0; i < 32; i++)
   1219  1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1220   1.1       cgd 		   i & 1 ? "\n" : "\t");
   1221   1.1       cgd }
   1222   1.1       cgd 
   1223   1.1       cgd void
   1224   1.1       cgd regdump(framep)
   1225   1.1       cgd 	struct trapframe *framep;
   1226   1.1       cgd {
   1227   1.1       cgd 	struct reg reg;
   1228   1.1       cgd 
   1229   1.1       cgd 	frametoreg(framep, &reg);
   1230  1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1231  1.35       cgd 
   1232  1.46  christos 	printf("REGISTERS:\n");
   1233   1.1       cgd 	printregs(&reg);
   1234   1.1       cgd }
   1235   1.1       cgd 
   1236   1.1       cgd #ifdef DEBUG
   1237   1.1       cgd int sigdebug = 0;
   1238   1.1       cgd int sigpid = 0;
   1239   1.1       cgd #define	SDB_FOLLOW	0x01
   1240   1.1       cgd #define	SDB_KSTACK	0x02
   1241   1.1       cgd #endif
   1242   1.1       cgd 
   1243   1.1       cgd /*
   1244   1.1       cgd  * Send an interrupt to process.
   1245   1.1       cgd  */
   1246   1.1       cgd void
   1247   1.1       cgd sendsig(catcher, sig, mask, code)
   1248   1.1       cgd 	sig_t catcher;
   1249   1.1       cgd 	int sig, mask;
   1250   1.1       cgd 	u_long code;
   1251   1.1       cgd {
   1252   1.1       cgd 	struct proc *p = curproc;
   1253   1.1       cgd 	struct sigcontext *scp, ksc;
   1254   1.1       cgd 	struct trapframe *frame;
   1255   1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1256   1.1       cgd 	int oonstack, fsize, rndfsize;
   1257   1.1       cgd 	extern char sigcode[], esigcode[];
   1258   1.1       cgd 	extern struct proc *fpcurproc;
   1259   1.1       cgd 
   1260   1.1       cgd 	frame = p->p_md.md_tf;
   1261   1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1262   1.1       cgd 	fsize = sizeof ksc;
   1263   1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1264   1.1       cgd 	/*
   1265   1.1       cgd 	 * Allocate and validate space for the signal handler
   1266   1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1267   1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1268   1.1       cgd 	 * will fail if the process has not already allocated
   1269   1.1       cgd 	 * the space with a `brk'.
   1270   1.1       cgd 	 */
   1271   1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1272   1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1273  1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1274   1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1275   1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1276   1.1       cgd 	} else
   1277  1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1278   1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1279   1.1       cgd 		(void)grow(p, (u_long)scp);
   1280   1.1       cgd #ifdef DEBUG
   1281   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1282  1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1283   1.1       cgd 		    sig, &oonstack, scp);
   1284   1.1       cgd #endif
   1285   1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1286   1.1       cgd #ifdef DEBUG
   1287   1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1288  1.46  christos 			printf("sendsig(%d): useracc failed on sig %d\n",
   1289   1.1       cgd 			    p->p_pid, sig);
   1290   1.1       cgd #endif
   1291   1.1       cgd 		/*
   1292   1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1293   1.1       cgd 		 * instruction to halt it in its tracks.
   1294   1.1       cgd 		 */
   1295   1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1296   1.1       cgd 		sig = sigmask(SIGILL);
   1297   1.1       cgd 		p->p_sigignore &= ~sig;
   1298   1.1       cgd 		p->p_sigcatch &= ~sig;
   1299   1.1       cgd 		p->p_sigmask &= ~sig;
   1300   1.1       cgd 		psignal(p, SIGILL);
   1301   1.1       cgd 		return;
   1302   1.1       cgd 	}
   1303   1.1       cgd 
   1304   1.1       cgd 	/*
   1305   1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1306   1.1       cgd 	 */
   1307   1.1       cgd 	ksc.sc_onstack = oonstack;
   1308   1.1       cgd 	ksc.sc_mask = mask;
   1309  1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1310  1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1311   1.1       cgd 
   1312   1.1       cgd 	/* copy the registers. */
   1313   1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1314   1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1315  1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1316   1.1       cgd 
   1317   1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1318   1.1       cgd 	if (p == fpcurproc) {
   1319  1.32       cgd 		alpha_pal_wrfen(1);
   1320   1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1321  1.32       cgd 		alpha_pal_wrfen(0);
   1322   1.1       cgd 		fpcurproc = NULL;
   1323   1.1       cgd 	}
   1324   1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1325   1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1326   1.1       cgd 	    sizeof(struct fpreg));
   1327   1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1328   1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1329   1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1330   1.1       cgd 
   1331   1.1       cgd 
   1332   1.1       cgd #ifdef COMPAT_OSF1
   1333   1.1       cgd 	/*
   1334   1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1335   1.1       cgd 	 */
   1336   1.1       cgd #endif
   1337   1.1       cgd 
   1338   1.1       cgd 	/*
   1339   1.1       cgd 	 * copy the frame out to userland.
   1340   1.1       cgd 	 */
   1341   1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1342   1.1       cgd #ifdef DEBUG
   1343   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1344  1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1345   1.1       cgd 		    scp, code);
   1346   1.1       cgd #endif
   1347   1.1       cgd 
   1348   1.1       cgd 	/*
   1349   1.1       cgd 	 * Set up the registers to return to sigcode.
   1350   1.1       cgd 	 */
   1351  1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1352  1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1353  1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1354  1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1355  1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1356   1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1357  1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1358   1.1       cgd 
   1359   1.1       cgd #ifdef DEBUG
   1360   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1361  1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1362  1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1363   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1364  1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1365   1.1       cgd 		    p->p_pid, sig);
   1366   1.1       cgd #endif
   1367   1.1       cgd }
   1368   1.1       cgd 
   1369   1.1       cgd /*
   1370   1.1       cgd  * System call to cleanup state after a signal
   1371   1.1       cgd  * has been taken.  Reset signal mask and
   1372   1.1       cgd  * stack state from context left by sendsig (above).
   1373   1.1       cgd  * Return to previous pc and psl as specified by
   1374   1.1       cgd  * context left by sendsig. Check carefully to
   1375   1.1       cgd  * make sure that the user has not modified the
   1376   1.1       cgd  * psl to gain improper priviledges or to cause
   1377   1.1       cgd  * a machine fault.
   1378   1.1       cgd  */
   1379   1.1       cgd /* ARGSUSED */
   1380  1.11   mycroft int
   1381  1.11   mycroft sys_sigreturn(p, v, retval)
   1382   1.1       cgd 	struct proc *p;
   1383  1.10   thorpej 	void *v;
   1384  1.10   thorpej 	register_t *retval;
   1385  1.10   thorpej {
   1386  1.11   mycroft 	struct sys_sigreturn_args /* {
   1387   1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1388  1.10   thorpej 	} */ *uap = v;
   1389   1.1       cgd 	struct sigcontext *scp, ksc;
   1390   1.1       cgd 	extern struct proc *fpcurproc;
   1391   1.1       cgd 
   1392   1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1393   1.1       cgd #ifdef DEBUG
   1394   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1395  1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1396   1.1       cgd #endif
   1397   1.1       cgd 
   1398   1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1399   1.1       cgd 		return (EINVAL);
   1400   1.1       cgd 
   1401   1.1       cgd 	/*
   1402   1.1       cgd 	 * Test and fetch the context structure.
   1403   1.1       cgd 	 * We grab it all at once for speed.
   1404   1.1       cgd 	 */
   1405   1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1406   1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1407   1.1       cgd 		return (EINVAL);
   1408   1.1       cgd 
   1409   1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1410   1.1       cgd 		return (EINVAL);
   1411   1.1       cgd 	/*
   1412   1.1       cgd 	 * Restore the user-supplied information
   1413   1.1       cgd 	 */
   1414   1.1       cgd 	if (ksc.sc_onstack)
   1415   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1416   1.1       cgd 	else
   1417   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1418   1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1419   1.1       cgd 
   1420  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1421  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1422  1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1423   1.1       cgd 
   1424   1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1425  1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1426   1.1       cgd 
   1427   1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1428   1.1       cgd 	if (p == fpcurproc)
   1429   1.1       cgd 		fpcurproc = NULL;
   1430   1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1431   1.1       cgd 	    sizeof(struct fpreg));
   1432   1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1433   1.1       cgd 
   1434   1.1       cgd #ifdef DEBUG
   1435   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1436  1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1437   1.1       cgd #endif
   1438   1.1       cgd 	return (EJUSTRETURN);
   1439   1.1       cgd }
   1440   1.1       cgd 
   1441   1.1       cgd /*
   1442   1.1       cgd  * machine dependent system variables.
   1443   1.1       cgd  */
   1444  1.33       cgd int
   1445   1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1446   1.1       cgd 	int *name;
   1447   1.1       cgd 	u_int namelen;
   1448   1.1       cgd 	void *oldp;
   1449   1.1       cgd 	size_t *oldlenp;
   1450   1.1       cgd 	void *newp;
   1451   1.1       cgd 	size_t newlen;
   1452   1.1       cgd 	struct proc *p;
   1453   1.1       cgd {
   1454   1.1       cgd 	dev_t consdev;
   1455   1.1       cgd 
   1456   1.1       cgd 	/* all sysctl names at this level are terminal */
   1457   1.1       cgd 	if (namelen != 1)
   1458   1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1459   1.1       cgd 
   1460   1.1       cgd 	switch (name[0]) {
   1461   1.1       cgd 	case CPU_CONSDEV:
   1462   1.1       cgd 		if (cn_tab != NULL)
   1463   1.1       cgd 			consdev = cn_tab->cn_dev;
   1464   1.1       cgd 		else
   1465   1.1       cgd 			consdev = NODEV;
   1466   1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1467   1.1       cgd 			sizeof consdev));
   1468  1.30       cgd 
   1469  1.30       cgd 	case CPU_ROOT_DEVICE:
   1470  1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1471  1.64   thorpej 		    root_device->dv_xname));
   1472  1.36       cgd 
   1473  1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1474  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1475  1.36       cgd 		    &alpha_unaligned_print));
   1476  1.36       cgd 
   1477  1.36       cgd 	case CPU_UNALIGNED_FIX:
   1478  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1479  1.36       cgd 		    &alpha_unaligned_fix));
   1480  1.36       cgd 
   1481  1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1482  1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1483  1.36       cgd 		    &alpha_unaligned_sigbus));
   1484  1.61       cgd 
   1485  1.61       cgd 	case CPU_BOOTED_KERNEL:
   1486  1.61       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
   1487  1.30       cgd 
   1488   1.1       cgd 	default:
   1489   1.1       cgd 		return (EOPNOTSUPP);
   1490   1.1       cgd 	}
   1491   1.1       cgd 	/* NOTREACHED */
   1492   1.1       cgd }
   1493   1.1       cgd 
   1494   1.1       cgd /*
   1495   1.1       cgd  * Set registers on exec.
   1496   1.1       cgd  */
   1497   1.1       cgd void
   1498  1.85   mycroft setregs(p, pack, stack)
   1499   1.1       cgd 	register struct proc *p;
   1500   1.5  christos 	struct exec_package *pack;
   1501   1.1       cgd 	u_long stack;
   1502   1.1       cgd {
   1503   1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1504  1.56       cgd 	extern struct proc *fpcurproc;
   1505  1.56       cgd #ifdef DEBUG
   1506   1.1       cgd 	int i;
   1507  1.56       cgd #endif
   1508  1.43       cgd 
   1509  1.43       cgd #ifdef DEBUG
   1510  1.43       cgd 	/*
   1511  1.43       cgd 	 * Crash and dump, if the user requested it.
   1512  1.43       cgd 	 */
   1513  1.43       cgd 	if (boothowto & RB_DUMP)
   1514  1.43       cgd 		panic("crash requested by boot flags");
   1515  1.43       cgd #endif
   1516   1.1       cgd 
   1517   1.1       cgd #ifdef DEBUG
   1518  1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1519   1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1520   1.1       cgd #else
   1521  1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1522   1.1       cgd #endif
   1523   1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1524   1.7       cgd #define FP_RN 2 /* XXX */
   1525   1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1526  1.35       cgd 	alpha_pal_wrusp(stack);
   1527  1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1528  1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1529  1.41       cgd 
   1530  1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1531  1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1532  1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1533  1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1534  1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1535   1.1       cgd 
   1536  1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1537   1.1       cgd 	if (fpcurproc == p)
   1538   1.1       cgd 		fpcurproc = NULL;
   1539   1.1       cgd }
   1540   1.1       cgd 
   1541   1.1       cgd void
   1542   1.1       cgd netintr()
   1543   1.1       cgd {
   1544  1.49       cgd 	int n, s;
   1545  1.49       cgd 
   1546  1.49       cgd 	s = splhigh();
   1547  1.49       cgd 	n = netisr;
   1548  1.49       cgd 	netisr = 0;
   1549  1.49       cgd 	splx(s);
   1550  1.49       cgd 
   1551  1.49       cgd #define	DONETISR(bit, fn)						\
   1552  1.49       cgd 	do {								\
   1553  1.49       cgd 		if (n & (1 << (bit)))					\
   1554  1.49       cgd 			fn;						\
   1555  1.49       cgd 	} while (0)
   1556  1.49       cgd 
   1557   1.1       cgd #ifdef INET
   1558  1.72       cgd #if NARP > 0
   1559  1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1560  1.72       cgd #endif
   1561  1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1562  1.70  christos #endif
   1563  1.70  christos #ifdef NETATALK
   1564  1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1565   1.1       cgd #endif
   1566   1.1       cgd #ifdef NS
   1567  1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1568   1.1       cgd #endif
   1569   1.1       cgd #ifdef ISO
   1570  1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1571   1.1       cgd #endif
   1572   1.1       cgd #ifdef CCITT
   1573  1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1574  1.49       cgd #endif
   1575  1.49       cgd #ifdef NATM
   1576  1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1577   1.1       cgd #endif
   1578  1.49       cgd #if NPPP > 1
   1579  1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1580   1.8       cgd #endif
   1581  1.49       cgd 
   1582  1.49       cgd #undef DONETISR
   1583   1.1       cgd }
   1584   1.1       cgd 
   1585   1.1       cgd void
   1586   1.1       cgd do_sir()
   1587   1.1       cgd {
   1588  1.58       cgd 	u_int64_t n;
   1589   1.1       cgd 
   1590  1.59       cgd 	do {
   1591  1.60       cgd 		(void)splhigh();
   1592  1.58       cgd 		n = ssir;
   1593  1.58       cgd 		ssir = 0;
   1594  1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   1595  1.59       cgd 
   1596  1.59       cgd #define	DO_SIR(bit, fn)							\
   1597  1.59       cgd 		do {							\
   1598  1.60       cgd 			if (n & (bit)) {				\
   1599  1.59       cgd 				cnt.v_soft++;				\
   1600  1.59       cgd 				fn;					\
   1601  1.59       cgd 			}						\
   1602  1.59       cgd 		} while (0)
   1603  1.59       cgd 
   1604  1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1605  1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1606  1.60       cgd 
   1607  1.60       cgd #undef DO_SIR
   1608  1.59       cgd 	} while (ssir != 0);
   1609   1.1       cgd }
   1610   1.1       cgd 
   1611   1.1       cgd int
   1612   1.1       cgd spl0()
   1613   1.1       cgd {
   1614   1.1       cgd 
   1615  1.59       cgd 	if (ssir)
   1616  1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   1617   1.1       cgd 
   1618  1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1619   1.1       cgd }
   1620   1.1       cgd 
   1621   1.1       cgd /*
   1622   1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1623   1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1624  1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1625  1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1626  1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1627  1.52       cgd  * available queues.
   1628   1.1       cgd  */
   1629   1.1       cgd /*
   1630   1.1       cgd  * setrunqueue(p)
   1631   1.1       cgd  *	proc *p;
   1632   1.1       cgd  *
   1633   1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1634   1.1       cgd  */
   1635   1.1       cgd 
   1636   1.1       cgd void
   1637   1.1       cgd setrunqueue(p)
   1638   1.1       cgd 	struct proc *p;
   1639   1.1       cgd {
   1640   1.1       cgd 	int bit;
   1641   1.1       cgd 
   1642   1.1       cgd 	/* firewall: p->p_back must be NULL */
   1643   1.1       cgd 	if (p->p_back != NULL)
   1644   1.1       cgd 		panic("setrunqueue");
   1645   1.1       cgd 
   1646   1.1       cgd 	bit = p->p_priority >> 2;
   1647   1.1       cgd 	whichqs |= (1 << bit);
   1648   1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1649   1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1650   1.1       cgd 	p->p_back->p_forw = p;
   1651   1.1       cgd 	qs[bit].ph_rlink = p;
   1652   1.1       cgd }
   1653   1.1       cgd 
   1654   1.1       cgd /*
   1655  1.52       cgd  * remrunqueue(p)
   1656   1.1       cgd  *
   1657   1.1       cgd  * Call should be made at splclock().
   1658   1.1       cgd  */
   1659   1.1       cgd void
   1660  1.52       cgd remrunqueue(p)
   1661   1.1       cgd 	struct proc *p;
   1662   1.1       cgd {
   1663   1.1       cgd 	int bit;
   1664   1.1       cgd 
   1665   1.1       cgd 	bit = p->p_priority >> 2;
   1666   1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1667  1.52       cgd 		panic("remrunqueue");
   1668   1.1       cgd 
   1669   1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1670   1.1       cgd 	p->p_forw->p_back = p->p_back;
   1671   1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1672   1.1       cgd 
   1673   1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1674   1.1       cgd 		whichqs &= ~(1 << bit);
   1675   1.1       cgd }
   1676   1.1       cgd 
   1677   1.1       cgd /*
   1678   1.1       cgd  * Return the best possible estimate of the time in the timeval
   1679   1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1680   1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1681   1.1       cgd  * previous call.
   1682   1.1       cgd  */
   1683   1.1       cgd void
   1684   1.1       cgd microtime(tvp)
   1685   1.1       cgd 	register struct timeval *tvp;
   1686   1.1       cgd {
   1687   1.1       cgd 	int s = splclock();
   1688   1.1       cgd 	static struct timeval lasttime;
   1689   1.1       cgd 
   1690   1.1       cgd 	*tvp = time;
   1691   1.1       cgd #ifdef notdef
   1692   1.1       cgd 	tvp->tv_usec += clkread();
   1693   1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1694   1.1       cgd 		tvp->tv_sec++;
   1695   1.1       cgd 		tvp->tv_usec -= 1000000;
   1696   1.1       cgd 	}
   1697   1.1       cgd #endif
   1698   1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1699   1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1700   1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1701   1.1       cgd 		tvp->tv_sec++;
   1702   1.1       cgd 		tvp->tv_usec -= 1000000;
   1703   1.1       cgd 	}
   1704   1.1       cgd 	lasttime = *tvp;
   1705   1.1       cgd 	splx(s);
   1706  1.15       cgd }
   1707  1.15       cgd 
   1708  1.15       cgd /*
   1709  1.15       cgd  * Wait "n" microseconds.
   1710  1.15       cgd  */
   1711  1.32       cgd void
   1712  1.15       cgd delay(n)
   1713  1.32       cgd 	unsigned long n;
   1714  1.15       cgd {
   1715  1.15       cgd 	long N = cycles_per_usec * (n);
   1716  1.15       cgd 
   1717  1.15       cgd 	while (N > 0)				/* XXX */
   1718  1.15       cgd 		N -= 3;				/* XXX */
   1719   1.1       cgd }
   1720   1.1       cgd 
   1721   1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1722  1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1723  1.85   mycroft 	    u_long));
   1724  1.55       cgd 
   1725   1.1       cgd void
   1726  1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   1727   1.1       cgd 	struct proc *p;
   1728  1.19       cgd 	struct exec_package *epp;
   1729   1.5  christos 	u_long stack;
   1730   1.1       cgd {
   1731  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1732   1.1       cgd 
   1733  1.85   mycroft 	setregs(p, epp, stack);
   1734  1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1735   1.1       cgd }
   1736   1.1       cgd 
   1737   1.1       cgd /*
   1738   1.1       cgd  * cpu_exec_ecoff_hook():
   1739   1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1740   1.1       cgd  *
   1741   1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1742   1.1       cgd  *
   1743   1.1       cgd  */
   1744   1.1       cgd int
   1745  1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1746   1.1       cgd 	struct proc *p;
   1747   1.1       cgd 	struct exec_package *epp;
   1748   1.1       cgd {
   1749  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1750   1.5  christos 	extern struct emul emul_netbsd;
   1751   1.5  christos #ifdef COMPAT_OSF1
   1752   1.5  christos 	extern struct emul emul_osf1;
   1753   1.5  christos #endif
   1754   1.1       cgd 
   1755  1.19       cgd 	switch (execp->f.f_magic) {
   1756   1.5  christos #ifdef COMPAT_OSF1
   1757   1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1758   1.5  christos 		epp->ep_emul = &emul_osf1;
   1759   1.1       cgd 		break;
   1760   1.5  christos #endif
   1761   1.1       cgd 
   1762   1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1763   1.5  christos 		epp->ep_emul = &emul_netbsd;
   1764   1.1       cgd 		break;
   1765   1.1       cgd 
   1766   1.1       cgd 	default:
   1767  1.12       cgd 		return ENOEXEC;
   1768   1.1       cgd 	}
   1769   1.1       cgd 	return 0;
   1770   1.1       cgd }
   1771   1.1       cgd #endif
   1772  1.50       cgd 
   1773  1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1774  1.50       cgd vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   1775  1.50       cgd 								/* XXX */
   1776  1.50       cgd vm_offset_t							/* XXX */
   1777  1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1778  1.51       cgd 	vm_offset_t v;						/* XXX */
   1779  1.50       cgd {								/* XXX */
   1780  1.50       cgd 								/* XXX */
   1781  1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1782  1.50       cgd }								/* XXX */
   1783  1.50       cgd /* XXX XXX END XXX XXX */
   1784