machdep.c revision 1.107 1 /* $NetBSD: machdep.c,v 1.107 1998/02/14 00:53:26 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.107 1998/02/14 00:53:26 cgd Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 vm_map_t buffer_map;
129
130 /*
131 * Declare these as initialized data so we can patch them.
132 */
133 int nswbuf = 0;
134 #ifdef NBUF
135 int nbuf = NBUF;
136 #else
137 int nbuf = 0;
138 #endif
139 #ifdef BUFPAGES
140 int bufpages = BUFPAGES;
141 #else
142 int bufpages = 0;
143 #endif
144 caddr_t msgbufaddr;
145
146 int maxmem; /* max memory per process */
147
148 int totalphysmem; /* total amount of physical memory in system */
149 int physmem; /* physical memory used by NetBSD + some rsvd */
150 int firstusablepage; /* first usable memory page */
151 int lastusablepage; /* last usable memory page */
152 int resvmem; /* amount of memory reserved for PROM */
153 int unusedmem; /* amount of memory for OS that we don't use */
154 int unknownmem; /* amount of memory with an unknown use */
155
156 int cputype; /* system type, from the RPB */
157
158 /*
159 * XXX We need an address to which we can assign things so that they
160 * won't be optimized away because we didn't use the value.
161 */
162 u_int32_t no_optimize;
163
164 /* the following is used externally (sysctl_hw) */
165 char machine[] = MACHINE; /* from <machine/param.h> */
166 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 char cpu_model[128];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* number of cpus in the box. really! */
175 int ncpus;
176
177 struct bootinfo_kernel bootinfo;
178
179 struct platform platform;
180
181 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
182 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
183 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
184
185 #ifdef DDB
186 /* start and end of kernel symbol table */
187 void *ksym_start, *ksym_end;
188 #endif
189
190 /* for cpu_sysctl() */
191 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
192 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
193 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
194
195 caddr_t allocsys __P((caddr_t));
196 int cpu_dump __P((void));
197 int cpu_dumpsize __P((void));
198 void dumpsys __P((void));
199 void identifycpu __P((void));
200 void netintr __P((void));
201 void printregs __P((struct reg *));
202
203 void
204 alpha_init(pfn, ptb, bim, bip, biv)
205 u_long pfn; /* first free PFN number */
206 u_long ptb; /* PFN of current level 1 page table */
207 u_long bim; /* bootinfo magic */
208 u_long bip; /* bootinfo pointer */
209 u_long biv; /* bootinfo version */
210 {
211 extern char kernel_text[], _end[];
212 struct mddt *mddtp;
213 int i, mddtweird;
214 vm_offset_t kernstart, kernend;
215 vm_size_t size;
216 char *p;
217 caddr_t v;
218 caddr_t start, w;
219 char *bootinfo_msg;
220
221 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
222
223 /*
224 * Turn off interrupts (not mchecks) and floating point.
225 * Make sure the instruction and data streams are consistent.
226 */
227 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
228 alpha_pal_wrfen(0);
229 ALPHA_TBIA();
230 alpha_pal_imb();
231
232 /*
233 * Get critical system information (if possible, from the
234 * information provided by the boot program).
235 */
236 bootinfo_msg = NULL;
237 if (bim == BOOTINFO_MAGIC) {
238 if (biv == 0) { /* backward compat */
239 biv = *(u_long *)bip;
240 bip += 8;
241 }
242 switch (biv) {
243 case 1: {
244 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
245
246 bootinfo.ssym = v1p->ssym;
247 bootinfo.esym = v1p->esym;
248 /* hwrpb may not be provided by boot block in v1 */
249 if (v1p->hwrpb != NULL) {
250 bootinfo.hwrpb_phys =
251 ((struct rpb *)v1p->hwrpb)->rpb_phys;
252 bootinfo.hwrpb_size = v1p->hwrpbsize;
253 } else {
254 bootinfo.hwrpb_phys =
255 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
256 bootinfo.hwrpb_size =
257 ((struct rpb *)HWRPB_ADDR)->rpb_size;
258 }
259 bcopy(v1p->boot_flags, bootinfo.boot_flags,
260 min(sizeof v1p->boot_flags,
261 sizeof bootinfo.boot_flags));
262 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
263 min(sizeof v1p->booted_kernel,
264 sizeof bootinfo.booted_kernel));
265 /* booted dev not provided in bootinfo */
266 init_prom_interface((struct rpb *)
267 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
268 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
269 sizeof bootinfo.booted_dev);
270 break;
271 }
272 default:
273 bootinfo_msg = "unknown bootinfo version";
274 goto nobootinfo;
275 }
276 } else {
277 bootinfo_msg = "boot program did not pass bootinfo";
278 nobootinfo:
279 bootinfo.ssym = (u_long)_end;
280 bootinfo.esym = (u_long)_end;
281 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
283 init_prom_interface((struct rpb *)HWRPB_ADDR);
284 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
285 sizeof bootinfo.boot_flags);
286 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
287 sizeof bootinfo.booted_kernel);
288 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
289 sizeof bootinfo.booted_dev);
290 }
291
292 /*
293 * Initialize the kernel's mapping of the RPB. It's needed for
294 * lots of things.
295 */
296 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
297
298 /*
299 * Remember how many cycles there are per microsecond,
300 * so that we can use delay(). Round up, for safety.
301 */
302 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
303
304 /*
305 * Initalize the (temporary) bootstrap console interface, so
306 * we can use printf until the VM system starts being setup.
307 * The real console is initialized before then.
308 */
309 init_bootstrap_console();
310
311 /* OUTPUT NOW ALLOWED */
312
313 /* delayed from above */
314 if (bootinfo_msg)
315 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
316 bootinfo_msg, bim, bip, biv);
317
318 /*
319 * Point interrupt/exception vectors to our own.
320 */
321 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
322 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
323 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
324 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
325 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
326 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
327
328 /*
329 * Clear pending machine checks and error reports, and enable
330 * system- and processor-correctable error reporting.
331 */
332 alpha_pal_wrmces(alpha_pal_rdmces() &
333 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
334
335 /*
336 * Find out what hardware we're on, and do basic initialization.
337 */
338 cputype = hwrpb->rpb_type;
339 if (cputype >= ncpuinit) {
340 platform_not_supported();
341 /* NOTREACHED */
342 }
343 (*cpuinit[cputype].init)();
344 strcpy(cpu_model, platform.model);
345
346 /*
347 * Initalize the real console, so the the bootstrap console is
348 * no longer necessary.
349 */
350 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
351 if (!pmap_uses_prom_console())
352 #endif
353 (*platform.cons_init)();
354
355 #ifdef DIAGNOSTIC
356 /* Paranoid sanity checking */
357
358 /* We should always be running on the the primary. */
359 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
360
361 /* On single-CPU systypes, the primary should always be CPU 0. */
362 if (cputype != ST_DEC_21000)
363 assert(hwrpb->rpb_primary_cpu_id == 0);
364 #endif
365
366 /* NO MORE FIRMWARE ACCESS ALLOWED */
367 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
368 /*
369 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
370 * XXX pmap_uses_prom_console() evaluates to non-zero.)
371 */
372 #endif
373
374 /*
375 * find out this system's page size
376 */
377 PAGE_SIZE = hwrpb->rpb_page_size;
378 if (PAGE_SIZE != 8192)
379 panic("page size %d != 8192?!", PAGE_SIZE);
380
381 /*
382 * Initialize PAGE_SIZE-dependent variables.
383 */
384 vm_set_page_size();
385
386 /*
387 * Find the beginning and end of the kernel (and leave a
388 * bit of space before the beginning for the bootstrap
389 * stack).
390 */
391 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
392 #ifdef DDB
393 ksym_start = (void *)bootinfo.ssym;
394 ksym_end = (void *)bootinfo.esym;
395 kernend = (vm_offset_t)round_page(ksym_end);
396 #else
397 kernend = (vm_offset_t)round_page(_end);
398 #endif
399
400 /*
401 * Find out how much memory is available, by looking at
402 * the memory cluster descriptors. This also tries to do
403 * its best to detect things things that have never been seen
404 * before...
405 *
406 * XXX Assumes that the first "system" cluster is the
407 * only one we can use. Is the second (etc.) system cluster
408 * (if one happens to exist) guaranteed to be contiguous? or...?
409 */
410 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
411
412 /*
413 * BEGIN MDDT WEIRDNESS CHECKING
414 */
415 mddtweird = 0;
416
417 #define cnt mddtp->mddt_cluster_cnt
418 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
419 if (cnt != 2 && cnt != 3) {
420 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
421 mddtweird = 1;
422 } else if (usage(0) != MDDT_PALCODE ||
423 usage(1) != MDDT_SYSTEM ||
424 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
425 mddtweird = 1;
426 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
427 }
428
429 for (i = 0; i < cnt; i++) {
430 if ((usage(i) & MDDT_mbz) != 0) {
431 printf("WARNING: mem cluster %d has weird usage %lx\n",
432 i, usage(i));
433 mddtweird = 1;
434 }
435 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
436 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
437 mddtweird = 1;
438 }
439 /* XXX other things to check? */
440 }
441 #undef cnt
442 #undef usage
443
444 if (mddtweird) {
445 printf("\n");
446 printf("complete memory cluster information:\n");
447 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
448 printf("mddt %d:\n", i);
449 printf("\tpfn %lx\n",
450 mddtp->mddt_clusters[i].mddt_pfn);
451 printf("\tcnt %lx\n",
452 mddtp->mddt_clusters[i].mddt_pg_cnt);
453 printf("\ttest %lx\n",
454 mddtp->mddt_clusters[i].mddt_pg_test);
455 printf("\tbva %lx\n",
456 mddtp->mddt_clusters[i].mddt_v_bitaddr);
457 printf("\tbpa %lx\n",
458 mddtp->mddt_clusters[i].mddt_p_bitaddr);
459 printf("\tbcksum %lx\n",
460 mddtp->mddt_clusters[i].mddt_bit_cksum);
461 printf("\tusage %lx\n",
462 mddtp->mddt_clusters[i].mddt_usage);
463 }
464 printf("\n");
465 }
466 /*
467 * END MDDT WEIRDNESS CHECKING
468 */
469
470 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
471 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
472 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
473 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
474 if ((usage(i) & MDDT_mbz) != 0)
475 unknownmem += pgcnt(i);
476 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
477 resvmem += pgcnt(i);
478 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
479 /*
480 * assumes that the system cluster listed is
481 * one we're in...
482 */
483 if (physmem != resvmem) {
484 physmem += pgcnt(i);
485 firstusablepage =
486 mddtp->mddt_clusters[i].mddt_pfn;
487 lastusablepage = firstusablepage + pgcnt(i) - 1;
488 } else
489 unusedmem += pgcnt(i);
490 }
491 #undef usage
492 #undef pgcnt
493 }
494 if (totalphysmem == 0)
495 panic("can't happen: system seems to have no memory!");
496 #ifdef LIMITMEM
497 if (totalphysmem >= btoc(LIMITMEM << 20)) {
498 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
499 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
500 physmem = totalphysmem = btoc(LIMITMEM << 20);
501 unusedmem += ovf;
502 lastusablepage = firstusablepage + physmem - 1;
503 }
504 #endif
505 maxmem = physmem;
506
507 #if 0
508 printf("totalphysmem = %d\n", totalphysmem);
509 printf("physmem = %d\n", physmem);
510 printf("firstusablepage = %d\n", firstusablepage);
511 printf("lastusablepage = %d\n", lastusablepage);
512 printf("resvmem = %d\n", resvmem);
513 printf("unusedmem = %d\n", unusedmem);
514 printf("unknownmem = %d\n", unknownmem);
515 #endif
516
517 /*
518 * Adjust some parameters if the amount of physmem
519 * available would cause us to croak. This is completely
520 * eyeballed and isn't meant to be the final answer.
521 * vm_phys_size is probably the only one to really worry
522 * about.
523 *
524 * It's for booting a GENERIC kernel on a large memory platform.
525 */
526 if (physmem >= btoc(128 << 20)) {
527 vm_mbuf_size <<= 1;
528 vm_kmem_size <<= 3;
529 vm_phys_size <<= 2;
530 }
531
532 /*
533 * Initialize error message buffer (at end of core).
534 */
535 lastusablepage -= btoc(MSGBUFSIZE);
536 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
537 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
538
539 /*
540 * Init mapping for u page(s) for proc 0
541 */
542 start = v = (caddr_t)kernend;
543 curproc->p_addr = proc0paddr = (struct user *)v;
544 v += UPAGES * NBPG;
545
546 /*
547 * Allocate space for system data structures. These data structures
548 * are allocated here instead of cpu_startup() because physical
549 * memory is directly addressable. We don't have to map these into
550 * virtual address space.
551 */
552 size = (vm_size_t)allocsys(0);
553 w = allocsys(v);
554 if ((w - v) != size)
555 panic("alpha_init: table size inconsistency");
556 v = w;
557
558 /*
559 * Clear allocated memory.
560 */
561 bzero(start, v - start);
562
563 /*
564 * Initialize the virtual memory system, and set the
565 * page table base register in proc 0's PCB.
566 */
567 #ifndef NEW_PMAP
568 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
569 #else
570 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
571 hwrpb->rpb_max_asn);
572 #endif
573
574 /*
575 * Initialize the rest of proc 0's PCB, and cache its physical
576 * address.
577 */
578 proc0.p_md.md_pcbpaddr =
579 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
580
581 /*
582 * Set the kernel sp, reserving space for an (empty) trapframe,
583 * and make proc0's trapframe pointer point to it for sanity.
584 */
585 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
586 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
587 proc0.p_md.md_tf =
588 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
589
590 #ifdef NEW_PMAP
591 /*
592 * Set up the kernel address space in proc0's hwpcb.
593 */
594 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
595 #endif
596
597 /*
598 * Look at arguments passed to us and compute boothowto.
599 */
600
601 boothowto = RB_SINGLE;
602 #ifdef KADB
603 boothowto |= RB_KDB;
604 #endif
605 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
606 /*
607 * Note that we'd really like to differentiate case here,
608 * but the Alpha AXP Architecture Reference Manual
609 * says that we shouldn't.
610 */
611 switch (*p) {
612 case 'a': /* autoboot */
613 case 'A':
614 boothowto &= ~RB_SINGLE;
615 break;
616
617 #ifdef DEBUG
618 case 'c': /* crash dump immediately after autoconfig */
619 case 'C':
620 boothowto |= RB_DUMP;
621 break;
622 #endif
623
624 #if defined(KGDB) || defined(DDB)
625 case 'd': /* break into the kernel debugger ASAP */
626 case 'D':
627 boothowto |= RB_KDB;
628 break;
629 #endif
630
631 case 'h': /* always halt, never reboot */
632 case 'H':
633 boothowto |= RB_HALT;
634 break;
635
636 #if 0
637 case 'm': /* mini root present in memory */
638 case 'M':
639 boothowto |= RB_MINIROOT;
640 break;
641 #endif
642
643 case 'n': /* askname */
644 case 'N':
645 boothowto |= RB_ASKNAME;
646 break;
647
648 case 's': /* single-user (default, supported for sanity) */
649 case 'S':
650 boothowto |= RB_SINGLE;
651 break;
652
653 default:
654 printf("Unrecognized boot flag '%c'.\n", *p);
655 break;
656 }
657 }
658
659 /*
660 * Initialize debuggers, and break into them if appropriate.
661 */
662 #ifdef DDB
663 db_machine_init();
664 ddb_init(ksym_start, ksym_end);
665 if (boothowto & RB_KDB)
666 Debugger();
667 #endif
668 #ifdef KGDB
669 if (boothowto & RB_KDB)
670 kgdb_connect(0);
671 #endif
672
673 /*
674 * Figure out the number of cpus in the box, from RPB fields.
675 * Really. We mean it.
676 */
677 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
678 struct pcs *pcsp;
679
680 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
681 (i * hwrpb->rpb_pcs_size));
682 if ((pcsp->pcs_flags & PCS_PP) != 0)
683 ncpus++;
684 }
685
686 /*
687 * Figure out our clock frequency, from RPB fields.
688 */
689 hz = hwrpb->rpb_intr_freq >> 12;
690 if (!(60 <= hz && hz <= 10240)) {
691 hz = 1024;
692 #ifdef DIAGNOSTIC
693 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
694 hwrpb->rpb_intr_freq, hz);
695 #endif
696 }
697
698 }
699
700 /*
701 * Allocate space for system data structures. We are given
702 * a starting virtual address and we return a final virtual
703 * address; along the way we set each data structure pointer.
704 *
705 * We call allocsys() with 0 to find out how much space we want,
706 * allocate that much and fill it with zeroes, and the call
707 * allocsys() again with the correct base virtual address.
708 */
709 caddr_t
710 allocsys(v)
711 caddr_t v;
712 {
713
714 #define valloc(name, type, num) \
715 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
716 #ifdef REAL_CLISTS
717 valloc(cfree, struct cblock, nclist);
718 #endif
719 valloc(callout, struct callout, ncallout);
720 #ifdef SYSVSHM
721 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
722 #endif
723 #ifdef SYSVSEM
724 valloc(sema, struct semid_ds, seminfo.semmni);
725 valloc(sem, struct sem, seminfo.semmns);
726 /* This is pretty disgusting! */
727 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
728 #endif
729 #ifdef SYSVMSG
730 valloc(msgpool, char, msginfo.msgmax);
731 valloc(msgmaps, struct msgmap, msginfo.msgseg);
732 valloc(msghdrs, struct msg, msginfo.msgtql);
733 valloc(msqids, struct msqid_ds, msginfo.msgmni);
734 #endif
735
736 /*
737 * Determine how many buffers to allocate.
738 * We allocate 10% of memory for buffer space. Insure a
739 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
740 * headers as file i/o buffers.
741 */
742 if (bufpages == 0)
743 bufpages = (physmem * 10) / (CLSIZE * 100);
744 if (nbuf == 0) {
745 nbuf = bufpages;
746 if (nbuf < 16)
747 nbuf = 16;
748 }
749 if (nswbuf == 0) {
750 nswbuf = (nbuf / 2) &~ 1; /* force even */
751 if (nswbuf > 256)
752 nswbuf = 256; /* sanity */
753 }
754 valloc(swbuf, struct buf, nswbuf);
755 valloc(buf, struct buf, nbuf);
756 return (v);
757 #undef valloc
758 }
759
760 void
761 consinit()
762 {
763
764 /*
765 * Everything related to console initialization is done
766 * in alpha_init().
767 */
768 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
769 printf("consinit: %susing prom console\n",
770 pmap_uses_prom_console() ? "" : "not ");
771 #endif
772 }
773
774 void
775 cpu_startup()
776 {
777 register unsigned i;
778 int base, residual;
779 vm_offset_t minaddr, maxaddr;
780 vm_size_t size;
781 #if defined(DEBUG)
782 extern int pmapdebug;
783 int opmapdebug = pmapdebug;
784
785 pmapdebug = 0;
786 #endif
787
788 /*
789 * Good {morning,afternoon,evening,night}.
790 */
791 printf(version);
792 identifycpu();
793 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
794 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
795 if (unusedmem)
796 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
797 if (unknownmem)
798 printf("WARNING: %d bytes of memory with unknown purpose\n",
799 ctob(unknownmem));
800
801 /*
802 * Allocate virtual address space for file I/O buffers.
803 * Note they are different than the array of headers, 'buf',
804 * and usually occupy more virtual memory than physical.
805 */
806 size = MAXBSIZE * nbuf;
807 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
808 &maxaddr, size, TRUE);
809 minaddr = (vm_offset_t)buffers;
810 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
811 &minaddr, size, FALSE) != KERN_SUCCESS)
812 panic("startup: cannot allocate buffers");
813 base = bufpages / nbuf;
814 residual = bufpages % nbuf;
815 for (i = 0; i < nbuf; i++) {
816 vm_size_t curbufsize;
817 vm_offset_t curbuf;
818
819 /*
820 * First <residual> buffers get (base+1) physical pages
821 * allocated for them. The rest get (base) physical pages.
822 *
823 * The rest of each buffer occupies virtual space,
824 * but has no physical memory allocated for it.
825 */
826 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
827 curbufsize = CLBYTES * (i < residual ? base+1 : base);
828 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
829 vm_map_simplify(buffer_map, curbuf);
830 }
831 /*
832 * Allocate a submap for exec arguments. This map effectively
833 * limits the number of processes exec'ing at any time.
834 */
835 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
836 16 * NCARGS, TRUE);
837
838 /*
839 * Allocate a submap for physio
840 */
841 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
842 VM_PHYS_SIZE, TRUE);
843
844 /*
845 * Finally, allocate mbuf cluster submap.
846 */
847 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
848 VM_MBUF_SIZE, FALSE);
849 /*
850 * Initialize callouts
851 */
852 callfree = callout;
853 for (i = 1; i < ncallout; i++)
854 callout[i-1].c_next = &callout[i];
855 callout[i-1].c_next = NULL;
856
857 #if defined(DEBUG)
858 pmapdebug = opmapdebug;
859 #endif
860 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
861 printf("using %ld buffers containing %ld bytes of memory\n",
862 (long)nbuf, (long)(bufpages * CLBYTES));
863
864 /*
865 * Set up buffers, so they can be used to read disk labels.
866 */
867 bufinit();
868
869 /*
870 * Configure the system.
871 */
872 configure();
873
874 /*
875 * Note that bootstrapping is finished, and set the HWRPB up
876 * to do restarts.
877 */
878 hwrpb_restart_setup();
879 }
880
881 /*
882 * Retrieve the platform name from the DSR.
883 */
884 const char *
885 alpha_dsr_sysname()
886 {
887 struct dsrdb *dsr;
888 const char *sysname;
889
890 /*
891 * DSR does not exist on early HWRPB versions.
892 */
893 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
894 return (NULL);
895
896 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
897 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
898 sizeof(u_int64_t)));
899 return (sysname);
900 }
901
902 /*
903 * Lookup the system specified system variation in the provided table,
904 * returning the model string on match.
905 */
906 const char *
907 alpha_variation_name(variation, avtp)
908 u_int64_t variation;
909 const struct alpha_variation_table *avtp;
910 {
911 int i;
912
913 for (i = 0; avtp[i].avt_model != NULL; i++)
914 if (avtp[i].avt_variation == variation)
915 return (avtp[i].avt_model);
916 return (NULL);
917 }
918
919 /*
920 * Generate a default platform name based for unknown system variations.
921 */
922 const char *
923 alpha_unknown_sysname()
924 {
925 static char s[128]; /* safe size */
926
927 sprintf(s, "%s family, unknown model variation 0x%lx",
928 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
929 return ((const char *)s);
930 }
931
932 void
933 identifycpu()
934 {
935
936 /*
937 * print out CPU identification information.
938 */
939 printf("%s, %ldMHz\n", cpu_model,
940 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
941 printf("%ld byte page size, %d processor%s.\n",
942 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
943 #if 0
944 /* this isn't defined for any systems that we run on? */
945 printf("serial number 0x%lx 0x%lx\n",
946 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
947
948 /* and these aren't particularly useful! */
949 printf("variation: 0x%lx, revision 0x%lx\n",
950 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
951 #endif
952 }
953
954 int waittime = -1;
955 struct pcb dumppcb;
956
957 void
958 cpu_reboot(howto, bootstr)
959 int howto;
960 char *bootstr;
961 {
962 extern int cold;
963
964 /* If system is cold, just halt. */
965 if (cold) {
966 howto |= RB_HALT;
967 goto haltsys;
968 }
969
970 /* If "always halt" was specified as a boot flag, obey. */
971 if ((boothowto & RB_HALT) != 0)
972 howto |= RB_HALT;
973
974 boothowto = howto;
975 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
976 waittime = 0;
977 vfs_shutdown();
978 /*
979 * If we've been adjusting the clock, the todr
980 * will be out of synch; adjust it now.
981 */
982 resettodr();
983 }
984
985 /* Disable interrupts. */
986 splhigh();
987
988 /* If rebooting and a dump is requested do it. */
989 #if 0
990 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
991 #else
992 if (howto & RB_DUMP)
993 #endif
994 dumpsys();
995
996 haltsys:
997
998 /* run any shutdown hooks */
999 doshutdownhooks();
1000
1001 #ifdef BOOTKEY
1002 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1003 cngetc();
1004 printf("\n");
1005 #endif
1006
1007 /* Finally, halt/reboot the system. */
1008 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1009 prom_halt(howto & RB_HALT);
1010 /*NOTREACHED*/
1011 }
1012
1013 /*
1014 * These variables are needed by /sbin/savecore
1015 */
1016 u_long dumpmag = 0x8fca0101; /* magic number */
1017 int dumpsize = 0; /* pages */
1018 long dumplo = 0; /* blocks */
1019
1020 /*
1021 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1022 */
1023 int
1024 cpu_dumpsize()
1025 {
1026 int size;
1027
1028 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
1029 if (roundup(size, dbtob(1)) != dbtob(1))
1030 return -1;
1031
1032 return (1);
1033 }
1034
1035 /*
1036 * cpu_dump: dump machine-dependent kernel core dump headers.
1037 */
1038 int
1039 cpu_dump()
1040 {
1041 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1042 char buf[dbtob(1)];
1043 kcore_seg_t *segp;
1044 cpu_kcore_hdr_t *cpuhdrp;
1045 phys_ram_seg_t *memsegp;
1046
1047 dump = bdevsw[major(dumpdev)].d_dump;
1048
1049 bzero(buf, sizeof buf);
1050 segp = (kcore_seg_t *)buf;
1051 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1052 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1053 ALIGN(sizeof(*cpuhdrp))];
1054
1055 /*
1056 * Generate a segment header.
1057 */
1058 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1059 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1060
1061 /*
1062 * Add the machine-dependent header info.
1063 */
1064 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
1065 cpuhdrp->page_size = PAGE_SIZE;
1066 cpuhdrp->nmemsegs = 1;
1067
1068 /*
1069 * Fill in the memory segment descriptors.
1070 */
1071 memsegp[0].start = ctob(firstusablepage);
1072 memsegp[0].size = ctob(physmem);
1073
1074 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1075 }
1076
1077 /*
1078 * This is called by main to set dumplo and dumpsize.
1079 * Dumps always skip the first CLBYTES of disk space
1080 * in case there might be a disk label stored there.
1081 * If there is extra space, put dump at the end to
1082 * reduce the chance that swapping trashes it.
1083 */
1084 void
1085 cpu_dumpconf()
1086 {
1087 int nblks, dumpblks; /* size of dump area */
1088 int maj;
1089
1090 if (dumpdev == NODEV)
1091 goto bad;
1092 maj = major(dumpdev);
1093 if (maj < 0 || maj >= nblkdev)
1094 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1095 if (bdevsw[maj].d_psize == NULL)
1096 goto bad;
1097 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1098 if (nblks <= ctod(1))
1099 goto bad;
1100
1101 dumpblks = cpu_dumpsize();
1102 if (dumpblks < 0)
1103 goto bad;
1104 dumpblks += ctod(physmem);
1105
1106 /* If dump won't fit (incl. room for possible label), punt. */
1107 if (dumpblks > (nblks - ctod(1)))
1108 goto bad;
1109
1110 /* Put dump at end of partition */
1111 dumplo = nblks - dumpblks;
1112
1113 /* dumpsize is in page units, and doesn't include headers. */
1114 dumpsize = physmem;
1115 return;
1116
1117 bad:
1118 dumpsize = 0;
1119 return;
1120 }
1121
1122 /*
1123 * Dump the kernel's image to the swap partition.
1124 */
1125 #define BYTES_PER_DUMP NBPG
1126
1127 void
1128 dumpsys()
1129 {
1130 unsigned bytes, i, n;
1131 int maddr, psize;
1132 daddr_t blkno;
1133 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1134 int error;
1135
1136 /* Save registers. */
1137 savectx(&dumppcb);
1138
1139 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1140 if (dumpdev == NODEV)
1141 return;
1142
1143 /*
1144 * For dumps during autoconfiguration,
1145 * if dump device has already configured...
1146 */
1147 if (dumpsize == 0)
1148 cpu_dumpconf();
1149 if (dumplo <= 0) {
1150 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1151 minor(dumpdev));
1152 return;
1153 }
1154 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1155 minor(dumpdev), dumplo);
1156
1157 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1158 printf("dump ");
1159 if (psize == -1) {
1160 printf("area unavailable\n");
1161 return;
1162 }
1163
1164 /* XXX should purge all outstanding keystrokes. */
1165
1166 if ((error = cpu_dump()) != 0)
1167 goto err;
1168
1169 bytes = ctob(physmem);
1170 maddr = ctob(firstusablepage);
1171 blkno = dumplo + cpu_dumpsize();
1172 dump = bdevsw[major(dumpdev)].d_dump;
1173 error = 0;
1174 for (i = 0; i < bytes; i += n) {
1175
1176 /* Print out how many MBs we to go. */
1177 n = bytes - i;
1178 if (n && (n % (1024*1024)) == 0)
1179 printf("%d ", n / (1024 * 1024));
1180
1181 /* Limit size for next transfer. */
1182 if (n > BYTES_PER_DUMP)
1183 n = BYTES_PER_DUMP;
1184
1185 error = (*dump)(dumpdev, blkno,
1186 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1187 if (error)
1188 break;
1189 maddr += n;
1190 blkno += btodb(n); /* XXX? */
1191
1192 /* XXX should look for keystrokes, to cancel. */
1193 }
1194
1195 err:
1196 switch (error) {
1197
1198 case ENXIO:
1199 printf("device bad\n");
1200 break;
1201
1202 case EFAULT:
1203 printf("device not ready\n");
1204 break;
1205
1206 case EINVAL:
1207 printf("area improper\n");
1208 break;
1209
1210 case EIO:
1211 printf("i/o error\n");
1212 break;
1213
1214 case EINTR:
1215 printf("aborted from console\n");
1216 break;
1217
1218 case 0:
1219 printf("succeeded\n");
1220 break;
1221
1222 default:
1223 printf("error %d\n", error);
1224 break;
1225 }
1226 printf("\n\n");
1227 delay(1000);
1228 }
1229
1230 void
1231 frametoreg(framep, regp)
1232 struct trapframe *framep;
1233 struct reg *regp;
1234 {
1235
1236 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1237 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1238 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1239 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1240 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1241 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1242 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1243 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1244 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1245 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1246 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1247 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1248 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1249 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1250 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1251 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1252 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1253 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1254 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1255 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1256 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1257 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1258 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1259 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1260 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1261 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1262 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1263 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1264 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1265 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1266 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1267 regp->r_regs[R_ZERO] = 0;
1268 }
1269
1270 void
1271 regtoframe(regp, framep)
1272 struct reg *regp;
1273 struct trapframe *framep;
1274 {
1275
1276 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1277 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1278 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1279 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1280 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1281 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1282 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1283 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1284 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1285 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1286 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1287 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1288 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1289 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1290 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1291 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1292 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1293 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1294 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1295 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1296 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1297 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1298 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1299 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1300 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1301 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1302 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1303 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1304 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1305 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1306 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1307 /* ??? = regp->r_regs[R_ZERO]; */
1308 }
1309
1310 void
1311 printregs(regp)
1312 struct reg *regp;
1313 {
1314 int i;
1315
1316 for (i = 0; i < 32; i++)
1317 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1318 i & 1 ? "\n" : "\t");
1319 }
1320
1321 void
1322 regdump(framep)
1323 struct trapframe *framep;
1324 {
1325 struct reg reg;
1326
1327 frametoreg(framep, ®);
1328 reg.r_regs[R_SP] = alpha_pal_rdusp();
1329
1330 printf("REGISTERS:\n");
1331 printregs(®);
1332 }
1333
1334 #ifdef DEBUG
1335 int sigdebug = 0;
1336 int sigpid = 0;
1337 #define SDB_FOLLOW 0x01
1338 #define SDB_KSTACK 0x02
1339 #endif
1340
1341 /*
1342 * Send an interrupt to process.
1343 */
1344 void
1345 sendsig(catcher, sig, mask, code)
1346 sig_t catcher;
1347 int sig, mask;
1348 u_long code;
1349 {
1350 struct proc *p = curproc;
1351 struct sigcontext *scp, ksc;
1352 struct trapframe *frame;
1353 struct sigacts *psp = p->p_sigacts;
1354 int oonstack, fsize, rndfsize;
1355 extern char sigcode[], esigcode[];
1356 extern struct proc *fpcurproc;
1357
1358 frame = p->p_md.md_tf;
1359 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1360 fsize = sizeof ksc;
1361 rndfsize = ((fsize + 15) / 16) * 16;
1362 /*
1363 * Allocate and validate space for the signal handler
1364 * context. Note that if the stack is in P0 space, the
1365 * call to grow() is a nop, and the useracc() check
1366 * will fail if the process has not already allocated
1367 * the space with a `brk'.
1368 */
1369 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1370 (psp->ps_sigonstack & sigmask(sig))) {
1371 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1372 psp->ps_sigstk.ss_size - rndfsize);
1373 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1374 } else
1375 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1376 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1377 (void)grow(p, (u_long)scp);
1378 #ifdef DEBUG
1379 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1380 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1381 sig, &oonstack, scp);
1382 #endif
1383 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1384 #ifdef DEBUG
1385 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1386 printf("sendsig(%d): useracc failed on sig %d\n",
1387 p->p_pid, sig);
1388 #endif
1389 /*
1390 * Process has trashed its stack; give it an illegal
1391 * instruction to halt it in its tracks.
1392 */
1393 SIGACTION(p, SIGILL) = SIG_DFL;
1394 sig = sigmask(SIGILL);
1395 p->p_sigignore &= ~sig;
1396 p->p_sigcatch &= ~sig;
1397 p->p_sigmask &= ~sig;
1398 psignal(p, SIGILL);
1399 return;
1400 }
1401
1402 /*
1403 * Build the signal context to be used by sigreturn.
1404 */
1405 ksc.sc_onstack = oonstack;
1406 ksc.sc_mask = mask;
1407 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1408 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1409
1410 /* copy the registers. */
1411 frametoreg(frame, (struct reg *)ksc.sc_regs);
1412 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1413 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1414
1415 /* save the floating-point state, if necessary, then copy it. */
1416 if (p == fpcurproc) {
1417 alpha_pal_wrfen(1);
1418 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1419 alpha_pal_wrfen(0);
1420 fpcurproc = NULL;
1421 }
1422 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1423 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1424 sizeof(struct fpreg));
1425 ksc.sc_fp_control = 0; /* XXX ? */
1426 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1427 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1428
1429
1430 #ifdef COMPAT_OSF1
1431 /*
1432 * XXX Create an OSF/1-style sigcontext and associated goo.
1433 */
1434 #endif
1435
1436 /*
1437 * copy the frame out to userland.
1438 */
1439 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1440 #ifdef DEBUG
1441 if (sigdebug & SDB_FOLLOW)
1442 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1443 scp, code);
1444 #endif
1445
1446 /*
1447 * Set up the registers to return to sigcode.
1448 */
1449 frame->tf_regs[FRAME_PC] =
1450 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1451 frame->tf_regs[FRAME_A0] = sig;
1452 frame->tf_regs[FRAME_A1] = code;
1453 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1454 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1455 alpha_pal_wrusp((unsigned long)scp);
1456
1457 #ifdef DEBUG
1458 if (sigdebug & SDB_FOLLOW)
1459 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1460 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1461 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1462 printf("sendsig(%d): sig %d returns\n",
1463 p->p_pid, sig);
1464 #endif
1465 }
1466
1467 /*
1468 * System call to cleanup state after a signal
1469 * has been taken. Reset signal mask and
1470 * stack state from context left by sendsig (above).
1471 * Return to previous pc and psl as specified by
1472 * context left by sendsig. Check carefully to
1473 * make sure that the user has not modified the
1474 * psl to gain improper priviledges or to cause
1475 * a machine fault.
1476 */
1477 /* ARGSUSED */
1478 int
1479 sys_sigreturn(p, v, retval)
1480 struct proc *p;
1481 void *v;
1482 register_t *retval;
1483 {
1484 struct sys_sigreturn_args /* {
1485 syscallarg(struct sigcontext *) sigcntxp;
1486 } */ *uap = v;
1487 struct sigcontext *scp, ksc;
1488 extern struct proc *fpcurproc;
1489
1490 scp = SCARG(uap, sigcntxp);
1491 #ifdef DEBUG
1492 if (sigdebug & SDB_FOLLOW)
1493 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1494 #endif
1495
1496 if (ALIGN(scp) != (u_int64_t)scp)
1497 return (EINVAL);
1498
1499 /*
1500 * Test and fetch the context structure.
1501 * We grab it all at once for speed.
1502 */
1503 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1504 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1505 return (EINVAL);
1506
1507 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1508 return (EINVAL);
1509 /*
1510 * Restore the user-supplied information
1511 */
1512 if (ksc.sc_onstack)
1513 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1514 else
1515 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1516 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1517
1518 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1519 p->p_md.md_tf->tf_regs[FRAME_PS] =
1520 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1521
1522 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1523 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1524
1525 /* XXX ksc.sc_ownedfp ? */
1526 if (p == fpcurproc)
1527 fpcurproc = NULL;
1528 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1529 sizeof(struct fpreg));
1530 /* XXX ksc.sc_fp_control ? */
1531
1532 #ifdef DEBUG
1533 if (sigdebug & SDB_FOLLOW)
1534 printf("sigreturn(%d): returns\n", p->p_pid);
1535 #endif
1536 return (EJUSTRETURN);
1537 }
1538
1539 /*
1540 * machine dependent system variables.
1541 */
1542 int
1543 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1544 int *name;
1545 u_int namelen;
1546 void *oldp;
1547 size_t *oldlenp;
1548 void *newp;
1549 size_t newlen;
1550 struct proc *p;
1551 {
1552 dev_t consdev;
1553
1554 /* all sysctl names at this level are terminal */
1555 if (namelen != 1)
1556 return (ENOTDIR); /* overloaded */
1557
1558 switch (name[0]) {
1559 case CPU_CONSDEV:
1560 if (cn_tab != NULL)
1561 consdev = cn_tab->cn_dev;
1562 else
1563 consdev = NODEV;
1564 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1565 sizeof consdev));
1566
1567 case CPU_ROOT_DEVICE:
1568 return (sysctl_rdstring(oldp, oldlenp, newp,
1569 root_device->dv_xname));
1570
1571 case CPU_UNALIGNED_PRINT:
1572 return (sysctl_int(oldp, oldlenp, newp, newlen,
1573 &alpha_unaligned_print));
1574
1575 case CPU_UNALIGNED_FIX:
1576 return (sysctl_int(oldp, oldlenp, newp, newlen,
1577 &alpha_unaligned_fix));
1578
1579 case CPU_UNALIGNED_SIGBUS:
1580 return (sysctl_int(oldp, oldlenp, newp, newlen,
1581 &alpha_unaligned_sigbus));
1582
1583 case CPU_BOOTED_KERNEL:
1584 return (sysctl_rdstring(oldp, oldlenp, newp,
1585 bootinfo.booted_kernel));
1586
1587 default:
1588 return (EOPNOTSUPP);
1589 }
1590 /* NOTREACHED */
1591 }
1592
1593 /*
1594 * Set registers on exec.
1595 */
1596 void
1597 setregs(p, pack, stack)
1598 register struct proc *p;
1599 struct exec_package *pack;
1600 u_long stack;
1601 {
1602 struct trapframe *tfp = p->p_md.md_tf;
1603 extern struct proc *fpcurproc;
1604 #ifdef DEBUG
1605 int i;
1606 #endif
1607
1608 #ifdef DEBUG
1609 /*
1610 * Crash and dump, if the user requested it.
1611 */
1612 if (boothowto & RB_DUMP)
1613 panic("crash requested by boot flags");
1614 #endif
1615
1616 #ifdef DEBUG
1617 for (i = 0; i < FRAME_SIZE; i++)
1618 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1619 #else
1620 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1621 #endif
1622 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1623 #define FP_RN 2 /* XXX */
1624 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1625 alpha_pal_wrusp(stack);
1626 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1627 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1628
1629 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1630 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1631 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1632 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1633 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1634
1635 p->p_md.md_flags &= ~MDP_FPUSED;
1636 if (fpcurproc == p)
1637 fpcurproc = NULL;
1638 }
1639
1640 void
1641 netintr()
1642 {
1643 int n, s;
1644
1645 s = splhigh();
1646 n = netisr;
1647 netisr = 0;
1648 splx(s);
1649
1650 #define DONETISR(bit, fn) \
1651 do { \
1652 if (n & (1 << (bit))) \
1653 fn; \
1654 } while (0)
1655
1656 #ifdef INET
1657 #if NARP > 0
1658 DONETISR(NETISR_ARP, arpintr());
1659 #endif
1660 DONETISR(NETISR_IP, ipintr());
1661 #endif
1662 #ifdef NETATALK
1663 DONETISR(NETISR_ATALK, atintr());
1664 #endif
1665 #ifdef NS
1666 DONETISR(NETISR_NS, nsintr());
1667 #endif
1668 #ifdef ISO
1669 DONETISR(NETISR_ISO, clnlintr());
1670 #endif
1671 #ifdef CCITT
1672 DONETISR(NETISR_CCITT, ccittintr());
1673 #endif
1674 #ifdef NATM
1675 DONETISR(NETISR_NATM, natmintr());
1676 #endif
1677 #if NPPP > 1
1678 DONETISR(NETISR_PPP, pppintr());
1679 #endif
1680
1681 #undef DONETISR
1682 }
1683
1684 void
1685 do_sir()
1686 {
1687 u_int64_t n;
1688
1689 do {
1690 (void)splhigh();
1691 n = ssir;
1692 ssir = 0;
1693 splsoft(); /* don't recurse through spl0() */
1694
1695 #define DO_SIR(bit, fn) \
1696 do { \
1697 if (n & (bit)) { \
1698 cnt.v_soft++; \
1699 fn; \
1700 } \
1701 } while (0)
1702
1703 DO_SIR(SIR_NET, netintr());
1704 DO_SIR(SIR_CLOCK, softclock());
1705
1706 #undef DO_SIR
1707 } while (ssir != 0);
1708 }
1709
1710 int
1711 spl0()
1712 {
1713
1714 if (ssir)
1715 do_sir(); /* it lowers the IPL itself */
1716
1717 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1718 }
1719
1720 /*
1721 * The following primitives manipulate the run queues. _whichqs tells which
1722 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1723 * into queues, Remrunqueue removes them from queues. The running process is
1724 * on no queue, other processes are on a queue related to p->p_priority,
1725 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1726 * available queues.
1727 */
1728 /*
1729 * setrunqueue(p)
1730 * proc *p;
1731 *
1732 * Call should be made at splclock(), and p->p_stat should be SRUN.
1733 */
1734
1735 void
1736 setrunqueue(p)
1737 struct proc *p;
1738 {
1739 int bit;
1740
1741 /* firewall: p->p_back must be NULL */
1742 if (p->p_back != NULL)
1743 panic("setrunqueue");
1744
1745 bit = p->p_priority >> 2;
1746 whichqs |= (1 << bit);
1747 p->p_forw = (struct proc *)&qs[bit];
1748 p->p_back = qs[bit].ph_rlink;
1749 p->p_back->p_forw = p;
1750 qs[bit].ph_rlink = p;
1751 }
1752
1753 /*
1754 * remrunqueue(p)
1755 *
1756 * Call should be made at splclock().
1757 */
1758 void
1759 remrunqueue(p)
1760 struct proc *p;
1761 {
1762 int bit;
1763
1764 bit = p->p_priority >> 2;
1765 if ((whichqs & (1 << bit)) == 0)
1766 panic("remrunqueue");
1767
1768 p->p_back->p_forw = p->p_forw;
1769 p->p_forw->p_back = p->p_back;
1770 p->p_back = NULL; /* for firewall checking. */
1771
1772 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1773 whichqs &= ~(1 << bit);
1774 }
1775
1776 /*
1777 * Return the best possible estimate of the time in the timeval
1778 * to which tvp points. Unfortunately, we can't read the hardware registers.
1779 * We guarantee that the time will be greater than the value obtained by a
1780 * previous call.
1781 */
1782 void
1783 microtime(tvp)
1784 register struct timeval *tvp;
1785 {
1786 int s = splclock();
1787 static struct timeval lasttime;
1788
1789 *tvp = time;
1790 #ifdef notdef
1791 tvp->tv_usec += clkread();
1792 while (tvp->tv_usec > 1000000) {
1793 tvp->tv_sec++;
1794 tvp->tv_usec -= 1000000;
1795 }
1796 #endif
1797 if (tvp->tv_sec == lasttime.tv_sec &&
1798 tvp->tv_usec <= lasttime.tv_usec &&
1799 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1800 tvp->tv_sec++;
1801 tvp->tv_usec -= 1000000;
1802 }
1803 lasttime = *tvp;
1804 splx(s);
1805 }
1806
1807 /*
1808 * Wait "n" microseconds.
1809 */
1810 void
1811 delay(n)
1812 unsigned long n;
1813 {
1814 long N = cycles_per_usec * (n);
1815
1816 while (N > 0) /* XXX */
1817 N -= 3; /* XXX */
1818 }
1819
1820 #if defined(COMPAT_OSF1) || 1 /* XXX */
1821 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1822 u_long));
1823
1824 void
1825 cpu_exec_ecoff_setregs(p, epp, stack)
1826 struct proc *p;
1827 struct exec_package *epp;
1828 u_long stack;
1829 {
1830 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1831
1832 setregs(p, epp, stack);
1833 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1834 }
1835
1836 /*
1837 * cpu_exec_ecoff_hook():
1838 * cpu-dependent ECOFF format hook for execve().
1839 *
1840 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1841 *
1842 */
1843 int
1844 cpu_exec_ecoff_hook(p, epp)
1845 struct proc *p;
1846 struct exec_package *epp;
1847 {
1848 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1849 extern struct emul emul_netbsd;
1850 #ifdef COMPAT_OSF1
1851 extern struct emul emul_osf1;
1852 #endif
1853
1854 switch (execp->f.f_magic) {
1855 #ifdef COMPAT_OSF1
1856 case ECOFF_MAGIC_ALPHA:
1857 epp->ep_emul = &emul_osf1;
1858 break;
1859 #endif
1860
1861 case ECOFF_MAGIC_NETBSD_ALPHA:
1862 epp->ep_emul = &emul_netbsd;
1863 break;
1864
1865 default:
1866 return ENOEXEC;
1867 }
1868 return 0;
1869 }
1870 #endif
1871
1872 /* XXX XXX BEGIN XXX XXX */
1873 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1874 /* XXX */
1875 vm_offset_t /* XXX */
1876 alpha_XXX_dmamap(v) /* XXX */
1877 vm_offset_t v; /* XXX */
1878 { /* XXX */
1879 /* XXX */
1880 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1881 } /* XXX */
1882 /* XXX XXX END XXX XXX */
1883