machdep.c revision 1.111 1 /* $NetBSD: machdep.c,v 1.111 1998/02/19 04:18:30 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
68
69 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.111 1998/02/19 04:18:30 thorpej Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/signalvar.h>
74 #include <sys/kernel.h>
75 #include <sys/map.h>
76 #include <sys/proc.h>
77 #include <sys/buf.h>
78 #include <sys/reboot.h>
79 #include <sys/device.h>
80 #include <sys/file.h>
81 #ifdef REAL_CLISTS
82 #include <sys/clist.h>
83 #endif
84 #include <sys/callout.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/mman.h>
88 #include <sys/msgbuf.h>
89 #include <sys/ioctl.h>
90 #include <sys/tty.h>
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/exec_ecoff.h>
94 #include <vm/vm.h>
95 #include <sys/sysctl.h>
96 #include <sys/core.h>
97 #include <sys/kcore.h>
98 #include <machine/kcore.h>
99 #ifdef SYSVMSG
100 #include <sys/msg.h>
101 #endif
102 #ifdef SYSVSEM
103 #include <sys/sem.h>
104 #endif
105 #ifdef SYSVSHM
106 #include <sys/shm.h>
107 #endif
108
109 #include <sys/mount.h>
110 #include <sys/syscallargs.h>
111
112 #include <vm/vm_kern.h>
113
114 #include <dev/cons.h>
115
116 #include <machine/autoconf.h>
117 #include <machine/cpu.h>
118 #include <machine/reg.h>
119 #include <machine/rpb.h>
120 #include <machine/prom.h>
121 #include <machine/conf.h>
122
123 #include <net/netisr.h>
124 #include <net/if.h>
125
126 #ifdef INET
127 #include <netinet/in.h>
128 #include <netinet/ip_var.h>
129 #include "arp.h"
130 #if NARP > 0
131 #include <netinet/if_inarp.h>
132 #endif
133 #endif
134 #ifdef NS
135 #include <netns/ns_var.h>
136 #endif
137 #ifdef ISO
138 #include <netiso/iso.h>
139 #include <netiso/clnp.h>
140 #endif
141 #ifdef CCITT
142 #include <netccitt/x25.h>
143 #include <netccitt/pk.h>
144 #include <netccitt/pk_extern.h>
145 #endif
146 #ifdef NATM
147 #include <netnatm/natm.h>
148 #endif
149 #ifdef NETATALK
150 #include <netatalk/at_extern.h>
151 #endif
152 #include "ppp.h"
153 #if NPPP > 0
154 #include <net/ppp_defs.h>
155 #include <net/if_ppp.h>
156 #endif
157
158 #ifdef DDB
159 #include <machine/db_machdep.h>
160 #include <ddb/db_access.h>
161 #include <ddb/db_sym.h>
162 #include <ddb/db_extern.h>
163 #include <ddb/db_interface.h>
164 #endif
165
166 vm_map_t buffer_map;
167
168 /*
169 * Declare these as initialized data so we can patch them.
170 */
171 int nswbuf = 0;
172 #ifdef NBUF
173 int nbuf = NBUF;
174 #else
175 int nbuf = 0;
176 #endif
177 #ifdef BUFPAGES
178 int bufpages = BUFPAGES;
179 #else
180 int bufpages = 0;
181 #endif
182 caddr_t msgbufaddr;
183
184 int maxmem; /* max memory per process */
185
186 int totalphysmem; /* total amount of physical memory in system */
187 int physmem; /* physical memory used by NetBSD + some rsvd */
188 int resvmem; /* amount of memory reserved for PROM */
189 int unusedmem; /* amount of memory for OS that we don't use */
190 int unknownmem; /* amount of memory with an unknown use */
191
192 int cputype; /* system type, from the RPB */
193
194 /*
195 * XXX We need an address to which we can assign things so that they
196 * won't be optimized away because we didn't use the value.
197 */
198 u_int32_t no_optimize;
199
200 /* the following is used externally (sysctl_hw) */
201 char machine[] = MACHINE; /* from <machine/param.h> */
202 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
203 char cpu_model[128];
204
205 struct user *proc0paddr;
206
207 /* Number of machine cycles per microsecond */
208 u_int64_t cycles_per_usec;
209
210 /* number of cpus in the box. really! */
211 int ncpus;
212
213 struct bootinfo_kernel bootinfo;
214
215 struct platform platform;
216
217 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
218 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
219 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
220
221 #ifdef DDB
222 /* start and end of kernel symbol table */
223 void *ksym_start, *ksym_end;
224 #endif
225
226 /* for cpu_sysctl() */
227 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
228 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
229 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
230
231 /*
232 * XXX This should be dynamically sized, but we have the chicken-egg problem!
233 * XXX it should also be larger than it is, because not all of the mddt
234 * XXX clusters end up being used for VM.
235 */
236 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
237 int mem_cluster_cnt;
238
239 caddr_t allocsys __P((caddr_t));
240 int cpu_dump __P((void));
241 int cpu_dumpsize __P((void));
242 u_long cpu_dump_mempagecnt __P((void));
243 void dumpsys __P((void));
244 void identifycpu __P((void));
245 void netintr __P((void));
246 void printregs __P((struct reg *));
247
248 void
249 alpha_init(pfn, ptb, bim, bip, biv)
250 u_long pfn; /* first free PFN number */
251 u_long ptb; /* PFN of current level 1 page table */
252 u_long bim; /* bootinfo magic */
253 u_long bip; /* bootinfo pointer */
254 u_long biv; /* bootinfo version */
255 {
256 extern char kernel_text[], _end[];
257 struct mddt *mddtp;
258 struct mddt_cluster *memc;
259 int i, mddtweird;
260 struct vm_physseg *vps;
261 vm_offset_t kernstart, kernend;
262 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
263 vm_size_t size;
264 char *p;
265 caddr_t v;
266 char *bootinfo_msg;
267
268 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
269
270 /*
271 * Turn off interrupts (not mchecks) and floating point.
272 * Make sure the instruction and data streams are consistent.
273 */
274 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
275 alpha_pal_wrfen(0);
276 ALPHA_TBIA();
277 alpha_pal_imb();
278
279 /*
280 * Get critical system information (if possible, from the
281 * information provided by the boot program).
282 */
283 bootinfo_msg = NULL;
284 if (bim == BOOTINFO_MAGIC) {
285 if (biv == 0) { /* backward compat */
286 biv = *(u_long *)bip;
287 bip += 8;
288 }
289 switch (biv) {
290 case 1: {
291 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
292
293 bootinfo.ssym = v1p->ssym;
294 bootinfo.esym = v1p->esym;
295 /* hwrpb may not be provided by boot block in v1 */
296 if (v1p->hwrpb != NULL) {
297 bootinfo.hwrpb_phys =
298 ((struct rpb *)v1p->hwrpb)->rpb_phys;
299 bootinfo.hwrpb_size = v1p->hwrpbsize;
300 } else {
301 bootinfo.hwrpb_phys =
302 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
303 bootinfo.hwrpb_size =
304 ((struct rpb *)HWRPB_ADDR)->rpb_size;
305 }
306 bcopy(v1p->boot_flags, bootinfo.boot_flags,
307 min(sizeof v1p->boot_flags,
308 sizeof bootinfo.boot_flags));
309 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
310 min(sizeof v1p->booted_kernel,
311 sizeof bootinfo.booted_kernel));
312 /* booted dev not provided in bootinfo */
313 init_prom_interface((struct rpb *)
314 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
315 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
316 sizeof bootinfo.booted_dev);
317 break;
318 }
319 default:
320 bootinfo_msg = "unknown bootinfo version";
321 goto nobootinfo;
322 }
323 } else {
324 bootinfo_msg = "boot program did not pass bootinfo";
325 nobootinfo:
326 bootinfo.ssym = (u_long)_end;
327 bootinfo.esym = (u_long)_end;
328 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
329 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
330 init_prom_interface((struct rpb *)HWRPB_ADDR);
331 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
332 sizeof bootinfo.boot_flags);
333 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
334 sizeof bootinfo.booted_kernel);
335 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
336 sizeof bootinfo.booted_dev);
337 }
338
339 /*
340 * Initialize the kernel's mapping of the RPB. It's needed for
341 * lots of things.
342 */
343 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
344
345 /*
346 * Remember how many cycles there are per microsecond,
347 * so that we can use delay(). Round up, for safety.
348 */
349 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
350
351 /*
352 * Initalize the (temporary) bootstrap console interface, so
353 * we can use printf until the VM system starts being setup.
354 * The real console is initialized before then.
355 */
356 init_bootstrap_console();
357
358 /* OUTPUT NOW ALLOWED */
359
360 /* delayed from above */
361 if (bootinfo_msg)
362 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
363 bootinfo_msg, bim, bip, biv);
364
365 /*
366 * Point interrupt/exception vectors to our own.
367 */
368 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
369 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
370 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
371 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
372 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
373 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
374
375 /*
376 * Clear pending machine checks and error reports, and enable
377 * system- and processor-correctable error reporting.
378 */
379 alpha_pal_wrmces(alpha_pal_rdmces() &
380 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
381
382 /*
383 * Find out what hardware we're on, and do basic initialization.
384 */
385 cputype = hwrpb->rpb_type;
386 if (cputype >= ncpuinit) {
387 platform_not_supported();
388 /* NOTREACHED */
389 }
390 (*cpuinit[cputype].init)();
391 strcpy(cpu_model, platform.model);
392
393 /*
394 * Initalize the real console, so the the bootstrap console is
395 * no longer necessary.
396 */
397 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
398 if (!pmap_uses_prom_console())
399 #endif
400 (*platform.cons_init)();
401
402 #ifdef DIAGNOSTIC
403 /* Paranoid sanity checking */
404
405 /* We should always be running on the the primary. */
406 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
407
408 /* On single-CPU systypes, the primary should always be CPU 0. */
409 if (cputype != ST_DEC_21000)
410 assert(hwrpb->rpb_primary_cpu_id == 0);
411 #endif
412
413 /* NO MORE FIRMWARE ACCESS ALLOWED */
414 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
415 /*
416 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
417 * XXX pmap_uses_prom_console() evaluates to non-zero.)
418 */
419 #endif
420
421 /*
422 * find out this system's page size
423 */
424 PAGE_SIZE = hwrpb->rpb_page_size;
425 if (PAGE_SIZE != 8192)
426 panic("page size %d != 8192?!", PAGE_SIZE);
427
428 /*
429 * Initialize PAGE_SIZE-dependent variables.
430 */
431 vm_set_page_size();
432
433 /*
434 * Find the beginning and end of the kernel (and leave a
435 * bit of space before the beginning for the bootstrap
436 * stack).
437 */
438 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
439 #ifdef DDB
440 ksym_start = (void *)bootinfo.ssym;
441 ksym_end = (void *)bootinfo.esym;
442 kernend = (vm_offset_t)round_page(ksym_end);
443 #else
444 kernend = (vm_offset_t)round_page(_end);
445 #endif
446
447 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
448 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
449
450 /*
451 * Find out how much memory is available, by looking at
452 * the memory cluster descriptors. This also tries to do
453 * its best to detect things things that have never been seen
454 * before...
455 */
456 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
457
458 /* MDDT SANITY CHECKING */
459 mddtweird = 0;
460 if (mddtp->mddt_cluster_cnt < 2) {
461 mddtweird = 1;
462 printf("WARNING: weird number of mem clusters: %d\n",
463 mddtp->mddt_cluster_cnt);
464 }
465
466 #if 0
467 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
468 #endif
469
470 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
471 memc = &mddtp->mddt_clusters[i];
472 #if 0
473 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
474 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
475 #endif
476 totalphysmem += memc->mddt_pg_cnt;
477 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
478 mem_clusters[mem_cluster_cnt].start =
479 ptoa(memc->mddt_pfn);
480 mem_clusters[mem_cluster_cnt].size =
481 ptoa(memc->mddt_pg_cnt);
482 if (memc->mddt_usage & MDDT_mbz ||
483 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
484 memc->mddt_usage & MDDT_PALCODE)
485 mem_clusters[mem_cluster_cnt].size |=
486 PROT_READ;
487 else
488 mem_clusters[mem_cluster_cnt].size |=
489 PROT_READ | PROT_WRITE | PROT_EXEC;
490 mem_cluster_cnt++;
491 }
492
493 if (memc->mddt_usage & MDDT_mbz) {
494 mddtweird = 1;
495 printf("WARNING: mem cluster %d has weird "
496 "usage 0x%lx\n", i, memc->mddt_usage);
497 unknownmem += memc->mddt_pg_cnt;
498 continue;
499 }
500 if (memc->mddt_usage & MDDT_NONVOLATILE) {
501 /* XXX should handle these... */
502 printf("WARNING: skipping non-volatile mem "
503 "cluster %d\n", i);
504 unusedmem += memc->mddt_pg_cnt;
505 continue;
506 }
507 if (memc->mddt_usage & MDDT_PALCODE) {
508 resvmem += memc->mddt_pg_cnt;
509 continue;
510 }
511
512 /*
513 * We have a memory cluster available for system
514 * software use. We must determine if this cluster
515 * holds the kernel.
516 */
517 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
518 /*
519 * XXX If the kernel uses the PROM console, we only use the
520 * XXX memory after the kernel in the first system segment,
521 * XXX to avoid clobbering prom mapping, data, etc.
522 */
523 if (!pmap_uses_prom_console() || physmem == 0) {
524 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
525 physmem += memc->mddt_pg_cnt;
526 pfn0 = memc->mddt_pfn;
527 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
528 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
529 /*
530 * Must compute the location of the kernel
531 * within the segment.
532 */
533 #if 0
534 printf("Cluster %d contains kernel\n", i);
535 #endif
536 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
537 if (!pmap_uses_prom_console()) {
538 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
539 if (pfn0 < kernstartpfn) {
540 /*
541 * There is a chunk before the kernel.
542 */
543 #if 0
544 printf("Loading chunk before kernel: "
545 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
546 #endif
547 vm_page_physload(pfn0, kernstartpfn,
548 pfn0, kernstartpfn);
549 }
550 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
551 }
552 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
553 if (kernendpfn < pfn1) {
554 /*
555 * There is a chunk after the kernel.
556 */
557 #if 0
558 printf("Loading chunk after kernel: "
559 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
560 #endif
561 vm_page_physload(kernendpfn, pfn1,
562 kernendpfn, pfn1);
563 }
564 } else {
565 /*
566 * Just load this cluster as one chunk.
567 */
568 #if 0
569 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
570 pfn0, pfn1);
571 #endif
572 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
573 }
574 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
575 }
576 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
577 }
578
579 /*
580 * Dump out the MDDT if it looks odd...
581 */
582 if (mddtweird) {
583 printf("\n");
584 printf("complete memory cluster information:\n");
585 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
586 printf("mddt %d:\n", i);
587 printf("\tpfn %lx\n",
588 mddtp->mddt_clusters[i].mddt_pfn);
589 printf("\tcnt %lx\n",
590 mddtp->mddt_clusters[i].mddt_pg_cnt);
591 printf("\ttest %lx\n",
592 mddtp->mddt_clusters[i].mddt_pg_test);
593 printf("\tbva %lx\n",
594 mddtp->mddt_clusters[i].mddt_v_bitaddr);
595 printf("\tbpa %lx\n",
596 mddtp->mddt_clusters[i].mddt_p_bitaddr);
597 printf("\tbcksum %lx\n",
598 mddtp->mddt_clusters[i].mddt_bit_cksum);
599 printf("\tusage %lx\n",
600 mddtp->mddt_clusters[i].mddt_usage);
601 }
602 printf("\n");
603 }
604
605 if (totalphysmem == 0)
606 panic("can't happen: system seems to have no memory!");
607
608 #ifdef LIMITMEM
609 /*
610 * XXX Kludge so we can run on machines with memory larger
611 * XXX than 1G until all device drivers are converted to
612 * XXX use bus_dma. (Relies on the fact that vm_physmem
613 * XXX sorted in order of increasing addresses.)
614 */
615 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
616
617 printf("******** LIMITING MEMORY TO %dMB **********\n",
618 LIMITMEM);
619
620 do {
621 u_long ovf;
622
623 vps = &vm_physmem[vm_nphysseg - 1];
624
625 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
626 /*
627 * If the start is too high, just drop
628 * the whole segment.
629 *
630 * XXX can start != avail_start in this
631 * XXX case? wouldn't that mean that
632 * XXX some memory was stolen above the
633 * XXX limit? What to do?
634 */
635 ovf = vps->end - vps->start;
636 vm_nphysseg--;
637 } else {
638 /*
639 * If the start is OK, calculate how much
640 * to drop and drop it.
641 */
642 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
643 vps->end -= ovf;
644 vps->avail_end -= ovf;
645 }
646 physmem -= ovf;
647 unusedmem += ovf;
648 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
649 }
650 #endif /* LIMITMEM */
651
652 maxmem = physmem;
653
654 #if 0
655 printf("totalphysmem = %d\n", totalphysmem);
656 printf("physmem = %d\n", physmem);
657 printf("resvmem = %d\n", resvmem);
658 printf("unusedmem = %d\n", unusedmem);
659 printf("unknownmem = %d\n", unknownmem);
660 #endif
661
662 /*
663 * Adjust some parameters if the amount of physmem
664 * available would cause us to croak. This is completely
665 * eyeballed and isn't meant to be the final answer.
666 * vm_phys_size is probably the only one to really worry
667 * about.
668 *
669 * It's for booting a GENERIC kernel on a large memory platform.
670 */
671 if (physmem >= atop(128 * 1024 * 1024)) {
672 vm_mbuf_size <<= 1;
673 vm_kmem_size <<= 3;
674 vm_phys_size <<= 2;
675 }
676
677 /*
678 * Initialize error message buffer (at end of core).
679 */
680 {
681 size_t sz = round_page(MSGBUFSIZE);
682
683 vps = &vm_physmem[vm_nphysseg - 1];
684
685 /* shrink so that it'll fit in the last segment */
686 if ((vps->avail_end - vps->avail_start) < atop(sz))
687 sz = ptoa(vps->avail_end - vps->avail_start);
688
689 vps->end -= atop(sz);
690 vps->avail_end -= atop(sz);
691 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
692 initmsgbuf(msgbufaddr, sz);
693
694 /* Remove the last segment if it now has no pages. */
695 if (vps->start == vps->end)
696 vm_nphysseg--;
697
698 /* warn if the message buffer had to be shrunk */
699 if (sz != round_page(MSGBUFSIZE))
700 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
701 round_page(MSGBUFSIZE), sz);
702
703 }
704
705 /*
706 * Init mapping for u page(s) for proc 0
707 */
708 proc0.p_addr = proc0paddr =
709 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
710
711 /*
712 * Allocate space for system data structures. These data structures
713 * are allocated here instead of cpu_startup() because physical
714 * memory is directly addressable. We don't have to map these into
715 * virtual address space.
716 */
717 size = (vm_size_t)allocsys(0);
718 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
719 if ((allocsys(v) - v) != size)
720 panic("alpha_init: table size inconsistency");
721
722 /*
723 * Initialize the virtual memory system, and set the
724 * page table base register in proc 0's PCB.
725 */
726 #ifndef NEW_PMAP
727 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
728 #else
729 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
730 hwrpb->rpb_max_asn);
731 #endif
732
733 /*
734 * Initialize the rest of proc 0's PCB, and cache its physical
735 * address.
736 */
737 proc0.p_md.md_pcbpaddr =
738 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
739
740 /*
741 * Set the kernel sp, reserving space for an (empty) trapframe,
742 * and make proc0's trapframe pointer point to it for sanity.
743 */
744 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
745 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
746 proc0.p_md.md_tf =
747 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
748
749 #ifdef NEW_PMAP
750 /*
751 * Set up the kernel address space in proc0's hwpcb.
752 */
753 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
754 #endif
755
756 /*
757 * Look at arguments passed to us and compute boothowto.
758 */
759
760 boothowto = RB_SINGLE;
761 #ifdef KADB
762 boothowto |= RB_KDB;
763 #endif
764 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
765 /*
766 * Note that we'd really like to differentiate case here,
767 * but the Alpha AXP Architecture Reference Manual
768 * says that we shouldn't.
769 */
770 switch (*p) {
771 case 'a': /* autoboot */
772 case 'A':
773 boothowto &= ~RB_SINGLE;
774 break;
775
776 #ifdef DEBUG
777 case 'c': /* crash dump immediately after autoconfig */
778 case 'C':
779 boothowto |= RB_DUMP;
780 break;
781 #endif
782
783 #if defined(KGDB) || defined(DDB)
784 case 'd': /* break into the kernel debugger ASAP */
785 case 'D':
786 boothowto |= RB_KDB;
787 break;
788 #endif
789
790 case 'h': /* always halt, never reboot */
791 case 'H':
792 boothowto |= RB_HALT;
793 break;
794
795 #if 0
796 case 'm': /* mini root present in memory */
797 case 'M':
798 boothowto |= RB_MINIROOT;
799 break;
800 #endif
801
802 case 'n': /* askname */
803 case 'N':
804 boothowto |= RB_ASKNAME;
805 break;
806
807 case 's': /* single-user (default, supported for sanity) */
808 case 'S':
809 boothowto |= RB_SINGLE;
810 break;
811
812 default:
813 printf("Unrecognized boot flag '%c'.\n", *p);
814 break;
815 }
816 }
817
818 /*
819 * Initialize debuggers, and break into them if appropriate.
820 */
821 #ifdef DDB
822 db_machine_init();
823 ddb_init(ksym_start, ksym_end);
824 if (boothowto & RB_KDB)
825 Debugger();
826 #endif
827 #ifdef KGDB
828 if (boothowto & RB_KDB)
829 kgdb_connect(0);
830 #endif
831
832 /*
833 * Figure out the number of cpus in the box, from RPB fields.
834 * Really. We mean it.
835 */
836 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
837 struct pcs *pcsp;
838
839 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
840 (i * hwrpb->rpb_pcs_size));
841 if ((pcsp->pcs_flags & PCS_PP) != 0)
842 ncpus++;
843 }
844
845 /*
846 * Figure out our clock frequency, from RPB fields.
847 */
848 hz = hwrpb->rpb_intr_freq >> 12;
849 if (!(60 <= hz && hz <= 10240)) {
850 hz = 1024;
851 #ifdef DIAGNOSTIC
852 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
853 hwrpb->rpb_intr_freq, hz);
854 #endif
855 }
856
857 }
858
859 /*
860 * Allocate space for system data structures. We are given
861 * a starting virtual address and we return a final virtual
862 * address; along the way we set each data structure pointer.
863 *
864 * We call allocsys() with 0 to find out how much space we want,
865 * allocate that much and fill it with zeroes, and the call
866 * allocsys() again with the correct base virtual address.
867 */
868 caddr_t
869 allocsys(v)
870 caddr_t v;
871 {
872
873 #define valloc(name, type, num) \
874 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
875 #ifdef REAL_CLISTS
876 valloc(cfree, struct cblock, nclist);
877 #endif
878 valloc(callout, struct callout, ncallout);
879 #ifdef SYSVSHM
880 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
881 #endif
882 #ifdef SYSVSEM
883 valloc(sema, struct semid_ds, seminfo.semmni);
884 valloc(sem, struct sem, seminfo.semmns);
885 /* This is pretty disgusting! */
886 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
887 #endif
888 #ifdef SYSVMSG
889 valloc(msgpool, char, msginfo.msgmax);
890 valloc(msgmaps, struct msgmap, msginfo.msgseg);
891 valloc(msghdrs, struct msg, msginfo.msgtql);
892 valloc(msqids, struct msqid_ds, msginfo.msgmni);
893 #endif
894
895 /*
896 * Determine how many buffers to allocate.
897 * We allocate 10% of memory for buffer space. Insure a
898 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
899 * headers as file i/o buffers.
900 */
901 if (bufpages == 0)
902 bufpages = (physmem * 10) / (CLSIZE * 100);
903 if (nbuf == 0) {
904 nbuf = bufpages;
905 if (nbuf < 16)
906 nbuf = 16;
907 }
908 if (nswbuf == 0) {
909 nswbuf = (nbuf / 2) &~ 1; /* force even */
910 if (nswbuf > 256)
911 nswbuf = 256; /* sanity */
912 }
913 valloc(swbuf, struct buf, nswbuf);
914 valloc(buf, struct buf, nbuf);
915 return (v);
916 #undef valloc
917 }
918
919 void
920 consinit()
921 {
922
923 /*
924 * Everything related to console initialization is done
925 * in alpha_init().
926 */
927 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
928 printf("consinit: %susing prom console\n",
929 pmap_uses_prom_console() ? "" : "not ");
930 #endif
931 }
932
933 void
934 cpu_startup()
935 {
936 register unsigned i;
937 int base, residual;
938 vm_offset_t minaddr, maxaddr;
939 vm_size_t size;
940 #if defined(DEBUG)
941 extern int pmapdebug;
942 int opmapdebug = pmapdebug;
943
944 pmapdebug = 0;
945 #endif
946
947 /*
948 * Good {morning,afternoon,evening,night}.
949 */
950 printf(version);
951 identifycpu();
952 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
953 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
954 if (unusedmem)
955 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
956 if (unknownmem)
957 printf("WARNING: %d bytes of memory with unknown purpose\n",
958 ctob(unknownmem));
959
960 /*
961 * Allocate virtual address space for file I/O buffers.
962 * Note they are different than the array of headers, 'buf',
963 * and usually occupy more virtual memory than physical.
964 */
965 size = MAXBSIZE * nbuf;
966 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
967 &maxaddr, size, TRUE);
968 minaddr = (vm_offset_t)buffers;
969 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
970 &minaddr, size, FALSE) != KERN_SUCCESS)
971 panic("startup: cannot allocate buffers");
972 base = bufpages / nbuf;
973 residual = bufpages % nbuf;
974 for (i = 0; i < nbuf; i++) {
975 vm_size_t curbufsize;
976 vm_offset_t curbuf;
977
978 /*
979 * First <residual> buffers get (base+1) physical pages
980 * allocated for them. The rest get (base) physical pages.
981 *
982 * The rest of each buffer occupies virtual space,
983 * but has no physical memory allocated for it.
984 */
985 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
986 curbufsize = CLBYTES * (i < residual ? base+1 : base);
987 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
988 vm_map_simplify(buffer_map, curbuf);
989 }
990 /*
991 * Allocate a submap for exec arguments. This map effectively
992 * limits the number of processes exec'ing at any time.
993 */
994 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
995 16 * NCARGS, TRUE);
996
997 /*
998 * Allocate a submap for physio
999 */
1000 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1001 VM_PHYS_SIZE, TRUE);
1002
1003 /*
1004 * Finally, allocate mbuf cluster submap.
1005 */
1006 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1007 VM_MBUF_SIZE, FALSE);
1008 /*
1009 * Initialize callouts
1010 */
1011 callfree = callout;
1012 for (i = 1; i < ncallout; i++)
1013 callout[i-1].c_next = &callout[i];
1014 callout[i-1].c_next = NULL;
1015
1016 #if defined(DEBUG)
1017 pmapdebug = opmapdebug;
1018 #endif
1019 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1020 printf("using %ld buffers containing %ld bytes of memory\n",
1021 (long)nbuf, (long)(bufpages * CLBYTES));
1022
1023 /*
1024 * Set up buffers, so they can be used to read disk labels.
1025 */
1026 bufinit();
1027
1028 /*
1029 * Configure the system.
1030 */
1031 configure();
1032
1033 /*
1034 * Note that bootstrapping is finished, and set the HWRPB up
1035 * to do restarts.
1036 */
1037 hwrpb_restart_setup();
1038 }
1039
1040 /*
1041 * Retrieve the platform name from the DSR.
1042 */
1043 const char *
1044 alpha_dsr_sysname()
1045 {
1046 struct dsrdb *dsr;
1047 const char *sysname;
1048
1049 /*
1050 * DSR does not exist on early HWRPB versions.
1051 */
1052 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1053 return (NULL);
1054
1055 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1056 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1057 sizeof(u_int64_t)));
1058 return (sysname);
1059 }
1060
1061 /*
1062 * Lookup the system specified system variation in the provided table,
1063 * returning the model string on match.
1064 */
1065 const char *
1066 alpha_variation_name(variation, avtp)
1067 u_int64_t variation;
1068 const struct alpha_variation_table *avtp;
1069 {
1070 int i;
1071
1072 for (i = 0; avtp[i].avt_model != NULL; i++)
1073 if (avtp[i].avt_variation == variation)
1074 return (avtp[i].avt_model);
1075 return (NULL);
1076 }
1077
1078 /*
1079 * Generate a default platform name based for unknown system variations.
1080 */
1081 const char *
1082 alpha_unknown_sysname()
1083 {
1084 static char s[128]; /* safe size */
1085
1086 sprintf(s, "%s family, unknown model variation 0x%lx",
1087 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1088 return ((const char *)s);
1089 }
1090
1091 void
1092 identifycpu()
1093 {
1094
1095 /*
1096 * print out CPU identification information.
1097 */
1098 printf("%s, %ldMHz\n", cpu_model,
1099 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1100 printf("%ld byte page size, %d processor%s.\n",
1101 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1102 #if 0
1103 /* this isn't defined for any systems that we run on? */
1104 printf("serial number 0x%lx 0x%lx\n",
1105 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1106
1107 /* and these aren't particularly useful! */
1108 printf("variation: 0x%lx, revision 0x%lx\n",
1109 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1110 #endif
1111 }
1112
1113 int waittime = -1;
1114 struct pcb dumppcb;
1115
1116 void
1117 cpu_reboot(howto, bootstr)
1118 int howto;
1119 char *bootstr;
1120 {
1121 extern int cold;
1122
1123 /* If system is cold, just halt. */
1124 if (cold) {
1125 howto |= RB_HALT;
1126 goto haltsys;
1127 }
1128
1129 /* If "always halt" was specified as a boot flag, obey. */
1130 if ((boothowto & RB_HALT) != 0)
1131 howto |= RB_HALT;
1132
1133 boothowto = howto;
1134 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1135 waittime = 0;
1136 vfs_shutdown();
1137 /*
1138 * If we've been adjusting the clock, the todr
1139 * will be out of synch; adjust it now.
1140 */
1141 resettodr();
1142 }
1143
1144 /* Disable interrupts. */
1145 splhigh();
1146
1147 /* If rebooting and a dump is requested do it. */
1148 #if 0
1149 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1150 #else
1151 if (howto & RB_DUMP)
1152 #endif
1153 dumpsys();
1154
1155 haltsys:
1156
1157 /* run any shutdown hooks */
1158 doshutdownhooks();
1159
1160 #ifdef BOOTKEY
1161 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1162 cngetc();
1163 printf("\n");
1164 #endif
1165
1166 /* Finally, halt/reboot the system. */
1167 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1168 prom_halt(howto & RB_HALT);
1169 /*NOTREACHED*/
1170 }
1171
1172 /*
1173 * These variables are needed by /sbin/savecore
1174 */
1175 u_long dumpmag = 0x8fca0101; /* magic number */
1176 int dumpsize = 0; /* pages */
1177 long dumplo = 0; /* blocks */
1178
1179 /*
1180 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1181 */
1182 int
1183 cpu_dumpsize()
1184 {
1185 int size;
1186
1187 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1188 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1189 if (roundup(size, dbtob(1)) != dbtob(1))
1190 return -1;
1191
1192 return (1);
1193 }
1194
1195 /*
1196 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1197 */
1198 u_long
1199 cpu_dump_mempagecnt()
1200 {
1201 u_long i, n;
1202
1203 n = 0;
1204 for (i = 0; i < mem_cluster_cnt; i++)
1205 n += atop(mem_clusters[i].size);
1206 return (n);
1207 }
1208
1209 /*
1210 * cpu_dump: dump machine-dependent kernel core dump headers.
1211 */
1212 int
1213 cpu_dump()
1214 {
1215 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1216 char buf[dbtob(1)];
1217 kcore_seg_t *segp;
1218 cpu_kcore_hdr_t *cpuhdrp;
1219 phys_ram_seg_t *memsegp;
1220 int i;
1221
1222 dump = bdevsw[major(dumpdev)].d_dump;
1223
1224 bzero(buf, sizeof buf);
1225 segp = (kcore_seg_t *)buf;
1226 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1227 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1228 ALIGN(sizeof(*cpuhdrp))];
1229
1230 /*
1231 * Generate a segment header.
1232 */
1233 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1234 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1235
1236 /*
1237 * Add the machine-dependent header info.
1238 */
1239 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
1240 cpuhdrp->page_size = PAGE_SIZE;
1241 cpuhdrp->nmemsegs = mem_cluster_cnt;
1242
1243 /*
1244 * Fill in the memory segment descriptors.
1245 */
1246 for (i = 0; i < mem_cluster_cnt; i++) {
1247 memsegp[i].start = mem_clusters[i].start;
1248 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1249 }
1250
1251 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1252 }
1253
1254 /*
1255 * This is called by main to set dumplo and dumpsize.
1256 * Dumps always skip the first CLBYTES of disk space
1257 * in case there might be a disk label stored there.
1258 * If there is extra space, put dump at the end to
1259 * reduce the chance that swapping trashes it.
1260 */
1261 void
1262 cpu_dumpconf()
1263 {
1264 int nblks, dumpblks; /* size of dump area */
1265 int maj;
1266
1267 if (dumpdev == NODEV)
1268 goto bad;
1269 maj = major(dumpdev);
1270 if (maj < 0 || maj >= nblkdev)
1271 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1272 if (bdevsw[maj].d_psize == NULL)
1273 goto bad;
1274 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1275 if (nblks <= ctod(1))
1276 goto bad;
1277
1278 dumpblks = cpu_dumpsize();
1279 if (dumpblks < 0)
1280 goto bad;
1281 dumpblks += ctod(cpu_dump_mempagecnt());
1282
1283 /* If dump won't fit (incl. room for possible label), punt. */
1284 if (dumpblks > (nblks - ctod(1)))
1285 goto bad;
1286
1287 /* Put dump at end of partition */
1288 dumplo = nblks - dumpblks;
1289
1290 /* dumpsize is in page units, and doesn't include headers. */
1291 dumpsize = cpu_dump_mempagecnt();
1292 return;
1293
1294 bad:
1295 dumpsize = 0;
1296 return;
1297 }
1298
1299 /*
1300 * Dump the kernel's image to the swap partition.
1301 */
1302 #define BYTES_PER_DUMP NBPG
1303
1304 void
1305 dumpsys()
1306 {
1307 u_long totalbytesleft, bytes, i, n, memcl;
1308 u_long maddr;
1309 int psize;
1310 daddr_t blkno;
1311 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1312 int error;
1313
1314 /* Save registers. */
1315 savectx(&dumppcb);
1316
1317 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1318 if (dumpdev == NODEV)
1319 return;
1320
1321 /*
1322 * For dumps during autoconfiguration,
1323 * if dump device has already configured...
1324 */
1325 if (dumpsize == 0)
1326 cpu_dumpconf();
1327 if (dumplo <= 0) {
1328 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1329 minor(dumpdev));
1330 return;
1331 }
1332 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1333 minor(dumpdev), dumplo);
1334
1335 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1336 printf("dump ");
1337 if (psize == -1) {
1338 printf("area unavailable\n");
1339 return;
1340 }
1341
1342 /* XXX should purge all outstanding keystrokes. */
1343
1344 if ((error = cpu_dump()) != 0)
1345 goto err;
1346
1347 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1348 blkno = dumplo + cpu_dumpsize();
1349 dump = bdevsw[major(dumpdev)].d_dump;
1350 error = 0;
1351
1352 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1353 maddr = mem_clusters[memcl].start;
1354 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1355
1356 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1357
1358 /* Print out how many MBs we to go. */
1359 if ((totalbytesleft % (1024*1024)) == 0)
1360 printf("%d ", totalbytesleft / (1024 * 1024));
1361
1362 /* Limit size for next transfer. */
1363 n = bytes - i;
1364 if (n > BYTES_PER_DUMP)
1365 n = BYTES_PER_DUMP;
1366
1367 error = (*dump)(dumpdev, blkno,
1368 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1369 if (error)
1370 goto err;
1371 maddr += n;
1372 blkno += btodb(n); /* XXX? */
1373
1374 /* XXX should look for keystrokes, to cancel. */
1375 }
1376 }
1377
1378 err:
1379 switch (error) {
1380
1381 case ENXIO:
1382 printf("device bad\n");
1383 break;
1384
1385 case EFAULT:
1386 printf("device not ready\n");
1387 break;
1388
1389 case EINVAL:
1390 printf("area improper\n");
1391 break;
1392
1393 case EIO:
1394 printf("i/o error\n");
1395 break;
1396
1397 case EINTR:
1398 printf("aborted from console\n");
1399 break;
1400
1401 case 0:
1402 printf("succeeded\n");
1403 break;
1404
1405 default:
1406 printf("error %d\n", error);
1407 break;
1408 }
1409 printf("\n\n");
1410 delay(1000);
1411 }
1412
1413 void
1414 frametoreg(framep, regp)
1415 struct trapframe *framep;
1416 struct reg *regp;
1417 {
1418
1419 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1420 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1421 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1422 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1423 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1424 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1425 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1426 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1427 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1428 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1429 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1430 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1431 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1432 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1433 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1434 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1435 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1436 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1437 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1438 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1439 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1440 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1441 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1442 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1443 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1444 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1445 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1446 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1447 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1448 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1449 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1450 regp->r_regs[R_ZERO] = 0;
1451 }
1452
1453 void
1454 regtoframe(regp, framep)
1455 struct reg *regp;
1456 struct trapframe *framep;
1457 {
1458
1459 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1460 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1461 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1462 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1463 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1464 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1465 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1466 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1467 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1468 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1469 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1470 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1471 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1472 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1473 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1474 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1475 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1476 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1477 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1478 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1479 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1480 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1481 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1482 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1483 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1484 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1485 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1486 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1487 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1488 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1489 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1490 /* ??? = regp->r_regs[R_ZERO]; */
1491 }
1492
1493 void
1494 printregs(regp)
1495 struct reg *regp;
1496 {
1497 int i;
1498
1499 for (i = 0; i < 32; i++)
1500 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1501 i & 1 ? "\n" : "\t");
1502 }
1503
1504 void
1505 regdump(framep)
1506 struct trapframe *framep;
1507 {
1508 struct reg reg;
1509
1510 frametoreg(framep, ®);
1511 reg.r_regs[R_SP] = alpha_pal_rdusp();
1512
1513 printf("REGISTERS:\n");
1514 printregs(®);
1515 }
1516
1517 #ifdef DEBUG
1518 int sigdebug = 0;
1519 int sigpid = 0;
1520 #define SDB_FOLLOW 0x01
1521 #define SDB_KSTACK 0x02
1522 #endif
1523
1524 /*
1525 * Send an interrupt to process.
1526 */
1527 void
1528 sendsig(catcher, sig, mask, code)
1529 sig_t catcher;
1530 int sig, mask;
1531 u_long code;
1532 {
1533 struct proc *p = curproc;
1534 struct sigcontext *scp, ksc;
1535 struct trapframe *frame;
1536 struct sigacts *psp = p->p_sigacts;
1537 int oonstack, fsize, rndfsize;
1538 extern char sigcode[], esigcode[];
1539 extern struct proc *fpcurproc;
1540
1541 frame = p->p_md.md_tf;
1542 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1543 fsize = sizeof ksc;
1544 rndfsize = ((fsize + 15) / 16) * 16;
1545 /*
1546 * Allocate and validate space for the signal handler
1547 * context. Note that if the stack is in P0 space, the
1548 * call to grow() is a nop, and the useracc() check
1549 * will fail if the process has not already allocated
1550 * the space with a `brk'.
1551 */
1552 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1553 (psp->ps_sigonstack & sigmask(sig))) {
1554 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1555 psp->ps_sigstk.ss_size - rndfsize);
1556 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1557 } else
1558 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1559 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1560 (void)grow(p, (u_long)scp);
1561 #ifdef DEBUG
1562 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1563 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1564 sig, &oonstack, scp);
1565 #endif
1566 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1567 #ifdef DEBUG
1568 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1569 printf("sendsig(%d): useracc failed on sig %d\n",
1570 p->p_pid, sig);
1571 #endif
1572 /*
1573 * Process has trashed its stack; give it an illegal
1574 * instruction to halt it in its tracks.
1575 */
1576 SIGACTION(p, SIGILL) = SIG_DFL;
1577 sig = sigmask(SIGILL);
1578 p->p_sigignore &= ~sig;
1579 p->p_sigcatch &= ~sig;
1580 p->p_sigmask &= ~sig;
1581 psignal(p, SIGILL);
1582 return;
1583 }
1584
1585 /*
1586 * Build the signal context to be used by sigreturn.
1587 */
1588 ksc.sc_onstack = oonstack;
1589 ksc.sc_mask = mask;
1590 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1591 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1592
1593 /* copy the registers. */
1594 frametoreg(frame, (struct reg *)ksc.sc_regs);
1595 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1596 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1597
1598 /* save the floating-point state, if necessary, then copy it. */
1599 if (p == fpcurproc) {
1600 alpha_pal_wrfen(1);
1601 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1602 alpha_pal_wrfen(0);
1603 fpcurproc = NULL;
1604 }
1605 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1606 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1607 sizeof(struct fpreg));
1608 ksc.sc_fp_control = 0; /* XXX ? */
1609 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1610 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1611
1612
1613 #ifdef COMPAT_OSF1
1614 /*
1615 * XXX Create an OSF/1-style sigcontext and associated goo.
1616 */
1617 #endif
1618
1619 /*
1620 * copy the frame out to userland.
1621 */
1622 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1623 #ifdef DEBUG
1624 if (sigdebug & SDB_FOLLOW)
1625 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1626 scp, code);
1627 #endif
1628
1629 /*
1630 * Set up the registers to return to sigcode.
1631 */
1632 frame->tf_regs[FRAME_PC] =
1633 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1634 frame->tf_regs[FRAME_A0] = sig;
1635 frame->tf_regs[FRAME_A1] = code;
1636 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1637 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1638 alpha_pal_wrusp((unsigned long)scp);
1639
1640 #ifdef DEBUG
1641 if (sigdebug & SDB_FOLLOW)
1642 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1643 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1644 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1645 printf("sendsig(%d): sig %d returns\n",
1646 p->p_pid, sig);
1647 #endif
1648 }
1649
1650 /*
1651 * System call to cleanup state after a signal
1652 * has been taken. Reset signal mask and
1653 * stack state from context left by sendsig (above).
1654 * Return to previous pc and psl as specified by
1655 * context left by sendsig. Check carefully to
1656 * make sure that the user has not modified the
1657 * psl to gain improper priviledges or to cause
1658 * a machine fault.
1659 */
1660 /* ARGSUSED */
1661 int
1662 sys_sigreturn(p, v, retval)
1663 struct proc *p;
1664 void *v;
1665 register_t *retval;
1666 {
1667 struct sys_sigreturn_args /* {
1668 syscallarg(struct sigcontext *) sigcntxp;
1669 } */ *uap = v;
1670 struct sigcontext *scp, ksc;
1671 extern struct proc *fpcurproc;
1672
1673 scp = SCARG(uap, sigcntxp);
1674 #ifdef DEBUG
1675 if (sigdebug & SDB_FOLLOW)
1676 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1677 #endif
1678
1679 if (ALIGN(scp) != (u_int64_t)scp)
1680 return (EINVAL);
1681
1682 /*
1683 * Test and fetch the context structure.
1684 * We grab it all at once for speed.
1685 */
1686 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1687 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1688 return (EINVAL);
1689
1690 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1691 return (EINVAL);
1692 /*
1693 * Restore the user-supplied information
1694 */
1695 if (ksc.sc_onstack)
1696 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1697 else
1698 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1699 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1700
1701 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1702 p->p_md.md_tf->tf_regs[FRAME_PS] =
1703 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1704
1705 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1706 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1707
1708 /* XXX ksc.sc_ownedfp ? */
1709 if (p == fpcurproc)
1710 fpcurproc = NULL;
1711 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1712 sizeof(struct fpreg));
1713 /* XXX ksc.sc_fp_control ? */
1714
1715 #ifdef DEBUG
1716 if (sigdebug & SDB_FOLLOW)
1717 printf("sigreturn(%d): returns\n", p->p_pid);
1718 #endif
1719 return (EJUSTRETURN);
1720 }
1721
1722 /*
1723 * machine dependent system variables.
1724 */
1725 int
1726 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1727 int *name;
1728 u_int namelen;
1729 void *oldp;
1730 size_t *oldlenp;
1731 void *newp;
1732 size_t newlen;
1733 struct proc *p;
1734 {
1735 dev_t consdev;
1736
1737 /* all sysctl names at this level are terminal */
1738 if (namelen != 1)
1739 return (ENOTDIR); /* overloaded */
1740
1741 switch (name[0]) {
1742 case CPU_CONSDEV:
1743 if (cn_tab != NULL)
1744 consdev = cn_tab->cn_dev;
1745 else
1746 consdev = NODEV;
1747 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1748 sizeof consdev));
1749
1750 case CPU_ROOT_DEVICE:
1751 return (sysctl_rdstring(oldp, oldlenp, newp,
1752 root_device->dv_xname));
1753
1754 case CPU_UNALIGNED_PRINT:
1755 return (sysctl_int(oldp, oldlenp, newp, newlen,
1756 &alpha_unaligned_print));
1757
1758 case CPU_UNALIGNED_FIX:
1759 return (sysctl_int(oldp, oldlenp, newp, newlen,
1760 &alpha_unaligned_fix));
1761
1762 case CPU_UNALIGNED_SIGBUS:
1763 return (sysctl_int(oldp, oldlenp, newp, newlen,
1764 &alpha_unaligned_sigbus));
1765
1766 case CPU_BOOTED_KERNEL:
1767 return (sysctl_rdstring(oldp, oldlenp, newp,
1768 bootinfo.booted_kernel));
1769
1770 default:
1771 return (EOPNOTSUPP);
1772 }
1773 /* NOTREACHED */
1774 }
1775
1776 /*
1777 * Set registers on exec.
1778 */
1779 void
1780 setregs(p, pack, stack)
1781 register struct proc *p;
1782 struct exec_package *pack;
1783 u_long stack;
1784 {
1785 struct trapframe *tfp = p->p_md.md_tf;
1786 extern struct proc *fpcurproc;
1787 #ifdef DEBUG
1788 int i;
1789 #endif
1790
1791 #ifdef DEBUG
1792 /*
1793 * Crash and dump, if the user requested it.
1794 */
1795 if (boothowto & RB_DUMP)
1796 panic("crash requested by boot flags");
1797 #endif
1798
1799 #ifdef DEBUG
1800 for (i = 0; i < FRAME_SIZE; i++)
1801 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1802 #else
1803 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1804 #endif
1805 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1806 #define FP_RN 2 /* XXX */
1807 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1808 alpha_pal_wrusp(stack);
1809 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1810 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1811
1812 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1813 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1814 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1815 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1816 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1817
1818 p->p_md.md_flags &= ~MDP_FPUSED;
1819 if (fpcurproc == p)
1820 fpcurproc = NULL;
1821 }
1822
1823 void
1824 netintr()
1825 {
1826 int n, s;
1827
1828 s = splhigh();
1829 n = netisr;
1830 netisr = 0;
1831 splx(s);
1832
1833 #define DONETISR(bit, fn) \
1834 do { \
1835 if (n & (1 << (bit))) \
1836 fn; \
1837 } while (0)
1838
1839 #ifdef INET
1840 #if NARP > 0
1841 DONETISR(NETISR_ARP, arpintr());
1842 #endif
1843 DONETISR(NETISR_IP, ipintr());
1844 #endif
1845 #ifdef NETATALK
1846 DONETISR(NETISR_ATALK, atintr());
1847 #endif
1848 #ifdef NS
1849 DONETISR(NETISR_NS, nsintr());
1850 #endif
1851 #ifdef ISO
1852 DONETISR(NETISR_ISO, clnlintr());
1853 #endif
1854 #ifdef CCITT
1855 DONETISR(NETISR_CCITT, ccittintr());
1856 #endif
1857 #ifdef NATM
1858 DONETISR(NETISR_NATM, natmintr());
1859 #endif
1860 #if NPPP > 1
1861 DONETISR(NETISR_PPP, pppintr());
1862 #endif
1863
1864 #undef DONETISR
1865 }
1866
1867 void
1868 do_sir()
1869 {
1870 u_int64_t n;
1871
1872 do {
1873 (void)splhigh();
1874 n = ssir;
1875 ssir = 0;
1876 splsoft(); /* don't recurse through spl0() */
1877
1878 #define DO_SIR(bit, fn) \
1879 do { \
1880 if (n & (bit)) { \
1881 cnt.v_soft++; \
1882 fn; \
1883 } \
1884 } while (0)
1885
1886 DO_SIR(SIR_NET, netintr());
1887 DO_SIR(SIR_CLOCK, softclock());
1888
1889 #undef DO_SIR
1890 } while (ssir != 0);
1891 }
1892
1893 int
1894 spl0()
1895 {
1896
1897 if (ssir)
1898 do_sir(); /* it lowers the IPL itself */
1899
1900 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1901 }
1902
1903 /*
1904 * The following primitives manipulate the run queues. _whichqs tells which
1905 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1906 * into queues, Remrunqueue removes them from queues. The running process is
1907 * on no queue, other processes are on a queue related to p->p_priority,
1908 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1909 * available queues.
1910 */
1911 /*
1912 * setrunqueue(p)
1913 * proc *p;
1914 *
1915 * Call should be made at splclock(), and p->p_stat should be SRUN.
1916 */
1917
1918 void
1919 setrunqueue(p)
1920 struct proc *p;
1921 {
1922 int bit;
1923
1924 /* firewall: p->p_back must be NULL */
1925 if (p->p_back != NULL)
1926 panic("setrunqueue");
1927
1928 bit = p->p_priority >> 2;
1929 whichqs |= (1 << bit);
1930 p->p_forw = (struct proc *)&qs[bit];
1931 p->p_back = qs[bit].ph_rlink;
1932 p->p_back->p_forw = p;
1933 qs[bit].ph_rlink = p;
1934 }
1935
1936 /*
1937 * remrunqueue(p)
1938 *
1939 * Call should be made at splclock().
1940 */
1941 void
1942 remrunqueue(p)
1943 struct proc *p;
1944 {
1945 int bit;
1946
1947 bit = p->p_priority >> 2;
1948 if ((whichqs & (1 << bit)) == 0)
1949 panic("remrunqueue");
1950
1951 p->p_back->p_forw = p->p_forw;
1952 p->p_forw->p_back = p->p_back;
1953 p->p_back = NULL; /* for firewall checking. */
1954
1955 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1956 whichqs &= ~(1 << bit);
1957 }
1958
1959 /*
1960 * Return the best possible estimate of the time in the timeval
1961 * to which tvp points. Unfortunately, we can't read the hardware registers.
1962 * We guarantee that the time will be greater than the value obtained by a
1963 * previous call.
1964 */
1965 void
1966 microtime(tvp)
1967 register struct timeval *tvp;
1968 {
1969 int s = splclock();
1970 static struct timeval lasttime;
1971
1972 *tvp = time;
1973 #ifdef notdef
1974 tvp->tv_usec += clkread();
1975 while (tvp->tv_usec > 1000000) {
1976 tvp->tv_sec++;
1977 tvp->tv_usec -= 1000000;
1978 }
1979 #endif
1980 if (tvp->tv_sec == lasttime.tv_sec &&
1981 tvp->tv_usec <= lasttime.tv_usec &&
1982 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1983 tvp->tv_sec++;
1984 tvp->tv_usec -= 1000000;
1985 }
1986 lasttime = *tvp;
1987 splx(s);
1988 }
1989
1990 /*
1991 * Wait "n" microseconds.
1992 */
1993 void
1994 delay(n)
1995 unsigned long n;
1996 {
1997 long N = cycles_per_usec * (n);
1998
1999 while (N > 0) /* XXX */
2000 N -= 3; /* XXX */
2001 }
2002
2003 #if defined(COMPAT_OSF1) || 1 /* XXX */
2004 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2005 u_long));
2006
2007 void
2008 cpu_exec_ecoff_setregs(p, epp, stack)
2009 struct proc *p;
2010 struct exec_package *epp;
2011 u_long stack;
2012 {
2013 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2014
2015 setregs(p, epp, stack);
2016 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2017 }
2018
2019 /*
2020 * cpu_exec_ecoff_hook():
2021 * cpu-dependent ECOFF format hook for execve().
2022 *
2023 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2024 *
2025 */
2026 int
2027 cpu_exec_ecoff_hook(p, epp)
2028 struct proc *p;
2029 struct exec_package *epp;
2030 {
2031 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2032 extern struct emul emul_netbsd;
2033 #ifdef COMPAT_OSF1
2034 extern struct emul emul_osf1;
2035 #endif
2036
2037 switch (execp->f.f_magic) {
2038 #ifdef COMPAT_OSF1
2039 case ECOFF_MAGIC_ALPHA:
2040 epp->ep_emul = &emul_osf1;
2041 break;
2042 #endif
2043
2044 case ECOFF_MAGIC_NETBSD_ALPHA:
2045 epp->ep_emul = &emul_netbsd;
2046 break;
2047
2048 default:
2049 return ENOEXEC;
2050 }
2051 return 0;
2052 }
2053 #endif
2054
2055 int
2056 alpha_pa_access(pa)
2057 u_long pa;
2058 {
2059 int i;
2060
2061 for (i = 0; i < mem_cluster_cnt; i++) {
2062 if (pa < mem_clusters[i].start)
2063 continue;
2064 if ((pa - mem_clusters[i].start) >=
2065 (mem_clusters[i].size & ~PAGE_MASK))
2066 continue;
2067 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2068 }
2069 return (PROT_NONE);
2070 }
2071
2072 /* XXX XXX BEGIN XXX XXX */
2073 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2074 /* XXX */
2075 vm_offset_t /* XXX */
2076 alpha_XXX_dmamap(v) /* XXX */
2077 vm_offset_t v; /* XXX */
2078 { /* XXX */
2079 /* XXX */
2080 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2081 } /* XXX */
2082 /* XXX XXX END XXX XXX */
2083