machdep.c revision 1.116 1 /* $NetBSD: machdep.c,v 1.116 1998/04/15 00:46:41 mjacob Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_uvm.h"
68 #include "opt_pmap_new.h"
69
70 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
71
72 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.116 1998/04/15 00:46:41 mjacob Exp $");
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/signalvar.h>
77 #include <sys/kernel.h>
78 #include <sys/map.h>
79 #include <sys/proc.h>
80 #include <sys/buf.h>
81 #include <sys/reboot.h>
82 #include <sys/device.h>
83 #include <sys/file.h>
84 #ifdef REAL_CLISTS
85 #include <sys/clist.h>
86 #endif
87 #include <sys/callout.h>
88 #include <sys/malloc.h>
89 #include <sys/mbuf.h>
90 #include <sys/mman.h>
91 #include <sys/msgbuf.h>
92 #include <sys/ioctl.h>
93 #include <sys/tty.h>
94 #include <sys/user.h>
95 #include <sys/exec.h>
96 #include <sys/exec_ecoff.h>
97 #include <vm/vm.h>
98 #include <sys/sysctl.h>
99 #include <sys/core.h>
100 #include <sys/kcore.h>
101 #include <machine/kcore.h>
102 #ifdef SYSVMSG
103 #include <sys/msg.h>
104 #endif
105 #ifdef SYSVSEM
106 #include <sys/sem.h>
107 #endif
108 #ifdef SYSVSHM
109 #include <sys/shm.h>
110 #endif
111
112 #include <sys/mount.h>
113 #include <sys/syscallargs.h>
114
115 #include <vm/vm_kern.h>
116
117 #if defined(UVM)
118 #include <uvm/uvm_extern.h>
119 #endif
120
121 #include <dev/cons.h>
122
123 #include <machine/autoconf.h>
124 #include <machine/cpu.h>
125 #include <machine/reg.h>
126 #include <machine/rpb.h>
127 #include <machine/prom.h>
128 #include <machine/conf.h>
129
130 #include <net/netisr.h>
131 #include <net/if.h>
132
133 #ifdef INET
134 #include <netinet/in.h>
135 #include <netinet/ip_var.h>
136 #include "arp.h"
137 #if NARP > 0
138 #include <netinet/if_inarp.h>
139 #endif
140 #endif
141 #ifdef NS
142 #include <netns/ns_var.h>
143 #endif
144 #ifdef ISO
145 #include <netiso/iso.h>
146 #include <netiso/clnp.h>
147 #endif
148 #ifdef CCITT
149 #include <netccitt/x25.h>
150 #include <netccitt/pk.h>
151 #include <netccitt/pk_extern.h>
152 #endif
153 #ifdef NATM
154 #include <netnatm/natm.h>
155 #endif
156 #ifdef NETATALK
157 #include <netatalk/at_extern.h>
158 #endif
159 #include "ppp.h"
160 #if NPPP > 0
161 #include <net/ppp_defs.h>
162 #include <net/if_ppp.h>
163 #endif
164
165 #ifdef DDB
166 #include <machine/db_machdep.h>
167 #include <ddb/db_access.h>
168 #include <ddb/db_sym.h>
169 #include <ddb/db_extern.h>
170 #include <ddb/db_interface.h>
171 #endif
172
173 #if defined(UVM)
174 vm_map_t exec_map = NULL;
175 vm_map_t mb_map = NULL;
176 vm_map_t phys_map = NULL;
177 #else
178 vm_map_t buffer_map;
179 #endif
180
181 /*
182 * Declare these as initialized data so we can patch them.
183 */
184 int nswbuf = 0;
185 #ifdef NBUF
186 int nbuf = NBUF;
187 #else
188 int nbuf = 0;
189 #endif
190 #ifdef BUFPAGES
191 int bufpages = BUFPAGES;
192 #else
193 int bufpages = 0;
194 #endif
195 caddr_t msgbufaddr;
196
197 int maxmem; /* max memory per process */
198
199 int totalphysmem; /* total amount of physical memory in system */
200 int physmem; /* physical memory used by NetBSD + some rsvd */
201 int resvmem; /* amount of memory reserved for PROM */
202 int unusedmem; /* amount of memory for OS that we don't use */
203 int unknownmem; /* amount of memory with an unknown use */
204
205 int cputype; /* system type, from the RPB */
206
207 /*
208 * XXX We need an address to which we can assign things so that they
209 * won't be optimized away because we didn't use the value.
210 */
211 u_int32_t no_optimize;
212
213 /* the following is used externally (sysctl_hw) */
214 char machine[] = MACHINE; /* from <machine/param.h> */
215 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
216 char cpu_model[128];
217
218 struct user *proc0paddr;
219
220 /* Number of machine cycles per microsecond */
221 u_int64_t cycles_per_usec;
222
223 /* number of cpus in the box. really! */
224 int ncpus;
225
226 struct bootinfo_kernel bootinfo;
227
228 struct platform platform;
229
230 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
231 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
232 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
233
234 #ifdef DDB
235 /* start and end of kernel symbol table */
236 void *ksym_start, *ksym_end;
237 #endif
238
239 /* for cpu_sysctl() */
240 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
241 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
242 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
243
244 /*
245 * XXX This should be dynamically sized, but we have the chicken-egg problem!
246 * XXX it should also be larger than it is, because not all of the mddt
247 * XXX clusters end up being used for VM.
248 */
249 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
250 int mem_cluster_cnt;
251
252 caddr_t allocsys __P((caddr_t));
253 int cpu_dump __P((void));
254 int cpu_dumpsize __P((void));
255 u_long cpu_dump_mempagecnt __P((void));
256 void dumpsys __P((void));
257 void identifycpu __P((void));
258 void netintr __P((void));
259 void printregs __P((struct reg *));
260
261 void
262 alpha_init(pfn, ptb, bim, bip, biv)
263 u_long pfn; /* first free PFN number */
264 u_long ptb; /* PFN of current level 1 page table */
265 u_long bim; /* bootinfo magic */
266 u_long bip; /* bootinfo pointer */
267 u_long biv; /* bootinfo version */
268 {
269 extern char kernel_text[], _end[];
270 struct mddt *mddtp;
271 struct mddt_cluster *memc;
272 int i, mddtweird;
273 struct vm_physseg *vps;
274 vm_offset_t kernstart, kernend;
275 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
276 vm_size_t size;
277 char *p;
278 caddr_t v;
279 char *bootinfo_msg;
280
281 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
282
283 /*
284 * Turn off interrupts (not mchecks) and floating point.
285 * Make sure the instruction and data streams are consistent.
286 */
287 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
288 alpha_pal_wrfen(0);
289 ALPHA_TBIA();
290 alpha_pal_imb();
291
292 /*
293 * Get critical system information (if possible, from the
294 * information provided by the boot program).
295 */
296 bootinfo_msg = NULL;
297 if (bim == BOOTINFO_MAGIC) {
298 if (biv == 0) { /* backward compat */
299 biv = *(u_long *)bip;
300 bip += 8;
301 }
302 switch (biv) {
303 case 1: {
304 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
305
306 bootinfo.ssym = v1p->ssym;
307 bootinfo.esym = v1p->esym;
308 /* hwrpb may not be provided by boot block in v1 */
309 if (v1p->hwrpb != NULL) {
310 bootinfo.hwrpb_phys =
311 ((struct rpb *)v1p->hwrpb)->rpb_phys;
312 bootinfo.hwrpb_size = v1p->hwrpbsize;
313 } else {
314 bootinfo.hwrpb_phys =
315 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
316 bootinfo.hwrpb_size =
317 ((struct rpb *)HWRPB_ADDR)->rpb_size;
318 }
319 bcopy(v1p->boot_flags, bootinfo.boot_flags,
320 min(sizeof v1p->boot_flags,
321 sizeof bootinfo.boot_flags));
322 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
323 min(sizeof v1p->booted_kernel,
324 sizeof bootinfo.booted_kernel));
325 /* booted dev not provided in bootinfo */
326 init_prom_interface((struct rpb *)
327 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
328 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
329 sizeof bootinfo.booted_dev);
330 break;
331 }
332 default:
333 bootinfo_msg = "unknown bootinfo version";
334 goto nobootinfo;
335 }
336 } else {
337 bootinfo_msg = "boot program did not pass bootinfo";
338 nobootinfo:
339 bootinfo.ssym = (u_long)_end;
340 bootinfo.esym = (u_long)_end;
341 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
342 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
343 init_prom_interface((struct rpb *)HWRPB_ADDR);
344 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
345 sizeof bootinfo.boot_flags);
346 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
347 sizeof bootinfo.booted_kernel);
348 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
349 sizeof bootinfo.booted_dev);
350 }
351
352 /*
353 * Initialize the kernel's mapping of the RPB. It's needed for
354 * lots of things.
355 */
356 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
357
358 /*
359 * Remember how many cycles there are per microsecond,
360 * so that we can use delay(). Round up, for safety.
361 */
362 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
363
364 /*
365 * Initalize the (temporary) bootstrap console interface, so
366 * we can use printf until the VM system starts being setup.
367 * The real console is initialized before then.
368 */
369 init_bootstrap_console();
370
371 /* OUTPUT NOW ALLOWED */
372
373 /* delayed from above */
374 if (bootinfo_msg)
375 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
376 bootinfo_msg, bim, bip, biv);
377
378 /*
379 * Point interrupt/exception vectors to our own.
380 */
381 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
382 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
383 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
384 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
385 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
386 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
387
388 /*
389 * Clear pending machine checks and error reports, and enable
390 * system- and processor-correctable error reporting.
391 */
392 alpha_pal_wrmces(alpha_pal_rdmces() &
393 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
394
395 /*
396 * Find out what hardware we're on, and do basic initialization.
397 */
398 cputype = hwrpb->rpb_type;
399 if (cputype >= ncpuinit) {
400 platform_not_supported();
401 /* NOTREACHED */
402 }
403 (*cpuinit[cputype].init)();
404 strcpy(cpu_model, platform.model);
405
406 /*
407 * Initalize the real console, so the the bootstrap console is
408 * no longer necessary.
409 */
410 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
411 if (!pmap_uses_prom_console())
412 #endif
413 (*platform.cons_init)();
414
415 #ifdef DIAGNOSTIC
416 /* Paranoid sanity checking */
417
418 /* We should always be running on the the primary. */
419 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
420
421 /*
422 * On single-CPU systypes, the primary should always be CPU 0,
423 * except on Alpha 8200 systems where the CPU id is related
424 * to the VID, which is related to the Turbo Laser node id.
425 */
426 if (cputype != ST_DEC_21000)
427 assert(hwrpb->rpb_primary_cpu_id == 0);
428 #endif
429
430 /* NO MORE FIRMWARE ACCESS ALLOWED */
431 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
432 /*
433 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
434 * XXX pmap_uses_prom_console() evaluates to non-zero.)
435 */
436 #endif
437
438 /*
439 * find out this system's page size
440 */
441 PAGE_SIZE = hwrpb->rpb_page_size;
442 if (PAGE_SIZE != 8192)
443 panic("page size %d != 8192?!", PAGE_SIZE);
444
445 /*
446 * Initialize PAGE_SIZE-dependent variables.
447 */
448 #if defined(UVM)
449 uvm_setpagesize();
450 #else
451 vm_set_page_size();
452 #endif
453
454 /*
455 * Find the beginning and end of the kernel (and leave a
456 * bit of space before the beginning for the bootstrap
457 * stack).
458 */
459 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
460 #ifdef DDB
461 ksym_start = (void *)bootinfo.ssym;
462 ksym_end = (void *)bootinfo.esym;
463 kernend = (vm_offset_t)round_page(ksym_end);
464 #else
465 kernend = (vm_offset_t)round_page(_end);
466 #endif
467
468 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
469 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
470
471 /*
472 * Find out how much memory is available, by looking at
473 * the memory cluster descriptors. This also tries to do
474 * its best to detect things things that have never been seen
475 * before...
476 */
477 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
478
479 /* MDDT SANITY CHECKING */
480 mddtweird = 0;
481 if (mddtp->mddt_cluster_cnt < 2) {
482 mddtweird = 1;
483 printf("WARNING: weird number of mem clusters: %d\n",
484 mddtp->mddt_cluster_cnt);
485 }
486
487 #if 0
488 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
489 #endif
490
491 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
492 memc = &mddtp->mddt_clusters[i];
493 #if 0
494 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
495 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
496 #endif
497 totalphysmem += memc->mddt_pg_cnt;
498 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
499 mem_clusters[mem_cluster_cnt].start =
500 ptoa(memc->mddt_pfn);
501 mem_clusters[mem_cluster_cnt].size =
502 ptoa(memc->mddt_pg_cnt);
503 if (memc->mddt_usage & MDDT_mbz ||
504 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
505 memc->mddt_usage & MDDT_PALCODE)
506 mem_clusters[mem_cluster_cnt].size |=
507 PROT_READ;
508 else
509 mem_clusters[mem_cluster_cnt].size |=
510 PROT_READ | PROT_WRITE | PROT_EXEC;
511 mem_cluster_cnt++;
512 }
513
514 if (memc->mddt_usage & MDDT_mbz) {
515 mddtweird = 1;
516 printf("WARNING: mem cluster %d has weird "
517 "usage 0x%lx\n", i, memc->mddt_usage);
518 unknownmem += memc->mddt_pg_cnt;
519 continue;
520 }
521 if (memc->mddt_usage & MDDT_NONVOLATILE) {
522 /* XXX should handle these... */
523 printf("WARNING: skipping non-volatile mem "
524 "cluster %d\n", i);
525 unusedmem += memc->mddt_pg_cnt;
526 continue;
527 }
528 if (memc->mddt_usage & MDDT_PALCODE) {
529 resvmem += memc->mddt_pg_cnt;
530 continue;
531 }
532
533 /*
534 * We have a memory cluster available for system
535 * software use. We must determine if this cluster
536 * holds the kernel.
537 */
538 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
539 /*
540 * XXX If the kernel uses the PROM console, we only use the
541 * XXX memory after the kernel in the first system segment,
542 * XXX to avoid clobbering prom mapping, data, etc.
543 */
544 if (!pmap_uses_prom_console() || physmem == 0) {
545 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
546 physmem += memc->mddt_pg_cnt;
547 pfn0 = memc->mddt_pfn;
548 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
549 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
550 /*
551 * Must compute the location of the kernel
552 * within the segment.
553 */
554 #if 0
555 printf("Cluster %d contains kernel\n", i);
556 #endif
557 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
558 if (!pmap_uses_prom_console()) {
559 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
560 if (pfn0 < kernstartpfn) {
561 /*
562 * There is a chunk before the kernel.
563 */
564 #if 0
565 printf("Loading chunk before kernel: "
566 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
567 #endif
568 #if defined(UVM)
569 uvm_page_physload(pfn0, kernstartpfn,
570 pfn0, kernstartpfn);
571 #else
572 vm_page_physload(pfn0, kernstartpfn,
573 pfn0, kernstartpfn);
574 #endif
575 }
576 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
577 }
578 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
579 if (kernendpfn < pfn1) {
580 /*
581 * There is a chunk after the kernel.
582 */
583 #if 0
584 printf("Loading chunk after kernel: "
585 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
586 #endif
587 #if defined(UVM)
588 uvm_page_physload(kernendpfn, pfn1,
589 kernendpfn, pfn1);
590 #else
591 vm_page_physload(kernendpfn, pfn1,
592 kernendpfn, pfn1);
593 #endif
594 }
595 } else {
596 /*
597 * Just load this cluster as one chunk.
598 */
599 #if 0
600 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
601 pfn0, pfn1);
602 #endif
603 #if defined(UVM)
604 uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
605 #else
606 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
607 #endif
608 }
609 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
610 }
611 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
612 }
613
614 /*
615 * Dump out the MDDT if it looks odd...
616 */
617 if (mddtweird) {
618 printf("\n");
619 printf("complete memory cluster information:\n");
620 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
621 printf("mddt %d:\n", i);
622 printf("\tpfn %lx\n",
623 mddtp->mddt_clusters[i].mddt_pfn);
624 printf("\tcnt %lx\n",
625 mddtp->mddt_clusters[i].mddt_pg_cnt);
626 printf("\ttest %lx\n",
627 mddtp->mddt_clusters[i].mddt_pg_test);
628 printf("\tbva %lx\n",
629 mddtp->mddt_clusters[i].mddt_v_bitaddr);
630 printf("\tbpa %lx\n",
631 mddtp->mddt_clusters[i].mddt_p_bitaddr);
632 printf("\tbcksum %lx\n",
633 mddtp->mddt_clusters[i].mddt_bit_cksum);
634 printf("\tusage %lx\n",
635 mddtp->mddt_clusters[i].mddt_usage);
636 }
637 printf("\n");
638 }
639
640 if (totalphysmem == 0)
641 panic("can't happen: system seems to have no memory!");
642
643 #ifdef LIMITMEM
644 /*
645 * XXX Kludge so we can run on machines with memory larger
646 * XXX than 1G until all device drivers are converted to
647 * XXX use bus_dma. (Relies on the fact that vm_physmem
648 * XXX sorted in order of increasing addresses.)
649 */
650 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
651
652 printf("******** LIMITING MEMORY TO %dMB **********\n",
653 LIMITMEM);
654
655 do {
656 u_long ovf;
657
658 vps = &vm_physmem[vm_nphysseg - 1];
659
660 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
661 /*
662 * If the start is too high, just drop
663 * the whole segment.
664 *
665 * XXX can start != avail_start in this
666 * XXX case? wouldn't that mean that
667 * XXX some memory was stolen above the
668 * XXX limit? What to do?
669 */
670 ovf = vps->end - vps->start;
671 vm_nphysseg--;
672 } else {
673 /*
674 * If the start is OK, calculate how much
675 * to drop and drop it.
676 */
677 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
678 vps->end -= ovf;
679 vps->avail_end -= ovf;
680 }
681 physmem -= ovf;
682 unusedmem += ovf;
683 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
684 }
685 #endif /* LIMITMEM */
686
687 maxmem = physmem;
688
689 #if 0
690 printf("totalphysmem = %d\n", totalphysmem);
691 printf("physmem = %d\n", physmem);
692 printf("resvmem = %d\n", resvmem);
693 printf("unusedmem = %d\n", unusedmem);
694 printf("unknownmem = %d\n", unknownmem);
695 #endif
696
697 /*
698 * Adjust some parameters if the amount of physmem
699 * available would cause us to croak. This is completely
700 * eyeballed and isn't meant to be the final answer.
701 * vm_phys_size is probably the only one to really worry
702 * about.
703 *
704 * It's for booting a GENERIC kernel on a large memory platform.
705 */
706 if (physmem >= atop(128 * 1024 * 1024)) {
707 vm_mbuf_size <<= 1;
708 vm_kmem_size <<= 3;
709 vm_phys_size <<= 2;
710 }
711
712 /*
713 * Initialize error message buffer (at end of core).
714 */
715 {
716 size_t sz = round_page(MSGBUFSIZE);
717
718 vps = &vm_physmem[vm_nphysseg - 1];
719
720 /* shrink so that it'll fit in the last segment */
721 if ((vps->avail_end - vps->avail_start) < atop(sz))
722 sz = ptoa(vps->avail_end - vps->avail_start);
723
724 vps->end -= atop(sz);
725 vps->avail_end -= atop(sz);
726 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
727 initmsgbuf(msgbufaddr, sz);
728
729 /* Remove the last segment if it now has no pages. */
730 if (vps->start == vps->end)
731 vm_nphysseg--;
732
733 /* warn if the message buffer had to be shrunk */
734 if (sz != round_page(MSGBUFSIZE))
735 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
736 round_page(MSGBUFSIZE), sz);
737
738 }
739
740 /*
741 * Init mapping for u page(s) for proc 0
742 */
743 proc0.p_addr = proc0paddr =
744 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
745
746 /*
747 * Allocate space for system data structures. These data structures
748 * are allocated here instead of cpu_startup() because physical
749 * memory is directly addressable. We don't have to map these into
750 * virtual address space.
751 */
752 size = (vm_size_t)allocsys(0);
753 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
754 if ((allocsys(v) - v) != size)
755 panic("alpha_init: table size inconsistency");
756
757 /*
758 * Initialize the virtual memory system, and set the
759 * page table base register in proc 0's PCB.
760 */
761 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
762 hwrpb->rpb_max_asn);
763
764 /*
765 * Initialize the rest of proc 0's PCB, and cache its physical
766 * address.
767 */
768 proc0.p_md.md_pcbpaddr =
769 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
770
771 /*
772 * Set the kernel sp, reserving space for an (empty) trapframe,
773 * and make proc0's trapframe pointer point to it for sanity.
774 */
775 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
776 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
777 proc0.p_md.md_tf =
778 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
779
780 /*
781 * Look at arguments passed to us and compute boothowto.
782 */
783
784 boothowto = RB_SINGLE;
785 #ifdef KADB
786 boothowto |= RB_KDB;
787 #endif
788 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
789 /*
790 * Note that we'd really like to differentiate case here,
791 * but the Alpha AXP Architecture Reference Manual
792 * says that we shouldn't.
793 */
794 switch (*p) {
795 case 'a': /* autoboot */
796 case 'A':
797 boothowto &= ~RB_SINGLE;
798 break;
799
800 #ifdef DEBUG
801 case 'c': /* crash dump immediately after autoconfig */
802 case 'C':
803 boothowto |= RB_DUMP;
804 break;
805 #endif
806
807 #if defined(KGDB) || defined(DDB)
808 case 'd': /* break into the kernel debugger ASAP */
809 case 'D':
810 boothowto |= RB_KDB;
811 break;
812 #endif
813
814 case 'h': /* always halt, never reboot */
815 case 'H':
816 boothowto |= RB_HALT;
817 break;
818
819 #if 0
820 case 'm': /* mini root present in memory */
821 case 'M':
822 boothowto |= RB_MINIROOT;
823 break;
824 #endif
825
826 case 'n': /* askname */
827 case 'N':
828 boothowto |= RB_ASKNAME;
829 break;
830
831 case 's': /* single-user (default, supported for sanity) */
832 case 'S':
833 boothowto |= RB_SINGLE;
834 break;
835
836 default:
837 printf("Unrecognized boot flag '%c'.\n", *p);
838 break;
839 }
840 }
841
842 /*
843 * Initialize debuggers, and break into them if appropriate.
844 */
845 #ifdef DDB
846 db_machine_init();
847 ddb_init(ksym_start, ksym_end);
848 if (boothowto & RB_KDB)
849 Debugger();
850 #endif
851 #ifdef KGDB
852 if (boothowto & RB_KDB)
853 kgdb_connect(0);
854 #endif
855
856 /*
857 * Figure out the number of cpus in the box, from RPB fields.
858 * Really. We mean it.
859 */
860 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
861 struct pcs *pcsp;
862
863 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
864 (i * hwrpb->rpb_pcs_size));
865 if ((pcsp->pcs_flags & PCS_PP) != 0)
866 ncpus++;
867 }
868
869 /*
870 * Figure out our clock frequency, from RPB fields.
871 */
872 hz = hwrpb->rpb_intr_freq >> 12;
873 if (!(60 <= hz && hz <= 10240)) {
874 hz = 1024;
875 #ifdef DIAGNOSTIC
876 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
877 hwrpb->rpb_intr_freq, hz);
878 #endif
879 }
880
881 }
882
883 /*
884 * Allocate space for system data structures. We are given
885 * a starting virtual address and we return a final virtual
886 * address; along the way we set each data structure pointer.
887 *
888 * We call allocsys() with 0 to find out how much space we want,
889 * allocate that much and fill it with zeroes, and the call
890 * allocsys() again with the correct base virtual address.
891 */
892 caddr_t
893 allocsys(v)
894 caddr_t v;
895 {
896
897 #define valloc(name, type, num) \
898 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
899 #ifdef REAL_CLISTS
900 valloc(cfree, struct cblock, nclist);
901 #endif
902 valloc(callout, struct callout, ncallout);
903 #ifdef SYSVSHM
904 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
905 #endif
906 #ifdef SYSVSEM
907 valloc(sema, struct semid_ds, seminfo.semmni);
908 valloc(sem, struct sem, seminfo.semmns);
909 /* This is pretty disgusting! */
910 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
911 #endif
912 #ifdef SYSVMSG
913 valloc(msgpool, char, msginfo.msgmax);
914 valloc(msgmaps, struct msgmap, msginfo.msgseg);
915 valloc(msghdrs, struct msg, msginfo.msgtql);
916 valloc(msqids, struct msqid_ds, msginfo.msgmni);
917 #endif
918
919 /*
920 * Determine how many buffers to allocate.
921 * We allocate 10% of memory for buffer space. Insure a
922 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
923 * headers as file i/o buffers.
924 */
925 if (bufpages == 0)
926 bufpages = (physmem * 10) / (CLSIZE * 100);
927 if (nbuf == 0) {
928 nbuf = bufpages;
929 if (nbuf < 16)
930 nbuf = 16;
931 }
932 if (nswbuf == 0) {
933 nswbuf = (nbuf / 2) &~ 1; /* force even */
934 if (nswbuf > 256)
935 nswbuf = 256; /* sanity */
936 }
937 #if !defined(UVM)
938 valloc(swbuf, struct buf, nswbuf);
939 #endif
940 valloc(buf, struct buf, nbuf);
941 return (v);
942 #undef valloc
943 }
944
945 void
946 consinit()
947 {
948
949 /*
950 * Everything related to console initialization is done
951 * in alpha_init().
952 */
953 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
954 printf("consinit: %susing prom console\n",
955 pmap_uses_prom_console() ? "" : "not ");
956 #endif
957 }
958
959 void
960 cpu_startup()
961 {
962 register unsigned i;
963 int base, residual;
964 vm_offset_t minaddr, maxaddr;
965 vm_size_t size;
966 #if defined(DEBUG)
967 extern int pmapdebug;
968 int opmapdebug = pmapdebug;
969
970 pmapdebug = 0;
971 #endif
972
973 /*
974 * Good {morning,afternoon,evening,night}.
975 */
976 printf(version);
977 identifycpu();
978 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
979 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
980 if (unusedmem)
981 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
982 if (unknownmem)
983 printf("WARNING: %d bytes of memory with unknown purpose\n",
984 ctob(unknownmem));
985
986 /*
987 * Allocate virtual address space for file I/O buffers.
988 * Note they are different than the array of headers, 'buf',
989 * and usually occupy more virtual memory than physical.
990 */
991 size = MAXBSIZE * nbuf;
992 #if defined(UVM)
993 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
994 NULL, UVM_UNKNOWN_OFFSET,
995 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
996 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
997 panic("startup: cannot allocate VM for buffers");
998 #else
999 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1000 &maxaddr, size, TRUE);
1001 minaddr = (vm_offset_t)buffers;
1002 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1003 &minaddr, size, FALSE) != KERN_SUCCESS)
1004 panic("startup: cannot allocate buffers");
1005 #endif /* UVM */
1006 base = bufpages / nbuf;
1007 residual = bufpages % nbuf;
1008 for (i = 0; i < nbuf; i++) {
1009 #if defined(UVM)
1010 vm_size_t curbufsize;
1011 vm_offset_t curbuf;
1012 struct vm_page *pg;
1013
1014 /*
1015 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1016 * that MAXBSIZE space, we allocate and map (base+1) pages
1017 * for the first "residual" buffers, and then we allocate
1018 * "base" pages for the rest.
1019 */
1020 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1021 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1022
1023 while (curbufsize) {
1024 pg = uvm_pagealloc(NULL, 0, NULL);
1025 if (pg == NULL)
1026 panic("cpu_startup: not enough memory for "
1027 "buffer cache");
1028 #if defined(PMAP_NEW)
1029 pmap_kenter_pgs(curbuf, &pg, 1);
1030 #else
1031 pmap_enter(kernel_map->pmap, curbuf,
1032 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1033 #endif
1034 curbuf += PAGE_SIZE;
1035 curbufsize -= PAGE_SIZE;
1036 }
1037 #else /* ! UVM */
1038 vm_size_t curbufsize;
1039 vm_offset_t curbuf;
1040
1041 /*
1042 * First <residual> buffers get (base+1) physical pages
1043 * allocated for them. The rest get (base) physical pages.
1044 *
1045 * The rest of each buffer occupies virtual space,
1046 * but has no physical memory allocated for it.
1047 */
1048 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1049 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1050 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1051 vm_map_simplify(buffer_map, curbuf);
1052 #endif /* UVM */
1053 }
1054 /*
1055 * Allocate a submap for exec arguments. This map effectively
1056 * limits the number of processes exec'ing at any time.
1057 */
1058 #if defined(UVM)
1059 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1060 16 * NCARGS, TRUE, FALSE, NULL);
1061 #else
1062 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1063 16 * NCARGS, TRUE);
1064 #endif
1065
1066 /*
1067 * Allocate a submap for physio
1068 */
1069 #if defined(UVM)
1070 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1071 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1072 #else
1073 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1074 VM_PHYS_SIZE, TRUE);
1075 #endif
1076
1077 /*
1078 * Finally, allocate mbuf cluster submap.
1079 */
1080 #if defined(UVM)
1081 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1082 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1083 #else
1084 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1085 VM_MBUF_SIZE, FALSE);
1086 #endif
1087 /*
1088 * Initialize callouts
1089 */
1090 callfree = callout;
1091 for (i = 1; i < ncallout; i++)
1092 callout[i-1].c_next = &callout[i];
1093 callout[i-1].c_next = NULL;
1094
1095 #if defined(DEBUG)
1096 pmapdebug = opmapdebug;
1097 #endif
1098 #if defined(UVM)
1099 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1100 #else
1101 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1102 #endif
1103 printf("using %ld buffers containing %ld bytes of memory\n",
1104 (long)nbuf, (long)(bufpages * CLBYTES));
1105
1106 /*
1107 * Set up buffers, so they can be used to read disk labels.
1108 */
1109 bufinit();
1110
1111 /*
1112 * Configure the system.
1113 */
1114 configure();
1115
1116 /*
1117 * Note that bootstrapping is finished, and set the HWRPB up
1118 * to do restarts.
1119 */
1120 hwrpb_restart_setup();
1121 }
1122
1123 /*
1124 * Retrieve the platform name from the DSR.
1125 */
1126 const char *
1127 alpha_dsr_sysname()
1128 {
1129 struct dsrdb *dsr;
1130 const char *sysname;
1131
1132 /*
1133 * DSR does not exist on early HWRPB versions.
1134 */
1135 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1136 return (NULL);
1137
1138 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1139 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1140 sizeof(u_int64_t)));
1141 return (sysname);
1142 }
1143
1144 /*
1145 * Lookup the system specified system variation in the provided table,
1146 * returning the model string on match.
1147 */
1148 const char *
1149 alpha_variation_name(variation, avtp)
1150 u_int64_t variation;
1151 const struct alpha_variation_table *avtp;
1152 {
1153 int i;
1154
1155 for (i = 0; avtp[i].avt_model != NULL; i++)
1156 if (avtp[i].avt_variation == variation)
1157 return (avtp[i].avt_model);
1158 return (NULL);
1159 }
1160
1161 /*
1162 * Generate a default platform name based for unknown system variations.
1163 */
1164 const char *
1165 alpha_unknown_sysname()
1166 {
1167 static char s[128]; /* safe size */
1168
1169 sprintf(s, "%s family, unknown model variation 0x%lx",
1170 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1171 return ((const char *)s);
1172 }
1173
1174 void
1175 identifycpu()
1176 {
1177
1178 /*
1179 * print out CPU identification information.
1180 */
1181 printf("%s, %ldMHz\n", cpu_model,
1182 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1183 printf("%ld byte page size, %d processor%s.\n",
1184 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1185 #if 0
1186 /* this isn't defined for any systems that we run on? */
1187 printf("serial number 0x%lx 0x%lx\n",
1188 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1189
1190 /* and these aren't particularly useful! */
1191 printf("variation: 0x%lx, revision 0x%lx\n",
1192 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1193 #endif
1194 }
1195
1196 int waittime = -1;
1197 struct pcb dumppcb;
1198
1199 void
1200 cpu_reboot(howto, bootstr)
1201 int howto;
1202 char *bootstr;
1203 {
1204 extern int cold;
1205
1206 /* If system is cold, just halt. */
1207 if (cold) {
1208 howto |= RB_HALT;
1209 goto haltsys;
1210 }
1211
1212 /* If "always halt" was specified as a boot flag, obey. */
1213 if ((boothowto & RB_HALT) != 0)
1214 howto |= RB_HALT;
1215
1216 boothowto = howto;
1217 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1218 waittime = 0;
1219 vfs_shutdown();
1220 /*
1221 * If we've been adjusting the clock, the todr
1222 * will be out of synch; adjust it now.
1223 */
1224 resettodr();
1225 }
1226
1227 /* Disable interrupts. */
1228 splhigh();
1229
1230 /* If rebooting and a dump is requested do it. */
1231 #if 0
1232 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1233 #else
1234 if (howto & RB_DUMP)
1235 #endif
1236 dumpsys();
1237
1238 haltsys:
1239
1240 /* run any shutdown hooks */
1241 doshutdownhooks();
1242
1243 #ifdef BOOTKEY
1244 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1245 cngetc();
1246 printf("\n");
1247 #endif
1248
1249 /* Finally, halt/reboot the system. */
1250 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1251 prom_halt(howto & RB_HALT);
1252 /*NOTREACHED*/
1253 }
1254
1255 /*
1256 * These variables are needed by /sbin/savecore
1257 */
1258 u_long dumpmag = 0x8fca0101; /* magic number */
1259 int dumpsize = 0; /* pages */
1260 long dumplo = 0; /* blocks */
1261
1262 /*
1263 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1264 */
1265 int
1266 cpu_dumpsize()
1267 {
1268 int size;
1269
1270 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1271 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1272 if (roundup(size, dbtob(1)) != dbtob(1))
1273 return -1;
1274
1275 return (1);
1276 }
1277
1278 /*
1279 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1280 */
1281 u_long
1282 cpu_dump_mempagecnt()
1283 {
1284 u_long i, n;
1285
1286 n = 0;
1287 for (i = 0; i < mem_cluster_cnt; i++)
1288 n += atop(mem_clusters[i].size);
1289 return (n);
1290 }
1291
1292 /*
1293 * cpu_dump: dump machine-dependent kernel core dump headers.
1294 */
1295 int
1296 cpu_dump()
1297 {
1298 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1299 char buf[dbtob(1)];
1300 kcore_seg_t *segp;
1301 cpu_kcore_hdr_t *cpuhdrp;
1302 phys_ram_seg_t *memsegp;
1303 int i;
1304
1305 dump = bdevsw[major(dumpdev)].d_dump;
1306
1307 bzero(buf, sizeof buf);
1308 segp = (kcore_seg_t *)buf;
1309 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1310 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1311 ALIGN(sizeof(*cpuhdrp))];
1312
1313 /*
1314 * Generate a segment header.
1315 */
1316 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1317 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1318
1319 /*
1320 * Add the machine-dependent header info.
1321 */
1322 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
1323 cpuhdrp->page_size = PAGE_SIZE;
1324 cpuhdrp->nmemsegs = mem_cluster_cnt;
1325
1326 /*
1327 * Fill in the memory segment descriptors.
1328 */
1329 for (i = 0; i < mem_cluster_cnt; i++) {
1330 memsegp[i].start = mem_clusters[i].start;
1331 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1332 }
1333
1334 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1335 }
1336
1337 /*
1338 * This is called by main to set dumplo and dumpsize.
1339 * Dumps always skip the first CLBYTES of disk space
1340 * in case there might be a disk label stored there.
1341 * If there is extra space, put dump at the end to
1342 * reduce the chance that swapping trashes it.
1343 */
1344 void
1345 cpu_dumpconf()
1346 {
1347 int nblks, dumpblks; /* size of dump area */
1348 int maj;
1349
1350 if (dumpdev == NODEV)
1351 goto bad;
1352 maj = major(dumpdev);
1353 if (maj < 0 || maj >= nblkdev)
1354 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1355 if (bdevsw[maj].d_psize == NULL)
1356 goto bad;
1357 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1358 if (nblks <= ctod(1))
1359 goto bad;
1360
1361 dumpblks = cpu_dumpsize();
1362 if (dumpblks < 0)
1363 goto bad;
1364 dumpblks += ctod(cpu_dump_mempagecnt());
1365
1366 /* If dump won't fit (incl. room for possible label), punt. */
1367 if (dumpblks > (nblks - ctod(1)))
1368 goto bad;
1369
1370 /* Put dump at end of partition */
1371 dumplo = nblks - dumpblks;
1372
1373 /* dumpsize is in page units, and doesn't include headers. */
1374 dumpsize = cpu_dump_mempagecnt();
1375 return;
1376
1377 bad:
1378 dumpsize = 0;
1379 return;
1380 }
1381
1382 /*
1383 * Dump the kernel's image to the swap partition.
1384 */
1385 #define BYTES_PER_DUMP NBPG
1386
1387 void
1388 dumpsys()
1389 {
1390 u_long totalbytesleft, bytes, i, n, memcl;
1391 u_long maddr;
1392 int psize;
1393 daddr_t blkno;
1394 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1395 int error;
1396
1397 /* Save registers. */
1398 savectx(&dumppcb);
1399
1400 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1401 if (dumpdev == NODEV)
1402 return;
1403
1404 /*
1405 * For dumps during autoconfiguration,
1406 * if dump device has already configured...
1407 */
1408 if (dumpsize == 0)
1409 cpu_dumpconf();
1410 if (dumplo <= 0) {
1411 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1412 minor(dumpdev));
1413 return;
1414 }
1415 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1416 minor(dumpdev), dumplo);
1417
1418 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1419 printf("dump ");
1420 if (psize == -1) {
1421 printf("area unavailable\n");
1422 return;
1423 }
1424
1425 /* XXX should purge all outstanding keystrokes. */
1426
1427 if ((error = cpu_dump()) != 0)
1428 goto err;
1429
1430 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1431 blkno = dumplo + cpu_dumpsize();
1432 dump = bdevsw[major(dumpdev)].d_dump;
1433 error = 0;
1434
1435 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1436 maddr = mem_clusters[memcl].start;
1437 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1438
1439 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1440
1441 /* Print out how many MBs we to go. */
1442 if ((totalbytesleft % (1024*1024)) == 0)
1443 printf("%d ", totalbytesleft / (1024 * 1024));
1444
1445 /* Limit size for next transfer. */
1446 n = bytes - i;
1447 if (n > BYTES_PER_DUMP)
1448 n = BYTES_PER_DUMP;
1449
1450 error = (*dump)(dumpdev, blkno,
1451 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1452 if (error)
1453 goto err;
1454 maddr += n;
1455 blkno += btodb(n); /* XXX? */
1456
1457 /* XXX should look for keystrokes, to cancel. */
1458 }
1459 }
1460
1461 err:
1462 switch (error) {
1463
1464 case ENXIO:
1465 printf("device bad\n");
1466 break;
1467
1468 case EFAULT:
1469 printf("device not ready\n");
1470 break;
1471
1472 case EINVAL:
1473 printf("area improper\n");
1474 break;
1475
1476 case EIO:
1477 printf("i/o error\n");
1478 break;
1479
1480 case EINTR:
1481 printf("aborted from console\n");
1482 break;
1483
1484 case 0:
1485 printf("succeeded\n");
1486 break;
1487
1488 default:
1489 printf("error %d\n", error);
1490 break;
1491 }
1492 printf("\n\n");
1493 delay(1000);
1494 }
1495
1496 void
1497 frametoreg(framep, regp)
1498 struct trapframe *framep;
1499 struct reg *regp;
1500 {
1501
1502 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1503 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1504 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1505 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1506 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1507 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1508 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1509 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1510 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1511 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1512 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1513 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1514 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1515 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1516 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1517 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1518 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1519 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1520 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1521 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1522 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1523 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1524 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1525 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1526 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1527 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1528 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1529 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1530 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1531 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1532 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1533 regp->r_regs[R_ZERO] = 0;
1534 }
1535
1536 void
1537 regtoframe(regp, framep)
1538 struct reg *regp;
1539 struct trapframe *framep;
1540 {
1541
1542 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1543 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1544 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1545 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1546 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1547 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1548 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1549 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1550 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1551 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1552 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1553 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1554 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1555 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1556 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1557 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1558 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1559 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1560 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1561 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1562 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1563 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1564 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1565 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1566 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1567 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1568 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1569 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1570 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1571 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1572 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1573 /* ??? = regp->r_regs[R_ZERO]; */
1574 }
1575
1576 void
1577 printregs(regp)
1578 struct reg *regp;
1579 {
1580 int i;
1581
1582 for (i = 0; i < 32; i++)
1583 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1584 i & 1 ? "\n" : "\t");
1585 }
1586
1587 void
1588 regdump(framep)
1589 struct trapframe *framep;
1590 {
1591 struct reg reg;
1592
1593 frametoreg(framep, ®);
1594 reg.r_regs[R_SP] = alpha_pal_rdusp();
1595
1596 printf("REGISTERS:\n");
1597 printregs(®);
1598 }
1599
1600 #ifdef DEBUG
1601 int sigdebug = 0;
1602 int sigpid = 0;
1603 #define SDB_FOLLOW 0x01
1604 #define SDB_KSTACK 0x02
1605 #endif
1606
1607 /*
1608 * Send an interrupt to process.
1609 */
1610 void
1611 sendsig(catcher, sig, mask, code)
1612 sig_t catcher;
1613 int sig, mask;
1614 u_long code;
1615 {
1616 struct proc *p = curproc;
1617 struct sigcontext *scp, ksc;
1618 struct trapframe *frame;
1619 struct sigacts *psp = p->p_sigacts;
1620 int oonstack, fsize, rndfsize;
1621 extern char sigcode[], esigcode[];
1622 extern struct proc *fpcurproc;
1623
1624 frame = p->p_md.md_tf;
1625 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1626 fsize = sizeof ksc;
1627 rndfsize = ((fsize + 15) / 16) * 16;
1628 /*
1629 * Allocate and validate space for the signal handler
1630 * context. Note that if the stack is in P0 space, the
1631 * call to grow() is a nop, and the useracc() check
1632 * will fail if the process has not already allocated
1633 * the space with a `brk'.
1634 */
1635 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1636 (psp->ps_sigonstack & sigmask(sig))) {
1637 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1638 psp->ps_sigstk.ss_size - rndfsize);
1639 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1640 } else
1641 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1642 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1643 #if defined(UVM)
1644 (void)uvm_grow(p, (u_long)scp);
1645 #else
1646 (void)grow(p, (u_long)scp);
1647 #endif
1648 #ifdef DEBUG
1649 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1650 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1651 sig, &oonstack, scp);
1652 #endif
1653 #if defined(UVM)
1654 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1655 #else
1656 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1657 #endif
1658 #ifdef DEBUG
1659 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1660 printf("sendsig(%d): useracc failed on sig %d\n",
1661 p->p_pid, sig);
1662 #endif
1663 /*
1664 * Process has trashed its stack; give it an illegal
1665 * instruction to halt it in its tracks.
1666 */
1667 SIGACTION(p, SIGILL) = SIG_DFL;
1668 sig = sigmask(SIGILL);
1669 p->p_sigignore &= ~sig;
1670 p->p_sigcatch &= ~sig;
1671 p->p_sigmask &= ~sig;
1672 psignal(p, SIGILL);
1673 return;
1674 }
1675
1676 /*
1677 * Build the signal context to be used by sigreturn.
1678 */
1679 ksc.sc_onstack = oonstack;
1680 ksc.sc_mask = mask;
1681 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1682 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1683
1684 /* copy the registers. */
1685 frametoreg(frame, (struct reg *)ksc.sc_regs);
1686 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1687 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1688
1689 /* save the floating-point state, if necessary, then copy it. */
1690 if (p == fpcurproc) {
1691 alpha_pal_wrfen(1);
1692 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1693 alpha_pal_wrfen(0);
1694 fpcurproc = NULL;
1695 }
1696 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1697 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1698 sizeof(struct fpreg));
1699 ksc.sc_fp_control = 0; /* XXX ? */
1700 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1701 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1702
1703
1704 #ifdef COMPAT_OSF1
1705 /*
1706 * XXX Create an OSF/1-style sigcontext and associated goo.
1707 */
1708 #endif
1709
1710 /*
1711 * copy the frame out to userland.
1712 */
1713 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1714 #ifdef DEBUG
1715 if (sigdebug & SDB_FOLLOW)
1716 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1717 scp, code);
1718 #endif
1719
1720 /*
1721 * Set up the registers to return to sigcode.
1722 */
1723 frame->tf_regs[FRAME_PC] =
1724 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1725 frame->tf_regs[FRAME_A0] = sig;
1726 frame->tf_regs[FRAME_A1] = code;
1727 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1728 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1729 alpha_pal_wrusp((unsigned long)scp);
1730
1731 #ifdef DEBUG
1732 if (sigdebug & SDB_FOLLOW)
1733 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1734 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1735 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1736 printf("sendsig(%d): sig %d returns\n",
1737 p->p_pid, sig);
1738 #endif
1739 }
1740
1741 /*
1742 * System call to cleanup state after a signal
1743 * has been taken. Reset signal mask and
1744 * stack state from context left by sendsig (above).
1745 * Return to previous pc and psl as specified by
1746 * context left by sendsig. Check carefully to
1747 * make sure that the user has not modified the
1748 * psl to gain improper priviledges or to cause
1749 * a machine fault.
1750 */
1751 /* ARGSUSED */
1752 int
1753 sys_sigreturn(p, v, retval)
1754 struct proc *p;
1755 void *v;
1756 register_t *retval;
1757 {
1758 struct sys_sigreturn_args /* {
1759 syscallarg(struct sigcontext *) sigcntxp;
1760 } */ *uap = v;
1761 struct sigcontext *scp, ksc;
1762 extern struct proc *fpcurproc;
1763
1764 scp = SCARG(uap, sigcntxp);
1765 #ifdef DEBUG
1766 if (sigdebug & SDB_FOLLOW)
1767 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1768 #endif
1769
1770 if (ALIGN(scp) != (u_int64_t)scp)
1771 return (EINVAL);
1772
1773 /*
1774 * Test and fetch the context structure.
1775 * We grab it all at once for speed.
1776 */
1777 #if defined(UVM)
1778 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1779 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1780 return (EINVAL);
1781 #else
1782 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1783 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1784 return (EINVAL);
1785 #endif
1786
1787 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1788 return (EINVAL);
1789 /*
1790 * Restore the user-supplied information
1791 */
1792 if (ksc.sc_onstack)
1793 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1794 else
1795 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1796 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1797
1798 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1799 p->p_md.md_tf->tf_regs[FRAME_PS] =
1800 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1801
1802 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1803 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1804
1805 /* XXX ksc.sc_ownedfp ? */
1806 if (p == fpcurproc)
1807 fpcurproc = NULL;
1808 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1809 sizeof(struct fpreg));
1810 /* XXX ksc.sc_fp_control ? */
1811
1812 #ifdef DEBUG
1813 if (sigdebug & SDB_FOLLOW)
1814 printf("sigreturn(%d): returns\n", p->p_pid);
1815 #endif
1816 return (EJUSTRETURN);
1817 }
1818
1819 /*
1820 * machine dependent system variables.
1821 */
1822 int
1823 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1824 int *name;
1825 u_int namelen;
1826 void *oldp;
1827 size_t *oldlenp;
1828 void *newp;
1829 size_t newlen;
1830 struct proc *p;
1831 {
1832 dev_t consdev;
1833
1834 /* all sysctl names at this level are terminal */
1835 if (namelen != 1)
1836 return (ENOTDIR); /* overloaded */
1837
1838 switch (name[0]) {
1839 case CPU_CONSDEV:
1840 if (cn_tab != NULL)
1841 consdev = cn_tab->cn_dev;
1842 else
1843 consdev = NODEV;
1844 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1845 sizeof consdev));
1846
1847 case CPU_ROOT_DEVICE:
1848 return (sysctl_rdstring(oldp, oldlenp, newp,
1849 root_device->dv_xname));
1850
1851 case CPU_UNALIGNED_PRINT:
1852 return (sysctl_int(oldp, oldlenp, newp, newlen,
1853 &alpha_unaligned_print));
1854
1855 case CPU_UNALIGNED_FIX:
1856 return (sysctl_int(oldp, oldlenp, newp, newlen,
1857 &alpha_unaligned_fix));
1858
1859 case CPU_UNALIGNED_SIGBUS:
1860 return (sysctl_int(oldp, oldlenp, newp, newlen,
1861 &alpha_unaligned_sigbus));
1862
1863 case CPU_BOOTED_KERNEL:
1864 return (sysctl_rdstring(oldp, oldlenp, newp,
1865 bootinfo.booted_kernel));
1866
1867 default:
1868 return (EOPNOTSUPP);
1869 }
1870 /* NOTREACHED */
1871 }
1872
1873 /*
1874 * Set registers on exec.
1875 */
1876 void
1877 setregs(p, pack, stack)
1878 register struct proc *p;
1879 struct exec_package *pack;
1880 u_long stack;
1881 {
1882 struct trapframe *tfp = p->p_md.md_tf;
1883 extern struct proc *fpcurproc;
1884 #ifdef DEBUG
1885 int i;
1886 #endif
1887
1888 #ifdef DEBUG
1889 /*
1890 * Crash and dump, if the user requested it.
1891 */
1892 if (boothowto & RB_DUMP)
1893 panic("crash requested by boot flags");
1894 #endif
1895
1896 #ifdef DEBUG
1897 for (i = 0; i < FRAME_SIZE; i++)
1898 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1899 #else
1900 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1901 #endif
1902 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1903 #define FP_RN 2 /* XXX */
1904 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1905 alpha_pal_wrusp(stack);
1906 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1907 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1908
1909 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1910 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1911 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1912 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1913 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1914
1915 p->p_md.md_flags &= ~MDP_FPUSED;
1916 if (fpcurproc == p)
1917 fpcurproc = NULL;
1918 }
1919
1920 void
1921 netintr()
1922 {
1923 int n, s;
1924
1925 s = splhigh();
1926 n = netisr;
1927 netisr = 0;
1928 splx(s);
1929
1930 #define DONETISR(bit, fn) \
1931 do { \
1932 if (n & (1 << (bit))) \
1933 fn; \
1934 } while (0)
1935
1936 #ifdef INET
1937 #if NARP > 0
1938 DONETISR(NETISR_ARP, arpintr());
1939 #endif
1940 DONETISR(NETISR_IP, ipintr());
1941 #endif
1942 #ifdef NETATALK
1943 DONETISR(NETISR_ATALK, atintr());
1944 #endif
1945 #ifdef NS
1946 DONETISR(NETISR_NS, nsintr());
1947 #endif
1948 #ifdef ISO
1949 DONETISR(NETISR_ISO, clnlintr());
1950 #endif
1951 #ifdef CCITT
1952 DONETISR(NETISR_CCITT, ccittintr());
1953 #endif
1954 #ifdef NATM
1955 DONETISR(NETISR_NATM, natmintr());
1956 #endif
1957 #if NPPP > 1
1958 DONETISR(NETISR_PPP, pppintr());
1959 #endif
1960
1961 #undef DONETISR
1962 }
1963
1964 void
1965 do_sir()
1966 {
1967 u_int64_t n;
1968
1969 do {
1970 (void)splhigh();
1971 n = ssir;
1972 ssir = 0;
1973 splsoft(); /* don't recurse through spl0() */
1974
1975 #if defined(UVM)
1976 #define COUNT_SOFT uvmexp.softs++
1977 #else
1978 #define COUNT_SOFT cnt.v_soft++
1979 #endif
1980
1981 #define DO_SIR(bit, fn) \
1982 do { \
1983 if (n & (bit)) { \
1984 COUNT_SOFT; \
1985 fn; \
1986 } \
1987 } while (0)
1988
1989 DO_SIR(SIR_NET, netintr());
1990 DO_SIR(SIR_CLOCK, softclock());
1991
1992 #undef COUNT_SOFT
1993 #undef DO_SIR
1994 } while (ssir != 0);
1995 }
1996
1997 int
1998 spl0()
1999 {
2000
2001 if (ssir)
2002 do_sir(); /* it lowers the IPL itself */
2003
2004 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2005 }
2006
2007 /*
2008 * The following primitives manipulate the run queues. _whichqs tells which
2009 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2010 * into queues, Remrunqueue removes them from queues. The running process is
2011 * on no queue, other processes are on a queue related to p->p_priority,
2012 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2013 * available queues.
2014 */
2015 /*
2016 * setrunqueue(p)
2017 * proc *p;
2018 *
2019 * Call should be made at splclock(), and p->p_stat should be SRUN.
2020 */
2021
2022 void
2023 setrunqueue(p)
2024 struct proc *p;
2025 {
2026 int bit;
2027
2028 /* firewall: p->p_back must be NULL */
2029 if (p->p_back != NULL)
2030 panic("setrunqueue");
2031
2032 bit = p->p_priority >> 2;
2033 whichqs |= (1 << bit);
2034 p->p_forw = (struct proc *)&qs[bit];
2035 p->p_back = qs[bit].ph_rlink;
2036 p->p_back->p_forw = p;
2037 qs[bit].ph_rlink = p;
2038 }
2039
2040 /*
2041 * remrunqueue(p)
2042 *
2043 * Call should be made at splclock().
2044 */
2045 void
2046 remrunqueue(p)
2047 struct proc *p;
2048 {
2049 int bit;
2050
2051 bit = p->p_priority >> 2;
2052 if ((whichqs & (1 << bit)) == 0)
2053 panic("remrunqueue");
2054
2055 p->p_back->p_forw = p->p_forw;
2056 p->p_forw->p_back = p->p_back;
2057 p->p_back = NULL; /* for firewall checking. */
2058
2059 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2060 whichqs &= ~(1 << bit);
2061 }
2062
2063 /*
2064 * Return the best possible estimate of the time in the timeval
2065 * to which tvp points. Unfortunately, we can't read the hardware registers.
2066 * We guarantee that the time will be greater than the value obtained by a
2067 * previous call.
2068 */
2069 void
2070 microtime(tvp)
2071 register struct timeval *tvp;
2072 {
2073 int s = splclock();
2074 static struct timeval lasttime;
2075
2076 *tvp = time;
2077 #ifdef notdef
2078 tvp->tv_usec += clkread();
2079 while (tvp->tv_usec > 1000000) {
2080 tvp->tv_sec++;
2081 tvp->tv_usec -= 1000000;
2082 }
2083 #endif
2084 if (tvp->tv_sec == lasttime.tv_sec &&
2085 tvp->tv_usec <= lasttime.tv_usec &&
2086 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2087 tvp->tv_sec++;
2088 tvp->tv_usec -= 1000000;
2089 }
2090 lasttime = *tvp;
2091 splx(s);
2092 }
2093
2094 /*
2095 * Wait "n" microseconds.
2096 */
2097 void
2098 delay(n)
2099 unsigned long n;
2100 {
2101 long N = cycles_per_usec * (n);
2102
2103 while (N > 0) /* XXX */
2104 N -= 3; /* XXX */
2105 }
2106
2107 #if defined(COMPAT_OSF1) || 1 /* XXX */
2108 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2109 u_long));
2110
2111 void
2112 cpu_exec_ecoff_setregs(p, epp, stack)
2113 struct proc *p;
2114 struct exec_package *epp;
2115 u_long stack;
2116 {
2117 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2118
2119 setregs(p, epp, stack);
2120 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2121 }
2122
2123 /*
2124 * cpu_exec_ecoff_hook():
2125 * cpu-dependent ECOFF format hook for execve().
2126 *
2127 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2128 *
2129 */
2130 int
2131 cpu_exec_ecoff_hook(p, epp)
2132 struct proc *p;
2133 struct exec_package *epp;
2134 {
2135 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2136 extern struct emul emul_netbsd;
2137 #ifdef COMPAT_OSF1
2138 extern struct emul emul_osf1;
2139 #endif
2140
2141 switch (execp->f.f_magic) {
2142 #ifdef COMPAT_OSF1
2143 case ECOFF_MAGIC_ALPHA:
2144 epp->ep_emul = &emul_osf1;
2145 break;
2146 #endif
2147
2148 case ECOFF_MAGIC_NETBSD_ALPHA:
2149 epp->ep_emul = &emul_netbsd;
2150 break;
2151
2152 default:
2153 return ENOEXEC;
2154 }
2155 return 0;
2156 }
2157 #endif
2158
2159 int
2160 alpha_pa_access(pa)
2161 u_long pa;
2162 {
2163 int i;
2164
2165 for (i = 0; i < mem_cluster_cnt; i++) {
2166 if (pa < mem_clusters[i].start)
2167 continue;
2168 if ((pa - mem_clusters[i].start) >=
2169 (mem_clusters[i].size & ~PAGE_MASK))
2170 continue;
2171 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2172 }
2173 return (PROT_NONE);
2174 }
2175
2176 /* XXX XXX BEGIN XXX XXX */
2177 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2178 /* XXX */
2179 vm_offset_t /* XXX */
2180 alpha_XXX_dmamap(v) /* XXX */
2181 vm_offset_t v; /* XXX */
2182 { /* XXX */
2183 /* XXX */
2184 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2185 } /* XXX */
2186 /* XXX XXX END XXX XXX */
2187