machdep.c revision 1.100 1 /* $NetBSD: machdep.c,v 1.100 1998/02/10 03:52:05 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.100 1998/02/10 03:52:05 thorpej Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 vm_map_t buffer_map;
129
130 /*
131 * Declare these as initialized data so we can patch them.
132 */
133 int nswbuf = 0;
134 #ifdef NBUF
135 int nbuf = NBUF;
136 #else
137 int nbuf = 0;
138 #endif
139 #ifdef BUFPAGES
140 int bufpages = BUFPAGES;
141 #else
142 int bufpages = 0;
143 #endif
144 caddr_t msgbufaddr;
145
146 int maxmem; /* max memory per process */
147
148 int totalphysmem; /* total amount of physical memory in system */
149 int physmem; /* physical memory used by NetBSD + some rsvd */
150 int firstusablepage; /* first usable memory page */
151 int lastusablepage; /* last usable memory page */
152 int resvmem; /* amount of memory reserved for PROM */
153 int unusedmem; /* amount of memory for OS that we don't use */
154 int unknownmem; /* amount of memory with an unknown use */
155
156 int cputype; /* system type, from the RPB */
157
158 /*
159 * XXX We need an address to which we can assign things so that they
160 * won't be optimized away because we didn't use the value.
161 */
162 u_int32_t no_optimize;
163
164 /* the following is used externally (sysctl_hw) */
165 char machine[] = MACHINE; /* from <machine/param.h> */
166 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 char cpu_model[128];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* number of cpus in the box. really! */
175 int ncpus;
176
177 char boot_flags[64];
178 char booted_kernel[64];
179
180 int bootinfo_valid;
181 struct bootinfo bootinfo;
182
183 struct platform platform;
184
185 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
186 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
187 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
188
189 #ifdef DDB
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198
199 caddr_t allocsys __P((caddr_t));
200 int cpu_dump __P((void));
201 int cpu_dumpsize __P((void));
202 void dumpsys __P((void));
203 void identifycpu __P((void));
204 void netintr __P((void));
205 void printregs __P((struct reg *));
206
207 void
208 alpha_init(pfn, ptb, bim, bip)
209 u_long pfn; /* first free PFN number */
210 u_long ptb; /* PFN of current level 1 page table */
211 u_long bim; /* bootinfo magic */
212 u_long bip; /* bootinfo pointer */
213 {
214 extern char kernel_text[], _end[];
215 struct mddt *mddtp;
216 int i, mddtweird;
217 vm_offset_t kernstart, kernend;
218 vm_size_t size;
219 char *p;
220 caddr_t v;
221 caddr_t start, w;
222
223 /*
224 * Turn off interrupts (not mchecks) and floating point.
225 * Make sure the instruction and data streams are consistent.
226 */
227 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
228 alpha_pal_wrfen(0);
229 ALPHA_TBIA();
230 alpha_pal_imb();
231
232 /*
233 * get address of the restart block, while we the bootstrap
234 * mapping is still around.
235 */
236 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
237 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
238
239 /*
240 * Remember how many cycles there are per microsecond,
241 * so that we can use delay(). Round up, for safety.
242 */
243 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
244
245 /*
246 * Init the PROM interface, so we can use printf
247 * until PROM mappings go away in consinit.
248 */
249 init_prom_interface();
250
251 hz = hwrpb->rpb_intr_freq >> 12;
252 if (!(60 <= hz && hz <= 10240)) {
253 hz = 1024;
254 #ifdef DIAGNOSTIC
255 printf("rpb_intr_freq of %ld=>%d hz was not believed\n",
256 hwrpb->rpb_intr_freq, hz);
257 #endif
258 }
259
260 /*
261 * Check for a bootinfo from the boot program.
262 */
263 if (bim == BOOTINFO_MAGIC) {
264 /*
265 * Have boot info. Copy it to our own storage.
266 * We'll sanity-check it later.
267 */
268 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
269 switch (bootinfo.version) {
270 case 1:
271 bootinfo_valid = 1;
272 break;
273
274 default:
275 printf("warning: unknown bootinfo version %d\n",
276 bootinfo.version);
277 }
278 } else
279 printf("warning: boot program did not pass bootinfo\n");
280
281 /*
282 * Point interrupt/exception vectors to our own.
283 */
284 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
285 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
286 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
287 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
288 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
289 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
290
291 /*
292 * Clear pending machine checks and error reports, and enable
293 * system- and processor-correctable error reporting.
294 */
295 alpha_pal_wrmces(alpha_pal_rdmces() &
296 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
297
298 /*
299 * find out this CPU's page size
300 */
301 PAGE_SIZE = hwrpb->rpb_page_size;
302 if (PAGE_SIZE != 8192)
303 panic("page size %d != 8192?!", PAGE_SIZE);
304
305 /*
306 * Initialize PAGE_SIZE-dependent variables.
307 */
308 vm_set_page_size();
309
310 /*
311 * Find the beginning and end of the kernel.
312 */
313 kernstart = trunc_page(kernel_text);
314 #ifdef DDB
315 if (bootinfo_valid) {
316 /*
317 * Save the kernel symbol table.
318 */
319 switch (bootinfo.version) {
320 case 1:
321 ksym_start = (void *)bootinfo.un.v1.ssym;
322 ksym_end = (void *)bootinfo.un.v1.esym;
323 break;
324 }
325 kernend = (vm_offset_t)round_page(ksym_end);
326 } else
327 #endif
328 kernend = (vm_offset_t)round_page(_end);
329
330 /*
331 * Find out how much memory is available, by looking at
332 * the memory cluster descriptors. This also tries to do
333 * its best to detect things things that have never been seen
334 * before...
335 *
336 * XXX Assumes that the first "system" cluster is the
337 * only one we can use. Is the second (etc.) system cluster
338 * (if one happens to exist) guaranteed to be contiguous? or...?
339 */
340 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
341
342 /*
343 * BEGIN MDDT WEIRDNESS CHECKING
344 */
345 mddtweird = 0;
346
347 #define cnt mddtp->mddt_cluster_cnt
348 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
349 if (cnt != 2 && cnt != 3) {
350 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
351 mddtweird = 1;
352 } else if (usage(0) != MDDT_PALCODE ||
353 usage(1) != MDDT_SYSTEM ||
354 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
355 mddtweird = 1;
356 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
357 }
358
359 for (i = 0; i < cnt; i++) {
360 if ((usage(i) & MDDT_mbz) != 0) {
361 printf("WARNING: mem cluster %d has weird usage %lx\n",
362 i, usage(i));
363 mddtweird = 1;
364 }
365 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
366 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
367 mddtweird = 1;
368 }
369 /* XXX other things to check? */
370 }
371 #undef cnt
372 #undef usage
373
374 if (mddtweird) {
375 printf("\n");
376 printf("complete memory cluster information:\n");
377 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
378 printf("mddt %d:\n", i);
379 printf("\tpfn %lx\n",
380 mddtp->mddt_clusters[i].mddt_pfn);
381 printf("\tcnt %lx\n",
382 mddtp->mddt_clusters[i].mddt_pg_cnt);
383 printf("\ttest %lx\n",
384 mddtp->mddt_clusters[i].mddt_pg_test);
385 printf("\tbva %lx\n",
386 mddtp->mddt_clusters[i].mddt_v_bitaddr);
387 printf("\tbpa %lx\n",
388 mddtp->mddt_clusters[i].mddt_p_bitaddr);
389 printf("\tbcksum %lx\n",
390 mddtp->mddt_clusters[i].mddt_bit_cksum);
391 printf("\tusage %lx\n",
392 mddtp->mddt_clusters[i].mddt_usage);
393 }
394 printf("\n");
395 }
396 /*
397 * END MDDT WEIRDNESS CHECKING
398 */
399
400 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
401 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
402 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
403 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
404 if ((usage(i) & MDDT_mbz) != 0)
405 unknownmem += pgcnt(i);
406 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
407 resvmem += pgcnt(i);
408 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
409 /*
410 * assumes that the system cluster listed is
411 * one we're in...
412 */
413 if (physmem != resvmem) {
414 physmem += pgcnt(i);
415 firstusablepage =
416 mddtp->mddt_clusters[i].mddt_pfn;
417 lastusablepage = firstusablepage + pgcnt(i) - 1;
418 } else
419 unusedmem += pgcnt(i);
420 }
421 #undef usage
422 #undef pgcnt
423 }
424 if (totalphysmem == 0)
425 panic("can't happen: system seems to have no memory!");
426 #ifdef LIMITMEM
427 if (totalphysmem >= btoc(LIMITMEM << 20)) {
428 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
429 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
430 physmem = totalphysmem = btoc(LIMITMEM << 20);
431 unusedmem += ovf;
432 lastusablepage = firstusablepage + physmem - 1;
433 }
434 #endif
435 maxmem = physmem;
436
437 #if 0
438 printf("totalphysmem = %d\n", totalphysmem);
439 printf("physmem = %d\n", physmem);
440 printf("firstusablepage = %d\n", firstusablepage);
441 printf("lastusablepage = %d\n", lastusablepage);
442 printf("resvmem = %d\n", resvmem);
443 printf("unusedmem = %d\n", unusedmem);
444 printf("unknownmem = %d\n", unknownmem);
445 #endif
446
447 /*
448 * Adjust some parameters if the amount of physmem
449 * available would cause us to croak. This is completely
450 * eyeballed and isn't meant to be the final answer.
451 * vm_phys_size is probably the only one to really worry
452 * about.
453 *
454 * It's for booting a GENERIC kernel on a large memory platform.
455 */
456 if (physmem >= btoc(128 << 20)) {
457 vm_mbuf_size <<= 1;
458 vm_kmem_size <<= 3;
459 vm_phys_size <<= 2;
460 }
461
462 /*
463 * Find out what hardware we're on, and remember its type name.
464 */
465 cputype = hwrpb->rpb_type;
466 if (cputype >= ncpuinit) {
467 platform_not_supported();
468 /* NOTREACHED */
469 }
470 (*cpuinit[cputype].init)();
471 strcpy(cpu_model, platform.model);
472
473 /* XXX SANITY CHECKING. SHOULD GO AWAY */
474 /* XXX We should always be running on the the primary. */
475 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
476 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
477 if (cputype != ST_DEC_21000) /*XXX*/
478 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
479
480 /*
481 * Initialize error message buffer (at end of core).
482 */
483 lastusablepage -= btoc(MSGBUFSIZE);
484 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
485 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
486
487 /*
488 * Init mapping for u page(s) for proc 0
489 */
490 start = v = (caddr_t)kernend;
491 curproc->p_addr = proc0paddr = (struct user *)v;
492 v += UPAGES * NBPG;
493
494 /*
495 * Allocate space for system data structures. These data structures
496 * are allocated here instead of cpu_startup() because physical
497 * memory is directly addressable. We don't have to map these into
498 * virtual address space.
499 */
500 size = (vm_size_t)allocsys(0);
501 w = allocsys(v);
502 if ((w - v) != size)
503 panic("alpha_init: table size inconsistency");
504 v = w;
505
506 /*
507 * Clear allocated memory.
508 */
509 bzero(start, v - start);
510
511 /*
512 * Initialize the virtual memory system, and set the
513 * page table base register in proc 0's PCB.
514 */
515 #ifndef NEW_PMAP
516 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
517 #else
518 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
519 hwrpb->rpb_max_asn);
520 #endif
521
522 /*
523 * Initialize the rest of proc 0's PCB, and cache its physical
524 * address.
525 */
526 proc0.p_md.md_pcbpaddr =
527 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
528
529 /*
530 * Set the kernel sp, reserving space for an (empty) trapframe,
531 * and make proc0's trapframe pointer point to it for sanity.
532 */
533 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
534 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
535 proc0.p_md.md_tf =
536 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
537
538 #ifdef NEW_PMAP
539 /*
540 * Set up the kernel address space in proc0's hwpcb.
541 */
542 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
543 #endif
544
545 /*
546 * Look at arguments passed to us and compute boothowto.
547 * Also, get kernel name so it can be used in user-land.
548 */
549 if (bootinfo_valid) {
550 switch (bootinfo.version) {
551 case 1:
552 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
553 sizeof(boot_flags));
554 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
555 sizeof(booted_kernel));
556 }
557 } else {
558 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
559 sizeof(boot_flags));
560 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
561 sizeof(booted_kernel));
562 }
563
564 #if 0
565 printf("boot flags = \"%s\"\n", boot_flags);
566 printf("booted kernel = \"%s\"\n", booted_kernel);
567 #endif
568
569 boothowto = RB_SINGLE;
570 #ifdef KADB
571 boothowto |= RB_KDB;
572 #endif
573 for (p = boot_flags; p && *p != '\0'; p++) {
574 /*
575 * Note that we'd really like to differentiate case here,
576 * but the Alpha AXP Architecture Reference Manual
577 * says that we shouldn't.
578 */
579 switch (*p) {
580 case 'a': /* autoboot */
581 case 'A':
582 boothowto &= ~RB_SINGLE;
583 break;
584
585 #ifdef DEBUG
586 case 'c': /* crash dump immediately after autoconfig */
587 case 'C':
588 boothowto |= RB_DUMP;
589 break;
590 #endif
591
592 #if defined(KGDB) || defined(DDB)
593 case 'd': /* break into the kernel debugger ASAP */
594 case 'D':
595 boothowto |= RB_KDB;
596 break;
597 #endif
598
599 case 'h': /* always halt, never reboot */
600 case 'H':
601 boothowto |= RB_HALT;
602 break;
603
604 #if 0
605 case 'm': /* mini root present in memory */
606 case 'M':
607 boothowto |= RB_MINIROOT;
608 break;
609 #endif
610
611 case 'n': /* askname */
612 case 'N':
613 boothowto |= RB_ASKNAME;
614 break;
615
616 case 's': /* single-user (default, supported for sanity) */
617 case 'S':
618 boothowto |= RB_SINGLE;
619 break;
620
621 default:
622 printf("Unrecognized boot flag '%c'.\n", *p);
623 break;
624 }
625 }
626
627 /*
628 * Figure out the number of cpus in the box, from RPB fields.
629 * Really. We mean it.
630 */
631 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
632 struct pcs *pcsp;
633
634 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
635 (i * hwrpb->rpb_pcs_size));
636 if ((pcsp->pcs_flags & PCS_PP) != 0)
637 ncpus++;
638 }
639 }
640
641 /*
642 * Allocate space for system data structures. We are given
643 * a starting virtual address and we return a final virtual
644 * address; along the way we set each data structure pointer.
645 *
646 * We call allocsys() with 0 to find out how much space we want,
647 * allocate that much and fill it with zeroes, and the call
648 * allocsys() again with the correct base virtual address.
649 */
650 caddr_t
651 allocsys(v)
652 caddr_t v;
653 {
654
655 #define valloc(name, type, num) \
656 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
657 #ifdef REAL_CLISTS
658 valloc(cfree, struct cblock, nclist);
659 #endif
660 valloc(callout, struct callout, ncallout);
661 #ifdef SYSVSHM
662 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
663 #endif
664 #ifdef SYSVSEM
665 valloc(sema, struct semid_ds, seminfo.semmni);
666 valloc(sem, struct sem, seminfo.semmns);
667 /* This is pretty disgusting! */
668 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
669 #endif
670 #ifdef SYSVMSG
671 valloc(msgpool, char, msginfo.msgmax);
672 valloc(msgmaps, struct msgmap, msginfo.msgseg);
673 valloc(msghdrs, struct msg, msginfo.msgtql);
674 valloc(msqids, struct msqid_ds, msginfo.msgmni);
675 #endif
676
677 /*
678 * Determine how many buffers to allocate.
679 * We allocate 10% of memory for buffer space. Insure a
680 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
681 * headers as file i/o buffers.
682 */
683 if (bufpages == 0)
684 bufpages = (physmem * 10) / (CLSIZE * 100);
685 if (nbuf == 0) {
686 nbuf = bufpages;
687 if (nbuf < 16)
688 nbuf = 16;
689 }
690 if (nswbuf == 0) {
691 nswbuf = (nbuf / 2) &~ 1; /* force even */
692 if (nswbuf > 256)
693 nswbuf = 256; /* sanity */
694 }
695 valloc(swbuf, struct buf, nswbuf);
696 valloc(buf, struct buf, nbuf);
697 return (v);
698 #undef valloc
699 }
700
701 void
702 consinit()
703 {
704 if (platform.cons_init)
705 (*platform.cons_init)();
706 pmap_unmap_prom();
707
708 #ifdef DDB
709 db_machine_init();
710 ddb_init(ksym_start, ksym_end);
711 if (boothowto & RB_KDB)
712 Debugger();
713 #endif
714 #ifdef KGDB
715 if (boothowto & RB_KDB)
716 kgdb_connect(0);
717 #endif
718 }
719
720 void
721 cpu_startup()
722 {
723 register unsigned i;
724 int base, residual;
725 vm_offset_t minaddr, maxaddr;
726 vm_size_t size;
727 #if defined(DEBUG)
728 extern int pmapdebug;
729 int opmapdebug = pmapdebug;
730
731 pmapdebug = 0;
732 #endif
733
734 /*
735 * Good {morning,afternoon,evening,night}.
736 */
737 printf(version);
738 identifycpu();
739 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
740 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
741 if (unusedmem)
742 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
743 if (unknownmem)
744 printf("WARNING: %d bytes of memory with unknown purpose\n",
745 ctob(unknownmem));
746
747 /*
748 * Allocate virtual address space for file I/O buffers.
749 * Note they are different than the array of headers, 'buf',
750 * and usually occupy more virtual memory than physical.
751 */
752 size = MAXBSIZE * nbuf;
753 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
754 &maxaddr, size, TRUE);
755 minaddr = (vm_offset_t)buffers;
756 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
757 &minaddr, size, FALSE) != KERN_SUCCESS)
758 panic("startup: cannot allocate buffers");
759 base = bufpages / nbuf;
760 residual = bufpages % nbuf;
761 for (i = 0; i < nbuf; i++) {
762 vm_size_t curbufsize;
763 vm_offset_t curbuf;
764
765 /*
766 * First <residual> buffers get (base+1) physical pages
767 * allocated for them. The rest get (base) physical pages.
768 *
769 * The rest of each buffer occupies virtual space,
770 * but has no physical memory allocated for it.
771 */
772 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
773 curbufsize = CLBYTES * (i < residual ? base+1 : base);
774 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
775 vm_map_simplify(buffer_map, curbuf);
776 }
777 /*
778 * Allocate a submap for exec arguments. This map effectively
779 * limits the number of processes exec'ing at any time.
780 */
781 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
782 16 * NCARGS, TRUE);
783
784 /*
785 * Allocate a submap for physio
786 */
787 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
788 VM_PHYS_SIZE, TRUE);
789
790 /*
791 * Finally, allocate mbuf cluster submap.
792 */
793 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
794 VM_MBUF_SIZE, FALSE);
795 /*
796 * Initialize callouts
797 */
798 callfree = callout;
799 for (i = 1; i < ncallout; i++)
800 callout[i-1].c_next = &callout[i];
801 callout[i-1].c_next = NULL;
802
803 #if defined(DEBUG)
804 pmapdebug = opmapdebug;
805 #endif
806 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
807 printf("using %ld buffers containing %ld bytes of memory\n",
808 (long)nbuf, (long)(bufpages * CLBYTES));
809
810 /*
811 * Set up buffers, so they can be used to read disk labels.
812 */
813 bufinit();
814
815 /*
816 * Configure the system.
817 */
818 configure();
819
820 /*
821 * Note that bootstrapping is finished, and set the HWRPB up
822 * to do restarts.
823 */
824 hwrpb_restart_setup();
825 }
826
827 void
828 identifycpu()
829 {
830
831 /*
832 * print out CPU identification information.
833 */
834 printf("%s, %ldMHz\n", cpu_model,
835 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
836 printf("%ld byte page size, %d processor%s.\n",
837 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
838 #if 0
839 /* this isn't defined for any systems that we run on? */
840 printf("serial number 0x%lx 0x%lx\n",
841 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
842
843 /* and these aren't particularly useful! */
844 printf("variation: 0x%lx, revision 0x%lx\n",
845 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
846 #endif
847 }
848
849 int waittime = -1;
850 struct pcb dumppcb;
851
852 void
853 cpu_reboot(howto, bootstr)
854 int howto;
855 char *bootstr;
856 {
857 extern int cold;
858
859 /* If system is cold, just halt. */
860 if (cold) {
861 howto |= RB_HALT;
862 goto haltsys;
863 }
864
865 /* If "always halt" was specified as a boot flag, obey. */
866 if ((boothowto & RB_HALT) != 0)
867 howto |= RB_HALT;
868
869 boothowto = howto;
870 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
871 waittime = 0;
872 vfs_shutdown();
873 /*
874 * If we've been adjusting the clock, the todr
875 * will be out of synch; adjust it now.
876 */
877 resettodr();
878 }
879
880 /* Disable interrupts. */
881 splhigh();
882
883 /* If rebooting and a dump is requested do it. */
884 #if 0
885 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
886 #else
887 if (howto & RB_DUMP)
888 #endif
889 dumpsys();
890
891 haltsys:
892
893 /* run any shutdown hooks */
894 doshutdownhooks();
895
896 #ifdef BOOTKEY
897 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
898 cngetc();
899 printf("\n");
900 #endif
901
902 /* Finally, halt/reboot the system. */
903 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
904 prom_halt(howto & RB_HALT);
905 /*NOTREACHED*/
906 }
907
908 /*
909 * These variables are needed by /sbin/savecore
910 */
911 u_long dumpmag = 0x8fca0101; /* magic number */
912 int dumpsize = 0; /* pages */
913 long dumplo = 0; /* blocks */
914
915 /*
916 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
917 */
918 int
919 cpu_dumpsize()
920 {
921 int size;
922
923 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
924 if (roundup(size, dbtob(1)) != dbtob(1))
925 return -1;
926
927 return (1);
928 }
929
930 /*
931 * cpu_dump: dump machine-dependent kernel core dump headers.
932 */
933 int
934 cpu_dump()
935 {
936 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
937 long buf[dbtob(1) / sizeof (long)];
938 kcore_seg_t *segp;
939 cpu_kcore_hdr_t *cpuhdrp;
940
941 dump = bdevsw[major(dumpdev)].d_dump;
942
943 segp = (kcore_seg_t *)buf;
944 cpuhdrp =
945 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
946
947 /*
948 * Generate a segment header.
949 */
950 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
951 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
952
953 /*
954 * Add the machine-dependent header info
955 */
956 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
957 cpuhdrp->page_size = PAGE_SIZE;
958 cpuhdrp->core_seg.start = ctob(firstusablepage);
959 cpuhdrp->core_seg.size = ctob(physmem);
960
961 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
962 }
963
964 /*
965 * This is called by main to set dumplo and dumpsize.
966 * Dumps always skip the first CLBYTES of disk space
967 * in case there might be a disk label stored there.
968 * If there is extra space, put dump at the end to
969 * reduce the chance that swapping trashes it.
970 */
971 void
972 cpu_dumpconf()
973 {
974 int nblks, dumpblks; /* size of dump area */
975 int maj;
976
977 if (dumpdev == NODEV)
978 goto bad;
979 maj = major(dumpdev);
980 if (maj < 0 || maj >= nblkdev)
981 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
982 if (bdevsw[maj].d_psize == NULL)
983 goto bad;
984 nblks = (*bdevsw[maj].d_psize)(dumpdev);
985 if (nblks <= ctod(1))
986 goto bad;
987
988 dumpblks = cpu_dumpsize();
989 if (dumpblks < 0)
990 goto bad;
991 dumpblks += ctod(physmem);
992
993 /* If dump won't fit (incl. room for possible label), punt. */
994 if (dumpblks > (nblks - ctod(1)))
995 goto bad;
996
997 /* Put dump at end of partition */
998 dumplo = nblks - dumpblks;
999
1000 /* dumpsize is in page units, and doesn't include headers. */
1001 dumpsize = physmem;
1002 return;
1003
1004 bad:
1005 dumpsize = 0;
1006 return;
1007 }
1008
1009 /*
1010 * Dump the kernel's image to the swap partition.
1011 */
1012 #define BYTES_PER_DUMP NBPG
1013
1014 void
1015 dumpsys()
1016 {
1017 unsigned bytes, i, n;
1018 int maddr, psize;
1019 daddr_t blkno;
1020 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1021 int error;
1022
1023 /* Save registers. */
1024 savectx(&dumppcb);
1025
1026 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1027 if (dumpdev == NODEV)
1028 return;
1029
1030 /*
1031 * For dumps during autoconfiguration,
1032 * if dump device has already configured...
1033 */
1034 if (dumpsize == 0)
1035 cpu_dumpconf();
1036 if (dumplo <= 0) {
1037 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1038 minor(dumpdev));
1039 return;
1040 }
1041 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1042 minor(dumpdev), dumplo);
1043
1044 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1045 printf("dump ");
1046 if (psize == -1) {
1047 printf("area unavailable\n");
1048 return;
1049 }
1050
1051 /* XXX should purge all outstanding keystrokes. */
1052
1053 if ((error = cpu_dump()) != 0)
1054 goto err;
1055
1056 bytes = ctob(physmem);
1057 maddr = ctob(firstusablepage);
1058 blkno = dumplo + cpu_dumpsize();
1059 dump = bdevsw[major(dumpdev)].d_dump;
1060 error = 0;
1061 for (i = 0; i < bytes; i += n) {
1062
1063 /* Print out how many MBs we to go. */
1064 n = bytes - i;
1065 if (n && (n % (1024*1024)) == 0)
1066 printf("%d ", n / (1024 * 1024));
1067
1068 /* Limit size for next transfer. */
1069 if (n > BYTES_PER_DUMP)
1070 n = BYTES_PER_DUMP;
1071
1072 error = (*dump)(dumpdev, blkno,
1073 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1074 if (error)
1075 break;
1076 maddr += n;
1077 blkno += btodb(n); /* XXX? */
1078
1079 /* XXX should look for keystrokes, to cancel. */
1080 }
1081
1082 err:
1083 switch (error) {
1084
1085 case ENXIO:
1086 printf("device bad\n");
1087 break;
1088
1089 case EFAULT:
1090 printf("device not ready\n");
1091 break;
1092
1093 case EINVAL:
1094 printf("area improper\n");
1095 break;
1096
1097 case EIO:
1098 printf("i/o error\n");
1099 break;
1100
1101 case EINTR:
1102 printf("aborted from console\n");
1103 break;
1104
1105 case 0:
1106 printf("succeeded\n");
1107 break;
1108
1109 default:
1110 printf("error %d\n", error);
1111 break;
1112 }
1113 printf("\n\n");
1114 delay(1000);
1115 }
1116
1117 void
1118 frametoreg(framep, regp)
1119 struct trapframe *framep;
1120 struct reg *regp;
1121 {
1122
1123 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1124 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1125 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1126 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1127 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1128 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1129 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1130 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1131 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1132 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1133 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1134 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1135 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1136 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1137 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1138 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1139 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1140 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1141 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1142 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1143 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1144 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1145 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1146 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1147 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1148 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1149 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1150 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1151 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1152 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1153 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1154 regp->r_regs[R_ZERO] = 0;
1155 }
1156
1157 void
1158 regtoframe(regp, framep)
1159 struct reg *regp;
1160 struct trapframe *framep;
1161 {
1162
1163 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1164 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1165 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1166 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1167 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1168 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1169 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1170 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1171 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1172 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1173 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1174 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1175 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1176 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1177 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1178 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1179 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1180 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1181 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1182 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1183 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1184 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1185 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1186 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1187 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1188 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1189 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1190 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1191 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1192 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1193 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1194 /* ??? = regp->r_regs[R_ZERO]; */
1195 }
1196
1197 void
1198 printregs(regp)
1199 struct reg *regp;
1200 {
1201 int i;
1202
1203 for (i = 0; i < 32; i++)
1204 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1205 i & 1 ? "\n" : "\t");
1206 }
1207
1208 void
1209 regdump(framep)
1210 struct trapframe *framep;
1211 {
1212 struct reg reg;
1213
1214 frametoreg(framep, ®);
1215 reg.r_regs[R_SP] = alpha_pal_rdusp();
1216
1217 printf("REGISTERS:\n");
1218 printregs(®);
1219 }
1220
1221 #ifdef DEBUG
1222 int sigdebug = 0;
1223 int sigpid = 0;
1224 #define SDB_FOLLOW 0x01
1225 #define SDB_KSTACK 0x02
1226 #endif
1227
1228 /*
1229 * Send an interrupt to process.
1230 */
1231 void
1232 sendsig(catcher, sig, mask, code)
1233 sig_t catcher;
1234 int sig, mask;
1235 u_long code;
1236 {
1237 struct proc *p = curproc;
1238 struct sigcontext *scp, ksc;
1239 struct trapframe *frame;
1240 struct sigacts *psp = p->p_sigacts;
1241 int oonstack, fsize, rndfsize;
1242 extern char sigcode[], esigcode[];
1243 extern struct proc *fpcurproc;
1244
1245 frame = p->p_md.md_tf;
1246 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1247 fsize = sizeof ksc;
1248 rndfsize = ((fsize + 15) / 16) * 16;
1249 /*
1250 * Allocate and validate space for the signal handler
1251 * context. Note that if the stack is in P0 space, the
1252 * call to grow() is a nop, and the useracc() check
1253 * will fail if the process has not already allocated
1254 * the space with a `brk'.
1255 */
1256 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1257 (psp->ps_sigonstack & sigmask(sig))) {
1258 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1259 psp->ps_sigstk.ss_size - rndfsize);
1260 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1261 } else
1262 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1263 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1264 (void)grow(p, (u_long)scp);
1265 #ifdef DEBUG
1266 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1267 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1268 sig, &oonstack, scp);
1269 #endif
1270 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1271 #ifdef DEBUG
1272 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1273 printf("sendsig(%d): useracc failed on sig %d\n",
1274 p->p_pid, sig);
1275 #endif
1276 /*
1277 * Process has trashed its stack; give it an illegal
1278 * instruction to halt it in its tracks.
1279 */
1280 SIGACTION(p, SIGILL) = SIG_DFL;
1281 sig = sigmask(SIGILL);
1282 p->p_sigignore &= ~sig;
1283 p->p_sigcatch &= ~sig;
1284 p->p_sigmask &= ~sig;
1285 psignal(p, SIGILL);
1286 return;
1287 }
1288
1289 /*
1290 * Build the signal context to be used by sigreturn.
1291 */
1292 ksc.sc_onstack = oonstack;
1293 ksc.sc_mask = mask;
1294 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1295 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1296
1297 /* copy the registers. */
1298 frametoreg(frame, (struct reg *)ksc.sc_regs);
1299 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1300 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1301
1302 /* save the floating-point state, if necessary, then copy it. */
1303 if (p == fpcurproc) {
1304 alpha_pal_wrfen(1);
1305 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1306 alpha_pal_wrfen(0);
1307 fpcurproc = NULL;
1308 }
1309 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1310 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1311 sizeof(struct fpreg));
1312 ksc.sc_fp_control = 0; /* XXX ? */
1313 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1314 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1315
1316
1317 #ifdef COMPAT_OSF1
1318 /*
1319 * XXX Create an OSF/1-style sigcontext and associated goo.
1320 */
1321 #endif
1322
1323 /*
1324 * copy the frame out to userland.
1325 */
1326 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1327 #ifdef DEBUG
1328 if (sigdebug & SDB_FOLLOW)
1329 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1330 scp, code);
1331 #endif
1332
1333 /*
1334 * Set up the registers to return to sigcode.
1335 */
1336 frame->tf_regs[FRAME_PC] =
1337 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1338 frame->tf_regs[FRAME_A0] = sig;
1339 frame->tf_regs[FRAME_A1] = code;
1340 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1341 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1342 alpha_pal_wrusp((unsigned long)scp);
1343
1344 #ifdef DEBUG
1345 if (sigdebug & SDB_FOLLOW)
1346 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1347 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1348 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1349 printf("sendsig(%d): sig %d returns\n",
1350 p->p_pid, sig);
1351 #endif
1352 }
1353
1354 /*
1355 * System call to cleanup state after a signal
1356 * has been taken. Reset signal mask and
1357 * stack state from context left by sendsig (above).
1358 * Return to previous pc and psl as specified by
1359 * context left by sendsig. Check carefully to
1360 * make sure that the user has not modified the
1361 * psl to gain improper priviledges or to cause
1362 * a machine fault.
1363 */
1364 /* ARGSUSED */
1365 int
1366 sys_sigreturn(p, v, retval)
1367 struct proc *p;
1368 void *v;
1369 register_t *retval;
1370 {
1371 struct sys_sigreturn_args /* {
1372 syscallarg(struct sigcontext *) sigcntxp;
1373 } */ *uap = v;
1374 struct sigcontext *scp, ksc;
1375 extern struct proc *fpcurproc;
1376
1377 scp = SCARG(uap, sigcntxp);
1378 #ifdef DEBUG
1379 if (sigdebug & SDB_FOLLOW)
1380 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1381 #endif
1382
1383 if (ALIGN(scp) != (u_int64_t)scp)
1384 return (EINVAL);
1385
1386 /*
1387 * Test and fetch the context structure.
1388 * We grab it all at once for speed.
1389 */
1390 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1391 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1392 return (EINVAL);
1393
1394 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1395 return (EINVAL);
1396 /*
1397 * Restore the user-supplied information
1398 */
1399 if (ksc.sc_onstack)
1400 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1401 else
1402 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1403 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1404
1405 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1406 p->p_md.md_tf->tf_regs[FRAME_PS] =
1407 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1408
1409 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1410 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1411
1412 /* XXX ksc.sc_ownedfp ? */
1413 if (p == fpcurproc)
1414 fpcurproc = NULL;
1415 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1416 sizeof(struct fpreg));
1417 /* XXX ksc.sc_fp_control ? */
1418
1419 #ifdef DEBUG
1420 if (sigdebug & SDB_FOLLOW)
1421 printf("sigreturn(%d): returns\n", p->p_pid);
1422 #endif
1423 return (EJUSTRETURN);
1424 }
1425
1426 /*
1427 * machine dependent system variables.
1428 */
1429 int
1430 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1431 int *name;
1432 u_int namelen;
1433 void *oldp;
1434 size_t *oldlenp;
1435 void *newp;
1436 size_t newlen;
1437 struct proc *p;
1438 {
1439 dev_t consdev;
1440
1441 /* all sysctl names at this level are terminal */
1442 if (namelen != 1)
1443 return (ENOTDIR); /* overloaded */
1444
1445 switch (name[0]) {
1446 case CPU_CONSDEV:
1447 if (cn_tab != NULL)
1448 consdev = cn_tab->cn_dev;
1449 else
1450 consdev = NODEV;
1451 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1452 sizeof consdev));
1453
1454 case CPU_ROOT_DEVICE:
1455 return (sysctl_rdstring(oldp, oldlenp, newp,
1456 root_device->dv_xname));
1457
1458 case CPU_UNALIGNED_PRINT:
1459 return (sysctl_int(oldp, oldlenp, newp, newlen,
1460 &alpha_unaligned_print));
1461
1462 case CPU_UNALIGNED_FIX:
1463 return (sysctl_int(oldp, oldlenp, newp, newlen,
1464 &alpha_unaligned_fix));
1465
1466 case CPU_UNALIGNED_SIGBUS:
1467 return (sysctl_int(oldp, oldlenp, newp, newlen,
1468 &alpha_unaligned_sigbus));
1469
1470 case CPU_BOOTED_KERNEL:
1471 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1472
1473 default:
1474 return (EOPNOTSUPP);
1475 }
1476 /* NOTREACHED */
1477 }
1478
1479 /*
1480 * Set registers on exec.
1481 */
1482 void
1483 setregs(p, pack, stack)
1484 register struct proc *p;
1485 struct exec_package *pack;
1486 u_long stack;
1487 {
1488 struct trapframe *tfp = p->p_md.md_tf;
1489 extern struct proc *fpcurproc;
1490 #ifdef DEBUG
1491 int i;
1492 #endif
1493
1494 #ifdef DEBUG
1495 /*
1496 * Crash and dump, if the user requested it.
1497 */
1498 if (boothowto & RB_DUMP)
1499 panic("crash requested by boot flags");
1500 #endif
1501
1502 #ifdef DEBUG
1503 for (i = 0; i < FRAME_SIZE; i++)
1504 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1505 #else
1506 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1507 #endif
1508 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1509 #define FP_RN 2 /* XXX */
1510 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1511 alpha_pal_wrusp(stack);
1512 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1513 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1514
1515 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1516 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1517 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1518 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1519 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1520
1521 p->p_md.md_flags &= ~MDP_FPUSED;
1522 if (fpcurproc == p)
1523 fpcurproc = NULL;
1524 }
1525
1526 void
1527 netintr()
1528 {
1529 int n, s;
1530
1531 s = splhigh();
1532 n = netisr;
1533 netisr = 0;
1534 splx(s);
1535
1536 #define DONETISR(bit, fn) \
1537 do { \
1538 if (n & (1 << (bit))) \
1539 fn; \
1540 } while (0)
1541
1542 #ifdef INET
1543 #if NARP > 0
1544 DONETISR(NETISR_ARP, arpintr());
1545 #endif
1546 DONETISR(NETISR_IP, ipintr());
1547 #endif
1548 #ifdef NETATALK
1549 DONETISR(NETISR_ATALK, atintr());
1550 #endif
1551 #ifdef NS
1552 DONETISR(NETISR_NS, nsintr());
1553 #endif
1554 #ifdef ISO
1555 DONETISR(NETISR_ISO, clnlintr());
1556 #endif
1557 #ifdef CCITT
1558 DONETISR(NETISR_CCITT, ccittintr());
1559 #endif
1560 #ifdef NATM
1561 DONETISR(NETISR_NATM, natmintr());
1562 #endif
1563 #if NPPP > 1
1564 DONETISR(NETISR_PPP, pppintr());
1565 #endif
1566
1567 #undef DONETISR
1568 }
1569
1570 void
1571 do_sir()
1572 {
1573 u_int64_t n;
1574
1575 do {
1576 (void)splhigh();
1577 n = ssir;
1578 ssir = 0;
1579 splsoft(); /* don't recurse through spl0() */
1580
1581 #define DO_SIR(bit, fn) \
1582 do { \
1583 if (n & (bit)) { \
1584 cnt.v_soft++; \
1585 fn; \
1586 } \
1587 } while (0)
1588
1589 DO_SIR(SIR_NET, netintr());
1590 DO_SIR(SIR_CLOCK, softclock());
1591
1592 #undef DO_SIR
1593 } while (ssir != 0);
1594 }
1595
1596 int
1597 spl0()
1598 {
1599
1600 if (ssir)
1601 do_sir(); /* it lowers the IPL itself */
1602
1603 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1604 }
1605
1606 /*
1607 * The following primitives manipulate the run queues. _whichqs tells which
1608 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1609 * into queues, Remrunqueue removes them from queues. The running process is
1610 * on no queue, other processes are on a queue related to p->p_priority,
1611 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1612 * available queues.
1613 */
1614 /*
1615 * setrunqueue(p)
1616 * proc *p;
1617 *
1618 * Call should be made at splclock(), and p->p_stat should be SRUN.
1619 */
1620
1621 void
1622 setrunqueue(p)
1623 struct proc *p;
1624 {
1625 int bit;
1626
1627 /* firewall: p->p_back must be NULL */
1628 if (p->p_back != NULL)
1629 panic("setrunqueue");
1630
1631 bit = p->p_priority >> 2;
1632 whichqs |= (1 << bit);
1633 p->p_forw = (struct proc *)&qs[bit];
1634 p->p_back = qs[bit].ph_rlink;
1635 p->p_back->p_forw = p;
1636 qs[bit].ph_rlink = p;
1637 }
1638
1639 /*
1640 * remrunqueue(p)
1641 *
1642 * Call should be made at splclock().
1643 */
1644 void
1645 remrunqueue(p)
1646 struct proc *p;
1647 {
1648 int bit;
1649
1650 bit = p->p_priority >> 2;
1651 if ((whichqs & (1 << bit)) == 0)
1652 panic("remrunqueue");
1653
1654 p->p_back->p_forw = p->p_forw;
1655 p->p_forw->p_back = p->p_back;
1656 p->p_back = NULL; /* for firewall checking. */
1657
1658 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1659 whichqs &= ~(1 << bit);
1660 }
1661
1662 /*
1663 * Return the best possible estimate of the time in the timeval
1664 * to which tvp points. Unfortunately, we can't read the hardware registers.
1665 * We guarantee that the time will be greater than the value obtained by a
1666 * previous call.
1667 */
1668 void
1669 microtime(tvp)
1670 register struct timeval *tvp;
1671 {
1672 int s = splclock();
1673 static struct timeval lasttime;
1674
1675 *tvp = time;
1676 #ifdef notdef
1677 tvp->tv_usec += clkread();
1678 while (tvp->tv_usec > 1000000) {
1679 tvp->tv_sec++;
1680 tvp->tv_usec -= 1000000;
1681 }
1682 #endif
1683 if (tvp->tv_sec == lasttime.tv_sec &&
1684 tvp->tv_usec <= lasttime.tv_usec &&
1685 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1686 tvp->tv_sec++;
1687 tvp->tv_usec -= 1000000;
1688 }
1689 lasttime = *tvp;
1690 splx(s);
1691 }
1692
1693 /*
1694 * Wait "n" microseconds.
1695 */
1696 void
1697 delay(n)
1698 unsigned long n;
1699 {
1700 long N = cycles_per_usec * (n);
1701
1702 while (N > 0) /* XXX */
1703 N -= 3; /* XXX */
1704 }
1705
1706 #if defined(COMPAT_OSF1) || 1 /* XXX */
1707 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1708 u_long));
1709
1710 void
1711 cpu_exec_ecoff_setregs(p, epp, stack)
1712 struct proc *p;
1713 struct exec_package *epp;
1714 u_long stack;
1715 {
1716 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1717
1718 setregs(p, epp, stack);
1719 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1720 }
1721
1722 /*
1723 * cpu_exec_ecoff_hook():
1724 * cpu-dependent ECOFF format hook for execve().
1725 *
1726 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1727 *
1728 */
1729 int
1730 cpu_exec_ecoff_hook(p, epp)
1731 struct proc *p;
1732 struct exec_package *epp;
1733 {
1734 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1735 extern struct emul emul_netbsd;
1736 #ifdef COMPAT_OSF1
1737 extern struct emul emul_osf1;
1738 #endif
1739
1740 switch (execp->f.f_magic) {
1741 #ifdef COMPAT_OSF1
1742 case ECOFF_MAGIC_ALPHA:
1743 epp->ep_emul = &emul_osf1;
1744 break;
1745 #endif
1746
1747 case ECOFF_MAGIC_NETBSD_ALPHA:
1748 epp->ep_emul = &emul_netbsd;
1749 break;
1750
1751 default:
1752 return ENOEXEC;
1753 }
1754 return 0;
1755 }
1756 #endif
1757
1758 /* XXX XXX BEGIN XXX XXX */
1759 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1760 /* XXX */
1761 vm_offset_t /* XXX */
1762 alpha_XXX_dmamap(v) /* XXX */
1763 vm_offset_t v; /* XXX */
1764 { /* XXX */
1765 /* XXX */
1766 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1767 } /* XXX */
1768 /* XXX XXX END XXX XXX */
1769