Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.113
      1 /* $NetBSD: machdep.c,v 1.113 1998/03/17 05:00:18 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_uvm.h"
     68 #include "opt_pmap_new.h"
     69 
     70 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     71 
     72 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.113 1998/03/17 05:00:18 thorpej Exp $");
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/signalvar.h>
     77 #include <sys/kernel.h>
     78 #include <sys/map.h>
     79 #include <sys/proc.h>
     80 #include <sys/buf.h>
     81 #include <sys/reboot.h>
     82 #include <sys/device.h>
     83 #include <sys/file.h>
     84 #ifdef REAL_CLISTS
     85 #include <sys/clist.h>
     86 #endif
     87 #include <sys/callout.h>
     88 #include <sys/malloc.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/mman.h>
     91 #include <sys/msgbuf.h>
     92 #include <sys/ioctl.h>
     93 #include <sys/tty.h>
     94 #include <sys/user.h>
     95 #include <sys/exec.h>
     96 #include <sys/exec_ecoff.h>
     97 #include <vm/vm.h>
     98 #include <sys/sysctl.h>
     99 #include <sys/core.h>
    100 #include <sys/kcore.h>
    101 #include <machine/kcore.h>
    102 #ifdef SYSVMSG
    103 #include <sys/msg.h>
    104 #endif
    105 #ifdef SYSVSEM
    106 #include <sys/sem.h>
    107 #endif
    108 #ifdef SYSVSHM
    109 #include <sys/shm.h>
    110 #endif
    111 
    112 #include <sys/mount.h>
    113 #include <sys/syscallargs.h>
    114 
    115 #include <vm/vm_kern.h>
    116 
    117 #if defined(UVM)
    118 #include <uvm/uvm_extern.h>
    119 #endif
    120 
    121 #include <dev/cons.h>
    122 
    123 #include <machine/autoconf.h>
    124 #include <machine/cpu.h>
    125 #include <machine/reg.h>
    126 #include <machine/rpb.h>
    127 #include <machine/prom.h>
    128 #include <machine/conf.h>
    129 
    130 #include <net/netisr.h>
    131 #include <net/if.h>
    132 
    133 #ifdef INET
    134 #include <netinet/in.h>
    135 #include <netinet/ip_var.h>
    136 #include "arp.h"
    137 #if NARP > 0
    138 #include <netinet/if_inarp.h>
    139 #endif
    140 #endif
    141 #ifdef NS
    142 #include <netns/ns_var.h>
    143 #endif
    144 #ifdef ISO
    145 #include <netiso/iso.h>
    146 #include <netiso/clnp.h>
    147 #endif
    148 #ifdef CCITT
    149 #include <netccitt/x25.h>
    150 #include <netccitt/pk.h>
    151 #include <netccitt/pk_extern.h>
    152 #endif
    153 #ifdef NATM
    154 #include <netnatm/natm.h>
    155 #endif
    156 #ifdef NETATALK
    157 #include <netatalk/at_extern.h>
    158 #endif
    159 #include "ppp.h"
    160 #if NPPP > 0
    161 #include <net/ppp_defs.h>
    162 #include <net/if_ppp.h>
    163 #endif
    164 
    165 #ifdef DDB
    166 #include <machine/db_machdep.h>
    167 #include <ddb/db_access.h>
    168 #include <ddb/db_sym.h>
    169 #include <ddb/db_extern.h>
    170 #include <ddb/db_interface.h>
    171 #endif
    172 
    173 #if defined(UVM)
    174 vm_map_t exec_map = NULL;
    175 vm_map_t mb_map = NULL;
    176 vm_map_t phys_map = NULL;
    177 #else
    178 vm_map_t buffer_map;
    179 #endif
    180 
    181 /*
    182  * Declare these as initialized data so we can patch them.
    183  */
    184 int	nswbuf = 0;
    185 #ifdef	NBUF
    186 int	nbuf = NBUF;
    187 #else
    188 int	nbuf = 0;
    189 #endif
    190 #ifdef	BUFPAGES
    191 int	bufpages = BUFPAGES;
    192 #else
    193 int	bufpages = 0;
    194 #endif
    195 caddr_t msgbufaddr;
    196 
    197 int	maxmem;			/* max memory per process */
    198 
    199 int	totalphysmem;		/* total amount of physical memory in system */
    200 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    201 int	resvmem;		/* amount of memory reserved for PROM */
    202 int	unusedmem;		/* amount of memory for OS that we don't use */
    203 int	unknownmem;		/* amount of memory with an unknown use */
    204 
    205 int	cputype;		/* system type, from the RPB */
    206 
    207 /*
    208  * XXX We need an address to which we can assign things so that they
    209  * won't be optimized away because we didn't use the value.
    210  */
    211 u_int32_t no_optimize;
    212 
    213 /* the following is used externally (sysctl_hw) */
    214 char	machine[] = MACHINE;		/* from <machine/param.h> */
    215 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    216 char	cpu_model[128];
    217 
    218 struct	user *proc0paddr;
    219 
    220 /* Number of machine cycles per microsecond */
    221 u_int64_t	cycles_per_usec;
    222 
    223 /* number of cpus in the box.  really! */
    224 int		ncpus;
    225 
    226 struct bootinfo_kernel bootinfo;
    227 
    228 struct platform platform;
    229 
    230 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    231 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    232 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    233 
    234 #ifdef DDB
    235 /* start and end of kernel symbol table */
    236 void	*ksym_start, *ksym_end;
    237 #endif
    238 
    239 /* for cpu_sysctl() */
    240 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    241 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    242 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    243 
    244 /*
    245  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    246  * XXX it should also be larger than it is, because not all of the mddt
    247  * XXX clusters end up being used for VM.
    248  */
    249 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    250 int	mem_cluster_cnt;
    251 
    252 caddr_t	allocsys __P((caddr_t));
    253 int	cpu_dump __P((void));
    254 int	cpu_dumpsize __P((void));
    255 u_long	cpu_dump_mempagecnt __P((void));
    256 void	dumpsys __P((void));
    257 void	identifycpu __P((void));
    258 void	netintr __P((void));
    259 void	printregs __P((struct reg *));
    260 
    261 void
    262 alpha_init(pfn, ptb, bim, bip, biv)
    263 	u_long pfn;		/* first free PFN number */
    264 	u_long ptb;		/* PFN of current level 1 page table */
    265 	u_long bim;		/* bootinfo magic */
    266 	u_long bip;		/* bootinfo pointer */
    267 	u_long biv;		/* bootinfo version */
    268 {
    269 	extern char kernel_text[], _end[];
    270 	struct mddt *mddtp;
    271 	struct mddt_cluster *memc;
    272 	int i, mddtweird;
    273 	struct vm_physseg *vps;
    274 	vm_offset_t kernstart, kernend;
    275 	vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
    276 	vm_size_t size;
    277 	char *p;
    278 	caddr_t v;
    279 	char *bootinfo_msg;
    280 
    281 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    282 
    283 	/*
    284 	 * Turn off interrupts (not mchecks) and floating point.
    285 	 * Make sure the instruction and data streams are consistent.
    286 	 */
    287 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    288 	alpha_pal_wrfen(0);
    289 	ALPHA_TBIA();
    290 	alpha_pal_imb();
    291 
    292 	/*
    293 	 * Get critical system information (if possible, from the
    294 	 * information provided by the boot program).
    295 	 */
    296 	bootinfo_msg = NULL;
    297 	if (bim == BOOTINFO_MAGIC) {
    298 		if (biv == 0) {		/* backward compat */
    299 			biv = *(u_long *)bip;
    300 			bip += 8;
    301 		}
    302 		switch (biv) {
    303 		case 1: {
    304 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    305 
    306 			bootinfo.ssym = v1p->ssym;
    307 			bootinfo.esym = v1p->esym;
    308 			/* hwrpb may not be provided by boot block in v1 */
    309 			if (v1p->hwrpb != NULL) {
    310 				bootinfo.hwrpb_phys =
    311 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    312 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    313 			} else {
    314 				bootinfo.hwrpb_phys =
    315 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    316 				bootinfo.hwrpb_size =
    317 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    318 			}
    319 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    320 			    min(sizeof v1p->boot_flags,
    321 			      sizeof bootinfo.boot_flags));
    322 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    323 			    min(sizeof v1p->booted_kernel,
    324 			      sizeof bootinfo.booted_kernel));
    325 			/* booted dev not provided in bootinfo */
    326 			init_prom_interface((struct rpb *)
    327 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    328                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    329 			    sizeof bootinfo.booted_dev);
    330 			break;
    331 		}
    332 		default:
    333 			bootinfo_msg = "unknown bootinfo version";
    334 			goto nobootinfo;
    335 		}
    336 	} else {
    337 		bootinfo_msg = "boot program did not pass bootinfo";
    338 nobootinfo:
    339 		bootinfo.ssym = (u_long)_end;
    340 		bootinfo.esym = (u_long)_end;
    341 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    342 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    343 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    344 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    345 		    sizeof bootinfo.boot_flags);
    346 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    347 		    sizeof bootinfo.booted_kernel);
    348 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    349 		    sizeof bootinfo.booted_dev);
    350 	}
    351 
    352 	/*
    353 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    354 	 * lots of things.
    355 	 */
    356 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    357 
    358 	/*
    359 	 * Remember how many cycles there are per microsecond,
    360 	 * so that we can use delay().  Round up, for safety.
    361 	 */
    362 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    363 
    364 	/*
    365 	 * Initalize the (temporary) bootstrap console interface, so
    366 	 * we can use printf until the VM system starts being setup.
    367 	 * The real console is initialized before then.
    368 	 */
    369 	init_bootstrap_console();
    370 
    371 	/* OUTPUT NOW ALLOWED */
    372 
    373 	/* delayed from above */
    374 	if (bootinfo_msg)
    375 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    376 		    bootinfo_msg, bim, bip, biv);
    377 
    378 	/*
    379 	 * Point interrupt/exception vectors to our own.
    380 	 */
    381 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    382 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    383 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    384 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    385 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    386 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    387 
    388 	/*
    389 	 * Clear pending machine checks and error reports, and enable
    390 	 * system- and processor-correctable error reporting.
    391 	 */
    392 	alpha_pal_wrmces(alpha_pal_rdmces() &
    393 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    394 
    395 	/*
    396 	 * Find out what hardware we're on, and do basic initialization.
    397 	 */
    398 	cputype = hwrpb->rpb_type;
    399 	if (cputype >= ncpuinit) {
    400 		platform_not_supported();
    401 		/* NOTREACHED */
    402 	}
    403 	(*cpuinit[cputype].init)();
    404 	strcpy(cpu_model, platform.model);
    405 
    406 	/*
    407 	 * Initalize the real console, so the the bootstrap console is
    408 	 * no longer necessary.
    409 	 */
    410 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    411 	if (!pmap_uses_prom_console())
    412 #endif
    413 		(*platform.cons_init)();
    414 
    415 #ifdef DIAGNOSTIC
    416 	/* Paranoid sanity checking */
    417 
    418 	/* We should always be running on the the primary. */
    419 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    420 
    421 	/* On single-CPU systypes, the primary should always be CPU 0. */
    422 	if (cputype != ST_DEC_21000)
    423 		assert(hwrpb->rpb_primary_cpu_id == 0);
    424 #endif
    425 
    426 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    427 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    428 	/*
    429 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    430 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    431 	 */
    432 #endif
    433 
    434 	/*
    435 	 * find out this system's page size
    436 	 */
    437 	PAGE_SIZE = hwrpb->rpb_page_size;
    438 	if (PAGE_SIZE != 8192)
    439 		panic("page size %d != 8192?!", PAGE_SIZE);
    440 
    441 	/*
    442 	 * Initialize PAGE_SIZE-dependent variables.
    443 	 */
    444 #if defined(UVM)
    445 	uvm_setpagesize();
    446 #else
    447 	vm_set_page_size();
    448 #endif
    449 
    450 	/*
    451 	 * Find the beginning and end of the kernel (and leave a
    452 	 * bit of space before the beginning for the bootstrap
    453 	 * stack).
    454 	 */
    455 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    456 #ifdef DDB
    457 	ksym_start = (void *)bootinfo.ssym;
    458 	ksym_end   = (void *)bootinfo.esym;
    459 	kernend = (vm_offset_t)round_page(ksym_end);
    460 #else
    461 	kernend = (vm_offset_t)round_page(_end);
    462 #endif
    463 
    464 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    465 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    466 
    467 	/*
    468 	 * Find out how much memory is available, by looking at
    469 	 * the memory cluster descriptors.  This also tries to do
    470 	 * its best to detect things things that have never been seen
    471 	 * before...
    472 	 */
    473 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    474 
    475 	/* MDDT SANITY CHECKING */
    476 	mddtweird = 0;
    477 	if (mddtp->mddt_cluster_cnt < 2) {
    478 		mddtweird = 1;
    479 		printf("WARNING: weird number of mem clusters: %d\n",
    480 		    mddtp->mddt_cluster_cnt);
    481 	}
    482 
    483 #if 0
    484 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    485 #endif
    486 
    487 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    488 		memc = &mddtp->mddt_clusters[i];
    489 #if 0
    490 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    491 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    492 #endif
    493 		totalphysmem += memc->mddt_pg_cnt;
    494 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    495 			mem_clusters[mem_cluster_cnt].start =
    496 			    ptoa(memc->mddt_pfn);
    497 			mem_clusters[mem_cluster_cnt].size =
    498 			    ptoa(memc->mddt_pg_cnt);
    499 			if (memc->mddt_usage & MDDT_mbz ||
    500 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    501 			    memc->mddt_usage & MDDT_PALCODE)
    502 				mem_clusters[mem_cluster_cnt].size |=
    503 				    PROT_READ;
    504 			else
    505 				mem_clusters[mem_cluster_cnt].size |=
    506 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    507 			mem_cluster_cnt++;
    508 		}
    509 
    510 		if (memc->mddt_usage & MDDT_mbz) {
    511 			mddtweird = 1;
    512 			printf("WARNING: mem cluster %d has weird "
    513 			    "usage 0x%lx\n", i, memc->mddt_usage);
    514 			unknownmem += memc->mddt_pg_cnt;
    515 			continue;
    516 		}
    517 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    518 			/* XXX should handle these... */
    519 			printf("WARNING: skipping non-volatile mem "
    520 			    "cluster %d\n", i);
    521 			unusedmem += memc->mddt_pg_cnt;
    522 			continue;
    523 		}
    524 		if (memc->mddt_usage & MDDT_PALCODE) {
    525 			resvmem += memc->mddt_pg_cnt;
    526 			continue;
    527 		}
    528 
    529 		/*
    530 		 * We have a memory cluster available for system
    531 		 * software use.  We must determine if this cluster
    532 		 * holds the kernel.
    533 		 */
    534 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    535 		/*
    536 		 * XXX If the kernel uses the PROM console, we only use the
    537 		 * XXX memory after the kernel in the first system segment,
    538 		 * XXX to avoid clobbering prom mapping, data, etc.
    539 		 */
    540 	    if (!pmap_uses_prom_console() || physmem == 0) {
    541 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    542 		physmem += memc->mddt_pg_cnt;
    543 		pfn0 = memc->mddt_pfn;
    544 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    545 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    546 			/*
    547 			 * Must compute the location of the kernel
    548 			 * within the segment.
    549 			 */
    550 #if 0
    551 			printf("Cluster %d contains kernel\n", i);
    552 #endif
    553 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    554 		    if (!pmap_uses_prom_console()) {
    555 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    556 			if (pfn0 < kernstartpfn) {
    557 				/*
    558 				 * There is a chunk before the kernel.
    559 				 */
    560 #if 0
    561 				printf("Loading chunk before kernel: "
    562 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    563 #endif
    564 #if defined(UVM)
    565 				uvm_page_physload(pfn0, kernstartpfn,
    566 				    pfn0, kernstartpfn);
    567 #else
    568 				vm_page_physload(pfn0, kernstartpfn,
    569 				    pfn0, kernstartpfn);
    570 #endif
    571 			}
    572 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    573 		    }
    574 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    575 			if (kernendpfn < pfn1) {
    576 				/*
    577 				 * There is a chunk after the kernel.
    578 				 */
    579 #if 0
    580 				printf("Loading chunk after kernel: "
    581 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    582 #endif
    583 #if defined(UVM)
    584 				uvm_page_physload(kernendpfn, pfn1,
    585 				    kernendpfn, pfn1);
    586 #else
    587 				vm_page_physload(kernendpfn, pfn1,
    588 				    kernendpfn, pfn1);
    589 #endif
    590 			}
    591 		} else {
    592 			/*
    593 			 * Just load this cluster as one chunk.
    594 			 */
    595 #if 0
    596 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    597 			    pfn0, pfn1);
    598 #endif
    599 #if defined(UVM)
    600 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
    601 #else
    602 			vm_page_physload(pfn0, pfn1, pfn0, pfn1);
    603 #endif
    604 		}
    605 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    606 	    }
    607 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    608 	}
    609 
    610 	/*
    611 	 * Dump out the MDDT if it looks odd...
    612 	 */
    613 	if (mddtweird) {
    614 		printf("\n");
    615 		printf("complete memory cluster information:\n");
    616 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    617 			printf("mddt %d:\n", i);
    618 			printf("\tpfn %lx\n",
    619 			    mddtp->mddt_clusters[i].mddt_pfn);
    620 			printf("\tcnt %lx\n",
    621 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    622 			printf("\ttest %lx\n",
    623 			    mddtp->mddt_clusters[i].mddt_pg_test);
    624 			printf("\tbva %lx\n",
    625 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    626 			printf("\tbpa %lx\n",
    627 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    628 			printf("\tbcksum %lx\n",
    629 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    630 			printf("\tusage %lx\n",
    631 			    mddtp->mddt_clusters[i].mddt_usage);
    632 		}
    633 		printf("\n");
    634 	}
    635 
    636 	if (totalphysmem == 0)
    637 		panic("can't happen: system seems to have no memory!");
    638 
    639 #ifdef LIMITMEM
    640 	/*
    641 	 * XXX Kludge so we can run on machines with memory larger
    642 	 * XXX than 1G until all device drivers are converted to
    643 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    644 	 * XXX sorted in order of increasing addresses.)
    645 	 */
    646 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    647 
    648 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    649 		    LIMITMEM);
    650 
    651 		do {
    652 			u_long ovf;
    653 
    654 			vps = &vm_physmem[vm_nphysseg - 1];
    655 
    656 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    657 				/*
    658 				 * If the start is too high, just drop
    659 				 * the whole segment.
    660 				 *
    661 				 * XXX can start != avail_start in this
    662 				 * XXX case?  wouldn't that mean that
    663 				 * XXX some memory was stolen above the
    664 				 * XXX limit?  What to do?
    665 				 */
    666 				ovf = vps->end - vps->start;
    667 				vm_nphysseg--;
    668 			} else {
    669 				/*
    670 				 * If the start is OK, calculate how much
    671 				 * to drop and drop it.
    672 				 */
    673 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    674 				vps->end -= ovf;
    675 				vps->avail_end -= ovf;
    676 			}
    677 			physmem -= ovf;
    678 			unusedmem += ovf;
    679 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    680 	}
    681 #endif /* LIMITMEM */
    682 
    683 	maxmem = physmem;
    684 
    685 #if 0
    686 	printf("totalphysmem = %d\n", totalphysmem);
    687 	printf("physmem = %d\n", physmem);
    688 	printf("resvmem = %d\n", resvmem);
    689 	printf("unusedmem = %d\n", unusedmem);
    690 	printf("unknownmem = %d\n", unknownmem);
    691 #endif
    692 
    693 	/*
    694 	 * Adjust some parameters if the amount of physmem
    695 	 * available would cause us to croak. This is completely
    696 	 * eyeballed and isn't meant to be the final answer.
    697 	 * vm_phys_size is probably the only one to really worry
    698 	 * about.
    699  	 *
    700 	 * It's for booting a GENERIC kernel on a large memory platform.
    701 	 */
    702 	if (physmem >= atop(128 * 1024 * 1024)) {
    703 		vm_mbuf_size <<= 1;
    704 		vm_kmem_size <<= 3;
    705 		vm_phys_size <<= 2;
    706 	}
    707 
    708 	/*
    709 	 * Initialize error message buffer (at end of core).
    710 	 */
    711 	{
    712 		size_t sz = round_page(MSGBUFSIZE);
    713 
    714 		vps = &vm_physmem[vm_nphysseg - 1];
    715 
    716 		/* shrink so that it'll fit in the last segment */
    717 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    718 			sz = ptoa(vps->avail_end - vps->avail_start);
    719 
    720 		vps->end -= atop(sz);
    721 		vps->avail_end -= atop(sz);
    722 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    723 		initmsgbuf(msgbufaddr, sz);
    724 
    725 		/* Remove the last segment if it now has no pages. */
    726 		if (vps->start == vps->end)
    727 			vm_nphysseg--;
    728 
    729 		/* warn if the message buffer had to be shrunk */
    730 		if (sz != round_page(MSGBUFSIZE))
    731 			printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
    732 			    round_page(MSGBUFSIZE), sz);
    733 
    734 	}
    735 
    736 	/*
    737 	 * Init mapping for u page(s) for proc 0
    738 	 */
    739 	proc0.p_addr = proc0paddr =
    740 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    741 
    742 	/*
    743 	 * Allocate space for system data structures.  These data structures
    744 	 * are allocated here instead of cpu_startup() because physical
    745 	 * memory is directly addressable.  We don't have to map these into
    746 	 * virtual address space.
    747 	 */
    748 	size = (vm_size_t)allocsys(0);
    749 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    750 	if ((allocsys(v) - v) != size)
    751 		panic("alpha_init: table size inconsistency");
    752 
    753 	/*
    754 	 * Initialize the virtual memory system, and set the
    755 	 * page table base register in proc 0's PCB.
    756 	 */
    757 #ifndef NEW_PMAP
    758 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    759 #else
    760 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    761 	    hwrpb->rpb_max_asn);
    762 #endif
    763 
    764 	/*
    765 	 * Initialize the rest of proc 0's PCB, and cache its physical
    766 	 * address.
    767 	 */
    768 	proc0.p_md.md_pcbpaddr =
    769 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    770 
    771 	/*
    772 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    773 	 * and make proc0's trapframe pointer point to it for sanity.
    774 	 */
    775 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    776 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    777 	proc0.p_md.md_tf =
    778 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    779 
    780 #ifdef NEW_PMAP
    781 	/*
    782 	 * Set up the kernel address space in proc0's hwpcb.
    783 	 */
    784 	PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    785 #endif
    786 
    787 	/*
    788 	 * Look at arguments passed to us and compute boothowto.
    789 	 */
    790 
    791 	boothowto = RB_SINGLE;
    792 #ifdef KADB
    793 	boothowto |= RB_KDB;
    794 #endif
    795 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    796 		/*
    797 		 * Note that we'd really like to differentiate case here,
    798 		 * but the Alpha AXP Architecture Reference Manual
    799 		 * says that we shouldn't.
    800 		 */
    801 		switch (*p) {
    802 		case 'a': /* autoboot */
    803 		case 'A':
    804 			boothowto &= ~RB_SINGLE;
    805 			break;
    806 
    807 #ifdef DEBUG
    808 		case 'c': /* crash dump immediately after autoconfig */
    809 		case 'C':
    810 			boothowto |= RB_DUMP;
    811 			break;
    812 #endif
    813 
    814 #if defined(KGDB) || defined(DDB)
    815 		case 'd': /* break into the kernel debugger ASAP */
    816 		case 'D':
    817 			boothowto |= RB_KDB;
    818 			break;
    819 #endif
    820 
    821 		case 'h': /* always halt, never reboot */
    822 		case 'H':
    823 			boothowto |= RB_HALT;
    824 			break;
    825 
    826 #if 0
    827 		case 'm': /* mini root present in memory */
    828 		case 'M':
    829 			boothowto |= RB_MINIROOT;
    830 			break;
    831 #endif
    832 
    833 		case 'n': /* askname */
    834 		case 'N':
    835 			boothowto |= RB_ASKNAME;
    836 			break;
    837 
    838 		case 's': /* single-user (default, supported for sanity) */
    839 		case 'S':
    840 			boothowto |= RB_SINGLE;
    841 			break;
    842 
    843 		default:
    844 			printf("Unrecognized boot flag '%c'.\n", *p);
    845 			break;
    846 		}
    847 	}
    848 
    849 	/*
    850 	 * Initialize debuggers, and break into them if appropriate.
    851 	 */
    852 #ifdef DDB
    853 	db_machine_init();
    854 	ddb_init(ksym_start, ksym_end);
    855 	if (boothowto & RB_KDB)
    856 		Debugger();
    857 #endif
    858 #ifdef KGDB
    859 	if (boothowto & RB_KDB)
    860 		kgdb_connect(0);
    861 #endif
    862 
    863 	/*
    864 	 * Figure out the number of cpus in the box, from RPB fields.
    865 	 * Really.  We mean it.
    866 	 */
    867 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    868 		struct pcs *pcsp;
    869 
    870 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    871 		    (i * hwrpb->rpb_pcs_size));
    872 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    873 			ncpus++;
    874 	}
    875 
    876 	/*
    877 	 * Figure out our clock frequency, from RPB fields.
    878 	 */
    879 	hz = hwrpb->rpb_intr_freq >> 12;
    880 	if (!(60 <= hz && hz <= 10240)) {
    881 		hz = 1024;
    882 #ifdef DIAGNOSTIC
    883 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    884 			hwrpb->rpb_intr_freq, hz);
    885 #endif
    886 	}
    887 
    888 }
    889 
    890 /*
    891  * Allocate space for system data structures.  We are given
    892  * a starting virtual address and we return a final virtual
    893  * address; along the way we set each data structure pointer.
    894  *
    895  * We call allocsys() with 0 to find out how much space we want,
    896  * allocate that much and fill it with zeroes, and the call
    897  * allocsys() again with the correct base virtual address.
    898  */
    899 caddr_t
    900 allocsys(v)
    901 	caddr_t v;
    902 {
    903 
    904 #define valloc(name, type, num) \
    905 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    906 #ifdef REAL_CLISTS
    907 	valloc(cfree, struct cblock, nclist);
    908 #endif
    909 	valloc(callout, struct callout, ncallout);
    910 #ifdef SYSVSHM
    911 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    912 #endif
    913 #ifdef SYSVSEM
    914 	valloc(sema, struct semid_ds, seminfo.semmni);
    915 	valloc(sem, struct sem, seminfo.semmns);
    916 	/* This is pretty disgusting! */
    917 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    918 #endif
    919 #ifdef SYSVMSG
    920 	valloc(msgpool, char, msginfo.msgmax);
    921 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    922 	valloc(msghdrs, struct msg, msginfo.msgtql);
    923 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    924 #endif
    925 
    926 	/*
    927 	 * Determine how many buffers to allocate.
    928 	 * We allocate 10% of memory for buffer space.  Insure a
    929 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    930 	 * headers as file i/o buffers.
    931 	 */
    932 	if (bufpages == 0)
    933 		bufpages = (physmem * 10) / (CLSIZE * 100);
    934 	if (nbuf == 0) {
    935 		nbuf = bufpages;
    936 		if (nbuf < 16)
    937 			nbuf = 16;
    938 	}
    939 	if (nswbuf == 0) {
    940 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    941 		if (nswbuf > 256)
    942 			nswbuf = 256;		/* sanity */
    943 	}
    944 #if !defined(UVM)
    945 	valloc(swbuf, struct buf, nswbuf);
    946 #endif
    947 	valloc(buf, struct buf, nbuf);
    948 	return (v);
    949 #undef valloc
    950 }
    951 
    952 void
    953 consinit()
    954 {
    955 
    956 	/*
    957 	 * Everything related to console initialization is done
    958 	 * in alpha_init().
    959 	 */
    960 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    961 	printf("consinit: %susing prom console\n",
    962 	    pmap_uses_prom_console() ? "" : "not ");
    963 #endif
    964 }
    965 
    966 void
    967 cpu_startup()
    968 {
    969 	register unsigned i;
    970 	int base, residual;
    971 	vm_offset_t minaddr, maxaddr;
    972 	vm_size_t size;
    973 #if defined(DEBUG)
    974 	extern int pmapdebug;
    975 	int opmapdebug = pmapdebug;
    976 
    977 	pmapdebug = 0;
    978 #endif
    979 
    980 	/*
    981 	 * Good {morning,afternoon,evening,night}.
    982 	 */
    983 	printf(version);
    984 	identifycpu();
    985 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
    986 	    ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
    987 	if (unusedmem)
    988 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    989 	if (unknownmem)
    990 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    991 		    ctob(unknownmem));
    992 
    993 	/*
    994 	 * Allocate virtual address space for file I/O buffers.
    995 	 * Note they are different than the array of headers, 'buf',
    996 	 * and usually occupy more virtual memory than physical.
    997 	 */
    998 	size = MAXBSIZE * nbuf;
    999 #if defined(UVM)
   1000 	if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
   1001 		    NULL, UVM_UNKNOWN_OFFSET,
   1002 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1003 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1004 		panic("startup: cannot allocate VM for buffers");
   1005 #else
   1006 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
   1007 	    &maxaddr, size, TRUE);
   1008 	minaddr = (vm_offset_t)buffers;
   1009 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
   1010 			&minaddr, size, FALSE) != KERN_SUCCESS)
   1011 		panic("startup: cannot allocate buffers");
   1012 #endif /* UVM */
   1013 	base = bufpages / nbuf;
   1014 	residual = bufpages % nbuf;
   1015 	for (i = 0; i < nbuf; i++) {
   1016 #if defined(UVM)
   1017 		vm_size_t curbufsize;
   1018 		vm_offset_t curbuf;
   1019 		struct vm_page *pg;
   1020 
   1021 		/*
   1022 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1023 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1024 		 * for the first "residual" buffers, and then we allocate
   1025 		 * "base" pages for the rest.
   1026 		 */
   1027 		curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
   1028 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1029 
   1030 		while (curbufsize) {
   1031 			pg = uvm_pagealloc(NULL, 0, NULL);
   1032 			if (pg == NULL)
   1033 				panic("cpu_startup: not enough memory for "
   1034 				    "buffer cache");
   1035 #if defined(PMAP_NEW)
   1036 			pmap_kenter_pgs(curbuf, &pg, 1);
   1037 #else
   1038 			pmap_enter(kernel_map->pmap, curbuf,
   1039 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1040 #endif
   1041 			curbuf += PAGE_SIZE;
   1042 			curbufsize -= PAGE_SIZE;
   1043 		}
   1044 #else /* ! UVM */
   1045 		vm_size_t curbufsize;
   1046 		vm_offset_t curbuf;
   1047 
   1048 		/*
   1049 		 * First <residual> buffers get (base+1) physical pages
   1050 		 * allocated for them.  The rest get (base) physical pages.
   1051 		 *
   1052 		 * The rest of each buffer occupies virtual space,
   1053 		 * but has no physical memory allocated for it.
   1054 		 */
   1055 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
   1056 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
   1057 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
   1058 		vm_map_simplify(buffer_map, curbuf);
   1059 #endif /* UVM */
   1060 	}
   1061 	/*
   1062 	 * Allocate a submap for exec arguments.  This map effectively
   1063 	 * limits the number of processes exec'ing at any time.
   1064 	 */
   1065 #if defined(UVM)
   1066 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1067 				   16 * NCARGS, TRUE, FALSE, NULL);
   1068 #else
   1069 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1070 				 16 * NCARGS, TRUE);
   1071 #endif
   1072 
   1073 	/*
   1074 	 * Allocate a submap for physio
   1075 	 */
   1076 #if defined(UVM)
   1077 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1078 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1079 #else
   1080 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1081 				 VM_PHYS_SIZE, TRUE);
   1082 #endif
   1083 
   1084 	/*
   1085 	 * Finally, allocate mbuf cluster submap.
   1086 	 */
   1087 #if defined(UVM)
   1088 	mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1089 				 VM_MBUF_SIZE, FALSE, FALSE, NULL);
   1090 #else
   1091 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1092 			       VM_MBUF_SIZE, FALSE);
   1093 #endif
   1094 	/*
   1095 	 * Initialize callouts
   1096 	 */
   1097 	callfree = callout;
   1098 	for (i = 1; i < ncallout; i++)
   1099 		callout[i-1].c_next = &callout[i];
   1100 	callout[i-1].c_next = NULL;
   1101 
   1102 #if defined(DEBUG)
   1103 	pmapdebug = opmapdebug;
   1104 #endif
   1105 #if defined(UVM)
   1106 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1107 #else
   1108 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
   1109 #endif
   1110 	printf("using %ld buffers containing %ld bytes of memory\n",
   1111 		(long)nbuf, (long)(bufpages * CLBYTES));
   1112 
   1113 	/*
   1114 	 * Set up buffers, so they can be used to read disk labels.
   1115 	 */
   1116 	bufinit();
   1117 
   1118 	/*
   1119 	 * Configure the system.
   1120 	 */
   1121 	configure();
   1122 
   1123 	/*
   1124 	 * Note that bootstrapping is finished, and set the HWRPB up
   1125 	 * to do restarts.
   1126 	 */
   1127 	hwrpb_restart_setup();
   1128 }
   1129 
   1130 /*
   1131  * Retrieve the platform name from the DSR.
   1132  */
   1133 const char *
   1134 alpha_dsr_sysname()
   1135 {
   1136 	struct dsrdb *dsr;
   1137 	const char *sysname;
   1138 
   1139 	/*
   1140 	 * DSR does not exist on early HWRPB versions.
   1141 	 */
   1142 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1143 		return (NULL);
   1144 
   1145 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1146 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1147 	    sizeof(u_int64_t)));
   1148 	return (sysname);
   1149 }
   1150 
   1151 /*
   1152  * Lookup the system specified system variation in the provided table,
   1153  * returning the model string on match.
   1154  */
   1155 const char *
   1156 alpha_variation_name(variation, avtp)
   1157 	u_int64_t variation;
   1158 	const struct alpha_variation_table *avtp;
   1159 {
   1160 	int i;
   1161 
   1162 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1163 		if (avtp[i].avt_variation == variation)
   1164 			return (avtp[i].avt_model);
   1165 	return (NULL);
   1166 }
   1167 
   1168 /*
   1169  * Generate a default platform name based for unknown system variations.
   1170  */
   1171 const char *
   1172 alpha_unknown_sysname()
   1173 {
   1174 	static char s[128];		/* safe size */
   1175 
   1176 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1177 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1178 	return ((const char *)s);
   1179 }
   1180 
   1181 void
   1182 identifycpu()
   1183 {
   1184 
   1185 	/*
   1186 	 * print out CPU identification information.
   1187 	 */
   1188 	printf("%s, %ldMHz\n", cpu_model,
   1189 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1190 	printf("%ld byte page size, %d processor%s.\n",
   1191 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1192 #if 0
   1193 	/* this isn't defined for any systems that we run on? */
   1194 	printf("serial number 0x%lx 0x%lx\n",
   1195 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1196 
   1197 	/* and these aren't particularly useful! */
   1198 	printf("variation: 0x%lx, revision 0x%lx\n",
   1199 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1200 #endif
   1201 }
   1202 
   1203 int	waittime = -1;
   1204 struct pcb dumppcb;
   1205 
   1206 void
   1207 cpu_reboot(howto, bootstr)
   1208 	int howto;
   1209 	char *bootstr;
   1210 {
   1211 	extern int cold;
   1212 
   1213 	/* If system is cold, just halt. */
   1214 	if (cold) {
   1215 		howto |= RB_HALT;
   1216 		goto haltsys;
   1217 	}
   1218 
   1219 	/* If "always halt" was specified as a boot flag, obey. */
   1220 	if ((boothowto & RB_HALT) != 0)
   1221 		howto |= RB_HALT;
   1222 
   1223 	boothowto = howto;
   1224 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1225 		waittime = 0;
   1226 		vfs_shutdown();
   1227 		/*
   1228 		 * If we've been adjusting the clock, the todr
   1229 		 * will be out of synch; adjust it now.
   1230 		 */
   1231 		resettodr();
   1232 	}
   1233 
   1234 	/* Disable interrupts. */
   1235 	splhigh();
   1236 
   1237 	/* If rebooting and a dump is requested do it. */
   1238 #if 0
   1239 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1240 #else
   1241 	if (howto & RB_DUMP)
   1242 #endif
   1243 		dumpsys();
   1244 
   1245 haltsys:
   1246 
   1247 	/* run any shutdown hooks */
   1248 	doshutdownhooks();
   1249 
   1250 #ifdef BOOTKEY
   1251 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1252 	cngetc();
   1253 	printf("\n");
   1254 #endif
   1255 
   1256 	/* Finally, halt/reboot the system. */
   1257 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1258 	prom_halt(howto & RB_HALT);
   1259 	/*NOTREACHED*/
   1260 }
   1261 
   1262 /*
   1263  * These variables are needed by /sbin/savecore
   1264  */
   1265 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1266 int 	dumpsize = 0;		/* pages */
   1267 long	dumplo = 0; 		/* blocks */
   1268 
   1269 /*
   1270  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1271  */
   1272 int
   1273 cpu_dumpsize()
   1274 {
   1275 	int size;
   1276 
   1277 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1278 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1279 	if (roundup(size, dbtob(1)) != dbtob(1))
   1280 		return -1;
   1281 
   1282 	return (1);
   1283 }
   1284 
   1285 /*
   1286  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1287  */
   1288 u_long
   1289 cpu_dump_mempagecnt()
   1290 {
   1291 	u_long i, n;
   1292 
   1293 	n = 0;
   1294 	for (i = 0; i < mem_cluster_cnt; i++)
   1295 		n += atop(mem_clusters[i].size);
   1296 	return (n);
   1297 }
   1298 
   1299 /*
   1300  * cpu_dump: dump machine-dependent kernel core dump headers.
   1301  */
   1302 int
   1303 cpu_dump()
   1304 {
   1305 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1306 	char buf[dbtob(1)];
   1307 	kcore_seg_t *segp;
   1308 	cpu_kcore_hdr_t *cpuhdrp;
   1309 	phys_ram_seg_t *memsegp;
   1310 	int i;
   1311 
   1312 	dump = bdevsw[major(dumpdev)].d_dump;
   1313 
   1314 	bzero(buf, sizeof buf);
   1315 	segp = (kcore_seg_t *)buf;
   1316 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1317 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1318 	    ALIGN(sizeof(*cpuhdrp))];
   1319 
   1320 	/*
   1321 	 * Generate a segment header.
   1322 	 */
   1323 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1324 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1325 
   1326 	/*
   1327 	 * Add the machine-dependent header info.
   1328 	 */
   1329 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
   1330 	cpuhdrp->page_size = PAGE_SIZE;
   1331 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1332 
   1333 	/*
   1334 	 * Fill in the memory segment descriptors.
   1335 	 */
   1336 	for (i = 0; i < mem_cluster_cnt; i++) {
   1337 		memsegp[i].start = mem_clusters[i].start;
   1338 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1339 	}
   1340 
   1341 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1342 }
   1343 
   1344 /*
   1345  * This is called by main to set dumplo and dumpsize.
   1346  * Dumps always skip the first CLBYTES of disk space
   1347  * in case there might be a disk label stored there.
   1348  * If there is extra space, put dump at the end to
   1349  * reduce the chance that swapping trashes it.
   1350  */
   1351 void
   1352 cpu_dumpconf()
   1353 {
   1354 	int nblks, dumpblks;	/* size of dump area */
   1355 	int maj;
   1356 
   1357 	if (dumpdev == NODEV)
   1358 		goto bad;
   1359 	maj = major(dumpdev);
   1360 	if (maj < 0 || maj >= nblkdev)
   1361 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1362 	if (bdevsw[maj].d_psize == NULL)
   1363 		goto bad;
   1364 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1365 	if (nblks <= ctod(1))
   1366 		goto bad;
   1367 
   1368 	dumpblks = cpu_dumpsize();
   1369 	if (dumpblks < 0)
   1370 		goto bad;
   1371 	dumpblks += ctod(cpu_dump_mempagecnt());
   1372 
   1373 	/* If dump won't fit (incl. room for possible label), punt. */
   1374 	if (dumpblks > (nblks - ctod(1)))
   1375 		goto bad;
   1376 
   1377 	/* Put dump at end of partition */
   1378 	dumplo = nblks - dumpblks;
   1379 
   1380 	/* dumpsize is in page units, and doesn't include headers. */
   1381 	dumpsize = cpu_dump_mempagecnt();
   1382 	return;
   1383 
   1384 bad:
   1385 	dumpsize = 0;
   1386 	return;
   1387 }
   1388 
   1389 /*
   1390  * Dump the kernel's image to the swap partition.
   1391  */
   1392 #define	BYTES_PER_DUMP	NBPG
   1393 
   1394 void
   1395 dumpsys()
   1396 {
   1397 	u_long totalbytesleft, bytes, i, n, memcl;
   1398 	u_long maddr;
   1399 	int psize;
   1400 	daddr_t blkno;
   1401 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1402 	int error;
   1403 
   1404 	/* Save registers. */
   1405 	savectx(&dumppcb);
   1406 
   1407 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1408 	if (dumpdev == NODEV)
   1409 		return;
   1410 
   1411 	/*
   1412 	 * For dumps during autoconfiguration,
   1413 	 * if dump device has already configured...
   1414 	 */
   1415 	if (dumpsize == 0)
   1416 		cpu_dumpconf();
   1417 	if (dumplo <= 0) {
   1418 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1419 		    minor(dumpdev));
   1420 		return;
   1421 	}
   1422 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1423 	    minor(dumpdev), dumplo);
   1424 
   1425 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1426 	printf("dump ");
   1427 	if (psize == -1) {
   1428 		printf("area unavailable\n");
   1429 		return;
   1430 	}
   1431 
   1432 	/* XXX should purge all outstanding keystrokes. */
   1433 
   1434 	if ((error = cpu_dump()) != 0)
   1435 		goto err;
   1436 
   1437 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1438 	blkno = dumplo + cpu_dumpsize();
   1439 	dump = bdevsw[major(dumpdev)].d_dump;
   1440 	error = 0;
   1441 
   1442 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1443 		maddr = mem_clusters[memcl].start;
   1444 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1445 
   1446 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1447 
   1448 			/* Print out how many MBs we to go. */
   1449 			if ((totalbytesleft % (1024*1024)) == 0)
   1450 				printf("%d ", totalbytesleft / (1024 * 1024));
   1451 
   1452 			/* Limit size for next transfer. */
   1453 			n = bytes - i;
   1454 			if (n > BYTES_PER_DUMP)
   1455 				n =  BYTES_PER_DUMP;
   1456 
   1457 			error = (*dump)(dumpdev, blkno,
   1458 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1459 			if (error)
   1460 				goto err;
   1461 			maddr += n;
   1462 			blkno += btodb(n);			/* XXX? */
   1463 
   1464 			/* XXX should look for keystrokes, to cancel. */
   1465 		}
   1466 	}
   1467 
   1468 err:
   1469 	switch (error) {
   1470 
   1471 	case ENXIO:
   1472 		printf("device bad\n");
   1473 		break;
   1474 
   1475 	case EFAULT:
   1476 		printf("device not ready\n");
   1477 		break;
   1478 
   1479 	case EINVAL:
   1480 		printf("area improper\n");
   1481 		break;
   1482 
   1483 	case EIO:
   1484 		printf("i/o error\n");
   1485 		break;
   1486 
   1487 	case EINTR:
   1488 		printf("aborted from console\n");
   1489 		break;
   1490 
   1491 	case 0:
   1492 		printf("succeeded\n");
   1493 		break;
   1494 
   1495 	default:
   1496 		printf("error %d\n", error);
   1497 		break;
   1498 	}
   1499 	printf("\n\n");
   1500 	delay(1000);
   1501 }
   1502 
   1503 void
   1504 frametoreg(framep, regp)
   1505 	struct trapframe *framep;
   1506 	struct reg *regp;
   1507 {
   1508 
   1509 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1510 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1511 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1512 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1513 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1514 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1515 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1516 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1517 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1518 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1519 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1520 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1521 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1522 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1523 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1524 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1525 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1526 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1527 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1528 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1529 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1530 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1531 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1532 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1533 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1534 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1535 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1536 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1537 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1538 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1539 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1540 	regp->r_regs[R_ZERO] = 0;
   1541 }
   1542 
   1543 void
   1544 regtoframe(regp, framep)
   1545 	struct reg *regp;
   1546 	struct trapframe *framep;
   1547 {
   1548 
   1549 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1550 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1551 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1552 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1553 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1554 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1555 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1556 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1557 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1558 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1559 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1560 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1561 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1562 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1563 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1564 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1565 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1566 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1567 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1568 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1569 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1570 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1571 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1572 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1573 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1574 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1575 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1576 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1577 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1578 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1579 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1580 	/* ??? = regp->r_regs[R_ZERO]; */
   1581 }
   1582 
   1583 void
   1584 printregs(regp)
   1585 	struct reg *regp;
   1586 {
   1587 	int i;
   1588 
   1589 	for (i = 0; i < 32; i++)
   1590 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1591 		   i & 1 ? "\n" : "\t");
   1592 }
   1593 
   1594 void
   1595 regdump(framep)
   1596 	struct trapframe *framep;
   1597 {
   1598 	struct reg reg;
   1599 
   1600 	frametoreg(framep, &reg);
   1601 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1602 
   1603 	printf("REGISTERS:\n");
   1604 	printregs(&reg);
   1605 }
   1606 
   1607 #ifdef DEBUG
   1608 int sigdebug = 0;
   1609 int sigpid = 0;
   1610 #define	SDB_FOLLOW	0x01
   1611 #define	SDB_KSTACK	0x02
   1612 #endif
   1613 
   1614 /*
   1615  * Send an interrupt to process.
   1616  */
   1617 void
   1618 sendsig(catcher, sig, mask, code)
   1619 	sig_t catcher;
   1620 	int sig, mask;
   1621 	u_long code;
   1622 {
   1623 	struct proc *p = curproc;
   1624 	struct sigcontext *scp, ksc;
   1625 	struct trapframe *frame;
   1626 	struct sigacts *psp = p->p_sigacts;
   1627 	int oonstack, fsize, rndfsize;
   1628 	extern char sigcode[], esigcode[];
   1629 	extern struct proc *fpcurproc;
   1630 
   1631 	frame = p->p_md.md_tf;
   1632 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1633 	fsize = sizeof ksc;
   1634 	rndfsize = ((fsize + 15) / 16) * 16;
   1635 	/*
   1636 	 * Allocate and validate space for the signal handler
   1637 	 * context. Note that if the stack is in P0 space, the
   1638 	 * call to grow() is a nop, and the useracc() check
   1639 	 * will fail if the process has not already allocated
   1640 	 * the space with a `brk'.
   1641 	 */
   1642 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1643 	    (psp->ps_sigonstack & sigmask(sig))) {
   1644 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1645 		    psp->ps_sigstk.ss_size - rndfsize);
   1646 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1647 	} else
   1648 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1649 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1650 #if defined(UVM)
   1651 		(void)uvm_grow(p, (u_long)scp);
   1652 #else
   1653 		(void)grow(p, (u_long)scp);
   1654 #endif
   1655 #ifdef DEBUG
   1656 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1657 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1658 		    sig, &oonstack, scp);
   1659 #endif
   1660 #if defined(UVM)
   1661 	if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1662 #else
   1663 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1664 #endif
   1665 #ifdef DEBUG
   1666 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1667 			printf("sendsig(%d): useracc failed on sig %d\n",
   1668 			    p->p_pid, sig);
   1669 #endif
   1670 		/*
   1671 		 * Process has trashed its stack; give it an illegal
   1672 		 * instruction to halt it in its tracks.
   1673 		 */
   1674 		SIGACTION(p, SIGILL) = SIG_DFL;
   1675 		sig = sigmask(SIGILL);
   1676 		p->p_sigignore &= ~sig;
   1677 		p->p_sigcatch &= ~sig;
   1678 		p->p_sigmask &= ~sig;
   1679 		psignal(p, SIGILL);
   1680 		return;
   1681 	}
   1682 
   1683 	/*
   1684 	 * Build the signal context to be used by sigreturn.
   1685 	 */
   1686 	ksc.sc_onstack = oonstack;
   1687 	ksc.sc_mask = mask;
   1688 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1689 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1690 
   1691 	/* copy the registers. */
   1692 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1693 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1694 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1695 
   1696 	/* save the floating-point state, if necessary, then copy it. */
   1697 	if (p == fpcurproc) {
   1698 		alpha_pal_wrfen(1);
   1699 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1700 		alpha_pal_wrfen(0);
   1701 		fpcurproc = NULL;
   1702 	}
   1703 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1704 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1705 	    sizeof(struct fpreg));
   1706 	ksc.sc_fp_control = 0;					/* XXX ? */
   1707 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1708 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1709 
   1710 
   1711 #ifdef COMPAT_OSF1
   1712 	/*
   1713 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1714 	 */
   1715 #endif
   1716 
   1717 	/*
   1718 	 * copy the frame out to userland.
   1719 	 */
   1720 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1721 #ifdef DEBUG
   1722 	if (sigdebug & SDB_FOLLOW)
   1723 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1724 		    scp, code);
   1725 #endif
   1726 
   1727 	/*
   1728 	 * Set up the registers to return to sigcode.
   1729 	 */
   1730 	frame->tf_regs[FRAME_PC] =
   1731 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1732 	frame->tf_regs[FRAME_A0] = sig;
   1733 	frame->tf_regs[FRAME_A1] = code;
   1734 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1735 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1736 	alpha_pal_wrusp((unsigned long)scp);
   1737 
   1738 #ifdef DEBUG
   1739 	if (sigdebug & SDB_FOLLOW)
   1740 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1741 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1742 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1743 		printf("sendsig(%d): sig %d returns\n",
   1744 		    p->p_pid, sig);
   1745 #endif
   1746 }
   1747 
   1748 /*
   1749  * System call to cleanup state after a signal
   1750  * has been taken.  Reset signal mask and
   1751  * stack state from context left by sendsig (above).
   1752  * Return to previous pc and psl as specified by
   1753  * context left by sendsig. Check carefully to
   1754  * make sure that the user has not modified the
   1755  * psl to gain improper priviledges or to cause
   1756  * a machine fault.
   1757  */
   1758 /* ARGSUSED */
   1759 int
   1760 sys_sigreturn(p, v, retval)
   1761 	struct proc *p;
   1762 	void *v;
   1763 	register_t *retval;
   1764 {
   1765 	struct sys_sigreturn_args /* {
   1766 		syscallarg(struct sigcontext *) sigcntxp;
   1767 	} */ *uap = v;
   1768 	struct sigcontext *scp, ksc;
   1769 	extern struct proc *fpcurproc;
   1770 
   1771 	scp = SCARG(uap, sigcntxp);
   1772 #ifdef DEBUG
   1773 	if (sigdebug & SDB_FOLLOW)
   1774 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1775 #endif
   1776 
   1777 	if (ALIGN(scp) != (u_int64_t)scp)
   1778 		return (EINVAL);
   1779 
   1780 	/*
   1781 	 * Test and fetch the context structure.
   1782 	 * We grab it all at once for speed.
   1783 	 */
   1784 #if defined(UVM)
   1785 	if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1786 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1787 		return (EINVAL);
   1788 #else
   1789 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1790 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1791 		return (EINVAL);
   1792 #endif
   1793 
   1794 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1795 		return (EINVAL);
   1796 	/*
   1797 	 * Restore the user-supplied information
   1798 	 */
   1799 	if (ksc.sc_onstack)
   1800 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1801 	else
   1802 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1803 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1804 
   1805 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1806 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1807 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1808 
   1809 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1810 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1811 
   1812 	/* XXX ksc.sc_ownedfp ? */
   1813 	if (p == fpcurproc)
   1814 		fpcurproc = NULL;
   1815 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1816 	    sizeof(struct fpreg));
   1817 	/* XXX ksc.sc_fp_control ? */
   1818 
   1819 #ifdef DEBUG
   1820 	if (sigdebug & SDB_FOLLOW)
   1821 		printf("sigreturn(%d): returns\n", p->p_pid);
   1822 #endif
   1823 	return (EJUSTRETURN);
   1824 }
   1825 
   1826 /*
   1827  * machine dependent system variables.
   1828  */
   1829 int
   1830 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1831 	int *name;
   1832 	u_int namelen;
   1833 	void *oldp;
   1834 	size_t *oldlenp;
   1835 	void *newp;
   1836 	size_t newlen;
   1837 	struct proc *p;
   1838 {
   1839 	dev_t consdev;
   1840 
   1841 	/* all sysctl names at this level are terminal */
   1842 	if (namelen != 1)
   1843 		return (ENOTDIR);		/* overloaded */
   1844 
   1845 	switch (name[0]) {
   1846 	case CPU_CONSDEV:
   1847 		if (cn_tab != NULL)
   1848 			consdev = cn_tab->cn_dev;
   1849 		else
   1850 			consdev = NODEV;
   1851 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1852 			sizeof consdev));
   1853 
   1854 	case CPU_ROOT_DEVICE:
   1855 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1856 		    root_device->dv_xname));
   1857 
   1858 	case CPU_UNALIGNED_PRINT:
   1859 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1860 		    &alpha_unaligned_print));
   1861 
   1862 	case CPU_UNALIGNED_FIX:
   1863 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1864 		    &alpha_unaligned_fix));
   1865 
   1866 	case CPU_UNALIGNED_SIGBUS:
   1867 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1868 		    &alpha_unaligned_sigbus));
   1869 
   1870 	case CPU_BOOTED_KERNEL:
   1871 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1872 		    bootinfo.booted_kernel));
   1873 
   1874 	default:
   1875 		return (EOPNOTSUPP);
   1876 	}
   1877 	/* NOTREACHED */
   1878 }
   1879 
   1880 /*
   1881  * Set registers on exec.
   1882  */
   1883 void
   1884 setregs(p, pack, stack)
   1885 	register struct proc *p;
   1886 	struct exec_package *pack;
   1887 	u_long stack;
   1888 {
   1889 	struct trapframe *tfp = p->p_md.md_tf;
   1890 	extern struct proc *fpcurproc;
   1891 #ifdef DEBUG
   1892 	int i;
   1893 #endif
   1894 
   1895 #ifdef DEBUG
   1896 	/*
   1897 	 * Crash and dump, if the user requested it.
   1898 	 */
   1899 	if (boothowto & RB_DUMP)
   1900 		panic("crash requested by boot flags");
   1901 #endif
   1902 
   1903 #ifdef DEBUG
   1904 	for (i = 0; i < FRAME_SIZE; i++)
   1905 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1906 #else
   1907 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1908 #endif
   1909 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1910 #define FP_RN 2 /* XXX */
   1911 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1912 	alpha_pal_wrusp(stack);
   1913 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1914 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1915 
   1916 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1917 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1918 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1919 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1920 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1921 
   1922 	p->p_md.md_flags &= ~MDP_FPUSED;
   1923 	if (fpcurproc == p)
   1924 		fpcurproc = NULL;
   1925 }
   1926 
   1927 void
   1928 netintr()
   1929 {
   1930 	int n, s;
   1931 
   1932 	s = splhigh();
   1933 	n = netisr;
   1934 	netisr = 0;
   1935 	splx(s);
   1936 
   1937 #define	DONETISR(bit, fn)						\
   1938 	do {								\
   1939 		if (n & (1 << (bit)))					\
   1940 			fn;						\
   1941 	} while (0)
   1942 
   1943 #ifdef INET
   1944 #if NARP > 0
   1945 	DONETISR(NETISR_ARP, arpintr());
   1946 #endif
   1947 	DONETISR(NETISR_IP, ipintr());
   1948 #endif
   1949 #ifdef NETATALK
   1950 	DONETISR(NETISR_ATALK, atintr());
   1951 #endif
   1952 #ifdef NS
   1953 	DONETISR(NETISR_NS, nsintr());
   1954 #endif
   1955 #ifdef ISO
   1956 	DONETISR(NETISR_ISO, clnlintr());
   1957 #endif
   1958 #ifdef CCITT
   1959 	DONETISR(NETISR_CCITT, ccittintr());
   1960 #endif
   1961 #ifdef NATM
   1962 	DONETISR(NETISR_NATM, natmintr());
   1963 #endif
   1964 #if NPPP > 1
   1965 	DONETISR(NETISR_PPP, pppintr());
   1966 #endif
   1967 
   1968 #undef DONETISR
   1969 }
   1970 
   1971 void
   1972 do_sir()
   1973 {
   1974 	u_int64_t n;
   1975 
   1976 	do {
   1977 		(void)splhigh();
   1978 		n = ssir;
   1979 		ssir = 0;
   1980 		splsoft();		/* don't recurse through spl0() */
   1981 
   1982 #if defined(UVM)
   1983 #define	COUNT_SOFT	uvmexp.softs++
   1984 #else
   1985 #define	COUNT_SOFT	cnt.v_soft++
   1986 #endif
   1987 
   1988 #define	DO_SIR(bit, fn)							\
   1989 		do {							\
   1990 			if (n & (bit)) {				\
   1991 				COUNT_SOFT;				\
   1992 				fn;					\
   1993 			}						\
   1994 		} while (0)
   1995 
   1996 		DO_SIR(SIR_NET, netintr());
   1997 		DO_SIR(SIR_CLOCK, softclock());
   1998 
   1999 #undef COUNT_SOFT
   2000 #undef DO_SIR
   2001 	} while (ssir != 0);
   2002 }
   2003 
   2004 int
   2005 spl0()
   2006 {
   2007 
   2008 	if (ssir)
   2009 		do_sir();		/* it lowers the IPL itself */
   2010 
   2011 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2012 }
   2013 
   2014 /*
   2015  * The following primitives manipulate the run queues.  _whichqs tells which
   2016  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2017  * into queues, Remrunqueue removes them from queues.  The running process is
   2018  * on no queue, other processes are on a queue related to p->p_priority,
   2019  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2020  * available queues.
   2021  */
   2022 /*
   2023  * setrunqueue(p)
   2024  *	proc *p;
   2025  *
   2026  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2027  */
   2028 
   2029 void
   2030 setrunqueue(p)
   2031 	struct proc *p;
   2032 {
   2033 	int bit;
   2034 
   2035 	/* firewall: p->p_back must be NULL */
   2036 	if (p->p_back != NULL)
   2037 		panic("setrunqueue");
   2038 
   2039 	bit = p->p_priority >> 2;
   2040 	whichqs |= (1 << bit);
   2041 	p->p_forw = (struct proc *)&qs[bit];
   2042 	p->p_back = qs[bit].ph_rlink;
   2043 	p->p_back->p_forw = p;
   2044 	qs[bit].ph_rlink = p;
   2045 }
   2046 
   2047 /*
   2048  * remrunqueue(p)
   2049  *
   2050  * Call should be made at splclock().
   2051  */
   2052 void
   2053 remrunqueue(p)
   2054 	struct proc *p;
   2055 {
   2056 	int bit;
   2057 
   2058 	bit = p->p_priority >> 2;
   2059 	if ((whichqs & (1 << bit)) == 0)
   2060 		panic("remrunqueue");
   2061 
   2062 	p->p_back->p_forw = p->p_forw;
   2063 	p->p_forw->p_back = p->p_back;
   2064 	p->p_back = NULL;	/* for firewall checking. */
   2065 
   2066 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2067 		whichqs &= ~(1 << bit);
   2068 }
   2069 
   2070 /*
   2071  * Return the best possible estimate of the time in the timeval
   2072  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2073  * We guarantee that the time will be greater than the value obtained by a
   2074  * previous call.
   2075  */
   2076 void
   2077 microtime(tvp)
   2078 	register struct timeval *tvp;
   2079 {
   2080 	int s = splclock();
   2081 	static struct timeval lasttime;
   2082 
   2083 	*tvp = time;
   2084 #ifdef notdef
   2085 	tvp->tv_usec += clkread();
   2086 	while (tvp->tv_usec > 1000000) {
   2087 		tvp->tv_sec++;
   2088 		tvp->tv_usec -= 1000000;
   2089 	}
   2090 #endif
   2091 	if (tvp->tv_sec == lasttime.tv_sec &&
   2092 	    tvp->tv_usec <= lasttime.tv_usec &&
   2093 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2094 		tvp->tv_sec++;
   2095 		tvp->tv_usec -= 1000000;
   2096 	}
   2097 	lasttime = *tvp;
   2098 	splx(s);
   2099 }
   2100 
   2101 /*
   2102  * Wait "n" microseconds.
   2103  */
   2104 void
   2105 delay(n)
   2106 	unsigned long n;
   2107 {
   2108 	long N = cycles_per_usec * (n);
   2109 
   2110 	while (N > 0)				/* XXX */
   2111 		N -= 3;				/* XXX */
   2112 }
   2113 
   2114 #if defined(COMPAT_OSF1) || 1		/* XXX */
   2115 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2116 	    u_long));
   2117 
   2118 void
   2119 cpu_exec_ecoff_setregs(p, epp, stack)
   2120 	struct proc *p;
   2121 	struct exec_package *epp;
   2122 	u_long stack;
   2123 {
   2124 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2125 
   2126 	setregs(p, epp, stack);
   2127 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2128 }
   2129 
   2130 /*
   2131  * cpu_exec_ecoff_hook():
   2132  *	cpu-dependent ECOFF format hook for execve().
   2133  *
   2134  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2135  *
   2136  */
   2137 int
   2138 cpu_exec_ecoff_hook(p, epp)
   2139 	struct proc *p;
   2140 	struct exec_package *epp;
   2141 {
   2142 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2143 	extern struct emul emul_netbsd;
   2144 #ifdef COMPAT_OSF1
   2145 	extern struct emul emul_osf1;
   2146 #endif
   2147 
   2148 	switch (execp->f.f_magic) {
   2149 #ifdef COMPAT_OSF1
   2150 	case ECOFF_MAGIC_ALPHA:
   2151 		epp->ep_emul = &emul_osf1;
   2152 		break;
   2153 #endif
   2154 
   2155 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2156 		epp->ep_emul = &emul_netbsd;
   2157 		break;
   2158 
   2159 	default:
   2160 		return ENOEXEC;
   2161 	}
   2162 	return 0;
   2163 }
   2164 #endif
   2165 
   2166 int
   2167 alpha_pa_access(pa)
   2168 	u_long pa;
   2169 {
   2170 	int i;
   2171 
   2172 	for (i = 0; i < mem_cluster_cnt; i++) {
   2173 		if (pa < mem_clusters[i].start)
   2174 			continue;
   2175 		if ((pa - mem_clusters[i].start) >=
   2176 		    (mem_clusters[i].size & ~PAGE_MASK))
   2177 			continue;
   2178 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2179 	}
   2180 	return (PROT_NONE);
   2181 }
   2182 
   2183 /* XXX XXX BEGIN XXX XXX */
   2184 vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   2185 								/* XXX */
   2186 vm_offset_t							/* XXX */
   2187 alpha_XXX_dmamap(v)						/* XXX */
   2188 	vm_offset_t v;						/* XXX */
   2189 {								/* XXX */
   2190 								/* XXX */
   2191 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2192 }								/* XXX */
   2193 /* XXX XXX END XXX XXX */
   2194