machdep.c revision 1.12 1 /* $NetBSD: machdep.c,v 1.12 1995/11/23 02:34:15 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #ifdef REAL_CLISTS
41 #include <sys/clist.h>
42 #endif
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/msgbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/tty.h>
49 #include <sys/user.h>
50 #include <sys/exec.h>
51 #include <sys/exec_ecoff.h>
52 #include <sys/sysctl.h>
53 #ifdef SYSVMSG
54 #include <sys/msg.h>
55 #endif
56 #ifdef SYSVSEM
57 #include <sys/sem.h>
58 #endif
59 #ifdef SYSVSHM
60 #include <sys/shm.h>
61 #endif
62
63 #include <sys/mount.h>
64 #include <sys/syscallargs.h>
65
66 #include <vm/vm_kern.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/cpu.h>
71 #include <machine/reg.h>
72 #include <machine/rpb.h>
73 #include <machine/prom.h>
74
75 #ifdef DEC_3000_500
76 #include <alpha/alpha/dec_3000_500.h>
77 #endif
78 #ifdef DEC_3000_300
79 #include <alpha/alpha/dec_3000_300.h>
80 #endif
81 #ifdef DEC_2100_A50
82 #include <alpha/alpha/dec_2100_a50.h>
83 #endif
84 #ifdef DEC_KN20AA
85 #include <alpha/alpha/dec_kn20aa.h>
86 #endif
87 #ifdef DEC_AXPPCI_33
88 #include <alpha/alpha/dec_axppci_33.h>
89 #endif
90 #ifdef DEC_21000
91 #include <alpha/alpha/dec_21000.h>
92 #endif
93
94 #include <net/netisr.h>
95 #include "ether.h"
96
97 #include "le.h" /* XXX for le_iomem creation */
98 #include "esp.h" /* XXX for esp_iomem creation */
99
100 vm_map_t buffer_map;
101
102 void dumpsys __P((void));
103
104 /*
105 * Declare these as initialized data so we can patch them.
106 */
107 int nswbuf = 0;
108 #ifdef NBUF
109 int nbuf = NBUF;
110 #else
111 int nbuf = 0;
112 #endif
113 #ifdef BUFPAGES
114 int bufpages = BUFPAGES;
115 #else
116 int bufpages = 0;
117 #endif
118 int msgbufmapped = 0; /* set when safe to use msgbuf */
119 int maxmem; /* max memory per process */
120
121 int totalphysmem; /* total amount of physical memory in system */
122 int physmem; /* physical memory used by NetBSD + some rsvd */
123 int firstusablepage; /* first usable memory page */
124 int lastusablepage; /* last usable memory page */
125 int resvmem; /* amount of memory reserved for PROM */
126 int unusedmem; /* amount of memory for OS that we don't use */
127 int unknownmem; /* amount of memory with an unknown use */
128
129 int cputype; /* system type, from the RPB */
130
131 /*
132 * XXX We need an address to which we can assign things so that they
133 * won't be optimized away because we didn't use the value.
134 */
135 u_int32_t no_optimize;
136
137 /* the following is used externally (sysctl_hw) */
138 char machine[] = "alpha";
139 char *cpu_model;
140 char *model_names[] = {
141 "UNKNOWN (0)",
142 "Alpha Demonstration Unit",
143 "DEC 4000 (\"Cobra\")",
144 "DEC 7000 (\"Ruby\")",
145 "DEC 3000/500 (\"Flamingo\") family",
146 "UNKNOWN (5)",
147 "DEC 2000/300 (\"Jensen\")",
148 "DEC 3000/300 (\"Pelican\")",
149 "UNKNOWN (8)",
150 "DEC 2100/A500 (\"Sable\")",
151 "AXPvme 64",
152 "AXPpci 33 (\"NoName\")",
153 "DEC 21000 (\"TurboLaser\")",
154 "DEC 2100/A50 (\"Avanti\") family",
155 "Mustang",
156 "DEC KN20AA",
157 "UNKNOWN (16)",
158 "DEC 1000 (\"Mikasa\")",
159 };
160 int nmodel_names = sizeof model_names/sizeof model_names[0];
161
162 struct user *proc0paddr;
163
164 /* Number of machine cycles per microsecond */
165 u_int64_t cycles_per_usec;
166
167 /* some memory areas for device DMA. "ick." */
168 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
169 caddr_t esp_iomem; /* XXX iomem for SCSI DMA */
170
171 /* Interrupt vectors (in locore) */
172 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
173
174 /* number of cpus in the box. really! */
175 int ncpus;
176
177 /* various CPU-specific functions. */
178 char *(*cpu_modelname) __P((void));
179 void (*cpu_consinit) __P((char *));
180 dev_t (*cpu_bootdev) __P((char *));
181 char *cpu_iobus;
182
183 char *boot_file, *boot_flags, *boot_console, *boot_dev;
184
185 int
186 alpha_init(pfn, ptb, argc, argv, envp)
187 u_long pfn; /* first free PFN number */
188 u_long ptb; /* PFN of current level 1 page table */
189 u_long argc;
190 char *argv[], *envp[];
191 {
192 extern char _end[];
193 caddr_t start, v;
194 struct mddt *mddtp;
195 int i, mddtweird;
196 char *p;
197
198 /*
199 * Turn off interrupts and floating point.
200 * Make sure the instruction and data streams are consistent.
201 */
202 (void)splhigh();
203 pal_wrfen(0);
204 TBIA();
205 IMB();
206
207 /*
208 * get address of the restart block, while we the bootstrap
209 * mapping is still around.
210 */
211 hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
212
213 /*
214 * Remember how many cycles there are per microsecond,
215 * so that we can use delay(). Round up, for safety.
216 */
217 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
218
219 /*
220 * Init the PROM interface, so we can use printf
221 * until PROM mappings go away in consinit.
222 */
223 init_prom_interface();
224
225 /*
226 * Point interrupt/exception vectors to our own.
227 */
228 pal_wrent(XentInt, 0);
229 pal_wrent(XentArith, 1);
230 pal_wrent(XentMM, 2);
231 pal_wrent(XentIF, 3);
232 pal_wrent(XentUna, 4);
233 pal_wrent(XentSys, 5);
234
235 /*
236 * Find out how much memory is available, by looking at
237 * the memory cluster descriptors. This also tries to do
238 * its best to detect things things that have never been seen
239 * before...
240 *
241 * XXX Assumes that the first "system" cluster is the
242 * only one we can use. Is the second (etc.) system cluster
243 * (if one happens to exist) guaranteed to be contiguous? or...?
244 */
245 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
246
247 /*
248 * BEGIN MDDT WEIRDNESS CHECKING
249 */
250 mddtweird = 0;
251
252 #define cnt mddtp->mddt_cluster_cnt
253 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
254 if (cnt != 2 && cnt != 3) {
255 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
256 mddtweird = 1;
257 } else if (usage(0) != MDDT_PALCODE ||
258 usage(1) != MDDT_SYSTEM ||
259 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
260 mddtweird = 1;
261 printf("WARNING: %d mem clusters, but weird config\n", cnt);
262 }
263
264 for (i = 0; i < cnt; i++) {
265 if ((usage(i) & MDDT_mbz) != 0) {
266 printf("WARNING: mem cluster %d has weird usage %lx\n",
267 i, usage(i));
268 mddtweird = 1;
269 }
270 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
271 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
272 mddtweird = 1;
273 }
274 /* XXX other things to check? */
275 }
276 #undef cnt
277 #undef usage
278
279 if (mddtweird) {
280 printf("\n");
281 printf("complete memory cluster information:\n");
282 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
283 printf("mddt %d:\n", i);
284 printf("\tpfn %lx\n",
285 mddtp->mddt_clusters[i].mddt_pfn);
286 printf("\tcnt %lx\n",
287 mddtp->mddt_clusters[i].mddt_pg_cnt);
288 printf("\ttest %lx\n",
289 mddtp->mddt_clusters[i].mddt_pg_test);
290 printf("\tbva %lx\n",
291 mddtp->mddt_clusters[i].mddt_v_bitaddr);
292 printf("\tbpa %lx\n",
293 mddtp->mddt_clusters[i].mddt_p_bitaddr);
294 printf("\tbcksum %lx\n",
295 mddtp->mddt_clusters[i].mddt_bit_cksum);
296 printf("\tusage %lx\n",
297 mddtp->mddt_clusters[i].mddt_usage);
298 }
299 printf("\n");
300 }
301 /*
302 * END MDDT WEIRDNESS CHECKING
303 */
304
305 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
306 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
307 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
308 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
309 if ((usage(i) & MDDT_mbz) != 0)
310 unknownmem += pgcnt(i);
311 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
312 resvmem += pgcnt(i);
313 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
314 /*
315 * assumes that the system cluster listed is
316 * one we're in...
317 */
318 if (physmem != resvmem) {
319 physmem += pgcnt(i);
320 firstusablepage =
321 mddtp->mddt_clusters[i].mddt_pfn;
322 lastusablepage = firstusablepage + pgcnt(i) - 1;
323 } else
324 unusedmem += pgcnt(i);
325 }
326 #undef usage
327 #undef pgcnt
328 }
329 if (totalphysmem == 0)
330 panic("can't happen: system seems to have no memory!");
331 maxmem = physmem;
332
333 #if 0
334 printf("totalphysmem = %d\n", totalphysmem);
335 printf("physmem = %d\n", physmem);
336 printf("firstusablepage = %d\n", firstusablepage);
337 printf("lastusablepage = %d\n", lastusablepage);
338 printf("resvmem = %d\n", resvmem);
339 printf("unusedmem = %d\n", unusedmem);
340 printf("unknownmem = %d\n", unknownmem);
341 #endif
342
343 /*
344 * find out this CPU's page size
345 */
346 PAGE_SIZE = hwrpb->rpb_page_size;
347 if (PAGE_SIZE != 8192)
348 panic("page size %d != 8192?!", PAGE_SIZE);
349
350 v = (caddr_t)alpha_round_page(_end);
351 /*
352 * Init mapping for u page(s) for proc 0
353 */
354 start = v;
355 curproc->p_addr = proc0paddr = (struct user *)v;
356 v += UPAGES * NBPG;
357
358 /*
359 * Find out what hardware we're on, and remember its type name.
360 */
361 cputype = hwrpb->rpb_type;
362 switch (cputype) {
363 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
364 case ST_DEC_3000_500:
365 cpu_modelname = dec_3000_500_modelname;
366 cpu_consinit = dec_3000_500_consinit;
367 cpu_bootdev = dec_3000_500_bootdev;
368 cpu_iobus = "tc";
369 break;
370 #endif
371
372 #ifdef DEC_3000_300
373 case ST_DEC_3000_300:
374 cpu_modelname = dec_3000_300_modelname;
375 cpu_consinit = dec_3000_300_consinit;
376 cpu_bootdev = dec_3000_300_bootdev;
377 cpu_iobus = "tc";
378 break;
379 #endif
380
381 #ifdef DEC_2100_A50
382 case ST_DEC_2100_A50:
383 cpu_modelname = dec_2100_a50_modelname;
384 cpu_consinit = dec_2100_a50_consinit;
385 cpu_bootdev = dec_2100_a50_bootdev;
386 cpu_iobus = "apecs";
387 break;
388 #endif
389
390 #ifdef DEC_KN20AA
391 case ST_DEC_KN20AA:
392 cpu_modelname = dec_kn20aa_modelname;
393 cpu_consinit = dec_kn20aa_consinit;
394 cpu_bootdev = dec_kn20aa_bootdev;
395 cpu_iobus = "cia";
396 break;
397 #endif
398
399 #ifdef DEC_AXPPCI_33
400 case ST_DEC_AXPPCI_33:
401 cpu_modelname = dec_axppci_33_modelname;
402 cpu_consinit = dec_axppci_33_consinit;
403 cpu_bootdev = dec_axppci_33_bootdev;
404 cpu_iobus = "lca";
405 break;
406 #endif
407
408 #ifdef DEC_2000_300
409 case ST_DEC_2000_300:
410 cpu_modelname = dec_2000_300_modelname;
411 cpu_consinit = dec_2000_300_consinit;
412 cpu_bootdev = dec_2000_300_bootdev;
413 cpu_iobus = "ibus";
414 XXX DEC 2000/300 NOT SUPPORTED
415 break;
416 #endif
417
418 #ifdef DEC_21000
419 case ST_DEC_21000:
420 cpu_modelname = dec_21000_modelname;
421 cpu_consinit = dec_21000_consinit;
422 cpu_bootdev = dec_21000_bootdev;
423 cpu_iobus = "tlsb";
424 break;
425 #endif
426
427 default:
428 if (cputype > nmodel_names)
429 panic("Unknown system type %d", cputype);
430 else
431 panic("Support for %s system type not in kernel.",
432 model_names[cputype]);
433 }
434
435 cpu_model = (*cpu_modelname)();
436 if (cpu_model == NULL)
437 cpu_model = model_names[cputype];
438
439 #if NLE > 0
440 /*
441 * Grab 128K at the top of physical memory for the lance chip
442 * on machines where it does dma through the I/O ASIC.
443 * It must be physically contiguous and aligned on a 128K boundary.
444 */
445 if (cputype == ST_DEC_3000_500 ||
446 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
447 lastusablepage -= btoc(128 * 1024);
448 le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
449 }
450 #endif /* NLE */
451 #if NESP > 0
452 /*
453 * Ditto for the scsi chip. There is probably a way to make esp.c
454 * do dma without these buffers, but it would require major
455 * re-engineering of the esp driver.
456 * They must be 8K in size and page aligned.
457 */
458 if (cputype == ST_DEC_3000_500 ||
459 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
460 lastusablepage -= btoc(NESP * 8192);
461 esp_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
462 }
463 #endif /* NESP */
464
465 /*
466 * Initialize error message buffer (at end of core).
467 */
468 lastusablepage -= btoc(sizeof (struct msgbuf));
469 msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
470 msgbufmapped = 1;
471
472 /*
473 * Allocate space for system data structures.
474 * The first available kernel virtual address is in "v".
475 * As pages of kernel virtual memory are allocated, "v" is incremented.
476 *
477 * These data structures are allocated here instead of cpu_startup()
478 * because physical memory is directly addressable. We don't have
479 * to map these into virtual address space.
480 */
481 #define valloc(name, type, num) \
482 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
483 #define valloclim(name, type, num, lim) \
484 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
485 #ifdef REAL_CLISTS
486 valloc(cfree, struct cblock, nclist);
487 #endif
488 valloc(callout, struct callout, ncallout);
489 valloc(swapmap, struct map, nswapmap = maxproc * 2);
490 #ifdef SYSVSHM
491 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
492 #endif
493 #ifdef SYSVSEM
494 valloc(sema, struct semid_ds, seminfo.semmni);
495 valloc(sem, struct sem, seminfo.semmns);
496 /* This is pretty disgusting! */
497 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
498 #endif
499 #ifdef SYSVMSG
500 valloc(msgpool, char, msginfo.msgmax);
501 valloc(msgmaps, struct msgmap, msginfo.msgseg);
502 valloc(msghdrs, struct msg, msginfo.msgtql);
503 valloc(msqids, struct msqid_ds, msginfo.msgmni);
504 #endif
505
506 /*
507 * Determine how many buffers to allocate.
508 * We allocate the BSD standard of 10% of memory for the first
509 * 2 Meg, and 5% of remaining memory for buffer space. Insure a
510 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
511 * headers as file i/o buffers.
512 */
513 if (bufpages == 0)
514 bufpages = (btoc(2 * 1024 * 1024) + physmem) /
515 (20 * CLSIZE);
516 if (nbuf == 0) {
517 nbuf = bufpages;
518 if (nbuf < 16)
519 nbuf = 16;
520 }
521 if (nswbuf == 0) {
522 nswbuf = (nbuf / 2) &~ 1; /* force even */
523 if (nswbuf > 256)
524 nswbuf = 256; /* sanity */
525 }
526 valloc(swbuf, struct buf, nswbuf);
527 valloc(buf, struct buf, nbuf);
528
529 /*
530 * Clear allocated memory.
531 */
532 bzero(start, v - start);
533
534 /*
535 * Initialize the virtual memory system, and set the
536 * page table base register in proc 0's PCB.
537 */
538 pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
539
540 /*
541 * Initialize the rest of proc 0's PCB, and cache its physical
542 * address.
543 */
544 proc0.p_md.md_pcbpaddr =
545 (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
546
547 /*
548 * Set the kernel sp, reserving space for an (empty) trapframe,
549 * and make proc0's trapframe pointer point to it for sanity.
550 */
551 proc0paddr->u_pcb.pcb_ksp =
552 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
553 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
554
555 /*
556 * figure out what arguments we have
557 */
558 switch (argc) {
559 default:
560 printf("weird number of arguments from boot: %d\n", argc);
561 if (argc < 1)
562 break;
563 /* FALLTHRU */
564 case 4:
565 boot_dev = argv[3];
566 /* FALLTHRU */
567 case 3:
568 boot_console = argv[2];
569 /* FALLTHRU */
570 case 2:
571 boot_flags = argv[1];
572 /* FALLTHRU */
573 case 1:
574 boot_file = argv[0];
575 /* FALLTHRU */
576 }
577
578 /*
579 * Look at arguments and compute bootdev.
580 * XXX NOT HERE.
581 */
582 #if 0
583 { /* XXX */
584 extern dev_t bootdev; /* XXX */
585 bootdev = (*cpu_bootdev)(boot_dev);
586 } /* XXX */
587 #endif
588
589 /*
590 * Look at arguments passed to us and compute boothowto.
591 */
592 boothowto = RB_SINGLE;
593 #ifdef GENERIC
594 boothowto |= RB_ASKNAME;
595 #endif
596 #ifdef KADB
597 boothowto |= RB_KDB;
598 #endif
599 for (p = boot_flags; p && *p != '\0'; p++) {
600 switch (*p) {
601 case 'a': /* autoboot */
602 case 'A': /* DEC's notion of autoboot */
603 boothowto &= ~RB_SINGLE;
604 break;
605
606 case 'd': /* use compiled in default root */
607 boothowto |= RB_DFLTROOT;
608 break;
609
610 case 'm': /* mini root present in memory */
611 boothowto |= RB_MINIROOT;
612 break;
613
614 case 'n': /* ask for names */
615 boothowto |= RB_ASKNAME;
616 break;
617
618 case 'N': /* don't ask for names */
619 boothowto &= ~RB_ASKNAME;
620 }
621 }
622
623 /*
624 * Figure out the number of cpus in the box, from RPB fields.
625 * Really. We mean it.
626 */
627 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
628 struct pcs *pcsp;
629
630 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
631 (i * hwrpb->rpb_pcs_size));
632 if ((pcsp->pcs_flags & PCS_PP) != 0)
633 ncpus++;
634 }
635
636 return (0);
637 }
638
639 consinit()
640 {
641
642 (*cpu_consinit)(boot_console);
643 pmap_unmap_prom();
644 }
645
646 cpu_startup()
647 {
648 register unsigned i;
649 register caddr_t v;
650 int base, residual;
651 vm_offset_t minaddr, maxaddr;
652 vm_size_t size;
653 #ifdef DEBUG
654 extern int pmapdebug;
655 int opmapdebug = pmapdebug;
656
657 pmapdebug = 0;
658 #endif
659
660 /*
661 * Good {morning,afternoon,evening,night}.
662 */
663 printf(version);
664 identifycpu();
665 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
666 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
667 if (unusedmem)
668 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
669 if (unknownmem)
670 printf("WARNING: %d bytes of memory with unknown purpose\n",
671 ctob(unknownmem));
672
673 /*
674 * Allocate virtual address space for file I/O buffers.
675 * Note they are different than the array of headers, 'buf',
676 * and usually occupy more virtual memory than physical.
677 */
678 size = MAXBSIZE * nbuf;
679 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
680 &maxaddr, size, TRUE);
681 minaddr = (vm_offset_t)buffers;
682 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
683 &minaddr, size, FALSE) != KERN_SUCCESS)
684 panic("startup: cannot allocate buffers");
685 base = bufpages / nbuf;
686 residual = bufpages % nbuf;
687 for (i = 0; i < nbuf; i++) {
688 vm_size_t curbufsize;
689 vm_offset_t curbuf;
690
691 /*
692 * First <residual> buffers get (base+1) physical pages
693 * allocated for them. The rest get (base) physical pages.
694 *
695 * The rest of each buffer occupies virtual space,
696 * but has no physical memory allocated for it.
697 */
698 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
699 curbufsize = CLBYTES * (i < residual ? base+1 : base);
700 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
701 vm_map_simplify(buffer_map, curbuf);
702 }
703 /*
704 * Allocate a submap for exec arguments. This map effectively
705 * limits the number of processes exec'ing at any time.
706 */
707 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
708 16 * NCARGS, TRUE);
709
710 /*
711 * Allocate a submap for physio
712 */
713 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
714 VM_PHYS_SIZE, TRUE);
715
716 /*
717 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
718 * we use the more space efficient malloc in place of kmem_alloc.
719 */
720 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
721 M_MBUF, M_NOWAIT);
722 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
723 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
724 VM_MBUF_SIZE, FALSE);
725 /*
726 * Initialize callouts
727 */
728 callfree = callout;
729 for (i = 1; i < ncallout; i++)
730 callout[i-1].c_next = &callout[i];
731 callout[i-1].c_next = NULL;
732
733 #ifdef DEBUG
734 pmapdebug = opmapdebug;
735 #endif
736 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
737 printf("using %ld buffers containing %ld bytes of memory\n",
738 (long)nbuf, (long)(bufpages * CLBYTES));
739
740 /*
741 * Set up buffers, so they can be used to read disk labels.
742 */
743 bufinit();
744
745 /*
746 * Configure the system.
747 */
748 configure();
749 }
750
751 identifycpu()
752 {
753
754 /*
755 * print out CPU identification information.
756 */
757 printf("%s, %dMHz\n", cpu_model,
758 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
759 printf("%d byte page size, %d processor%s.\n",
760 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
761 #if 0
762 /* this isn't defined for any systems that we run on? */
763 printf("serial number 0x%lx 0x%lx\n",
764 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
765
766 /* and these aren't particularly useful! */
767 printf("variation: 0x%lx, revision 0x%lx\n",
768 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
769 #endif
770 }
771
772 int waittime = -1;
773 struct pcb dumppcb;
774
775 boot(howto)
776 int howto;
777 {
778 extern int cold;
779
780 /* If system is cold, just halt. */
781 if (cold) {
782 howto |= RB_HALT;
783 goto haltsys;
784 }
785
786 boothowto = howto;
787 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
788 waittime = 0;
789 vfs_shutdown();
790 /*
791 * If we've been adjusting the clock, the todr
792 * will be out of synch; adjust it now.
793 */
794 resettodr();
795 }
796
797 /* Disable interrupts. */
798 splhigh();
799
800 /* If rebooting and a dump is requested do it. */
801 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
802 savectx(&dumppcb, 0);
803 dumpsys();
804 }
805
806 haltsys:
807
808 /* run any shutdown hooks */
809 doshutdownhooks();
810
811 #ifdef BOOTKEY
812 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
813 cngetc();
814 printf("\n");
815 #endif
816
817 /* Finally, halt/reboot the system. */
818 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
819 prom_halt(howto & RB_HALT);
820 /*NOTREACHED*/
821 }
822
823 /*
824 * These variables are needed by /sbin/savecore
825 */
826 u_long dumpmag = 0x8fca0101; /* magic number */
827 int dumpsize = 0; /* pages */
828 long dumplo = 0; /* blocks */
829
830 /*
831 * This is called by configure to set dumplo and dumpsize.
832 * Dumps always skip the first CLBYTES of disk space
833 * in case there might be a disk label stored there.
834 * If there is extra space, put dump at the end to
835 * reduce the chance that swapping trashes it.
836 */
837 void
838 dumpconf()
839 {
840 int nblks; /* size of dump area */
841 int maj;
842
843 if (dumpdev == NODEV)
844 return;
845 maj = major(dumpdev);
846 if (maj < 0 || maj >= nblkdev)
847 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
848 if (bdevsw[maj].d_psize == NULL)
849 return;
850 nblks = (*bdevsw[maj].d_psize)(dumpdev);
851 if (nblks <= ctod(1))
852 return;
853
854 /* XXX XXX XXX STARTING MEMORY LOCATION */
855 dumpsize = physmem;
856
857 /* Always skip the first CLBYTES, in case there is a label there. */
858 if (dumplo < ctod(1))
859 dumplo = ctod(1);
860
861 /* Put dump at end of partition, and make it fit. */
862 if (dumpsize > dtoc(nblks - dumplo))
863 dumpsize = dtoc(nblks - dumplo);
864 if (dumplo < nblks - ctod(dumpsize))
865 dumplo = nblks - ctod(dumpsize);
866 }
867
868 /*
869 * Doadump comes here after turning off memory management and
870 * getting on the dump stack, either when called above, or by
871 * the auto-restart code.
872 */
873 void
874 dumpsys()
875 {
876
877 msgbufmapped = 0;
878 if (dumpdev == NODEV)
879 return;
880 if (dumpsize == 0) {
881 dumpconf();
882 if (dumpsize == 0)
883 return;
884 }
885 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
886
887 printf("dump ");
888 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
889
890 case ENXIO:
891 printf("device bad\n");
892 break;
893
894 case EFAULT:
895 printf("device not ready\n");
896 break;
897
898 case EINVAL:
899 printf("area improper\n");
900 break;
901
902 case EIO:
903 printf("i/o error\n");
904 break;
905
906 case EINTR:
907 printf("aborted from console\n");
908 break;
909
910 default:
911 printf("succeeded\n");
912 break;
913 }
914 printf("\n\n");
915 delay(1000);
916 }
917
918 void
919 frametoreg(framep, regp)
920 struct trapframe *framep;
921 struct reg *regp;
922 {
923
924 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
925 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
926 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
927 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
928 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
929 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
930 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
931 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
932 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
933 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
934 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
935 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
936 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
937 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
938 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
939 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
940 regp->r_regs[R_A0] = framep->tf_a0;
941 regp->r_regs[R_A1] = framep->tf_a1;
942 regp->r_regs[R_A2] = framep->tf_a2;
943 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
944 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
945 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
946 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
947 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
948 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
949 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
950 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
951 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
952 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
953 regp->r_regs[R_GP] = framep->tf_gp;
954 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
955 regp->r_regs[R_ZERO] = 0;
956 }
957
958 void
959 regtoframe(regp, framep)
960 struct reg *regp;
961 struct trapframe *framep;
962 {
963
964 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
965 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
966 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
967 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
968 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
969 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
970 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
971 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
972 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
973 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
974 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
975 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
976 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
977 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
978 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
979 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
980 framep->tf_a0 = regp->r_regs[R_A0];
981 framep->tf_a1 = regp->r_regs[R_A1];
982 framep->tf_a2 = regp->r_regs[R_A2];
983 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
984 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
985 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
986 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
987 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
988 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
989 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
990 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
991 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
992 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
993 framep->tf_gp = regp->r_regs[R_GP];
994 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
995 /* ??? = regp->r_regs[R_ZERO]; */
996 }
997
998 void
999 printregs(regp)
1000 struct reg *regp;
1001 {
1002 int i;
1003
1004 for (i = 0; i < 32; i++)
1005 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1006 i & 1 ? "\n" : "\t");
1007 }
1008
1009 void
1010 regdump(framep)
1011 struct trapframe *framep;
1012 {
1013 struct reg reg;
1014
1015 frametoreg(framep, ®);
1016 printf("REGISTERS:\n");
1017 printregs(®);
1018 }
1019
1020 #ifdef DEBUG
1021 int sigdebug = 0;
1022 int sigpid = 0;
1023 #define SDB_FOLLOW 0x01
1024 #define SDB_KSTACK 0x02
1025 #endif
1026
1027 /*
1028 * Send an interrupt to process.
1029 */
1030 void
1031 sendsig(catcher, sig, mask, code)
1032 sig_t catcher;
1033 int sig, mask;
1034 u_long code;
1035 {
1036 struct proc *p = curproc;
1037 struct sigcontext *scp, ksc;
1038 struct trapframe *frame;
1039 struct sigacts *psp = p->p_sigacts;
1040 int oonstack, fsize, rndfsize;
1041 extern char sigcode[], esigcode[];
1042 extern struct proc *fpcurproc;
1043
1044 frame = p->p_md.md_tf;
1045 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1046 fsize = sizeof ksc;
1047 rndfsize = ((fsize + 15) / 16) * 16;
1048 /*
1049 * Allocate and validate space for the signal handler
1050 * context. Note that if the stack is in P0 space, the
1051 * call to grow() is a nop, and the useracc() check
1052 * will fail if the process has not already allocated
1053 * the space with a `brk'.
1054 */
1055 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1056 (psp->ps_sigonstack & sigmask(sig))) {
1057 scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
1058 psp->ps_sigstk.ss_size - rndfsize);
1059 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1060 } else
1061 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1062 rndfsize);
1063 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1064 (void)grow(p, (u_long)scp);
1065 #ifdef DEBUG
1066 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1067 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1068 sig, &oonstack, scp);
1069 #endif
1070 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1071 #ifdef DEBUG
1072 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1073 printf("sendsig(%d): useracc failed on sig %d\n",
1074 p->p_pid, sig);
1075 #endif
1076 /*
1077 * Process has trashed its stack; give it an illegal
1078 * instruction to halt it in its tracks.
1079 */
1080 SIGACTION(p, SIGILL) = SIG_DFL;
1081 sig = sigmask(SIGILL);
1082 p->p_sigignore &= ~sig;
1083 p->p_sigcatch &= ~sig;
1084 p->p_sigmask &= ~sig;
1085 psignal(p, SIGILL);
1086 return;
1087 }
1088
1089 /*
1090 * Build the signal context to be used by sigreturn.
1091 */
1092 ksc.sc_onstack = oonstack;
1093 ksc.sc_mask = mask;
1094 ksc.sc_pc = frame->tf_pc;
1095 ksc.sc_ps = frame->tf_ps;
1096
1097 /* copy the registers. */
1098 frametoreg(frame, (struct reg *)ksc.sc_regs);
1099 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1100
1101 /* save the floating-point state, if necessary, then copy it. */
1102 if (p == fpcurproc) {
1103 pal_wrfen(1);
1104 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1105 pal_wrfen(0);
1106 fpcurproc = NULL;
1107 }
1108 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1109 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1110 sizeof(struct fpreg));
1111 ksc.sc_fp_control = 0; /* XXX ? */
1112 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1113 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1114
1115
1116 #ifdef COMPAT_OSF1
1117 /*
1118 * XXX Create an OSF/1-style sigcontext and associated goo.
1119 */
1120 #endif
1121
1122 /*
1123 * copy the frame out to userland.
1124 */
1125 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1126 #ifdef DEBUG
1127 if (sigdebug & SDB_FOLLOW)
1128 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1129 scp, code);
1130 #endif
1131
1132 /*
1133 * Set up the registers to return to sigcode.
1134 */
1135 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1136 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1137 frame->tf_a0 = sig;
1138 frame->tf_a1 = code;
1139 frame->tf_a2 = (u_int64_t)scp;
1140 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1141
1142 #ifdef DEBUG
1143 if (sigdebug & SDB_FOLLOW)
1144 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1145 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1146 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1147 printf("sendsig(%d): sig %d returns\n",
1148 p->p_pid, sig);
1149 #endif
1150 }
1151
1152 /*
1153 * System call to cleanup state after a signal
1154 * has been taken. Reset signal mask and
1155 * stack state from context left by sendsig (above).
1156 * Return to previous pc and psl as specified by
1157 * context left by sendsig. Check carefully to
1158 * make sure that the user has not modified the
1159 * psl to gain improper priviledges or to cause
1160 * a machine fault.
1161 */
1162 /* ARGSUSED */
1163 int
1164 sys_sigreturn(p, v, retval)
1165 struct proc *p;
1166 void *v;
1167 register_t *retval;
1168 {
1169 struct sys_sigreturn_args /* {
1170 syscallarg(struct sigcontext *) sigcntxp;
1171 } */ *uap = v;
1172 struct sigcontext *scp, ksc;
1173 extern struct proc *fpcurproc;
1174
1175 scp = SCARG(uap, sigcntxp);
1176 #ifdef DEBUG
1177 if (sigdebug & SDB_FOLLOW)
1178 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1179 #endif
1180
1181 if (ALIGN(scp) != (u_int64_t)scp)
1182 return (EINVAL);
1183
1184 /*
1185 * Test and fetch the context structure.
1186 * We grab it all at once for speed.
1187 */
1188 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1189 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1190 return (EINVAL);
1191
1192 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1193 return (EINVAL);
1194 /*
1195 * Restore the user-supplied information
1196 */
1197 if (ksc.sc_onstack)
1198 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1199 else
1200 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1201 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1202
1203 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1204 p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1205
1206 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1207
1208 /* XXX ksc.sc_ownedfp ? */
1209 if (p == fpcurproc)
1210 fpcurproc = NULL;
1211 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1212 sizeof(struct fpreg));
1213 /* XXX ksc.sc_fp_control ? */
1214
1215 #ifdef DEBUG
1216 if (sigdebug & SDB_FOLLOW)
1217 printf("sigreturn(%d): returns\n", p->p_pid);
1218 #endif
1219 return (EJUSTRETURN);
1220 }
1221
1222 /*
1223 * machine dependent system variables.
1224 */
1225 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1226 int *name;
1227 u_int namelen;
1228 void *oldp;
1229 size_t *oldlenp;
1230 void *newp;
1231 size_t newlen;
1232 struct proc *p;
1233 {
1234 dev_t consdev;
1235
1236 /* all sysctl names at this level are terminal */
1237 if (namelen != 1)
1238 return (ENOTDIR); /* overloaded */
1239
1240 switch (name[0]) {
1241 case CPU_CONSDEV:
1242 if (cn_tab != NULL)
1243 consdev = cn_tab->cn_dev;
1244 else
1245 consdev = NODEV;
1246 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1247 sizeof consdev));
1248 default:
1249 return (EOPNOTSUPP);
1250 }
1251 /* NOTREACHED */
1252 }
1253
1254 /*
1255 * Set registers on exec.
1256 */
1257 void
1258 setregs(p, pack, stack, retval)
1259 register struct proc *p;
1260 struct exec_package *pack;
1261 u_long stack;
1262 register_t *retval;
1263 {
1264 struct trapframe *tfp = p->p_md.md_tf;
1265 int i;
1266 extern struct proc *fpcurproc;
1267
1268 #ifdef DEBUG
1269 for (i = 0; i < FRAME_NSAVEREGS; i++)
1270 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1271 tfp->tf_gp = 0xbabefacedeadbeef;
1272 tfp->tf_a0 = 0xbabefacedeadbeef;
1273 tfp->tf_a1 = 0xbabefacedeadbeef;
1274 tfp->tf_a2 = 0xbabefacedeadbeef;
1275 #else
1276 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1277 tfp->tf_gp = 0;
1278 tfp->tf_a0 = 0;
1279 tfp->tf_a1 = 0;
1280 tfp->tf_a2 = 0;
1281 #endif
1282 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1283 #define FP_RN 2 /* XXX */
1284 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1285 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1286 tfp->tf_ps = PSL_USERSET;
1287 tfp->tf_pc = pack->ep_entry & ~3;
1288
1289 p->p_md.md_flags & ~MDP_FPUSED;
1290 if (fpcurproc == p)
1291 fpcurproc = NULL;
1292
1293 retval[0] = retval[1] = 0;
1294 }
1295
1296 void
1297 netintr()
1298 {
1299 #ifdef INET
1300 #if NETHER > 0
1301 if (netisr & (1 << NETISR_ARP)) {
1302 netisr &= ~(1 << NETISR_ARP);
1303 arpintr();
1304 }
1305 #endif
1306 if (netisr & (1 << NETISR_IP)) {
1307 netisr &= ~(1 << NETISR_IP);
1308 ipintr();
1309 }
1310 #endif
1311 #ifdef NS
1312 if (netisr & (1 << NETISR_NS)) {
1313 netisr &= ~(1 << NETISR_NS);
1314 nsintr();
1315 }
1316 #endif
1317 #ifdef ISO
1318 if (netisr & (1 << NETISR_ISO)) {
1319 netisr &= ~(1 << NETISR_ISO);
1320 clnlintr();
1321 }
1322 #endif
1323 #ifdef CCITT
1324 if (netisr & (1 << NETISR_CCITT)) {
1325 netisr &= ~(1 << NETISR_CCITT);
1326 ccittintr();
1327 }
1328 #endif
1329 #ifdef PPP
1330 if (netisr & (1 << NETISR_PPP)) {
1331 netisr &= ~(1 << NETISR_CCITT);
1332 pppintr();
1333 }
1334 #endif
1335 }
1336
1337 void
1338 do_sir()
1339 {
1340
1341 if (ssir & SIR_NET) {
1342 siroff(SIR_NET);
1343 cnt.v_soft++;
1344 netintr();
1345 }
1346 if (ssir & SIR_CLOCK) {
1347 siroff(SIR_CLOCK);
1348 cnt.v_soft++;
1349 softclock();
1350 }
1351 }
1352
1353 int
1354 spl0()
1355 {
1356
1357 if (ssir) {
1358 splsoft();
1359 do_sir();
1360 }
1361
1362 return (pal_swpipl(PSL_IPL_0));
1363 }
1364
1365 /*
1366 * The following primitives manipulate the run queues. _whichqs tells which
1367 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1368 * into queues, Remrq removes them from queues. The running process is on
1369 * no queue, other processes are on a queue related to p->p_priority, divided
1370 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1371 * queues.
1372 */
1373 /*
1374 * setrunqueue(p)
1375 * proc *p;
1376 *
1377 * Call should be made at splclock(), and p->p_stat should be SRUN.
1378 */
1379
1380 void
1381 setrunqueue(p)
1382 struct proc *p;
1383 {
1384 int bit;
1385
1386 /* firewall: p->p_back must be NULL */
1387 if (p->p_back != NULL)
1388 panic("setrunqueue");
1389
1390 bit = p->p_priority >> 2;
1391 whichqs |= (1 << bit);
1392 p->p_forw = (struct proc *)&qs[bit];
1393 p->p_back = qs[bit].ph_rlink;
1394 p->p_back->p_forw = p;
1395 qs[bit].ph_rlink = p;
1396 }
1397
1398 /*
1399 * Remrq(p)
1400 *
1401 * Call should be made at splclock().
1402 */
1403 void
1404 remrq(p)
1405 struct proc *p;
1406 {
1407 int bit;
1408
1409 bit = p->p_priority >> 2;
1410 if ((whichqs & (1 << bit)) == 0)
1411 panic("remrq");
1412
1413 p->p_back->p_forw = p->p_forw;
1414 p->p_forw->p_back = p->p_back;
1415 p->p_back = NULL; /* for firewall checking. */
1416
1417 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1418 whichqs &= ~(1 << bit);
1419 }
1420
1421 /*
1422 * Return the best possible estimate of the time in the timeval
1423 * to which tvp points. Unfortunately, we can't read the hardware registers.
1424 * We guarantee that the time will be greater than the value obtained by a
1425 * previous call.
1426 */
1427 void
1428 microtime(tvp)
1429 register struct timeval *tvp;
1430 {
1431 int s = splclock();
1432 static struct timeval lasttime;
1433
1434 *tvp = time;
1435 #ifdef notdef
1436 tvp->tv_usec += clkread();
1437 while (tvp->tv_usec > 1000000) {
1438 tvp->tv_sec++;
1439 tvp->tv_usec -= 1000000;
1440 }
1441 #endif
1442 if (tvp->tv_sec == lasttime.tv_sec &&
1443 tvp->tv_usec <= lasttime.tv_usec &&
1444 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1445 tvp->tv_sec++;
1446 tvp->tv_usec -= 1000000;
1447 }
1448 lasttime = *tvp;
1449 splx(s);
1450 }
1451
1452 #if defined(COMPAT_OSF1) || 1 /* XXX */
1453 void
1454 cpu_exec_ecoff_setregs(p, pack, stack, retval)
1455 struct proc *p;
1456 struct exec_package *pack;
1457 u_long stack;
1458 register_t *retval;
1459 {
1460 struct ecoff_aouthdr *eap;
1461
1462 setregs(p, pack, stack, retval);
1463
1464 eap = (struct ecoff_aouthdr *)
1465 ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
1466 p->p_md.md_tf->tf_gp = eap->ea_gp_value;
1467 }
1468
1469 /*
1470 * cpu_exec_ecoff_hook():
1471 * cpu-dependent ECOFF format hook for execve().
1472 *
1473 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1474 *
1475 */
1476 int
1477 cpu_exec_ecoff_hook(p, epp, eap)
1478 struct proc *p;
1479 struct exec_package *epp;
1480 struct ecoff_aouthdr *eap;
1481 {
1482 struct ecoff_filehdr *efp = epp->ep_hdr;
1483 extern struct emul emul_netbsd;
1484 #ifdef COMPAT_OSF1
1485 extern struct emul emul_osf1;
1486 #endif
1487
1488 switch (efp->ef_magic) {
1489 #ifdef COMPAT_OSF1
1490 case ECOFF_MAGIC_ALPHA:
1491 epp->ep_emul = &emul_osf1;
1492 break;
1493 #endif
1494
1495 case ECOFF_MAGIC_NETBSD_ALPHA:
1496 epp->ep_emul = &emul_netbsd;
1497 break;
1498
1499 default:
1500 return ENOEXEC;
1501 }
1502 return 0;
1503 }
1504 #endif
1505
1506 vm_offset_t
1507 vtophys(vaddr)
1508 vm_offset_t vaddr;
1509 {
1510 vm_offset_t paddr;
1511
1512 if (vaddr < K0SEG_BEGIN) {
1513 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1514 paddr = vaddr;
1515 } else if (vaddr < K0SEG_END)
1516 paddr = k0segtophys(vaddr);
1517 else
1518 paddr = vatopa(vaddr);
1519
1520 #if 0
1521 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1522 #endif
1523
1524 return (paddr);
1525 }
1526