Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.112
      1 /* $NetBSD: machdep.c,v 1.112 1998/02/24 07:38:01 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_uvm.h"
     68 
     69 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     70 
     71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.112 1998/02/24 07:38:01 thorpej Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/signalvar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/map.h>
     78 #include <sys/proc.h>
     79 #include <sys/buf.h>
     80 #include <sys/reboot.h>
     81 #include <sys/device.h>
     82 #include <sys/file.h>
     83 #ifdef REAL_CLISTS
     84 #include <sys/clist.h>
     85 #endif
     86 #include <sys/callout.h>
     87 #include <sys/malloc.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/mman.h>
     90 #include <sys/msgbuf.h>
     91 #include <sys/ioctl.h>
     92 #include <sys/tty.h>
     93 #include <sys/user.h>
     94 #include <sys/exec.h>
     95 #include <sys/exec_ecoff.h>
     96 #include <vm/vm.h>
     97 #include <sys/sysctl.h>
     98 #include <sys/core.h>
     99 #include <sys/kcore.h>
    100 #include <machine/kcore.h>
    101 #ifdef SYSVMSG
    102 #include <sys/msg.h>
    103 #endif
    104 #ifdef SYSVSEM
    105 #include <sys/sem.h>
    106 #endif
    107 #ifdef SYSVSHM
    108 #include <sys/shm.h>
    109 #endif
    110 
    111 #include <sys/mount.h>
    112 #include <sys/syscallargs.h>
    113 
    114 #include <vm/vm_kern.h>
    115 
    116 #if defined(UVM)
    117 #include <uvm/uvm_extern.h>
    118 #endif
    119 
    120 #include <dev/cons.h>
    121 
    122 #include <machine/autoconf.h>
    123 #include <machine/cpu.h>
    124 #include <machine/reg.h>
    125 #include <machine/rpb.h>
    126 #include <machine/prom.h>
    127 #include <machine/conf.h>
    128 
    129 #include <net/netisr.h>
    130 #include <net/if.h>
    131 
    132 #ifdef INET
    133 #include <netinet/in.h>
    134 #include <netinet/ip_var.h>
    135 #include "arp.h"
    136 #if NARP > 0
    137 #include <netinet/if_inarp.h>
    138 #endif
    139 #endif
    140 #ifdef NS
    141 #include <netns/ns_var.h>
    142 #endif
    143 #ifdef ISO
    144 #include <netiso/iso.h>
    145 #include <netiso/clnp.h>
    146 #endif
    147 #ifdef CCITT
    148 #include <netccitt/x25.h>
    149 #include <netccitt/pk.h>
    150 #include <netccitt/pk_extern.h>
    151 #endif
    152 #ifdef NATM
    153 #include <netnatm/natm.h>
    154 #endif
    155 #ifdef NETATALK
    156 #include <netatalk/at_extern.h>
    157 #endif
    158 #include "ppp.h"
    159 #if NPPP > 0
    160 #include <net/ppp_defs.h>
    161 #include <net/if_ppp.h>
    162 #endif
    163 
    164 #ifdef DDB
    165 #include <machine/db_machdep.h>
    166 #include <ddb/db_access.h>
    167 #include <ddb/db_sym.h>
    168 #include <ddb/db_extern.h>
    169 #include <ddb/db_interface.h>
    170 #endif
    171 
    172 #if defined(UVM)
    173 vm_map_t exec_map = NULL;
    174 vm_map_t mb_map = NULL;
    175 vm_map_t phys_map = NULL;
    176 #else
    177 vm_map_t buffer_map;
    178 #endif
    179 
    180 /*
    181  * Declare these as initialized data so we can patch them.
    182  */
    183 int	nswbuf = 0;
    184 #ifdef	NBUF
    185 int	nbuf = NBUF;
    186 #else
    187 int	nbuf = 0;
    188 #endif
    189 #ifdef	BUFPAGES
    190 int	bufpages = BUFPAGES;
    191 #else
    192 int	bufpages = 0;
    193 #endif
    194 caddr_t msgbufaddr;
    195 
    196 int	maxmem;			/* max memory per process */
    197 
    198 int	totalphysmem;		/* total amount of physical memory in system */
    199 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    200 int	resvmem;		/* amount of memory reserved for PROM */
    201 int	unusedmem;		/* amount of memory for OS that we don't use */
    202 int	unknownmem;		/* amount of memory with an unknown use */
    203 
    204 int	cputype;		/* system type, from the RPB */
    205 
    206 /*
    207  * XXX We need an address to which we can assign things so that they
    208  * won't be optimized away because we didn't use the value.
    209  */
    210 u_int32_t no_optimize;
    211 
    212 /* the following is used externally (sysctl_hw) */
    213 char	machine[] = MACHINE;		/* from <machine/param.h> */
    214 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    215 char	cpu_model[128];
    216 
    217 struct	user *proc0paddr;
    218 
    219 /* Number of machine cycles per microsecond */
    220 u_int64_t	cycles_per_usec;
    221 
    222 /* number of cpus in the box.  really! */
    223 int		ncpus;
    224 
    225 struct bootinfo_kernel bootinfo;
    226 
    227 struct platform platform;
    228 
    229 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    230 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    231 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    232 
    233 #ifdef DDB
    234 /* start and end of kernel symbol table */
    235 void	*ksym_start, *ksym_end;
    236 #endif
    237 
    238 /* for cpu_sysctl() */
    239 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    240 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    241 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    242 
    243 /*
    244  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    245  * XXX it should also be larger than it is, because not all of the mddt
    246  * XXX clusters end up being used for VM.
    247  */
    248 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    249 int	mem_cluster_cnt;
    250 
    251 caddr_t	allocsys __P((caddr_t));
    252 int	cpu_dump __P((void));
    253 int	cpu_dumpsize __P((void));
    254 u_long	cpu_dump_mempagecnt __P((void));
    255 void	dumpsys __P((void));
    256 void	identifycpu __P((void));
    257 void	netintr __P((void));
    258 void	printregs __P((struct reg *));
    259 
    260 void
    261 alpha_init(pfn, ptb, bim, bip, biv)
    262 	u_long pfn;		/* first free PFN number */
    263 	u_long ptb;		/* PFN of current level 1 page table */
    264 	u_long bim;		/* bootinfo magic */
    265 	u_long bip;		/* bootinfo pointer */
    266 	u_long biv;		/* bootinfo version */
    267 {
    268 	extern char kernel_text[], _end[];
    269 	struct mddt *mddtp;
    270 	struct mddt_cluster *memc;
    271 	int i, mddtweird;
    272 	struct vm_physseg *vps;
    273 	vm_offset_t kernstart, kernend;
    274 	vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
    275 	vm_size_t size;
    276 	char *p;
    277 	caddr_t v;
    278 	char *bootinfo_msg;
    279 
    280 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    281 
    282 	/*
    283 	 * Turn off interrupts (not mchecks) and floating point.
    284 	 * Make sure the instruction and data streams are consistent.
    285 	 */
    286 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    287 	alpha_pal_wrfen(0);
    288 	ALPHA_TBIA();
    289 	alpha_pal_imb();
    290 
    291 	/*
    292 	 * Get critical system information (if possible, from the
    293 	 * information provided by the boot program).
    294 	 */
    295 	bootinfo_msg = NULL;
    296 	if (bim == BOOTINFO_MAGIC) {
    297 		if (biv == 0) {		/* backward compat */
    298 			biv = *(u_long *)bip;
    299 			bip += 8;
    300 		}
    301 		switch (biv) {
    302 		case 1: {
    303 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    304 
    305 			bootinfo.ssym = v1p->ssym;
    306 			bootinfo.esym = v1p->esym;
    307 			/* hwrpb may not be provided by boot block in v1 */
    308 			if (v1p->hwrpb != NULL) {
    309 				bootinfo.hwrpb_phys =
    310 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    311 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    312 			} else {
    313 				bootinfo.hwrpb_phys =
    314 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    315 				bootinfo.hwrpb_size =
    316 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    317 			}
    318 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    319 			    min(sizeof v1p->boot_flags,
    320 			      sizeof bootinfo.boot_flags));
    321 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    322 			    min(sizeof v1p->booted_kernel,
    323 			      sizeof bootinfo.booted_kernel));
    324 			/* booted dev not provided in bootinfo */
    325 			init_prom_interface((struct rpb *)
    326 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    327                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    328 			    sizeof bootinfo.booted_dev);
    329 			break;
    330 		}
    331 		default:
    332 			bootinfo_msg = "unknown bootinfo version";
    333 			goto nobootinfo;
    334 		}
    335 	} else {
    336 		bootinfo_msg = "boot program did not pass bootinfo";
    337 nobootinfo:
    338 		bootinfo.ssym = (u_long)_end;
    339 		bootinfo.esym = (u_long)_end;
    340 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    341 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    342 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    343 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    344 		    sizeof bootinfo.boot_flags);
    345 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    346 		    sizeof bootinfo.booted_kernel);
    347 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    348 		    sizeof bootinfo.booted_dev);
    349 	}
    350 
    351 	/*
    352 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    353 	 * lots of things.
    354 	 */
    355 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    356 
    357 	/*
    358 	 * Remember how many cycles there are per microsecond,
    359 	 * so that we can use delay().  Round up, for safety.
    360 	 */
    361 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    362 
    363 	/*
    364 	 * Initalize the (temporary) bootstrap console interface, so
    365 	 * we can use printf until the VM system starts being setup.
    366 	 * The real console is initialized before then.
    367 	 */
    368 	init_bootstrap_console();
    369 
    370 	/* OUTPUT NOW ALLOWED */
    371 
    372 	/* delayed from above */
    373 	if (bootinfo_msg)
    374 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    375 		    bootinfo_msg, bim, bip, biv);
    376 
    377 	/*
    378 	 * Point interrupt/exception vectors to our own.
    379 	 */
    380 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    381 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    382 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    383 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    384 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    385 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    386 
    387 	/*
    388 	 * Clear pending machine checks and error reports, and enable
    389 	 * system- and processor-correctable error reporting.
    390 	 */
    391 	alpha_pal_wrmces(alpha_pal_rdmces() &
    392 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    393 
    394 	/*
    395 	 * Find out what hardware we're on, and do basic initialization.
    396 	 */
    397 	cputype = hwrpb->rpb_type;
    398 	if (cputype >= ncpuinit) {
    399 		platform_not_supported();
    400 		/* NOTREACHED */
    401 	}
    402 	(*cpuinit[cputype].init)();
    403 	strcpy(cpu_model, platform.model);
    404 
    405 	/*
    406 	 * Initalize the real console, so the the bootstrap console is
    407 	 * no longer necessary.
    408 	 */
    409 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    410 	if (!pmap_uses_prom_console())
    411 #endif
    412 		(*platform.cons_init)();
    413 
    414 #ifdef DIAGNOSTIC
    415 	/* Paranoid sanity checking */
    416 
    417 	/* We should always be running on the the primary. */
    418 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    419 
    420 	/* On single-CPU systypes, the primary should always be CPU 0. */
    421 	if (cputype != ST_DEC_21000)
    422 		assert(hwrpb->rpb_primary_cpu_id == 0);
    423 #endif
    424 
    425 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    426 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    427 	/*
    428 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    429 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    430 	 */
    431 #endif
    432 
    433 	/*
    434 	 * find out this system's page size
    435 	 */
    436 	PAGE_SIZE = hwrpb->rpb_page_size;
    437 	if (PAGE_SIZE != 8192)
    438 		panic("page size %d != 8192?!", PAGE_SIZE);
    439 
    440 	/*
    441 	 * Initialize PAGE_SIZE-dependent variables.
    442 	 */
    443 #if defined(UVM)
    444 	uvm_setpagesize();
    445 #else
    446 	vm_set_page_size();
    447 #endif
    448 
    449 	/*
    450 	 * Find the beginning and end of the kernel (and leave a
    451 	 * bit of space before the beginning for the bootstrap
    452 	 * stack).
    453 	 */
    454 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    455 #ifdef DDB
    456 	ksym_start = (void *)bootinfo.ssym;
    457 	ksym_end   = (void *)bootinfo.esym;
    458 	kernend = (vm_offset_t)round_page(ksym_end);
    459 #else
    460 	kernend = (vm_offset_t)round_page(_end);
    461 #endif
    462 
    463 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    464 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    465 
    466 	/*
    467 	 * Find out how much memory is available, by looking at
    468 	 * the memory cluster descriptors.  This also tries to do
    469 	 * its best to detect things things that have never been seen
    470 	 * before...
    471 	 */
    472 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    473 
    474 	/* MDDT SANITY CHECKING */
    475 	mddtweird = 0;
    476 	if (mddtp->mddt_cluster_cnt < 2) {
    477 		mddtweird = 1;
    478 		printf("WARNING: weird number of mem clusters: %d\n",
    479 		    mddtp->mddt_cluster_cnt);
    480 	}
    481 
    482 #if 0
    483 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    484 #endif
    485 
    486 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    487 		memc = &mddtp->mddt_clusters[i];
    488 #if 0
    489 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    490 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    491 #endif
    492 		totalphysmem += memc->mddt_pg_cnt;
    493 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    494 			mem_clusters[mem_cluster_cnt].start =
    495 			    ptoa(memc->mddt_pfn);
    496 			mem_clusters[mem_cluster_cnt].size =
    497 			    ptoa(memc->mddt_pg_cnt);
    498 			if (memc->mddt_usage & MDDT_mbz ||
    499 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    500 			    memc->mddt_usage & MDDT_PALCODE)
    501 				mem_clusters[mem_cluster_cnt].size |=
    502 				    PROT_READ;
    503 			else
    504 				mem_clusters[mem_cluster_cnt].size |=
    505 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    506 			mem_cluster_cnt++;
    507 		}
    508 
    509 		if (memc->mddt_usage & MDDT_mbz) {
    510 			mddtweird = 1;
    511 			printf("WARNING: mem cluster %d has weird "
    512 			    "usage 0x%lx\n", i, memc->mddt_usage);
    513 			unknownmem += memc->mddt_pg_cnt;
    514 			continue;
    515 		}
    516 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    517 			/* XXX should handle these... */
    518 			printf("WARNING: skipping non-volatile mem "
    519 			    "cluster %d\n", i);
    520 			unusedmem += memc->mddt_pg_cnt;
    521 			continue;
    522 		}
    523 		if (memc->mddt_usage & MDDT_PALCODE) {
    524 			resvmem += memc->mddt_pg_cnt;
    525 			continue;
    526 		}
    527 
    528 		/*
    529 		 * We have a memory cluster available for system
    530 		 * software use.  We must determine if this cluster
    531 		 * holds the kernel.
    532 		 */
    533 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    534 		/*
    535 		 * XXX If the kernel uses the PROM console, we only use the
    536 		 * XXX memory after the kernel in the first system segment,
    537 		 * XXX to avoid clobbering prom mapping, data, etc.
    538 		 */
    539 	    if (!pmap_uses_prom_console() || physmem == 0) {
    540 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    541 		physmem += memc->mddt_pg_cnt;
    542 		pfn0 = memc->mddt_pfn;
    543 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    544 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    545 			/*
    546 			 * Must compute the location of the kernel
    547 			 * within the segment.
    548 			 */
    549 #if 0
    550 			printf("Cluster %d contains kernel\n", i);
    551 #endif
    552 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    553 		    if (!pmap_uses_prom_console()) {
    554 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    555 			if (pfn0 < kernstartpfn) {
    556 				/*
    557 				 * There is a chunk before the kernel.
    558 				 */
    559 #if 0
    560 				printf("Loading chunk before kernel: "
    561 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    562 #endif
    563 #if defined(UVM)
    564 				uvm_page_physload(pfn0, kernstartpfn,
    565 				    pfn0, kernstartpfn);
    566 #else
    567 				vm_page_physload(pfn0, kernstartpfn,
    568 				    pfn0, kernstartpfn);
    569 #endif
    570 			}
    571 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    572 		    }
    573 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    574 			if (kernendpfn < pfn1) {
    575 				/*
    576 				 * There is a chunk after the kernel.
    577 				 */
    578 #if 0
    579 				printf("Loading chunk after kernel: "
    580 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    581 #endif
    582 #if defined(UVM)
    583 				uvm_page_physload(kernendpfn, pfn1,
    584 				    kernendpfn, pfn1);
    585 #else
    586 				vm_page_physload(kernendpfn, pfn1,
    587 				    kernendpfn, pfn1);
    588 #endif
    589 			}
    590 		} else {
    591 			/*
    592 			 * Just load this cluster as one chunk.
    593 			 */
    594 #if 0
    595 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    596 			    pfn0, pfn1);
    597 #endif
    598 #if defined(UVM)
    599 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
    600 #else
    601 			vm_page_physload(pfn0, pfn1, pfn0, pfn1);
    602 #endif
    603 		}
    604 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    605 	    }
    606 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    607 	}
    608 
    609 	/*
    610 	 * Dump out the MDDT if it looks odd...
    611 	 */
    612 	if (mddtweird) {
    613 		printf("\n");
    614 		printf("complete memory cluster information:\n");
    615 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    616 			printf("mddt %d:\n", i);
    617 			printf("\tpfn %lx\n",
    618 			    mddtp->mddt_clusters[i].mddt_pfn);
    619 			printf("\tcnt %lx\n",
    620 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    621 			printf("\ttest %lx\n",
    622 			    mddtp->mddt_clusters[i].mddt_pg_test);
    623 			printf("\tbva %lx\n",
    624 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    625 			printf("\tbpa %lx\n",
    626 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    627 			printf("\tbcksum %lx\n",
    628 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    629 			printf("\tusage %lx\n",
    630 			    mddtp->mddt_clusters[i].mddt_usage);
    631 		}
    632 		printf("\n");
    633 	}
    634 
    635 	if (totalphysmem == 0)
    636 		panic("can't happen: system seems to have no memory!");
    637 
    638 #ifdef LIMITMEM
    639 	/*
    640 	 * XXX Kludge so we can run on machines with memory larger
    641 	 * XXX than 1G until all device drivers are converted to
    642 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    643 	 * XXX sorted in order of increasing addresses.)
    644 	 */
    645 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    646 
    647 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    648 		    LIMITMEM);
    649 
    650 		do {
    651 			u_long ovf;
    652 
    653 			vps = &vm_physmem[vm_nphysseg - 1];
    654 
    655 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    656 				/*
    657 				 * If the start is too high, just drop
    658 				 * the whole segment.
    659 				 *
    660 				 * XXX can start != avail_start in this
    661 				 * XXX case?  wouldn't that mean that
    662 				 * XXX some memory was stolen above the
    663 				 * XXX limit?  What to do?
    664 				 */
    665 				ovf = vps->end - vps->start;
    666 				vm_nphysseg--;
    667 			} else {
    668 				/*
    669 				 * If the start is OK, calculate how much
    670 				 * to drop and drop it.
    671 				 */
    672 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    673 				vps->end -= ovf;
    674 				vps->avail_end -= ovf;
    675 			}
    676 			physmem -= ovf;
    677 			unusedmem += ovf;
    678 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    679 	}
    680 #endif /* LIMITMEM */
    681 
    682 	maxmem = physmem;
    683 
    684 #if 0
    685 	printf("totalphysmem = %d\n", totalphysmem);
    686 	printf("physmem = %d\n", physmem);
    687 	printf("resvmem = %d\n", resvmem);
    688 	printf("unusedmem = %d\n", unusedmem);
    689 	printf("unknownmem = %d\n", unknownmem);
    690 #endif
    691 
    692 	/*
    693 	 * Adjust some parameters if the amount of physmem
    694 	 * available would cause us to croak. This is completely
    695 	 * eyeballed and isn't meant to be the final answer.
    696 	 * vm_phys_size is probably the only one to really worry
    697 	 * about.
    698  	 *
    699 	 * It's for booting a GENERIC kernel on a large memory platform.
    700 	 */
    701 	if (physmem >= atop(128 * 1024 * 1024)) {
    702 		vm_mbuf_size <<= 1;
    703 		vm_kmem_size <<= 3;
    704 		vm_phys_size <<= 2;
    705 	}
    706 
    707 	/*
    708 	 * Initialize error message buffer (at end of core).
    709 	 */
    710 	{
    711 		size_t sz = round_page(MSGBUFSIZE);
    712 
    713 		vps = &vm_physmem[vm_nphysseg - 1];
    714 
    715 		/* shrink so that it'll fit in the last segment */
    716 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    717 			sz = ptoa(vps->avail_end - vps->avail_start);
    718 
    719 		vps->end -= atop(sz);
    720 		vps->avail_end -= atop(sz);
    721 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    722 		initmsgbuf(msgbufaddr, sz);
    723 
    724 		/* Remove the last segment if it now has no pages. */
    725 		if (vps->start == vps->end)
    726 			vm_nphysseg--;
    727 
    728 		/* warn if the message buffer had to be shrunk */
    729 		if (sz != round_page(MSGBUFSIZE))
    730 			printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
    731 			    round_page(MSGBUFSIZE), sz);
    732 
    733 	}
    734 
    735 	/*
    736 	 * Init mapping for u page(s) for proc 0
    737 	 */
    738 	proc0.p_addr = proc0paddr =
    739 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    740 
    741 	/*
    742 	 * Allocate space for system data structures.  These data structures
    743 	 * are allocated here instead of cpu_startup() because physical
    744 	 * memory is directly addressable.  We don't have to map these into
    745 	 * virtual address space.
    746 	 */
    747 	size = (vm_size_t)allocsys(0);
    748 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    749 	if ((allocsys(v) - v) != size)
    750 		panic("alpha_init: table size inconsistency");
    751 
    752 	/*
    753 	 * Initialize the virtual memory system, and set the
    754 	 * page table base register in proc 0's PCB.
    755 	 */
    756 #ifndef NEW_PMAP
    757 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    758 #else
    759 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    760 	    hwrpb->rpb_max_asn);
    761 #endif
    762 
    763 	/*
    764 	 * Initialize the rest of proc 0's PCB, and cache its physical
    765 	 * address.
    766 	 */
    767 	proc0.p_md.md_pcbpaddr =
    768 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    769 
    770 	/*
    771 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    772 	 * and make proc0's trapframe pointer point to it for sanity.
    773 	 */
    774 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    775 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    776 	proc0.p_md.md_tf =
    777 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    778 
    779 #ifdef NEW_PMAP
    780 	/*
    781 	 * Set up the kernel address space in proc0's hwpcb.
    782 	 */
    783 	PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    784 #endif
    785 
    786 	/*
    787 	 * Look at arguments passed to us and compute boothowto.
    788 	 */
    789 
    790 	boothowto = RB_SINGLE;
    791 #ifdef KADB
    792 	boothowto |= RB_KDB;
    793 #endif
    794 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    795 		/*
    796 		 * Note that we'd really like to differentiate case here,
    797 		 * but the Alpha AXP Architecture Reference Manual
    798 		 * says that we shouldn't.
    799 		 */
    800 		switch (*p) {
    801 		case 'a': /* autoboot */
    802 		case 'A':
    803 			boothowto &= ~RB_SINGLE;
    804 			break;
    805 
    806 #ifdef DEBUG
    807 		case 'c': /* crash dump immediately after autoconfig */
    808 		case 'C':
    809 			boothowto |= RB_DUMP;
    810 			break;
    811 #endif
    812 
    813 #if defined(KGDB) || defined(DDB)
    814 		case 'd': /* break into the kernel debugger ASAP */
    815 		case 'D':
    816 			boothowto |= RB_KDB;
    817 			break;
    818 #endif
    819 
    820 		case 'h': /* always halt, never reboot */
    821 		case 'H':
    822 			boothowto |= RB_HALT;
    823 			break;
    824 
    825 #if 0
    826 		case 'm': /* mini root present in memory */
    827 		case 'M':
    828 			boothowto |= RB_MINIROOT;
    829 			break;
    830 #endif
    831 
    832 		case 'n': /* askname */
    833 		case 'N':
    834 			boothowto |= RB_ASKNAME;
    835 			break;
    836 
    837 		case 's': /* single-user (default, supported for sanity) */
    838 		case 'S':
    839 			boothowto |= RB_SINGLE;
    840 			break;
    841 
    842 		default:
    843 			printf("Unrecognized boot flag '%c'.\n", *p);
    844 			break;
    845 		}
    846 	}
    847 
    848 	/*
    849 	 * Initialize debuggers, and break into them if appropriate.
    850 	 */
    851 #ifdef DDB
    852 	db_machine_init();
    853 	ddb_init(ksym_start, ksym_end);
    854 	if (boothowto & RB_KDB)
    855 		Debugger();
    856 #endif
    857 #ifdef KGDB
    858 	if (boothowto & RB_KDB)
    859 		kgdb_connect(0);
    860 #endif
    861 
    862 	/*
    863 	 * Figure out the number of cpus in the box, from RPB fields.
    864 	 * Really.  We mean it.
    865 	 */
    866 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    867 		struct pcs *pcsp;
    868 
    869 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    870 		    (i * hwrpb->rpb_pcs_size));
    871 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    872 			ncpus++;
    873 	}
    874 
    875 	/*
    876 	 * Figure out our clock frequency, from RPB fields.
    877 	 */
    878 	hz = hwrpb->rpb_intr_freq >> 12;
    879 	if (!(60 <= hz && hz <= 10240)) {
    880 		hz = 1024;
    881 #ifdef DIAGNOSTIC
    882 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    883 			hwrpb->rpb_intr_freq, hz);
    884 #endif
    885 	}
    886 
    887 }
    888 
    889 /*
    890  * Allocate space for system data structures.  We are given
    891  * a starting virtual address and we return a final virtual
    892  * address; along the way we set each data structure pointer.
    893  *
    894  * We call allocsys() with 0 to find out how much space we want,
    895  * allocate that much and fill it with zeroes, and the call
    896  * allocsys() again with the correct base virtual address.
    897  */
    898 caddr_t
    899 allocsys(v)
    900 	caddr_t v;
    901 {
    902 
    903 #define valloc(name, type, num) \
    904 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    905 #ifdef REAL_CLISTS
    906 	valloc(cfree, struct cblock, nclist);
    907 #endif
    908 	valloc(callout, struct callout, ncallout);
    909 #ifdef SYSVSHM
    910 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    911 #endif
    912 #ifdef SYSVSEM
    913 	valloc(sema, struct semid_ds, seminfo.semmni);
    914 	valloc(sem, struct sem, seminfo.semmns);
    915 	/* This is pretty disgusting! */
    916 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    917 #endif
    918 #ifdef SYSVMSG
    919 	valloc(msgpool, char, msginfo.msgmax);
    920 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    921 	valloc(msghdrs, struct msg, msginfo.msgtql);
    922 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    923 #endif
    924 
    925 	/*
    926 	 * Determine how many buffers to allocate.
    927 	 * We allocate 10% of memory for buffer space.  Insure a
    928 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    929 	 * headers as file i/o buffers.
    930 	 */
    931 	if (bufpages == 0)
    932 		bufpages = (physmem * 10) / (CLSIZE * 100);
    933 	if (nbuf == 0) {
    934 		nbuf = bufpages;
    935 		if (nbuf < 16)
    936 			nbuf = 16;
    937 	}
    938 	if (nswbuf == 0) {
    939 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    940 		if (nswbuf > 256)
    941 			nswbuf = 256;		/* sanity */
    942 	}
    943 #if !defined(UVM)
    944 	valloc(swbuf, struct buf, nswbuf);
    945 #endif
    946 	valloc(buf, struct buf, nbuf);
    947 	return (v);
    948 #undef valloc
    949 }
    950 
    951 void
    952 consinit()
    953 {
    954 
    955 	/*
    956 	 * Everything related to console initialization is done
    957 	 * in alpha_init().
    958 	 */
    959 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    960 	printf("consinit: %susing prom console\n",
    961 	    pmap_uses_prom_console() ? "" : "not ");
    962 #endif
    963 }
    964 
    965 void
    966 cpu_startup()
    967 {
    968 	register unsigned i;
    969 	int base, residual;
    970 	vm_offset_t minaddr, maxaddr;
    971 	vm_size_t size;
    972 #if defined(DEBUG)
    973 	extern int pmapdebug;
    974 	int opmapdebug = pmapdebug;
    975 
    976 	pmapdebug = 0;
    977 #endif
    978 
    979 	/*
    980 	 * Good {morning,afternoon,evening,night}.
    981 	 */
    982 	printf(version);
    983 	identifycpu();
    984 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
    985 	    ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
    986 	if (unusedmem)
    987 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    988 	if (unknownmem)
    989 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    990 		    ctob(unknownmem));
    991 
    992 	/*
    993 	 * Allocate virtual address space for file I/O buffers.
    994 	 * Note they are different than the array of headers, 'buf',
    995 	 * and usually occupy more virtual memory than physical.
    996 	 */
    997 	size = MAXBSIZE * nbuf;
    998 #if defined(UVM)
    999 	if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
   1000 		    NULL, UVM_UNKNOWN_OFFSET,
   1001 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1002 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1003 		panic("startup: cannot allocate VM for buffers");
   1004 #else
   1005 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
   1006 	    &maxaddr, size, TRUE);
   1007 	minaddr = (vm_offset_t)buffers;
   1008 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
   1009 			&minaddr, size, FALSE) != KERN_SUCCESS)
   1010 		panic("startup: cannot allocate buffers");
   1011 #endif /* UVM */
   1012 	base = bufpages / nbuf;
   1013 	residual = bufpages % nbuf;
   1014 	for (i = 0; i < nbuf; i++) {
   1015 #if defined(UVM)
   1016 		vm_size_t curbufsize;
   1017 		vm_offset_t curbuf;
   1018 		struct vm_page *pg;
   1019 
   1020 		/*
   1021 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1022 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1023 		 * for the first "residual" buffers, and then we allocate
   1024 		 * "base" pages for the rest.
   1025 		 */
   1026 		curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
   1027 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1028 
   1029 		while (curbufsize) {
   1030 			pg = uvm_pagealloc(NULL, 0, NULL);
   1031 			if (pg == NULL)
   1032 				panic("cpu_startup: not enough memory for "
   1033 				    "buffer cache");
   1034 #if defined(PMAP_NEW)
   1035 			pmap_kenter_pgs(curbuf, &pg, 1);
   1036 #else
   1037 			pmap_enter(kernel_map->pmap, curbuf,
   1038 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1039 #endif
   1040 			curbuf += PAGE_SIZE;
   1041 			curbufsize -= PAGE_SIZE;
   1042 		}
   1043 #else /* ! UVM */
   1044 		vm_size_t curbufsize;
   1045 		vm_offset_t curbuf;
   1046 
   1047 		/*
   1048 		 * First <residual> buffers get (base+1) physical pages
   1049 		 * allocated for them.  The rest get (base) physical pages.
   1050 		 *
   1051 		 * The rest of each buffer occupies virtual space,
   1052 		 * but has no physical memory allocated for it.
   1053 		 */
   1054 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
   1055 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
   1056 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
   1057 		vm_map_simplify(buffer_map, curbuf);
   1058 #endif /* UVM */
   1059 	}
   1060 	/*
   1061 	 * Allocate a submap for exec arguments.  This map effectively
   1062 	 * limits the number of processes exec'ing at any time.
   1063 	 */
   1064 #if defined(UVM)
   1065 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1066 				   16 * NCARGS, TRUE, FALSE, NULL);
   1067 #else
   1068 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1069 				 16 * NCARGS, TRUE);
   1070 #endif
   1071 
   1072 	/*
   1073 	 * Allocate a submap for physio
   1074 	 */
   1075 #if defined(UVM)
   1076 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1077 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1078 #else
   1079 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1080 				 VM_PHYS_SIZE, TRUE);
   1081 #endif
   1082 
   1083 	/*
   1084 	 * Finally, allocate mbuf cluster submap.
   1085 	 */
   1086 #if defined(UVM)
   1087 	mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1088 				 VM_MBUF_SIZE, FALSE, FALSE, NULL);
   1089 #else
   1090 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1091 			       VM_MBUF_SIZE, FALSE);
   1092 #endif
   1093 	/*
   1094 	 * Initialize callouts
   1095 	 */
   1096 	callfree = callout;
   1097 	for (i = 1; i < ncallout; i++)
   1098 		callout[i-1].c_next = &callout[i];
   1099 	callout[i-1].c_next = NULL;
   1100 
   1101 #if defined(DEBUG)
   1102 	pmapdebug = opmapdebug;
   1103 #endif
   1104 #if defined(UVM)
   1105 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1106 #else
   1107 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
   1108 #endif
   1109 	printf("using %ld buffers containing %ld bytes of memory\n",
   1110 		(long)nbuf, (long)(bufpages * CLBYTES));
   1111 
   1112 	/*
   1113 	 * Set up buffers, so they can be used to read disk labels.
   1114 	 */
   1115 	bufinit();
   1116 
   1117 	/*
   1118 	 * Configure the system.
   1119 	 */
   1120 	configure();
   1121 
   1122 	/*
   1123 	 * Note that bootstrapping is finished, and set the HWRPB up
   1124 	 * to do restarts.
   1125 	 */
   1126 	hwrpb_restart_setup();
   1127 }
   1128 
   1129 /*
   1130  * Retrieve the platform name from the DSR.
   1131  */
   1132 const char *
   1133 alpha_dsr_sysname()
   1134 {
   1135 	struct dsrdb *dsr;
   1136 	const char *sysname;
   1137 
   1138 	/*
   1139 	 * DSR does not exist on early HWRPB versions.
   1140 	 */
   1141 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1142 		return (NULL);
   1143 
   1144 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1145 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1146 	    sizeof(u_int64_t)));
   1147 	return (sysname);
   1148 }
   1149 
   1150 /*
   1151  * Lookup the system specified system variation in the provided table,
   1152  * returning the model string on match.
   1153  */
   1154 const char *
   1155 alpha_variation_name(variation, avtp)
   1156 	u_int64_t variation;
   1157 	const struct alpha_variation_table *avtp;
   1158 {
   1159 	int i;
   1160 
   1161 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1162 		if (avtp[i].avt_variation == variation)
   1163 			return (avtp[i].avt_model);
   1164 	return (NULL);
   1165 }
   1166 
   1167 /*
   1168  * Generate a default platform name based for unknown system variations.
   1169  */
   1170 const char *
   1171 alpha_unknown_sysname()
   1172 {
   1173 	static char s[128];		/* safe size */
   1174 
   1175 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1176 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1177 	return ((const char *)s);
   1178 }
   1179 
   1180 void
   1181 identifycpu()
   1182 {
   1183 
   1184 	/*
   1185 	 * print out CPU identification information.
   1186 	 */
   1187 	printf("%s, %ldMHz\n", cpu_model,
   1188 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1189 	printf("%ld byte page size, %d processor%s.\n",
   1190 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1191 #if 0
   1192 	/* this isn't defined for any systems that we run on? */
   1193 	printf("serial number 0x%lx 0x%lx\n",
   1194 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1195 
   1196 	/* and these aren't particularly useful! */
   1197 	printf("variation: 0x%lx, revision 0x%lx\n",
   1198 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1199 #endif
   1200 }
   1201 
   1202 int	waittime = -1;
   1203 struct pcb dumppcb;
   1204 
   1205 void
   1206 cpu_reboot(howto, bootstr)
   1207 	int howto;
   1208 	char *bootstr;
   1209 {
   1210 	extern int cold;
   1211 
   1212 	/* If system is cold, just halt. */
   1213 	if (cold) {
   1214 		howto |= RB_HALT;
   1215 		goto haltsys;
   1216 	}
   1217 
   1218 	/* If "always halt" was specified as a boot flag, obey. */
   1219 	if ((boothowto & RB_HALT) != 0)
   1220 		howto |= RB_HALT;
   1221 
   1222 	boothowto = howto;
   1223 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1224 		waittime = 0;
   1225 		vfs_shutdown();
   1226 		/*
   1227 		 * If we've been adjusting the clock, the todr
   1228 		 * will be out of synch; adjust it now.
   1229 		 */
   1230 		resettodr();
   1231 	}
   1232 
   1233 	/* Disable interrupts. */
   1234 	splhigh();
   1235 
   1236 	/* If rebooting and a dump is requested do it. */
   1237 #if 0
   1238 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1239 #else
   1240 	if (howto & RB_DUMP)
   1241 #endif
   1242 		dumpsys();
   1243 
   1244 haltsys:
   1245 
   1246 	/* run any shutdown hooks */
   1247 	doshutdownhooks();
   1248 
   1249 #ifdef BOOTKEY
   1250 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1251 	cngetc();
   1252 	printf("\n");
   1253 #endif
   1254 
   1255 	/* Finally, halt/reboot the system. */
   1256 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1257 	prom_halt(howto & RB_HALT);
   1258 	/*NOTREACHED*/
   1259 }
   1260 
   1261 /*
   1262  * These variables are needed by /sbin/savecore
   1263  */
   1264 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1265 int 	dumpsize = 0;		/* pages */
   1266 long	dumplo = 0; 		/* blocks */
   1267 
   1268 /*
   1269  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1270  */
   1271 int
   1272 cpu_dumpsize()
   1273 {
   1274 	int size;
   1275 
   1276 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1277 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1278 	if (roundup(size, dbtob(1)) != dbtob(1))
   1279 		return -1;
   1280 
   1281 	return (1);
   1282 }
   1283 
   1284 /*
   1285  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1286  */
   1287 u_long
   1288 cpu_dump_mempagecnt()
   1289 {
   1290 	u_long i, n;
   1291 
   1292 	n = 0;
   1293 	for (i = 0; i < mem_cluster_cnt; i++)
   1294 		n += atop(mem_clusters[i].size);
   1295 	return (n);
   1296 }
   1297 
   1298 /*
   1299  * cpu_dump: dump machine-dependent kernel core dump headers.
   1300  */
   1301 int
   1302 cpu_dump()
   1303 {
   1304 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1305 	char buf[dbtob(1)];
   1306 	kcore_seg_t *segp;
   1307 	cpu_kcore_hdr_t *cpuhdrp;
   1308 	phys_ram_seg_t *memsegp;
   1309 	int i;
   1310 
   1311 	dump = bdevsw[major(dumpdev)].d_dump;
   1312 
   1313 	bzero(buf, sizeof buf);
   1314 	segp = (kcore_seg_t *)buf;
   1315 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1316 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1317 	    ALIGN(sizeof(*cpuhdrp))];
   1318 
   1319 	/*
   1320 	 * Generate a segment header.
   1321 	 */
   1322 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1323 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1324 
   1325 	/*
   1326 	 * Add the machine-dependent header info.
   1327 	 */
   1328 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
   1329 	cpuhdrp->page_size = PAGE_SIZE;
   1330 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1331 
   1332 	/*
   1333 	 * Fill in the memory segment descriptors.
   1334 	 */
   1335 	for (i = 0; i < mem_cluster_cnt; i++) {
   1336 		memsegp[i].start = mem_clusters[i].start;
   1337 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1338 	}
   1339 
   1340 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1341 }
   1342 
   1343 /*
   1344  * This is called by main to set dumplo and dumpsize.
   1345  * Dumps always skip the first CLBYTES of disk space
   1346  * in case there might be a disk label stored there.
   1347  * If there is extra space, put dump at the end to
   1348  * reduce the chance that swapping trashes it.
   1349  */
   1350 void
   1351 cpu_dumpconf()
   1352 {
   1353 	int nblks, dumpblks;	/* size of dump area */
   1354 	int maj;
   1355 
   1356 	if (dumpdev == NODEV)
   1357 		goto bad;
   1358 	maj = major(dumpdev);
   1359 	if (maj < 0 || maj >= nblkdev)
   1360 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1361 	if (bdevsw[maj].d_psize == NULL)
   1362 		goto bad;
   1363 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1364 	if (nblks <= ctod(1))
   1365 		goto bad;
   1366 
   1367 	dumpblks = cpu_dumpsize();
   1368 	if (dumpblks < 0)
   1369 		goto bad;
   1370 	dumpblks += ctod(cpu_dump_mempagecnt());
   1371 
   1372 	/* If dump won't fit (incl. room for possible label), punt. */
   1373 	if (dumpblks > (nblks - ctod(1)))
   1374 		goto bad;
   1375 
   1376 	/* Put dump at end of partition */
   1377 	dumplo = nblks - dumpblks;
   1378 
   1379 	/* dumpsize is in page units, and doesn't include headers. */
   1380 	dumpsize = cpu_dump_mempagecnt();
   1381 	return;
   1382 
   1383 bad:
   1384 	dumpsize = 0;
   1385 	return;
   1386 }
   1387 
   1388 /*
   1389  * Dump the kernel's image to the swap partition.
   1390  */
   1391 #define	BYTES_PER_DUMP	NBPG
   1392 
   1393 void
   1394 dumpsys()
   1395 {
   1396 	u_long totalbytesleft, bytes, i, n, memcl;
   1397 	u_long maddr;
   1398 	int psize;
   1399 	daddr_t blkno;
   1400 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1401 	int error;
   1402 
   1403 	/* Save registers. */
   1404 	savectx(&dumppcb);
   1405 
   1406 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1407 	if (dumpdev == NODEV)
   1408 		return;
   1409 
   1410 	/*
   1411 	 * For dumps during autoconfiguration,
   1412 	 * if dump device has already configured...
   1413 	 */
   1414 	if (dumpsize == 0)
   1415 		cpu_dumpconf();
   1416 	if (dumplo <= 0) {
   1417 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1418 		    minor(dumpdev));
   1419 		return;
   1420 	}
   1421 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1422 	    minor(dumpdev), dumplo);
   1423 
   1424 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1425 	printf("dump ");
   1426 	if (psize == -1) {
   1427 		printf("area unavailable\n");
   1428 		return;
   1429 	}
   1430 
   1431 	/* XXX should purge all outstanding keystrokes. */
   1432 
   1433 	if ((error = cpu_dump()) != 0)
   1434 		goto err;
   1435 
   1436 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1437 	blkno = dumplo + cpu_dumpsize();
   1438 	dump = bdevsw[major(dumpdev)].d_dump;
   1439 	error = 0;
   1440 
   1441 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1442 		maddr = mem_clusters[memcl].start;
   1443 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1444 
   1445 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1446 
   1447 			/* Print out how many MBs we to go. */
   1448 			if ((totalbytesleft % (1024*1024)) == 0)
   1449 				printf("%d ", totalbytesleft / (1024 * 1024));
   1450 
   1451 			/* Limit size for next transfer. */
   1452 			n = bytes - i;
   1453 			if (n > BYTES_PER_DUMP)
   1454 				n =  BYTES_PER_DUMP;
   1455 
   1456 			error = (*dump)(dumpdev, blkno,
   1457 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1458 			if (error)
   1459 				goto err;
   1460 			maddr += n;
   1461 			blkno += btodb(n);			/* XXX? */
   1462 
   1463 			/* XXX should look for keystrokes, to cancel. */
   1464 		}
   1465 	}
   1466 
   1467 err:
   1468 	switch (error) {
   1469 
   1470 	case ENXIO:
   1471 		printf("device bad\n");
   1472 		break;
   1473 
   1474 	case EFAULT:
   1475 		printf("device not ready\n");
   1476 		break;
   1477 
   1478 	case EINVAL:
   1479 		printf("area improper\n");
   1480 		break;
   1481 
   1482 	case EIO:
   1483 		printf("i/o error\n");
   1484 		break;
   1485 
   1486 	case EINTR:
   1487 		printf("aborted from console\n");
   1488 		break;
   1489 
   1490 	case 0:
   1491 		printf("succeeded\n");
   1492 		break;
   1493 
   1494 	default:
   1495 		printf("error %d\n", error);
   1496 		break;
   1497 	}
   1498 	printf("\n\n");
   1499 	delay(1000);
   1500 }
   1501 
   1502 void
   1503 frametoreg(framep, regp)
   1504 	struct trapframe *framep;
   1505 	struct reg *regp;
   1506 {
   1507 
   1508 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1509 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1510 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1511 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1512 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1513 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1514 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1515 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1516 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1517 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1518 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1519 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1520 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1521 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1522 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1523 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1524 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1525 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1526 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1527 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1528 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1529 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1530 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1531 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1532 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1533 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1534 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1535 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1536 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1537 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1538 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1539 	regp->r_regs[R_ZERO] = 0;
   1540 }
   1541 
   1542 void
   1543 regtoframe(regp, framep)
   1544 	struct reg *regp;
   1545 	struct trapframe *framep;
   1546 {
   1547 
   1548 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1549 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1550 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1551 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1552 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1553 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1554 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1555 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1556 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1557 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1558 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1559 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1560 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1561 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1562 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1563 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1564 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1565 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1566 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1567 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1568 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1569 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1570 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1571 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1572 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1573 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1574 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1575 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1576 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1577 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1578 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1579 	/* ??? = regp->r_regs[R_ZERO]; */
   1580 }
   1581 
   1582 void
   1583 printregs(regp)
   1584 	struct reg *regp;
   1585 {
   1586 	int i;
   1587 
   1588 	for (i = 0; i < 32; i++)
   1589 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1590 		   i & 1 ? "\n" : "\t");
   1591 }
   1592 
   1593 void
   1594 regdump(framep)
   1595 	struct trapframe *framep;
   1596 {
   1597 	struct reg reg;
   1598 
   1599 	frametoreg(framep, &reg);
   1600 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1601 
   1602 	printf("REGISTERS:\n");
   1603 	printregs(&reg);
   1604 }
   1605 
   1606 #ifdef DEBUG
   1607 int sigdebug = 0;
   1608 int sigpid = 0;
   1609 #define	SDB_FOLLOW	0x01
   1610 #define	SDB_KSTACK	0x02
   1611 #endif
   1612 
   1613 /*
   1614  * Send an interrupt to process.
   1615  */
   1616 void
   1617 sendsig(catcher, sig, mask, code)
   1618 	sig_t catcher;
   1619 	int sig, mask;
   1620 	u_long code;
   1621 {
   1622 	struct proc *p = curproc;
   1623 	struct sigcontext *scp, ksc;
   1624 	struct trapframe *frame;
   1625 	struct sigacts *psp = p->p_sigacts;
   1626 	int oonstack, fsize, rndfsize;
   1627 	extern char sigcode[], esigcode[];
   1628 	extern struct proc *fpcurproc;
   1629 
   1630 	frame = p->p_md.md_tf;
   1631 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1632 	fsize = sizeof ksc;
   1633 	rndfsize = ((fsize + 15) / 16) * 16;
   1634 	/*
   1635 	 * Allocate and validate space for the signal handler
   1636 	 * context. Note that if the stack is in P0 space, the
   1637 	 * call to grow() is a nop, and the useracc() check
   1638 	 * will fail if the process has not already allocated
   1639 	 * the space with a `brk'.
   1640 	 */
   1641 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1642 	    (psp->ps_sigonstack & sigmask(sig))) {
   1643 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1644 		    psp->ps_sigstk.ss_size - rndfsize);
   1645 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1646 	} else
   1647 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1648 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1649 #if defined(UVM)
   1650 		(void)uvm_grow(p, (u_long)scp);
   1651 #else
   1652 		(void)grow(p, (u_long)scp);
   1653 #endif
   1654 #ifdef DEBUG
   1655 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1656 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1657 		    sig, &oonstack, scp);
   1658 #endif
   1659 #if defined(UVM)
   1660 	if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1661 #else
   1662 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1663 #endif
   1664 #ifdef DEBUG
   1665 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1666 			printf("sendsig(%d): useracc failed on sig %d\n",
   1667 			    p->p_pid, sig);
   1668 #endif
   1669 		/*
   1670 		 * Process has trashed its stack; give it an illegal
   1671 		 * instruction to halt it in its tracks.
   1672 		 */
   1673 		SIGACTION(p, SIGILL) = SIG_DFL;
   1674 		sig = sigmask(SIGILL);
   1675 		p->p_sigignore &= ~sig;
   1676 		p->p_sigcatch &= ~sig;
   1677 		p->p_sigmask &= ~sig;
   1678 		psignal(p, SIGILL);
   1679 		return;
   1680 	}
   1681 
   1682 	/*
   1683 	 * Build the signal context to be used by sigreturn.
   1684 	 */
   1685 	ksc.sc_onstack = oonstack;
   1686 	ksc.sc_mask = mask;
   1687 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1688 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1689 
   1690 	/* copy the registers. */
   1691 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1692 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1693 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1694 
   1695 	/* save the floating-point state, if necessary, then copy it. */
   1696 	if (p == fpcurproc) {
   1697 		alpha_pal_wrfen(1);
   1698 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1699 		alpha_pal_wrfen(0);
   1700 		fpcurproc = NULL;
   1701 	}
   1702 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1703 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1704 	    sizeof(struct fpreg));
   1705 	ksc.sc_fp_control = 0;					/* XXX ? */
   1706 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1707 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1708 
   1709 
   1710 #ifdef COMPAT_OSF1
   1711 	/*
   1712 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1713 	 */
   1714 #endif
   1715 
   1716 	/*
   1717 	 * copy the frame out to userland.
   1718 	 */
   1719 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1720 #ifdef DEBUG
   1721 	if (sigdebug & SDB_FOLLOW)
   1722 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1723 		    scp, code);
   1724 #endif
   1725 
   1726 	/*
   1727 	 * Set up the registers to return to sigcode.
   1728 	 */
   1729 	frame->tf_regs[FRAME_PC] =
   1730 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1731 	frame->tf_regs[FRAME_A0] = sig;
   1732 	frame->tf_regs[FRAME_A1] = code;
   1733 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1734 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1735 	alpha_pal_wrusp((unsigned long)scp);
   1736 
   1737 #ifdef DEBUG
   1738 	if (sigdebug & SDB_FOLLOW)
   1739 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1740 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1741 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1742 		printf("sendsig(%d): sig %d returns\n",
   1743 		    p->p_pid, sig);
   1744 #endif
   1745 }
   1746 
   1747 /*
   1748  * System call to cleanup state after a signal
   1749  * has been taken.  Reset signal mask and
   1750  * stack state from context left by sendsig (above).
   1751  * Return to previous pc and psl as specified by
   1752  * context left by sendsig. Check carefully to
   1753  * make sure that the user has not modified the
   1754  * psl to gain improper priviledges or to cause
   1755  * a machine fault.
   1756  */
   1757 /* ARGSUSED */
   1758 int
   1759 sys_sigreturn(p, v, retval)
   1760 	struct proc *p;
   1761 	void *v;
   1762 	register_t *retval;
   1763 {
   1764 	struct sys_sigreturn_args /* {
   1765 		syscallarg(struct sigcontext *) sigcntxp;
   1766 	} */ *uap = v;
   1767 	struct sigcontext *scp, ksc;
   1768 	extern struct proc *fpcurproc;
   1769 
   1770 	scp = SCARG(uap, sigcntxp);
   1771 #ifdef DEBUG
   1772 	if (sigdebug & SDB_FOLLOW)
   1773 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1774 #endif
   1775 
   1776 	if (ALIGN(scp) != (u_int64_t)scp)
   1777 		return (EINVAL);
   1778 
   1779 	/*
   1780 	 * Test and fetch the context structure.
   1781 	 * We grab it all at once for speed.
   1782 	 */
   1783 #if defined(UVM)
   1784 	if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1785 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1786 		return (EINVAL);
   1787 #else
   1788 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1789 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1790 		return (EINVAL);
   1791 #endif
   1792 
   1793 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1794 		return (EINVAL);
   1795 	/*
   1796 	 * Restore the user-supplied information
   1797 	 */
   1798 	if (ksc.sc_onstack)
   1799 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1800 	else
   1801 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1802 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1803 
   1804 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1805 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1806 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1807 
   1808 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1809 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1810 
   1811 	/* XXX ksc.sc_ownedfp ? */
   1812 	if (p == fpcurproc)
   1813 		fpcurproc = NULL;
   1814 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1815 	    sizeof(struct fpreg));
   1816 	/* XXX ksc.sc_fp_control ? */
   1817 
   1818 #ifdef DEBUG
   1819 	if (sigdebug & SDB_FOLLOW)
   1820 		printf("sigreturn(%d): returns\n", p->p_pid);
   1821 #endif
   1822 	return (EJUSTRETURN);
   1823 }
   1824 
   1825 /*
   1826  * machine dependent system variables.
   1827  */
   1828 int
   1829 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1830 	int *name;
   1831 	u_int namelen;
   1832 	void *oldp;
   1833 	size_t *oldlenp;
   1834 	void *newp;
   1835 	size_t newlen;
   1836 	struct proc *p;
   1837 {
   1838 	dev_t consdev;
   1839 
   1840 	/* all sysctl names at this level are terminal */
   1841 	if (namelen != 1)
   1842 		return (ENOTDIR);		/* overloaded */
   1843 
   1844 	switch (name[0]) {
   1845 	case CPU_CONSDEV:
   1846 		if (cn_tab != NULL)
   1847 			consdev = cn_tab->cn_dev;
   1848 		else
   1849 			consdev = NODEV;
   1850 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1851 			sizeof consdev));
   1852 
   1853 	case CPU_ROOT_DEVICE:
   1854 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1855 		    root_device->dv_xname));
   1856 
   1857 	case CPU_UNALIGNED_PRINT:
   1858 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1859 		    &alpha_unaligned_print));
   1860 
   1861 	case CPU_UNALIGNED_FIX:
   1862 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1863 		    &alpha_unaligned_fix));
   1864 
   1865 	case CPU_UNALIGNED_SIGBUS:
   1866 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1867 		    &alpha_unaligned_sigbus));
   1868 
   1869 	case CPU_BOOTED_KERNEL:
   1870 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1871 		    bootinfo.booted_kernel));
   1872 
   1873 	default:
   1874 		return (EOPNOTSUPP);
   1875 	}
   1876 	/* NOTREACHED */
   1877 }
   1878 
   1879 /*
   1880  * Set registers on exec.
   1881  */
   1882 void
   1883 setregs(p, pack, stack)
   1884 	register struct proc *p;
   1885 	struct exec_package *pack;
   1886 	u_long stack;
   1887 {
   1888 	struct trapframe *tfp = p->p_md.md_tf;
   1889 	extern struct proc *fpcurproc;
   1890 #ifdef DEBUG
   1891 	int i;
   1892 #endif
   1893 
   1894 #ifdef DEBUG
   1895 	/*
   1896 	 * Crash and dump, if the user requested it.
   1897 	 */
   1898 	if (boothowto & RB_DUMP)
   1899 		panic("crash requested by boot flags");
   1900 #endif
   1901 
   1902 #ifdef DEBUG
   1903 	for (i = 0; i < FRAME_SIZE; i++)
   1904 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1905 #else
   1906 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1907 #endif
   1908 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1909 #define FP_RN 2 /* XXX */
   1910 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1911 	alpha_pal_wrusp(stack);
   1912 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1913 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1914 
   1915 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1916 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1917 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1918 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1919 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1920 
   1921 	p->p_md.md_flags &= ~MDP_FPUSED;
   1922 	if (fpcurproc == p)
   1923 		fpcurproc = NULL;
   1924 }
   1925 
   1926 void
   1927 netintr()
   1928 {
   1929 	int n, s;
   1930 
   1931 	s = splhigh();
   1932 	n = netisr;
   1933 	netisr = 0;
   1934 	splx(s);
   1935 
   1936 #define	DONETISR(bit, fn)						\
   1937 	do {								\
   1938 		if (n & (1 << (bit)))					\
   1939 			fn;						\
   1940 	} while (0)
   1941 
   1942 #ifdef INET
   1943 #if NARP > 0
   1944 	DONETISR(NETISR_ARP, arpintr());
   1945 #endif
   1946 	DONETISR(NETISR_IP, ipintr());
   1947 #endif
   1948 #ifdef NETATALK
   1949 	DONETISR(NETISR_ATALK, atintr());
   1950 #endif
   1951 #ifdef NS
   1952 	DONETISR(NETISR_NS, nsintr());
   1953 #endif
   1954 #ifdef ISO
   1955 	DONETISR(NETISR_ISO, clnlintr());
   1956 #endif
   1957 #ifdef CCITT
   1958 	DONETISR(NETISR_CCITT, ccittintr());
   1959 #endif
   1960 #ifdef NATM
   1961 	DONETISR(NETISR_NATM, natmintr());
   1962 #endif
   1963 #if NPPP > 1
   1964 	DONETISR(NETISR_PPP, pppintr());
   1965 #endif
   1966 
   1967 #undef DONETISR
   1968 }
   1969 
   1970 void
   1971 do_sir()
   1972 {
   1973 	u_int64_t n;
   1974 
   1975 	do {
   1976 		(void)splhigh();
   1977 		n = ssir;
   1978 		ssir = 0;
   1979 		splsoft();		/* don't recurse through spl0() */
   1980 
   1981 #if defined(UVM)
   1982 #define	COUNT_SOFT	uvmexp.softs++
   1983 #else
   1984 #define	COUNT_SOFT	cnt.v_soft++
   1985 #endif
   1986 
   1987 #define	DO_SIR(bit, fn)							\
   1988 		do {							\
   1989 			if (n & (bit)) {				\
   1990 				COUNT_SOFT;				\
   1991 				fn;					\
   1992 			}						\
   1993 		} while (0)
   1994 
   1995 		DO_SIR(SIR_NET, netintr());
   1996 		DO_SIR(SIR_CLOCK, softclock());
   1997 
   1998 #undef COUNT_SOFT
   1999 #undef DO_SIR
   2000 	} while (ssir != 0);
   2001 }
   2002 
   2003 int
   2004 spl0()
   2005 {
   2006 
   2007 	if (ssir)
   2008 		do_sir();		/* it lowers the IPL itself */
   2009 
   2010 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2011 }
   2012 
   2013 /*
   2014  * The following primitives manipulate the run queues.  _whichqs tells which
   2015  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2016  * into queues, Remrunqueue removes them from queues.  The running process is
   2017  * on no queue, other processes are on a queue related to p->p_priority,
   2018  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2019  * available queues.
   2020  */
   2021 /*
   2022  * setrunqueue(p)
   2023  *	proc *p;
   2024  *
   2025  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2026  */
   2027 
   2028 void
   2029 setrunqueue(p)
   2030 	struct proc *p;
   2031 {
   2032 	int bit;
   2033 
   2034 	/* firewall: p->p_back must be NULL */
   2035 	if (p->p_back != NULL)
   2036 		panic("setrunqueue");
   2037 
   2038 	bit = p->p_priority >> 2;
   2039 	whichqs |= (1 << bit);
   2040 	p->p_forw = (struct proc *)&qs[bit];
   2041 	p->p_back = qs[bit].ph_rlink;
   2042 	p->p_back->p_forw = p;
   2043 	qs[bit].ph_rlink = p;
   2044 }
   2045 
   2046 /*
   2047  * remrunqueue(p)
   2048  *
   2049  * Call should be made at splclock().
   2050  */
   2051 void
   2052 remrunqueue(p)
   2053 	struct proc *p;
   2054 {
   2055 	int bit;
   2056 
   2057 	bit = p->p_priority >> 2;
   2058 	if ((whichqs & (1 << bit)) == 0)
   2059 		panic("remrunqueue");
   2060 
   2061 	p->p_back->p_forw = p->p_forw;
   2062 	p->p_forw->p_back = p->p_back;
   2063 	p->p_back = NULL;	/* for firewall checking. */
   2064 
   2065 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2066 		whichqs &= ~(1 << bit);
   2067 }
   2068 
   2069 /*
   2070  * Return the best possible estimate of the time in the timeval
   2071  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2072  * We guarantee that the time will be greater than the value obtained by a
   2073  * previous call.
   2074  */
   2075 void
   2076 microtime(tvp)
   2077 	register struct timeval *tvp;
   2078 {
   2079 	int s = splclock();
   2080 	static struct timeval lasttime;
   2081 
   2082 	*tvp = time;
   2083 #ifdef notdef
   2084 	tvp->tv_usec += clkread();
   2085 	while (tvp->tv_usec > 1000000) {
   2086 		tvp->tv_sec++;
   2087 		tvp->tv_usec -= 1000000;
   2088 	}
   2089 #endif
   2090 	if (tvp->tv_sec == lasttime.tv_sec &&
   2091 	    tvp->tv_usec <= lasttime.tv_usec &&
   2092 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2093 		tvp->tv_sec++;
   2094 		tvp->tv_usec -= 1000000;
   2095 	}
   2096 	lasttime = *tvp;
   2097 	splx(s);
   2098 }
   2099 
   2100 /*
   2101  * Wait "n" microseconds.
   2102  */
   2103 void
   2104 delay(n)
   2105 	unsigned long n;
   2106 {
   2107 	long N = cycles_per_usec * (n);
   2108 
   2109 	while (N > 0)				/* XXX */
   2110 		N -= 3;				/* XXX */
   2111 }
   2112 
   2113 #if defined(COMPAT_OSF1) || 1		/* XXX */
   2114 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2115 	    u_long));
   2116 
   2117 void
   2118 cpu_exec_ecoff_setregs(p, epp, stack)
   2119 	struct proc *p;
   2120 	struct exec_package *epp;
   2121 	u_long stack;
   2122 {
   2123 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2124 
   2125 	setregs(p, epp, stack);
   2126 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2127 }
   2128 
   2129 /*
   2130  * cpu_exec_ecoff_hook():
   2131  *	cpu-dependent ECOFF format hook for execve().
   2132  *
   2133  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2134  *
   2135  */
   2136 int
   2137 cpu_exec_ecoff_hook(p, epp)
   2138 	struct proc *p;
   2139 	struct exec_package *epp;
   2140 {
   2141 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2142 	extern struct emul emul_netbsd;
   2143 #ifdef COMPAT_OSF1
   2144 	extern struct emul emul_osf1;
   2145 #endif
   2146 
   2147 	switch (execp->f.f_magic) {
   2148 #ifdef COMPAT_OSF1
   2149 	case ECOFF_MAGIC_ALPHA:
   2150 		epp->ep_emul = &emul_osf1;
   2151 		break;
   2152 #endif
   2153 
   2154 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2155 		epp->ep_emul = &emul_netbsd;
   2156 		break;
   2157 
   2158 	default:
   2159 		return ENOEXEC;
   2160 	}
   2161 	return 0;
   2162 }
   2163 #endif
   2164 
   2165 int
   2166 alpha_pa_access(pa)
   2167 	u_long pa;
   2168 {
   2169 	int i;
   2170 
   2171 	for (i = 0; i < mem_cluster_cnt; i++) {
   2172 		if (pa < mem_clusters[i].start)
   2173 			continue;
   2174 		if ((pa - mem_clusters[i].start) >=
   2175 		    (mem_clusters[i].size & ~PAGE_MASK))
   2176 			continue;
   2177 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2178 	}
   2179 	return (PROT_NONE);
   2180 }
   2181 
   2182 /* XXX XXX BEGIN XXX XXX */
   2183 vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   2184 								/* XXX */
   2185 vm_offset_t							/* XXX */
   2186 alpha_XXX_dmamap(v)						/* XXX */
   2187 	vm_offset_t v;						/* XXX */
   2188 {								/* XXX */
   2189 								/* XXX */
   2190 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2191 }								/* XXX */
   2192 /* XXX XXX END XXX XXX */
   2193