machdep.c revision 1.101 1 /* $NetBSD: machdep.c,v 1.101 1998/02/11 00:05:33 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.101 1998/02/11 00:05:33 cgd Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 vm_map_t buffer_map;
129
130 /*
131 * Declare these as initialized data so we can patch them.
132 */
133 int nswbuf = 0;
134 #ifdef NBUF
135 int nbuf = NBUF;
136 #else
137 int nbuf = 0;
138 #endif
139 #ifdef BUFPAGES
140 int bufpages = BUFPAGES;
141 #else
142 int bufpages = 0;
143 #endif
144 caddr_t msgbufaddr;
145
146 int maxmem; /* max memory per process */
147
148 int totalphysmem; /* total amount of physical memory in system */
149 int physmem; /* physical memory used by NetBSD + some rsvd */
150 int firstusablepage; /* first usable memory page */
151 int lastusablepage; /* last usable memory page */
152 int resvmem; /* amount of memory reserved for PROM */
153 int unusedmem; /* amount of memory for OS that we don't use */
154 int unknownmem; /* amount of memory with an unknown use */
155
156 int cputype; /* system type, from the RPB */
157
158 /*
159 * XXX We need an address to which we can assign things so that they
160 * won't be optimized away because we didn't use the value.
161 */
162 u_int32_t no_optimize;
163
164 /* the following is used externally (sysctl_hw) */
165 char machine[] = MACHINE; /* from <machine/param.h> */
166 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 char cpu_model[128];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* number of cpus in the box. really! */
175 int ncpus;
176
177 char boot_flags[64];
178 char booted_kernel[64];
179
180 int bootinfo_valid;
181 struct bootinfo bootinfo;
182
183 struct platform platform;
184
185 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
186 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
187 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
188
189 #ifdef DDB
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198
199 caddr_t allocsys __P((caddr_t));
200 int cpu_dump __P((void));
201 int cpu_dumpsize __P((void));
202 void dumpsys __P((void));
203 void identifycpu __P((void));
204 void netintr __P((void));
205 void printregs __P((struct reg *));
206
207 void
208 alpha_init(pfn, ptb, bim, bip)
209 u_long pfn; /* first free PFN number */
210 u_long ptb; /* PFN of current level 1 page table */
211 u_long bim; /* bootinfo magic */
212 u_long bip; /* bootinfo pointer */
213 {
214 extern char kernel_text[], _end[];
215 struct mddt *mddtp;
216 int i, mddtweird;
217 vm_offset_t kernstart, kernend;
218 vm_size_t size;
219 char *p;
220 caddr_t v;
221 caddr_t start, w;
222
223 /*
224 * Turn off interrupts (not mchecks) and floating point.
225 * Make sure the instruction and data streams are consistent.
226 */
227 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
228 alpha_pal_wrfen(0);
229 ALPHA_TBIA();
230 alpha_pal_imb();
231
232 /*
233 * get address of the restart block, while we the bootstrap
234 * mapping is still around.
235 */
236 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
237 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
238
239 /*
240 * Remember how many cycles there are per microsecond,
241 * so that we can use delay(). Round up, for safety.
242 */
243 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
244
245 /*
246 * Init the PROM interface, so we can use printf
247 * until PROM mappings go away in consinit.
248 */
249 init_prom_interface();
250
251 hz = hwrpb->rpb_intr_freq >> 12;
252 if (!(60 <= hz && hz <= 10240)) {
253 hz = 1024;
254 #ifdef DIAGNOSTIC
255 printf("rpb_intr_freq of %ld=>%d hz was not believed\n",
256 hwrpb->rpb_intr_freq, hz);
257 #endif
258 }
259
260 /*
261 * Check for a bootinfo from the boot program.
262 */
263 if (bim == BOOTINFO_MAGIC) {
264 /*
265 * Have boot info. Copy it to our own storage.
266 * We'll sanity-check it later.
267 */
268 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
269 switch (bootinfo.version) {
270 case 1:
271 bootinfo_valid = 1;
272 break;
273
274 default:
275 printf("warning: unknown bootinfo version %d\n",
276 bootinfo.version);
277 }
278 } else
279 printf("warning: boot program did not pass bootinfo\n");
280
281 /*
282 * Point interrupt/exception vectors to our own.
283 */
284 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
285 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
286 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
287 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
288 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
289 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
290
291 /*
292 * Clear pending machine checks and error reports, and enable
293 * system- and processor-correctable error reporting.
294 */
295 alpha_pal_wrmces(alpha_pal_rdmces() &
296 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
297
298 /*
299 * find out this CPU's page size
300 */
301 PAGE_SIZE = hwrpb->rpb_page_size;
302 if (PAGE_SIZE != 8192)
303 panic("page size %d != 8192?!", PAGE_SIZE);
304
305 /*
306 * Initialize PAGE_SIZE-dependent variables.
307 */
308 vm_set_page_size();
309
310 /*
311 * Find the beginning and end of the kernel (and leave a
312 * bit of space before the beginning for the bootstrap
313 * stack).
314 */
315 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
316 #ifdef DDB
317 if (bootinfo_valid) {
318 /*
319 * Save the kernel symbol table.
320 */
321 switch (bootinfo.version) {
322 case 1:
323 ksym_start = (void *)bootinfo.un.v1.ssym;
324 ksym_end = (void *)bootinfo.un.v1.esym;
325 break;
326 }
327 kernend = (vm_offset_t)round_page(ksym_end);
328 } else
329 #endif
330 kernend = (vm_offset_t)round_page(_end);
331
332 /*
333 * Find out how much memory is available, by looking at
334 * the memory cluster descriptors. This also tries to do
335 * its best to detect things things that have never been seen
336 * before...
337 *
338 * XXX Assumes that the first "system" cluster is the
339 * only one we can use. Is the second (etc.) system cluster
340 * (if one happens to exist) guaranteed to be contiguous? or...?
341 */
342 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
343
344 /*
345 * BEGIN MDDT WEIRDNESS CHECKING
346 */
347 mddtweird = 0;
348
349 #define cnt mddtp->mddt_cluster_cnt
350 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
351 if (cnt != 2 && cnt != 3) {
352 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
353 mddtweird = 1;
354 } else if (usage(0) != MDDT_PALCODE ||
355 usage(1) != MDDT_SYSTEM ||
356 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
357 mddtweird = 1;
358 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
359 }
360
361 for (i = 0; i < cnt; i++) {
362 if ((usage(i) & MDDT_mbz) != 0) {
363 printf("WARNING: mem cluster %d has weird usage %lx\n",
364 i, usage(i));
365 mddtweird = 1;
366 }
367 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
368 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
369 mddtweird = 1;
370 }
371 /* XXX other things to check? */
372 }
373 #undef cnt
374 #undef usage
375
376 if (mddtweird) {
377 printf("\n");
378 printf("complete memory cluster information:\n");
379 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
380 printf("mddt %d:\n", i);
381 printf("\tpfn %lx\n",
382 mddtp->mddt_clusters[i].mddt_pfn);
383 printf("\tcnt %lx\n",
384 mddtp->mddt_clusters[i].mddt_pg_cnt);
385 printf("\ttest %lx\n",
386 mddtp->mddt_clusters[i].mddt_pg_test);
387 printf("\tbva %lx\n",
388 mddtp->mddt_clusters[i].mddt_v_bitaddr);
389 printf("\tbpa %lx\n",
390 mddtp->mddt_clusters[i].mddt_p_bitaddr);
391 printf("\tbcksum %lx\n",
392 mddtp->mddt_clusters[i].mddt_bit_cksum);
393 printf("\tusage %lx\n",
394 mddtp->mddt_clusters[i].mddt_usage);
395 }
396 printf("\n");
397 }
398 /*
399 * END MDDT WEIRDNESS CHECKING
400 */
401
402 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
403 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
404 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
405 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
406 if ((usage(i) & MDDT_mbz) != 0)
407 unknownmem += pgcnt(i);
408 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
409 resvmem += pgcnt(i);
410 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
411 /*
412 * assumes that the system cluster listed is
413 * one we're in...
414 */
415 if (physmem != resvmem) {
416 physmem += pgcnt(i);
417 firstusablepage =
418 mddtp->mddt_clusters[i].mddt_pfn;
419 lastusablepage = firstusablepage + pgcnt(i) - 1;
420 } else
421 unusedmem += pgcnt(i);
422 }
423 #undef usage
424 #undef pgcnt
425 }
426 if (totalphysmem == 0)
427 panic("can't happen: system seems to have no memory!");
428 #ifdef LIMITMEM
429 if (totalphysmem >= btoc(LIMITMEM << 20)) {
430 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
431 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
432 physmem = totalphysmem = btoc(LIMITMEM << 20);
433 unusedmem += ovf;
434 lastusablepage = firstusablepage + physmem - 1;
435 }
436 #endif
437 maxmem = physmem;
438
439 #if 0
440 printf("totalphysmem = %d\n", totalphysmem);
441 printf("physmem = %d\n", physmem);
442 printf("firstusablepage = %d\n", firstusablepage);
443 printf("lastusablepage = %d\n", lastusablepage);
444 printf("resvmem = %d\n", resvmem);
445 printf("unusedmem = %d\n", unusedmem);
446 printf("unknownmem = %d\n", unknownmem);
447 #endif
448
449 /*
450 * Adjust some parameters if the amount of physmem
451 * available would cause us to croak. This is completely
452 * eyeballed and isn't meant to be the final answer.
453 * vm_phys_size is probably the only one to really worry
454 * about.
455 *
456 * It's for booting a GENERIC kernel on a large memory platform.
457 */
458 if (physmem >= btoc(128 << 20)) {
459 vm_mbuf_size <<= 1;
460 vm_kmem_size <<= 3;
461 vm_phys_size <<= 2;
462 }
463
464 /*
465 * Find out what hardware we're on, and remember its type name.
466 */
467 cputype = hwrpb->rpb_type;
468 if (cputype >= ncpuinit) {
469 platform_not_supported();
470 /* NOTREACHED */
471 }
472 (*cpuinit[cputype].init)();
473 strcpy(cpu_model, platform.model);
474
475 /* XXX SANITY CHECKING. SHOULD GO AWAY */
476 /* XXX We should always be running on the the primary. */
477 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
478 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
479 if (cputype != ST_DEC_21000) /*XXX*/
480 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
481
482 /*
483 * Initialize error message buffer (at end of core).
484 */
485 lastusablepage -= btoc(MSGBUFSIZE);
486 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
487 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
488
489 /*
490 * Init mapping for u page(s) for proc 0
491 */
492 start = v = (caddr_t)kernend;
493 curproc->p_addr = proc0paddr = (struct user *)v;
494 v += UPAGES * NBPG;
495
496 /*
497 * Allocate space for system data structures. These data structures
498 * are allocated here instead of cpu_startup() because physical
499 * memory is directly addressable. We don't have to map these into
500 * virtual address space.
501 */
502 size = (vm_size_t)allocsys(0);
503 w = allocsys(v);
504 if ((w - v) != size)
505 panic("alpha_init: table size inconsistency");
506 v = w;
507
508 /*
509 * Clear allocated memory.
510 */
511 bzero(start, v - start);
512
513 /*
514 * Initialize the virtual memory system, and set the
515 * page table base register in proc 0's PCB.
516 */
517 #ifndef NEW_PMAP
518 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
519 #else
520 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
521 hwrpb->rpb_max_asn);
522 #endif
523
524 /*
525 * Initialize the rest of proc 0's PCB, and cache its physical
526 * address.
527 */
528 proc0.p_md.md_pcbpaddr =
529 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
530
531 /*
532 * Set the kernel sp, reserving space for an (empty) trapframe,
533 * and make proc0's trapframe pointer point to it for sanity.
534 */
535 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
536 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
537 proc0.p_md.md_tf =
538 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
539
540 #ifdef NEW_PMAP
541 /*
542 * Set up the kernel address space in proc0's hwpcb.
543 */
544 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
545 #endif
546
547 /*
548 * Look at arguments passed to us and compute boothowto.
549 * Also, get kernel name so it can be used in user-land.
550 */
551 if (bootinfo_valid) {
552 switch (bootinfo.version) {
553 case 1:
554 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
555 sizeof(boot_flags));
556 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
557 sizeof(booted_kernel));
558 }
559 } else {
560 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
561 sizeof(boot_flags));
562 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
563 sizeof(booted_kernel));
564 }
565
566 #if 0
567 printf("boot flags = \"%s\"\n", boot_flags);
568 printf("booted kernel = \"%s\"\n", booted_kernel);
569 #endif
570
571 boothowto = RB_SINGLE;
572 #ifdef KADB
573 boothowto |= RB_KDB;
574 #endif
575 for (p = boot_flags; p && *p != '\0'; p++) {
576 /*
577 * Note that we'd really like to differentiate case here,
578 * but the Alpha AXP Architecture Reference Manual
579 * says that we shouldn't.
580 */
581 switch (*p) {
582 case 'a': /* autoboot */
583 case 'A':
584 boothowto &= ~RB_SINGLE;
585 break;
586
587 #ifdef DEBUG
588 case 'c': /* crash dump immediately after autoconfig */
589 case 'C':
590 boothowto |= RB_DUMP;
591 break;
592 #endif
593
594 #if defined(KGDB) || defined(DDB)
595 case 'd': /* break into the kernel debugger ASAP */
596 case 'D':
597 boothowto |= RB_KDB;
598 break;
599 #endif
600
601 case 'h': /* always halt, never reboot */
602 case 'H':
603 boothowto |= RB_HALT;
604 break;
605
606 #if 0
607 case 'm': /* mini root present in memory */
608 case 'M':
609 boothowto |= RB_MINIROOT;
610 break;
611 #endif
612
613 case 'n': /* askname */
614 case 'N':
615 boothowto |= RB_ASKNAME;
616 break;
617
618 case 's': /* single-user (default, supported for sanity) */
619 case 'S':
620 boothowto |= RB_SINGLE;
621 break;
622
623 default:
624 printf("Unrecognized boot flag '%c'.\n", *p);
625 break;
626 }
627 }
628
629 /*
630 * Figure out the number of cpus in the box, from RPB fields.
631 * Really. We mean it.
632 */
633 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
634 struct pcs *pcsp;
635
636 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
637 (i * hwrpb->rpb_pcs_size));
638 if ((pcsp->pcs_flags & PCS_PP) != 0)
639 ncpus++;
640 }
641 }
642
643 /*
644 * Allocate space for system data structures. We are given
645 * a starting virtual address and we return a final virtual
646 * address; along the way we set each data structure pointer.
647 *
648 * We call allocsys() with 0 to find out how much space we want,
649 * allocate that much and fill it with zeroes, and the call
650 * allocsys() again with the correct base virtual address.
651 */
652 caddr_t
653 allocsys(v)
654 caddr_t v;
655 {
656
657 #define valloc(name, type, num) \
658 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
659 #ifdef REAL_CLISTS
660 valloc(cfree, struct cblock, nclist);
661 #endif
662 valloc(callout, struct callout, ncallout);
663 #ifdef SYSVSHM
664 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
665 #endif
666 #ifdef SYSVSEM
667 valloc(sema, struct semid_ds, seminfo.semmni);
668 valloc(sem, struct sem, seminfo.semmns);
669 /* This is pretty disgusting! */
670 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
671 #endif
672 #ifdef SYSVMSG
673 valloc(msgpool, char, msginfo.msgmax);
674 valloc(msgmaps, struct msgmap, msginfo.msgseg);
675 valloc(msghdrs, struct msg, msginfo.msgtql);
676 valloc(msqids, struct msqid_ds, msginfo.msgmni);
677 #endif
678
679 /*
680 * Determine how many buffers to allocate.
681 * We allocate 10% of memory for buffer space. Insure a
682 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
683 * headers as file i/o buffers.
684 */
685 if (bufpages == 0)
686 bufpages = (physmem * 10) / (CLSIZE * 100);
687 if (nbuf == 0) {
688 nbuf = bufpages;
689 if (nbuf < 16)
690 nbuf = 16;
691 }
692 if (nswbuf == 0) {
693 nswbuf = (nbuf / 2) &~ 1; /* force even */
694 if (nswbuf > 256)
695 nswbuf = 256; /* sanity */
696 }
697 valloc(swbuf, struct buf, nswbuf);
698 valloc(buf, struct buf, nbuf);
699 return (v);
700 #undef valloc
701 }
702
703 void
704 consinit()
705 {
706 if (platform.cons_init)
707 (*platform.cons_init)();
708 pmap_unmap_prom();
709
710 #ifdef DDB
711 db_machine_init();
712 ddb_init(ksym_start, ksym_end);
713 if (boothowto & RB_KDB)
714 Debugger();
715 #endif
716 #ifdef KGDB
717 if (boothowto & RB_KDB)
718 kgdb_connect(0);
719 #endif
720 }
721
722 void
723 cpu_startup()
724 {
725 register unsigned i;
726 int base, residual;
727 vm_offset_t minaddr, maxaddr;
728 vm_size_t size;
729 #if defined(DEBUG)
730 extern int pmapdebug;
731 int opmapdebug = pmapdebug;
732
733 pmapdebug = 0;
734 #endif
735
736 /*
737 * Good {morning,afternoon,evening,night}.
738 */
739 printf(version);
740 identifycpu();
741 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
742 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
743 if (unusedmem)
744 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
745 if (unknownmem)
746 printf("WARNING: %d bytes of memory with unknown purpose\n",
747 ctob(unknownmem));
748
749 /*
750 * Allocate virtual address space for file I/O buffers.
751 * Note they are different than the array of headers, 'buf',
752 * and usually occupy more virtual memory than physical.
753 */
754 size = MAXBSIZE * nbuf;
755 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
756 &maxaddr, size, TRUE);
757 minaddr = (vm_offset_t)buffers;
758 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
759 &minaddr, size, FALSE) != KERN_SUCCESS)
760 panic("startup: cannot allocate buffers");
761 base = bufpages / nbuf;
762 residual = bufpages % nbuf;
763 for (i = 0; i < nbuf; i++) {
764 vm_size_t curbufsize;
765 vm_offset_t curbuf;
766
767 /*
768 * First <residual> buffers get (base+1) physical pages
769 * allocated for them. The rest get (base) physical pages.
770 *
771 * The rest of each buffer occupies virtual space,
772 * but has no physical memory allocated for it.
773 */
774 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
775 curbufsize = CLBYTES * (i < residual ? base+1 : base);
776 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
777 vm_map_simplify(buffer_map, curbuf);
778 }
779 /*
780 * Allocate a submap for exec arguments. This map effectively
781 * limits the number of processes exec'ing at any time.
782 */
783 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
784 16 * NCARGS, TRUE);
785
786 /*
787 * Allocate a submap for physio
788 */
789 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
790 VM_PHYS_SIZE, TRUE);
791
792 /*
793 * Finally, allocate mbuf cluster submap.
794 */
795 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
796 VM_MBUF_SIZE, FALSE);
797 /*
798 * Initialize callouts
799 */
800 callfree = callout;
801 for (i = 1; i < ncallout; i++)
802 callout[i-1].c_next = &callout[i];
803 callout[i-1].c_next = NULL;
804
805 #if defined(DEBUG)
806 pmapdebug = opmapdebug;
807 #endif
808 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
809 printf("using %ld buffers containing %ld bytes of memory\n",
810 (long)nbuf, (long)(bufpages * CLBYTES));
811
812 /*
813 * Set up buffers, so they can be used to read disk labels.
814 */
815 bufinit();
816
817 /*
818 * Configure the system.
819 */
820 configure();
821
822 /*
823 * Note that bootstrapping is finished, and set the HWRPB up
824 * to do restarts.
825 */
826 hwrpb_restart_setup();
827 }
828
829 void
830 identifycpu()
831 {
832
833 /*
834 * print out CPU identification information.
835 */
836 printf("%s, %ldMHz\n", cpu_model,
837 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
838 printf("%ld byte page size, %d processor%s.\n",
839 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
840 #if 0
841 /* this isn't defined for any systems that we run on? */
842 printf("serial number 0x%lx 0x%lx\n",
843 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
844
845 /* and these aren't particularly useful! */
846 printf("variation: 0x%lx, revision 0x%lx\n",
847 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
848 #endif
849 }
850
851 int waittime = -1;
852 struct pcb dumppcb;
853
854 void
855 cpu_reboot(howto, bootstr)
856 int howto;
857 char *bootstr;
858 {
859 extern int cold;
860
861 /* If system is cold, just halt. */
862 if (cold) {
863 howto |= RB_HALT;
864 goto haltsys;
865 }
866
867 /* If "always halt" was specified as a boot flag, obey. */
868 if ((boothowto & RB_HALT) != 0)
869 howto |= RB_HALT;
870
871 boothowto = howto;
872 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
873 waittime = 0;
874 vfs_shutdown();
875 /*
876 * If we've been adjusting the clock, the todr
877 * will be out of synch; adjust it now.
878 */
879 resettodr();
880 }
881
882 /* Disable interrupts. */
883 splhigh();
884
885 /* If rebooting and a dump is requested do it. */
886 #if 0
887 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
888 #else
889 if (howto & RB_DUMP)
890 #endif
891 dumpsys();
892
893 haltsys:
894
895 /* run any shutdown hooks */
896 doshutdownhooks();
897
898 #ifdef BOOTKEY
899 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
900 cngetc();
901 printf("\n");
902 #endif
903
904 /* Finally, halt/reboot the system. */
905 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
906 prom_halt(howto & RB_HALT);
907 /*NOTREACHED*/
908 }
909
910 /*
911 * These variables are needed by /sbin/savecore
912 */
913 u_long dumpmag = 0x8fca0101; /* magic number */
914 int dumpsize = 0; /* pages */
915 long dumplo = 0; /* blocks */
916
917 /*
918 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
919 */
920 int
921 cpu_dumpsize()
922 {
923 int size;
924
925 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
926 if (roundup(size, dbtob(1)) != dbtob(1))
927 return -1;
928
929 return (1);
930 }
931
932 /*
933 * cpu_dump: dump machine-dependent kernel core dump headers.
934 */
935 int
936 cpu_dump()
937 {
938 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
939 long buf[dbtob(1) / sizeof (long)];
940 kcore_seg_t *segp;
941 cpu_kcore_hdr_t *cpuhdrp;
942
943 dump = bdevsw[major(dumpdev)].d_dump;
944
945 segp = (kcore_seg_t *)buf;
946 cpuhdrp =
947 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
948
949 /*
950 * Generate a segment header.
951 */
952 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
953 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
954
955 /*
956 * Add the machine-dependent header info
957 */
958 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
959 cpuhdrp->page_size = PAGE_SIZE;
960 cpuhdrp->core_seg.start = ctob(firstusablepage);
961 cpuhdrp->core_seg.size = ctob(physmem);
962
963 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
964 }
965
966 /*
967 * This is called by main to set dumplo and dumpsize.
968 * Dumps always skip the first CLBYTES of disk space
969 * in case there might be a disk label stored there.
970 * If there is extra space, put dump at the end to
971 * reduce the chance that swapping trashes it.
972 */
973 void
974 cpu_dumpconf()
975 {
976 int nblks, dumpblks; /* size of dump area */
977 int maj;
978
979 if (dumpdev == NODEV)
980 goto bad;
981 maj = major(dumpdev);
982 if (maj < 0 || maj >= nblkdev)
983 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
984 if (bdevsw[maj].d_psize == NULL)
985 goto bad;
986 nblks = (*bdevsw[maj].d_psize)(dumpdev);
987 if (nblks <= ctod(1))
988 goto bad;
989
990 dumpblks = cpu_dumpsize();
991 if (dumpblks < 0)
992 goto bad;
993 dumpblks += ctod(physmem);
994
995 /* If dump won't fit (incl. room for possible label), punt. */
996 if (dumpblks > (nblks - ctod(1)))
997 goto bad;
998
999 /* Put dump at end of partition */
1000 dumplo = nblks - dumpblks;
1001
1002 /* dumpsize is in page units, and doesn't include headers. */
1003 dumpsize = physmem;
1004 return;
1005
1006 bad:
1007 dumpsize = 0;
1008 return;
1009 }
1010
1011 /*
1012 * Dump the kernel's image to the swap partition.
1013 */
1014 #define BYTES_PER_DUMP NBPG
1015
1016 void
1017 dumpsys()
1018 {
1019 unsigned bytes, i, n;
1020 int maddr, psize;
1021 daddr_t blkno;
1022 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1023 int error;
1024
1025 /* Save registers. */
1026 savectx(&dumppcb);
1027
1028 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1029 if (dumpdev == NODEV)
1030 return;
1031
1032 /*
1033 * For dumps during autoconfiguration,
1034 * if dump device has already configured...
1035 */
1036 if (dumpsize == 0)
1037 cpu_dumpconf();
1038 if (dumplo <= 0) {
1039 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1040 minor(dumpdev));
1041 return;
1042 }
1043 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1044 minor(dumpdev), dumplo);
1045
1046 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1047 printf("dump ");
1048 if (psize == -1) {
1049 printf("area unavailable\n");
1050 return;
1051 }
1052
1053 /* XXX should purge all outstanding keystrokes. */
1054
1055 if ((error = cpu_dump()) != 0)
1056 goto err;
1057
1058 bytes = ctob(physmem);
1059 maddr = ctob(firstusablepage);
1060 blkno = dumplo + cpu_dumpsize();
1061 dump = bdevsw[major(dumpdev)].d_dump;
1062 error = 0;
1063 for (i = 0; i < bytes; i += n) {
1064
1065 /* Print out how many MBs we to go. */
1066 n = bytes - i;
1067 if (n && (n % (1024*1024)) == 0)
1068 printf("%d ", n / (1024 * 1024));
1069
1070 /* Limit size for next transfer. */
1071 if (n > BYTES_PER_DUMP)
1072 n = BYTES_PER_DUMP;
1073
1074 error = (*dump)(dumpdev, blkno,
1075 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1076 if (error)
1077 break;
1078 maddr += n;
1079 blkno += btodb(n); /* XXX? */
1080
1081 /* XXX should look for keystrokes, to cancel. */
1082 }
1083
1084 err:
1085 switch (error) {
1086
1087 case ENXIO:
1088 printf("device bad\n");
1089 break;
1090
1091 case EFAULT:
1092 printf("device not ready\n");
1093 break;
1094
1095 case EINVAL:
1096 printf("area improper\n");
1097 break;
1098
1099 case EIO:
1100 printf("i/o error\n");
1101 break;
1102
1103 case EINTR:
1104 printf("aborted from console\n");
1105 break;
1106
1107 case 0:
1108 printf("succeeded\n");
1109 break;
1110
1111 default:
1112 printf("error %d\n", error);
1113 break;
1114 }
1115 printf("\n\n");
1116 delay(1000);
1117 }
1118
1119 void
1120 frametoreg(framep, regp)
1121 struct trapframe *framep;
1122 struct reg *regp;
1123 {
1124
1125 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1126 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1127 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1128 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1129 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1130 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1131 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1132 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1133 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1134 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1135 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1136 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1137 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1138 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1139 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1140 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1141 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1142 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1143 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1144 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1145 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1146 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1147 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1148 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1149 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1150 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1151 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1152 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1153 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1154 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1155 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1156 regp->r_regs[R_ZERO] = 0;
1157 }
1158
1159 void
1160 regtoframe(regp, framep)
1161 struct reg *regp;
1162 struct trapframe *framep;
1163 {
1164
1165 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1166 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1167 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1168 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1169 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1170 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1171 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1172 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1173 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1174 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1175 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1176 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1177 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1178 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1179 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1180 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1181 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1182 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1183 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1184 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1185 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1186 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1187 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1188 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1189 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1190 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1191 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1192 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1193 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1194 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1195 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1196 /* ??? = regp->r_regs[R_ZERO]; */
1197 }
1198
1199 void
1200 printregs(regp)
1201 struct reg *regp;
1202 {
1203 int i;
1204
1205 for (i = 0; i < 32; i++)
1206 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1207 i & 1 ? "\n" : "\t");
1208 }
1209
1210 void
1211 regdump(framep)
1212 struct trapframe *framep;
1213 {
1214 struct reg reg;
1215
1216 frametoreg(framep, ®);
1217 reg.r_regs[R_SP] = alpha_pal_rdusp();
1218
1219 printf("REGISTERS:\n");
1220 printregs(®);
1221 }
1222
1223 #ifdef DEBUG
1224 int sigdebug = 0;
1225 int sigpid = 0;
1226 #define SDB_FOLLOW 0x01
1227 #define SDB_KSTACK 0x02
1228 #endif
1229
1230 /*
1231 * Send an interrupt to process.
1232 */
1233 void
1234 sendsig(catcher, sig, mask, code)
1235 sig_t catcher;
1236 int sig, mask;
1237 u_long code;
1238 {
1239 struct proc *p = curproc;
1240 struct sigcontext *scp, ksc;
1241 struct trapframe *frame;
1242 struct sigacts *psp = p->p_sigacts;
1243 int oonstack, fsize, rndfsize;
1244 extern char sigcode[], esigcode[];
1245 extern struct proc *fpcurproc;
1246
1247 frame = p->p_md.md_tf;
1248 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1249 fsize = sizeof ksc;
1250 rndfsize = ((fsize + 15) / 16) * 16;
1251 /*
1252 * Allocate and validate space for the signal handler
1253 * context. Note that if the stack is in P0 space, the
1254 * call to grow() is a nop, and the useracc() check
1255 * will fail if the process has not already allocated
1256 * the space with a `brk'.
1257 */
1258 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1259 (psp->ps_sigonstack & sigmask(sig))) {
1260 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1261 psp->ps_sigstk.ss_size - rndfsize);
1262 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1263 } else
1264 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1265 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1266 (void)grow(p, (u_long)scp);
1267 #ifdef DEBUG
1268 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1269 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1270 sig, &oonstack, scp);
1271 #endif
1272 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1273 #ifdef DEBUG
1274 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1275 printf("sendsig(%d): useracc failed on sig %d\n",
1276 p->p_pid, sig);
1277 #endif
1278 /*
1279 * Process has trashed its stack; give it an illegal
1280 * instruction to halt it in its tracks.
1281 */
1282 SIGACTION(p, SIGILL) = SIG_DFL;
1283 sig = sigmask(SIGILL);
1284 p->p_sigignore &= ~sig;
1285 p->p_sigcatch &= ~sig;
1286 p->p_sigmask &= ~sig;
1287 psignal(p, SIGILL);
1288 return;
1289 }
1290
1291 /*
1292 * Build the signal context to be used by sigreturn.
1293 */
1294 ksc.sc_onstack = oonstack;
1295 ksc.sc_mask = mask;
1296 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1297 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1298
1299 /* copy the registers. */
1300 frametoreg(frame, (struct reg *)ksc.sc_regs);
1301 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1302 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1303
1304 /* save the floating-point state, if necessary, then copy it. */
1305 if (p == fpcurproc) {
1306 alpha_pal_wrfen(1);
1307 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1308 alpha_pal_wrfen(0);
1309 fpcurproc = NULL;
1310 }
1311 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1312 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1313 sizeof(struct fpreg));
1314 ksc.sc_fp_control = 0; /* XXX ? */
1315 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1316 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1317
1318
1319 #ifdef COMPAT_OSF1
1320 /*
1321 * XXX Create an OSF/1-style sigcontext and associated goo.
1322 */
1323 #endif
1324
1325 /*
1326 * copy the frame out to userland.
1327 */
1328 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1329 #ifdef DEBUG
1330 if (sigdebug & SDB_FOLLOW)
1331 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1332 scp, code);
1333 #endif
1334
1335 /*
1336 * Set up the registers to return to sigcode.
1337 */
1338 frame->tf_regs[FRAME_PC] =
1339 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1340 frame->tf_regs[FRAME_A0] = sig;
1341 frame->tf_regs[FRAME_A1] = code;
1342 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1343 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1344 alpha_pal_wrusp((unsigned long)scp);
1345
1346 #ifdef DEBUG
1347 if (sigdebug & SDB_FOLLOW)
1348 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1349 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1350 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1351 printf("sendsig(%d): sig %d returns\n",
1352 p->p_pid, sig);
1353 #endif
1354 }
1355
1356 /*
1357 * System call to cleanup state after a signal
1358 * has been taken. Reset signal mask and
1359 * stack state from context left by sendsig (above).
1360 * Return to previous pc and psl as specified by
1361 * context left by sendsig. Check carefully to
1362 * make sure that the user has not modified the
1363 * psl to gain improper priviledges or to cause
1364 * a machine fault.
1365 */
1366 /* ARGSUSED */
1367 int
1368 sys_sigreturn(p, v, retval)
1369 struct proc *p;
1370 void *v;
1371 register_t *retval;
1372 {
1373 struct sys_sigreturn_args /* {
1374 syscallarg(struct sigcontext *) sigcntxp;
1375 } */ *uap = v;
1376 struct sigcontext *scp, ksc;
1377 extern struct proc *fpcurproc;
1378
1379 scp = SCARG(uap, sigcntxp);
1380 #ifdef DEBUG
1381 if (sigdebug & SDB_FOLLOW)
1382 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1383 #endif
1384
1385 if (ALIGN(scp) != (u_int64_t)scp)
1386 return (EINVAL);
1387
1388 /*
1389 * Test and fetch the context structure.
1390 * We grab it all at once for speed.
1391 */
1392 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1393 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1394 return (EINVAL);
1395
1396 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1397 return (EINVAL);
1398 /*
1399 * Restore the user-supplied information
1400 */
1401 if (ksc.sc_onstack)
1402 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1403 else
1404 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1405 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1406
1407 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1408 p->p_md.md_tf->tf_regs[FRAME_PS] =
1409 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1410
1411 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1412 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1413
1414 /* XXX ksc.sc_ownedfp ? */
1415 if (p == fpcurproc)
1416 fpcurproc = NULL;
1417 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1418 sizeof(struct fpreg));
1419 /* XXX ksc.sc_fp_control ? */
1420
1421 #ifdef DEBUG
1422 if (sigdebug & SDB_FOLLOW)
1423 printf("sigreturn(%d): returns\n", p->p_pid);
1424 #endif
1425 return (EJUSTRETURN);
1426 }
1427
1428 /*
1429 * machine dependent system variables.
1430 */
1431 int
1432 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1433 int *name;
1434 u_int namelen;
1435 void *oldp;
1436 size_t *oldlenp;
1437 void *newp;
1438 size_t newlen;
1439 struct proc *p;
1440 {
1441 dev_t consdev;
1442
1443 /* all sysctl names at this level are terminal */
1444 if (namelen != 1)
1445 return (ENOTDIR); /* overloaded */
1446
1447 switch (name[0]) {
1448 case CPU_CONSDEV:
1449 if (cn_tab != NULL)
1450 consdev = cn_tab->cn_dev;
1451 else
1452 consdev = NODEV;
1453 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1454 sizeof consdev));
1455
1456 case CPU_ROOT_DEVICE:
1457 return (sysctl_rdstring(oldp, oldlenp, newp,
1458 root_device->dv_xname));
1459
1460 case CPU_UNALIGNED_PRINT:
1461 return (sysctl_int(oldp, oldlenp, newp, newlen,
1462 &alpha_unaligned_print));
1463
1464 case CPU_UNALIGNED_FIX:
1465 return (sysctl_int(oldp, oldlenp, newp, newlen,
1466 &alpha_unaligned_fix));
1467
1468 case CPU_UNALIGNED_SIGBUS:
1469 return (sysctl_int(oldp, oldlenp, newp, newlen,
1470 &alpha_unaligned_sigbus));
1471
1472 case CPU_BOOTED_KERNEL:
1473 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1474
1475 default:
1476 return (EOPNOTSUPP);
1477 }
1478 /* NOTREACHED */
1479 }
1480
1481 /*
1482 * Set registers on exec.
1483 */
1484 void
1485 setregs(p, pack, stack)
1486 register struct proc *p;
1487 struct exec_package *pack;
1488 u_long stack;
1489 {
1490 struct trapframe *tfp = p->p_md.md_tf;
1491 extern struct proc *fpcurproc;
1492 #ifdef DEBUG
1493 int i;
1494 #endif
1495
1496 #ifdef DEBUG
1497 /*
1498 * Crash and dump, if the user requested it.
1499 */
1500 if (boothowto & RB_DUMP)
1501 panic("crash requested by boot flags");
1502 #endif
1503
1504 #ifdef DEBUG
1505 for (i = 0; i < FRAME_SIZE; i++)
1506 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1507 #else
1508 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1509 #endif
1510 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1511 #define FP_RN 2 /* XXX */
1512 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1513 alpha_pal_wrusp(stack);
1514 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1515 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1516
1517 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1518 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1519 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1520 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1521 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1522
1523 p->p_md.md_flags &= ~MDP_FPUSED;
1524 if (fpcurproc == p)
1525 fpcurproc = NULL;
1526 }
1527
1528 void
1529 netintr()
1530 {
1531 int n, s;
1532
1533 s = splhigh();
1534 n = netisr;
1535 netisr = 0;
1536 splx(s);
1537
1538 #define DONETISR(bit, fn) \
1539 do { \
1540 if (n & (1 << (bit))) \
1541 fn; \
1542 } while (0)
1543
1544 #ifdef INET
1545 #if NARP > 0
1546 DONETISR(NETISR_ARP, arpintr());
1547 #endif
1548 DONETISR(NETISR_IP, ipintr());
1549 #endif
1550 #ifdef NETATALK
1551 DONETISR(NETISR_ATALK, atintr());
1552 #endif
1553 #ifdef NS
1554 DONETISR(NETISR_NS, nsintr());
1555 #endif
1556 #ifdef ISO
1557 DONETISR(NETISR_ISO, clnlintr());
1558 #endif
1559 #ifdef CCITT
1560 DONETISR(NETISR_CCITT, ccittintr());
1561 #endif
1562 #ifdef NATM
1563 DONETISR(NETISR_NATM, natmintr());
1564 #endif
1565 #if NPPP > 1
1566 DONETISR(NETISR_PPP, pppintr());
1567 #endif
1568
1569 #undef DONETISR
1570 }
1571
1572 void
1573 do_sir()
1574 {
1575 u_int64_t n;
1576
1577 do {
1578 (void)splhigh();
1579 n = ssir;
1580 ssir = 0;
1581 splsoft(); /* don't recurse through spl0() */
1582
1583 #define DO_SIR(bit, fn) \
1584 do { \
1585 if (n & (bit)) { \
1586 cnt.v_soft++; \
1587 fn; \
1588 } \
1589 } while (0)
1590
1591 DO_SIR(SIR_NET, netintr());
1592 DO_SIR(SIR_CLOCK, softclock());
1593
1594 #undef DO_SIR
1595 } while (ssir != 0);
1596 }
1597
1598 int
1599 spl0()
1600 {
1601
1602 if (ssir)
1603 do_sir(); /* it lowers the IPL itself */
1604
1605 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1606 }
1607
1608 /*
1609 * The following primitives manipulate the run queues. _whichqs tells which
1610 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1611 * into queues, Remrunqueue removes them from queues. The running process is
1612 * on no queue, other processes are on a queue related to p->p_priority,
1613 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1614 * available queues.
1615 */
1616 /*
1617 * setrunqueue(p)
1618 * proc *p;
1619 *
1620 * Call should be made at splclock(), and p->p_stat should be SRUN.
1621 */
1622
1623 void
1624 setrunqueue(p)
1625 struct proc *p;
1626 {
1627 int bit;
1628
1629 /* firewall: p->p_back must be NULL */
1630 if (p->p_back != NULL)
1631 panic("setrunqueue");
1632
1633 bit = p->p_priority >> 2;
1634 whichqs |= (1 << bit);
1635 p->p_forw = (struct proc *)&qs[bit];
1636 p->p_back = qs[bit].ph_rlink;
1637 p->p_back->p_forw = p;
1638 qs[bit].ph_rlink = p;
1639 }
1640
1641 /*
1642 * remrunqueue(p)
1643 *
1644 * Call should be made at splclock().
1645 */
1646 void
1647 remrunqueue(p)
1648 struct proc *p;
1649 {
1650 int bit;
1651
1652 bit = p->p_priority >> 2;
1653 if ((whichqs & (1 << bit)) == 0)
1654 panic("remrunqueue");
1655
1656 p->p_back->p_forw = p->p_forw;
1657 p->p_forw->p_back = p->p_back;
1658 p->p_back = NULL; /* for firewall checking. */
1659
1660 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1661 whichqs &= ~(1 << bit);
1662 }
1663
1664 /*
1665 * Return the best possible estimate of the time in the timeval
1666 * to which tvp points. Unfortunately, we can't read the hardware registers.
1667 * We guarantee that the time will be greater than the value obtained by a
1668 * previous call.
1669 */
1670 void
1671 microtime(tvp)
1672 register struct timeval *tvp;
1673 {
1674 int s = splclock();
1675 static struct timeval lasttime;
1676
1677 *tvp = time;
1678 #ifdef notdef
1679 tvp->tv_usec += clkread();
1680 while (tvp->tv_usec > 1000000) {
1681 tvp->tv_sec++;
1682 tvp->tv_usec -= 1000000;
1683 }
1684 #endif
1685 if (tvp->tv_sec == lasttime.tv_sec &&
1686 tvp->tv_usec <= lasttime.tv_usec &&
1687 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1688 tvp->tv_sec++;
1689 tvp->tv_usec -= 1000000;
1690 }
1691 lasttime = *tvp;
1692 splx(s);
1693 }
1694
1695 /*
1696 * Wait "n" microseconds.
1697 */
1698 void
1699 delay(n)
1700 unsigned long n;
1701 {
1702 long N = cycles_per_usec * (n);
1703
1704 while (N > 0) /* XXX */
1705 N -= 3; /* XXX */
1706 }
1707
1708 #if defined(COMPAT_OSF1) || 1 /* XXX */
1709 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1710 u_long));
1711
1712 void
1713 cpu_exec_ecoff_setregs(p, epp, stack)
1714 struct proc *p;
1715 struct exec_package *epp;
1716 u_long stack;
1717 {
1718 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1719
1720 setregs(p, epp, stack);
1721 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1722 }
1723
1724 /*
1725 * cpu_exec_ecoff_hook():
1726 * cpu-dependent ECOFF format hook for execve().
1727 *
1728 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1729 *
1730 */
1731 int
1732 cpu_exec_ecoff_hook(p, epp)
1733 struct proc *p;
1734 struct exec_package *epp;
1735 {
1736 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1737 extern struct emul emul_netbsd;
1738 #ifdef COMPAT_OSF1
1739 extern struct emul emul_osf1;
1740 #endif
1741
1742 switch (execp->f.f_magic) {
1743 #ifdef COMPAT_OSF1
1744 case ECOFF_MAGIC_ALPHA:
1745 epp->ep_emul = &emul_osf1;
1746 break;
1747 #endif
1748
1749 case ECOFF_MAGIC_NETBSD_ALPHA:
1750 epp->ep_emul = &emul_netbsd;
1751 break;
1752
1753 default:
1754 return ENOEXEC;
1755 }
1756 return 0;
1757 }
1758 #endif
1759
1760 /* XXX XXX BEGIN XXX XXX */
1761 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1762 /* XXX */
1763 vm_offset_t /* XXX */
1764 alpha_XXX_dmamap(v) /* XXX */
1765 vm_offset_t v; /* XXX */
1766 { /* XXX */
1767 /* XXX */
1768 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1769 } /* XXX */
1770 /* XXX XXX END XXX XXX */
1771