Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.122
      1 /* $NetBSD: machdep.c,v 1.122 1998/05/19 18:35:11 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_uvm.h"
     68 #include "opt_pmap_new.h"
     69 
     70 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     71 
     72 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.122 1998/05/19 18:35:11 thorpej Exp $");
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/signalvar.h>
     77 #include <sys/kernel.h>
     78 #include <sys/map.h>
     79 #include <sys/proc.h>
     80 #include <sys/buf.h>
     81 #include <sys/reboot.h>
     82 #include <sys/device.h>
     83 #include <sys/file.h>
     84 #ifdef REAL_CLISTS
     85 #include <sys/clist.h>
     86 #endif
     87 #include <sys/callout.h>
     88 #include <sys/malloc.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/mman.h>
     91 #include <sys/msgbuf.h>
     92 #include <sys/ioctl.h>
     93 #include <sys/tty.h>
     94 #include <sys/user.h>
     95 #include <sys/exec.h>
     96 #include <sys/exec_ecoff.h>
     97 #include <vm/vm.h>
     98 #include <sys/sysctl.h>
     99 #include <sys/core.h>
    100 #include <sys/kcore.h>
    101 #include <machine/kcore.h>
    102 #ifdef SYSVMSG
    103 #include <sys/msg.h>
    104 #endif
    105 #ifdef SYSVSEM
    106 #include <sys/sem.h>
    107 #endif
    108 #ifdef SYSVSHM
    109 #include <sys/shm.h>
    110 #endif
    111 
    112 #include <sys/mount.h>
    113 #include <sys/syscallargs.h>
    114 
    115 #include <vm/vm_kern.h>
    116 
    117 #if defined(UVM)
    118 #include <uvm/uvm_extern.h>
    119 #endif
    120 
    121 #include <dev/cons.h>
    122 
    123 #include <machine/autoconf.h>
    124 #include <machine/cpu.h>
    125 #include <machine/reg.h>
    126 #include <machine/rpb.h>
    127 #include <machine/prom.h>
    128 #include <machine/conf.h>
    129 
    130 #include <net/netisr.h>
    131 #include <net/if.h>
    132 
    133 #ifdef INET
    134 #include <net/route.h>
    135 #include <netinet/in.h>
    136 #include <netinet/ip_var.h>
    137 #include "arp.h"
    138 #if NARP > 0
    139 #include <netinet/if_inarp.h>
    140 #endif
    141 #endif
    142 #ifdef NS
    143 #include <netns/ns_var.h>
    144 #endif
    145 #ifdef ISO
    146 #include <netiso/iso.h>
    147 #include <netiso/clnp.h>
    148 #endif
    149 #ifdef CCITT
    150 #include <netccitt/x25.h>
    151 #include <netccitt/pk.h>
    152 #include <netccitt/pk_extern.h>
    153 #endif
    154 #ifdef NATM
    155 #include <netnatm/natm.h>
    156 #endif
    157 #ifdef NETATALK
    158 #include <netatalk/at_extern.h>
    159 #endif
    160 #include "ppp.h"
    161 #if NPPP > 0
    162 #include <net/ppp_defs.h>
    163 #include <net/if_ppp.h>
    164 #endif
    165 
    166 #ifdef DDB
    167 #include <machine/db_machdep.h>
    168 #include <ddb/db_access.h>
    169 #include <ddb/db_sym.h>
    170 #include <ddb/db_extern.h>
    171 #include <ddb/db_interface.h>
    172 #endif
    173 
    174 #if defined(UVM)
    175 vm_map_t exec_map = NULL;
    176 vm_map_t mb_map = NULL;
    177 vm_map_t phys_map = NULL;
    178 #else
    179 vm_map_t buffer_map;
    180 #endif
    181 
    182 /*
    183  * Declare these as initialized data so we can patch them.
    184  */
    185 int	nswbuf = 0;
    186 #ifdef	NBUF
    187 int	nbuf = NBUF;
    188 #else
    189 int	nbuf = 0;
    190 #endif
    191 #ifdef	BUFPAGES
    192 int	bufpages = BUFPAGES;
    193 #else
    194 int	bufpages = 0;
    195 #endif
    196 caddr_t msgbufaddr;
    197 
    198 int	maxmem;			/* max memory per process */
    199 
    200 int	totalphysmem;		/* total amount of physical memory in system */
    201 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    202 int	resvmem;		/* amount of memory reserved for PROM */
    203 int	unusedmem;		/* amount of memory for OS that we don't use */
    204 int	unknownmem;		/* amount of memory with an unknown use */
    205 
    206 int	cputype;		/* system type, from the RPB */
    207 
    208 /*
    209  * XXX We need an address to which we can assign things so that they
    210  * won't be optimized away because we didn't use the value.
    211  */
    212 u_int32_t no_optimize;
    213 
    214 /* the following is used externally (sysctl_hw) */
    215 char	machine[] = MACHINE;		/* from <machine/param.h> */
    216 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    217 char	cpu_model[128];
    218 
    219 struct	user *proc0paddr;
    220 
    221 /* Number of machine cycles per microsecond */
    222 u_int64_t	cycles_per_usec;
    223 
    224 /* number of cpus in the box.  really! */
    225 int		ncpus;
    226 
    227 struct bootinfo_kernel bootinfo;
    228 
    229 struct platform platform;
    230 
    231 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    232 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    233 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    234 
    235 #ifdef DDB
    236 /* start and end of kernel symbol table */
    237 void	*ksym_start, *ksym_end;
    238 #endif
    239 
    240 /* for cpu_sysctl() */
    241 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    242 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    243 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    244 
    245 /*
    246  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    247  * XXX it should also be larger than it is, because not all of the mddt
    248  * XXX clusters end up being used for VM.
    249  */
    250 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    251 int	mem_cluster_cnt;
    252 
    253 caddr_t	allocsys __P((caddr_t));
    254 int	cpu_dump __P((void));
    255 int	cpu_dumpsize __P((void));
    256 u_long	cpu_dump_mempagecnt __P((void));
    257 void	dumpsys __P((void));
    258 void	identifycpu __P((void));
    259 void	netintr __P((void));
    260 void	printregs __P((struct reg *));
    261 
    262 void
    263 alpha_init(pfn, ptb, bim, bip, biv)
    264 	u_long pfn;		/* first free PFN number */
    265 	u_long ptb;		/* PFN of current level 1 page table */
    266 	u_long bim;		/* bootinfo magic */
    267 	u_long bip;		/* bootinfo pointer */
    268 	u_long biv;		/* bootinfo version */
    269 {
    270 	extern char kernel_text[], _end[];
    271 	struct mddt *mddtp;
    272 	struct mddt_cluster *memc;
    273 	int i, mddtweird;
    274 	struct vm_physseg *vps;
    275 	vm_offset_t kernstart, kernend;
    276 	vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
    277 	vm_size_t size;
    278 	char *p;
    279 	caddr_t v;
    280 	char *bootinfo_msg;
    281 
    282 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    283 
    284 	/*
    285 	 * Turn off interrupts (not mchecks) and floating point.
    286 	 * Make sure the instruction and data streams are consistent.
    287 	 */
    288 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    289 	alpha_pal_wrfen(0);
    290 	ALPHA_TBIA();
    291 	alpha_pal_imb();
    292 
    293 	/*
    294 	 * Get critical system information (if possible, from the
    295 	 * information provided by the boot program).
    296 	 */
    297 	bootinfo_msg = NULL;
    298 	if (bim == BOOTINFO_MAGIC) {
    299 		if (biv == 0) {		/* backward compat */
    300 			biv = *(u_long *)bip;
    301 			bip += 8;
    302 		}
    303 		switch (biv) {
    304 		case 1: {
    305 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    306 
    307 			bootinfo.ssym = v1p->ssym;
    308 			bootinfo.esym = v1p->esym;
    309 			/* hwrpb may not be provided by boot block in v1 */
    310 			if (v1p->hwrpb != NULL) {
    311 				bootinfo.hwrpb_phys =
    312 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    313 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    314 			} else {
    315 				bootinfo.hwrpb_phys =
    316 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    317 				bootinfo.hwrpb_size =
    318 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    319 			}
    320 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    321 			    min(sizeof v1p->boot_flags,
    322 			      sizeof bootinfo.boot_flags));
    323 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    324 			    min(sizeof v1p->booted_kernel,
    325 			      sizeof bootinfo.booted_kernel));
    326 			/* booted dev not provided in bootinfo */
    327 			init_prom_interface((struct rpb *)
    328 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    329                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    330 			    sizeof bootinfo.booted_dev);
    331 			break;
    332 		}
    333 		default:
    334 			bootinfo_msg = "unknown bootinfo version";
    335 			goto nobootinfo;
    336 		}
    337 	} else {
    338 		bootinfo_msg = "boot program did not pass bootinfo";
    339 nobootinfo:
    340 		bootinfo.ssym = (u_long)_end;
    341 		bootinfo.esym = (u_long)_end;
    342 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    343 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    344 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    345 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    346 		    sizeof bootinfo.boot_flags);
    347 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    348 		    sizeof bootinfo.booted_kernel);
    349 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    350 		    sizeof bootinfo.booted_dev);
    351 	}
    352 
    353 	/*
    354 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    355 	 * lots of things.
    356 	 */
    357 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    358 
    359 	/*
    360 	 * Remember how many cycles there are per microsecond,
    361 	 * so that we can use delay().  Round up, for safety.
    362 	 */
    363 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    364 
    365 	/*
    366 	 * Initalize the (temporary) bootstrap console interface, so
    367 	 * we can use printf until the VM system starts being setup.
    368 	 * The real console is initialized before then.
    369 	 */
    370 	init_bootstrap_console();
    371 
    372 	/* OUTPUT NOW ALLOWED */
    373 
    374 	/* delayed from above */
    375 	if (bootinfo_msg)
    376 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    377 		    bootinfo_msg, bim, bip, biv);
    378 
    379 	/*
    380 	 * Point interrupt/exception vectors to our own.
    381 	 */
    382 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    383 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    384 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    385 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    386 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    387 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    388 
    389 	/*
    390 	 * Clear pending machine checks and error reports, and enable
    391 	 * system- and processor-correctable error reporting.
    392 	 */
    393 	alpha_pal_wrmces(alpha_pal_rdmces() &
    394 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    395 
    396 	/*
    397 	 * Find out what hardware we're on, and do basic initialization.
    398 	 */
    399 	cputype = hwrpb->rpb_type;
    400 	if (cputype >= ncpuinit) {
    401 		platform_not_supported();
    402 		/* NOTREACHED */
    403 	}
    404 	(*cpuinit[cputype].init)();
    405 	strcpy(cpu_model, platform.model);
    406 
    407 	/*
    408 	 * Initalize the real console, so the the bootstrap console is
    409 	 * no longer necessary.
    410 	 */
    411 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    412 	if (!pmap_uses_prom_console())
    413 #endif
    414 		(*platform.cons_init)();
    415 
    416 #ifdef DIAGNOSTIC
    417 	/* Paranoid sanity checking */
    418 
    419 	/* We should always be running on the the primary. */
    420 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    421 
    422 	/*
    423 	 * On single-CPU systypes, the primary should always be CPU 0,
    424 	 * except on Alpha 8200 systems where the CPU id is related
    425 	 * to the VID, which is related to the Turbo Laser node id.
    426 	 */
    427 	if (cputype != ST_DEC_21000)
    428 		assert(hwrpb->rpb_primary_cpu_id == 0);
    429 #endif
    430 
    431 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    432 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    433 	/*
    434 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    435 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    436 	 */
    437 #endif
    438 
    439 	/*
    440 	 * find out this system's page size
    441 	 */
    442 	PAGE_SIZE = hwrpb->rpb_page_size;
    443 	if (PAGE_SIZE != 8192)
    444 		panic("page size %d != 8192?!", PAGE_SIZE);
    445 
    446 	/*
    447 	 * Initialize PAGE_SIZE-dependent variables.
    448 	 */
    449 #if defined(UVM)
    450 	uvm_setpagesize();
    451 #else
    452 	vm_set_page_size();
    453 #endif
    454 
    455 	/*
    456 	 * Find the beginning and end of the kernel (and leave a
    457 	 * bit of space before the beginning for the bootstrap
    458 	 * stack).
    459 	 */
    460 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    461 #ifdef DDB
    462 	ksym_start = (void *)bootinfo.ssym;
    463 	ksym_end   = (void *)bootinfo.esym;
    464 	kernend = (vm_offset_t)round_page(ksym_end);
    465 #else
    466 	kernend = (vm_offset_t)round_page(_end);
    467 #endif
    468 
    469 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    470 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    471 
    472 	/*
    473 	 * Find out how much memory is available, by looking at
    474 	 * the memory cluster descriptors.  This also tries to do
    475 	 * its best to detect things things that have never been seen
    476 	 * before...
    477 	 */
    478 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    479 
    480 	/* MDDT SANITY CHECKING */
    481 	mddtweird = 0;
    482 	if (mddtp->mddt_cluster_cnt < 2) {
    483 		mddtweird = 1;
    484 		printf("WARNING: weird number of mem clusters: %d\n",
    485 		    mddtp->mddt_cluster_cnt);
    486 	}
    487 
    488 #if 0
    489 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    490 #endif
    491 
    492 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    493 		memc = &mddtp->mddt_clusters[i];
    494 #if 0
    495 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    496 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    497 #endif
    498 		totalphysmem += memc->mddt_pg_cnt;
    499 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    500 			mem_clusters[mem_cluster_cnt].start =
    501 			    ptoa(memc->mddt_pfn);
    502 			mem_clusters[mem_cluster_cnt].size =
    503 			    ptoa(memc->mddt_pg_cnt);
    504 			if (memc->mddt_usage & MDDT_mbz ||
    505 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    506 			    memc->mddt_usage & MDDT_PALCODE)
    507 				mem_clusters[mem_cluster_cnt].size |=
    508 				    PROT_READ;
    509 			else
    510 				mem_clusters[mem_cluster_cnt].size |=
    511 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    512 			mem_cluster_cnt++;
    513 		}
    514 
    515 		if (memc->mddt_usage & MDDT_mbz) {
    516 			mddtweird = 1;
    517 			printf("WARNING: mem cluster %d has weird "
    518 			    "usage 0x%lx\n", i, memc->mddt_usage);
    519 			unknownmem += memc->mddt_pg_cnt;
    520 			continue;
    521 		}
    522 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    523 			/* XXX should handle these... */
    524 			printf("WARNING: skipping non-volatile mem "
    525 			    "cluster %d\n", i);
    526 			unusedmem += memc->mddt_pg_cnt;
    527 			continue;
    528 		}
    529 		if (memc->mddt_usage & MDDT_PALCODE) {
    530 			resvmem += memc->mddt_pg_cnt;
    531 			continue;
    532 		}
    533 
    534 		/*
    535 		 * We have a memory cluster available for system
    536 		 * software use.  We must determine if this cluster
    537 		 * holds the kernel.
    538 		 */
    539 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    540 		/*
    541 		 * XXX If the kernel uses the PROM console, we only use the
    542 		 * XXX memory after the kernel in the first system segment,
    543 		 * XXX to avoid clobbering prom mapping, data, etc.
    544 		 */
    545 	    if (!pmap_uses_prom_console() || physmem == 0) {
    546 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    547 		physmem += memc->mddt_pg_cnt;
    548 		pfn0 = memc->mddt_pfn;
    549 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    550 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    551 			/*
    552 			 * Must compute the location of the kernel
    553 			 * within the segment.
    554 			 */
    555 #if 0
    556 			printf("Cluster %d contains kernel\n", i);
    557 #endif
    558 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    559 		    if (!pmap_uses_prom_console()) {
    560 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    561 			if (pfn0 < kernstartpfn) {
    562 				/*
    563 				 * There is a chunk before the kernel.
    564 				 */
    565 #if 0
    566 				printf("Loading chunk before kernel: "
    567 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    568 #endif
    569 #if defined(UVM)
    570 				uvm_page_physload(pfn0, kernstartpfn,
    571 				    pfn0, kernstartpfn);
    572 #else
    573 				vm_page_physload(pfn0, kernstartpfn,
    574 				    pfn0, kernstartpfn);
    575 #endif
    576 			}
    577 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    578 		    }
    579 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    580 			if (kernendpfn < pfn1) {
    581 				/*
    582 				 * There is a chunk after the kernel.
    583 				 */
    584 #if 0
    585 				printf("Loading chunk after kernel: "
    586 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    587 #endif
    588 #if defined(UVM)
    589 				uvm_page_physload(kernendpfn, pfn1,
    590 				    kernendpfn, pfn1);
    591 #else
    592 				vm_page_physload(kernendpfn, pfn1,
    593 				    kernendpfn, pfn1);
    594 #endif
    595 			}
    596 		} else {
    597 			/*
    598 			 * Just load this cluster as one chunk.
    599 			 */
    600 #if 0
    601 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    602 			    pfn0, pfn1);
    603 #endif
    604 #if defined(UVM)
    605 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
    606 #else
    607 			vm_page_physload(pfn0, pfn1, pfn0, pfn1);
    608 #endif
    609 		}
    610 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    611 	    }
    612 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    613 	}
    614 
    615 	/*
    616 	 * Dump out the MDDT if it looks odd...
    617 	 */
    618 	if (mddtweird) {
    619 		printf("\n");
    620 		printf("complete memory cluster information:\n");
    621 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    622 			printf("mddt %d:\n", i);
    623 			printf("\tpfn %lx\n",
    624 			    mddtp->mddt_clusters[i].mddt_pfn);
    625 			printf("\tcnt %lx\n",
    626 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    627 			printf("\ttest %lx\n",
    628 			    mddtp->mddt_clusters[i].mddt_pg_test);
    629 			printf("\tbva %lx\n",
    630 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    631 			printf("\tbpa %lx\n",
    632 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    633 			printf("\tbcksum %lx\n",
    634 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    635 			printf("\tusage %lx\n",
    636 			    mddtp->mddt_clusters[i].mddt_usage);
    637 		}
    638 		printf("\n");
    639 	}
    640 
    641 	if (totalphysmem == 0)
    642 		panic("can't happen: system seems to have no memory!");
    643 
    644 #ifdef LIMITMEM
    645 	/*
    646 	 * XXX Kludge so we can run on machines with memory larger
    647 	 * XXX than 1G until all device drivers are converted to
    648 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    649 	 * XXX sorted in order of increasing addresses.)
    650 	 */
    651 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    652 
    653 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    654 		    LIMITMEM);
    655 
    656 		do {
    657 			u_long ovf;
    658 
    659 			vps = &vm_physmem[vm_nphysseg - 1];
    660 
    661 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    662 				/*
    663 				 * If the start is too high, just drop
    664 				 * the whole segment.
    665 				 *
    666 				 * XXX can start != avail_start in this
    667 				 * XXX case?  wouldn't that mean that
    668 				 * XXX some memory was stolen above the
    669 				 * XXX limit?  What to do?
    670 				 */
    671 				ovf = vps->end - vps->start;
    672 				vm_nphysseg--;
    673 			} else {
    674 				/*
    675 				 * If the start is OK, calculate how much
    676 				 * to drop and drop it.
    677 				 */
    678 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    679 				vps->end -= ovf;
    680 				vps->avail_end -= ovf;
    681 			}
    682 			physmem -= ovf;
    683 			unusedmem += ovf;
    684 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    685 	}
    686 #endif /* LIMITMEM */
    687 
    688 	maxmem = physmem;
    689 
    690 #if 0
    691 	printf("totalphysmem = %d\n", totalphysmem);
    692 	printf("physmem = %d\n", physmem);
    693 	printf("resvmem = %d\n", resvmem);
    694 	printf("unusedmem = %d\n", unusedmem);
    695 	printf("unknownmem = %d\n", unknownmem);
    696 #endif
    697 
    698 	/*
    699 	 * Adjust some parameters if the amount of physmem
    700 	 * available would cause us to croak. This is completely
    701 	 * eyeballed and isn't meant to be the final answer.
    702 	 * vm_phys_size is probably the only one to really worry
    703 	 * about.
    704  	 *
    705 	 * It's for booting a GENERIC kernel on a large memory platform.
    706 	 */
    707 	if (physmem >= atop(128 * 1024 * 1024)) {
    708 		vm_mbuf_size <<= 1;
    709 		vm_kmem_size <<= 3;
    710 		vm_phys_size <<= 2;
    711 	}
    712 
    713 	/*
    714 	 * Initialize error message buffer (at end of core).
    715 	 */
    716 	{
    717 		size_t sz = round_page(MSGBUFSIZE);
    718 
    719 		vps = &vm_physmem[vm_nphysseg - 1];
    720 
    721 		/* shrink so that it'll fit in the last segment */
    722 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    723 			sz = ptoa(vps->avail_end - vps->avail_start);
    724 
    725 		vps->end -= atop(sz);
    726 		vps->avail_end -= atop(sz);
    727 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    728 		initmsgbuf(msgbufaddr, sz);
    729 
    730 		/* Remove the last segment if it now has no pages. */
    731 		if (vps->start == vps->end)
    732 			vm_nphysseg--;
    733 
    734 		/* warn if the message buffer had to be shrunk */
    735 		if (sz != round_page(MSGBUFSIZE))
    736 			printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
    737 			    round_page(MSGBUFSIZE), sz);
    738 
    739 	}
    740 
    741 	/*
    742 	 * Init mapping for u page(s) for proc 0
    743 	 */
    744 	proc0.p_addr = proc0paddr =
    745 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    746 
    747 	/*
    748 	 * Allocate space for system data structures.  These data structures
    749 	 * are allocated here instead of cpu_startup() because physical
    750 	 * memory is directly addressable.  We don't have to map these into
    751 	 * virtual address space.
    752 	 */
    753 	size = (vm_size_t)allocsys(0);
    754 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    755 	if ((allocsys(v) - v) != size)
    756 		panic("alpha_init: table size inconsistency");
    757 
    758 	/*
    759 	 * Initialize the virtual memory system, and set the
    760 	 * page table base register in proc 0's PCB.
    761 	 */
    762 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    763 	    hwrpb->rpb_max_asn);
    764 
    765 	/*
    766 	 * Initialize the rest of proc 0's PCB, and cache its physical
    767 	 * address.
    768 	 */
    769 	proc0.p_md.md_pcbpaddr =
    770 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    771 
    772 	/*
    773 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    774 	 * and make proc0's trapframe pointer point to it for sanity.
    775 	 */
    776 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    777 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    778 	proc0.p_md.md_tf =
    779 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    780 
    781 	/*
    782 	 * Look at arguments passed to us and compute boothowto.
    783 	 */
    784 
    785 	boothowto = RB_SINGLE;
    786 #ifdef KADB
    787 	boothowto |= RB_KDB;
    788 #endif
    789 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    790 		/*
    791 		 * Note that we'd really like to differentiate case here,
    792 		 * but the Alpha AXP Architecture Reference Manual
    793 		 * says that we shouldn't.
    794 		 */
    795 		switch (*p) {
    796 		case 'a': /* autoboot */
    797 		case 'A':
    798 			boothowto &= ~RB_SINGLE;
    799 			break;
    800 
    801 #ifdef DEBUG
    802 		case 'c': /* crash dump immediately after autoconfig */
    803 		case 'C':
    804 			boothowto |= RB_DUMP;
    805 			break;
    806 #endif
    807 
    808 #if defined(KGDB) || defined(DDB)
    809 		case 'd': /* break into the kernel debugger ASAP */
    810 		case 'D':
    811 			boothowto |= RB_KDB;
    812 			break;
    813 #endif
    814 
    815 		case 'h': /* always halt, never reboot */
    816 		case 'H':
    817 			boothowto |= RB_HALT;
    818 			break;
    819 
    820 #if 0
    821 		case 'm': /* mini root present in memory */
    822 		case 'M':
    823 			boothowto |= RB_MINIROOT;
    824 			break;
    825 #endif
    826 
    827 		case 'n': /* askname */
    828 		case 'N':
    829 			boothowto |= RB_ASKNAME;
    830 			break;
    831 
    832 		case 's': /* single-user (default, supported for sanity) */
    833 		case 'S':
    834 			boothowto |= RB_SINGLE;
    835 			break;
    836 
    837 		case '-':
    838 			/*
    839 			 * Just ignore this.  It's not required, but it's
    840 			 * common for it to be passed regardless.
    841 			 */
    842 			break;
    843 
    844 		default:
    845 			printf("Unrecognized boot flag '%c'.\n", *p);
    846 			break;
    847 		}
    848 	}
    849 
    850 	/*
    851 	 * Initialize debuggers, and break into them if appropriate.
    852 	 */
    853 #ifdef DDB
    854 	db_machine_init();
    855 	ddb_init(ksym_start, ksym_end);
    856 	if (boothowto & RB_KDB)
    857 		Debugger();
    858 #endif
    859 #ifdef KGDB
    860 	if (boothowto & RB_KDB)
    861 		kgdb_connect(0);
    862 #endif
    863 
    864 	/*
    865 	 * Figure out the number of cpus in the box, from RPB fields.
    866 	 * Really.  We mean it.
    867 	 */
    868 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    869 		struct pcs *pcsp;
    870 
    871 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    872 		    (i * hwrpb->rpb_pcs_size));
    873 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    874 			ncpus++;
    875 	}
    876 
    877 	/*
    878 	 * Figure out our clock frequency, from RPB fields.
    879 	 */
    880 	hz = hwrpb->rpb_intr_freq >> 12;
    881 	if (!(60 <= hz && hz <= 10240)) {
    882 		hz = 1024;
    883 #ifdef DIAGNOSTIC
    884 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    885 			hwrpb->rpb_intr_freq, hz);
    886 #endif
    887 	}
    888 
    889 }
    890 
    891 /*
    892  * Allocate space for system data structures.  We are given
    893  * a starting virtual address and we return a final virtual
    894  * address; along the way we set each data structure pointer.
    895  *
    896  * We call allocsys() with 0 to find out how much space we want,
    897  * allocate that much and fill it with zeroes, and the call
    898  * allocsys() again with the correct base virtual address.
    899  */
    900 caddr_t
    901 allocsys(v)
    902 	caddr_t v;
    903 {
    904 
    905 #define valloc(name, type, num) \
    906 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    907 #ifdef REAL_CLISTS
    908 	valloc(cfree, struct cblock, nclist);
    909 #endif
    910 	valloc(callout, struct callout, ncallout);
    911 #ifdef SYSVSHM
    912 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    913 #endif
    914 #ifdef SYSVSEM
    915 	valloc(sema, struct semid_ds, seminfo.semmni);
    916 	valloc(sem, struct sem, seminfo.semmns);
    917 	/* This is pretty disgusting! */
    918 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    919 #endif
    920 #ifdef SYSVMSG
    921 	valloc(msgpool, char, msginfo.msgmax);
    922 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    923 	valloc(msghdrs, struct msg, msginfo.msgtql);
    924 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    925 #endif
    926 
    927 	/*
    928 	 * Determine how many buffers to allocate.
    929 	 * We allocate 10% of memory for buffer space.  Insure a
    930 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    931 	 * headers as file i/o buffers.
    932 	 */
    933 	if (bufpages == 0)
    934 		bufpages = (physmem * 10) / (CLSIZE * 100);
    935 	if (nbuf == 0) {
    936 		nbuf = bufpages;
    937 		if (nbuf < 16)
    938 			nbuf = 16;
    939 	}
    940 	if (nswbuf == 0) {
    941 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    942 		if (nswbuf > 256)
    943 			nswbuf = 256;		/* sanity */
    944 	}
    945 #if !defined(UVM)
    946 	valloc(swbuf, struct buf, nswbuf);
    947 #endif
    948 	valloc(buf, struct buf, nbuf);
    949 	return (v);
    950 #undef valloc
    951 }
    952 
    953 void
    954 consinit()
    955 {
    956 
    957 	/*
    958 	 * Everything related to console initialization is done
    959 	 * in alpha_init().
    960 	 */
    961 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    962 	printf("consinit: %susing prom console\n",
    963 	    pmap_uses_prom_console() ? "" : "not ");
    964 #endif
    965 }
    966 
    967 #include "pckbc.h"
    968 #include "pckbd.h"
    969 #if (NPCKBC > 0) && (NPCKBD == 0)
    970 
    971 #include <machine/bus.h>
    972 #include <dev/isa/pckbcvar.h>
    973 
    974 /*
    975  * This is called by the pbkbc driver if no pckbd is configured.
    976  * On the i386, it is used to glue in the old, deprecated console
    977  * code.  On the Alpha, it does nothing.
    978  */
    979 int
    980 pckbc_machdep_cnattach(kbctag, kbcslot)
    981 	pckbc_tag_t kbctag;
    982 	pckbc_slot_t kbcslot;
    983 {
    984 
    985 	return (ENXIO);
    986 }
    987 #endif /* NPCKBC > 0 && NPCKBD == 0 */
    988 
    989 void
    990 cpu_startup()
    991 {
    992 	register unsigned i;
    993 	int base, residual;
    994 	vm_offset_t minaddr, maxaddr;
    995 	vm_size_t size;
    996 #if defined(DEBUG)
    997 	extern int pmapdebug;
    998 	int opmapdebug = pmapdebug;
    999 
   1000 	pmapdebug = 0;
   1001 #endif
   1002 
   1003 	/*
   1004 	 * Good {morning,afternoon,evening,night}.
   1005 	 */
   1006 	printf(version);
   1007 	identifycpu();
   1008 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
   1009 	    ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
   1010 	if (unusedmem)
   1011 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
   1012 	if (unknownmem)
   1013 		printf("WARNING: %d bytes of memory with unknown purpose\n",
   1014 		    ctob(unknownmem));
   1015 
   1016 	/*
   1017 	 * Allocate virtual address space for file I/O buffers.
   1018 	 * Note they are different than the array of headers, 'buf',
   1019 	 * and usually occupy more virtual memory than physical.
   1020 	 */
   1021 	size = MAXBSIZE * nbuf;
   1022 #if defined(UVM)
   1023 	if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
   1024 		    NULL, UVM_UNKNOWN_OFFSET,
   1025 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1026 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1027 		panic("startup: cannot allocate VM for buffers");
   1028 #else
   1029 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
   1030 	    &maxaddr, size, TRUE);
   1031 	minaddr = (vm_offset_t)buffers;
   1032 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
   1033 			&minaddr, size, FALSE) != KERN_SUCCESS)
   1034 		panic("startup: cannot allocate buffers");
   1035 #endif /* UVM */
   1036 	base = bufpages / nbuf;
   1037 	residual = bufpages % nbuf;
   1038 	for (i = 0; i < nbuf; i++) {
   1039 #if defined(UVM)
   1040 		vm_size_t curbufsize;
   1041 		vm_offset_t curbuf;
   1042 		struct vm_page *pg;
   1043 
   1044 		/*
   1045 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1046 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1047 		 * for the first "residual" buffers, and then we allocate
   1048 		 * "base" pages for the rest.
   1049 		 */
   1050 		curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
   1051 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1052 
   1053 		while (curbufsize) {
   1054 			pg = uvm_pagealloc(NULL, 0, NULL);
   1055 			if (pg == NULL)
   1056 				panic("cpu_startup: not enough memory for "
   1057 				    "buffer cache");
   1058 #if defined(PMAP_NEW)
   1059 			pmap_kenter_pgs(curbuf, &pg, 1);
   1060 #else
   1061 			pmap_enter(kernel_map->pmap, curbuf,
   1062 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1063 #endif
   1064 			curbuf += PAGE_SIZE;
   1065 			curbufsize -= PAGE_SIZE;
   1066 		}
   1067 #else /* ! UVM */
   1068 		vm_size_t curbufsize;
   1069 		vm_offset_t curbuf;
   1070 
   1071 		/*
   1072 		 * First <residual> buffers get (base+1) physical pages
   1073 		 * allocated for them.  The rest get (base) physical pages.
   1074 		 *
   1075 		 * The rest of each buffer occupies virtual space,
   1076 		 * but has no physical memory allocated for it.
   1077 		 */
   1078 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
   1079 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
   1080 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
   1081 		vm_map_simplify(buffer_map, curbuf);
   1082 #endif /* UVM */
   1083 	}
   1084 	/*
   1085 	 * Allocate a submap for exec arguments.  This map effectively
   1086 	 * limits the number of processes exec'ing at any time.
   1087 	 */
   1088 #if defined(UVM)
   1089 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1090 				   16 * NCARGS, TRUE, FALSE, NULL);
   1091 #else
   1092 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1093 				 16 * NCARGS, TRUE);
   1094 #endif
   1095 
   1096 	/*
   1097 	 * Allocate a submap for physio
   1098 	 */
   1099 #if defined(UVM)
   1100 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1101 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1102 #else
   1103 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1104 				 VM_PHYS_SIZE, TRUE);
   1105 #endif
   1106 
   1107 	/*
   1108 	 * Finally, allocate mbuf cluster submap.
   1109 	 */
   1110 #if defined(UVM)
   1111 	mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1112 				 VM_MBUF_SIZE, FALSE, FALSE, NULL);
   1113 #else
   1114 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1115 			       VM_MBUF_SIZE, FALSE);
   1116 #endif
   1117 	/*
   1118 	 * Initialize callouts
   1119 	 */
   1120 	callfree = callout;
   1121 	for (i = 1; i < ncallout; i++)
   1122 		callout[i-1].c_next = &callout[i];
   1123 	callout[i-1].c_next = NULL;
   1124 
   1125 #if defined(DEBUG)
   1126 	pmapdebug = opmapdebug;
   1127 #endif
   1128 #if defined(UVM)
   1129 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1130 #else
   1131 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
   1132 #endif
   1133 	printf("using %ld buffers containing %ld bytes of memory\n",
   1134 		(long)nbuf, (long)(bufpages * CLBYTES));
   1135 
   1136 	/*
   1137 	 * Set up buffers, so they can be used to read disk labels.
   1138 	 */
   1139 	bufinit();
   1140 
   1141 	/*
   1142 	 * Configure the system.
   1143 	 */
   1144 	configure();
   1145 
   1146 	/*
   1147 	 * Note that bootstrapping is finished, and set the HWRPB up
   1148 	 * to do restarts.
   1149 	 */
   1150 	hwrpb_restart_setup();
   1151 }
   1152 
   1153 /*
   1154  * Retrieve the platform name from the DSR.
   1155  */
   1156 const char *
   1157 alpha_dsr_sysname()
   1158 {
   1159 	struct dsrdb *dsr;
   1160 	const char *sysname;
   1161 
   1162 	/*
   1163 	 * DSR does not exist on early HWRPB versions.
   1164 	 */
   1165 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1166 		return (NULL);
   1167 
   1168 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1169 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1170 	    sizeof(u_int64_t)));
   1171 	return (sysname);
   1172 }
   1173 
   1174 /*
   1175  * Lookup the system specified system variation in the provided table,
   1176  * returning the model string on match.
   1177  */
   1178 const char *
   1179 alpha_variation_name(variation, avtp)
   1180 	u_int64_t variation;
   1181 	const struct alpha_variation_table *avtp;
   1182 {
   1183 	int i;
   1184 
   1185 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1186 		if (avtp[i].avt_variation == variation)
   1187 			return (avtp[i].avt_model);
   1188 	return (NULL);
   1189 }
   1190 
   1191 /*
   1192  * Generate a default platform name based for unknown system variations.
   1193  */
   1194 const char *
   1195 alpha_unknown_sysname()
   1196 {
   1197 	static char s[128];		/* safe size */
   1198 
   1199 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1200 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1201 	return ((const char *)s);
   1202 }
   1203 
   1204 void
   1205 identifycpu()
   1206 {
   1207 
   1208 	/*
   1209 	 * print out CPU identification information.
   1210 	 */
   1211 	printf("%s, %ldMHz\n", cpu_model,
   1212 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1213 	printf("%ld byte page size, %d processor%s.\n",
   1214 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1215 #if 0
   1216 	/* this isn't defined for any systems that we run on? */
   1217 	printf("serial number 0x%lx 0x%lx\n",
   1218 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1219 
   1220 	/* and these aren't particularly useful! */
   1221 	printf("variation: 0x%lx, revision 0x%lx\n",
   1222 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1223 #endif
   1224 }
   1225 
   1226 int	waittime = -1;
   1227 struct pcb dumppcb;
   1228 
   1229 void
   1230 cpu_reboot(howto, bootstr)
   1231 	int howto;
   1232 	char *bootstr;
   1233 {
   1234 	extern int cold;
   1235 
   1236 	/* If system is cold, just halt. */
   1237 	if (cold) {
   1238 		howto |= RB_HALT;
   1239 		goto haltsys;
   1240 	}
   1241 
   1242 	/* If "always halt" was specified as a boot flag, obey. */
   1243 	if ((boothowto & RB_HALT) != 0)
   1244 		howto |= RB_HALT;
   1245 
   1246 	boothowto = howto;
   1247 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1248 		waittime = 0;
   1249 		vfs_shutdown();
   1250 		/*
   1251 		 * If we've been adjusting the clock, the todr
   1252 		 * will be out of synch; adjust it now.
   1253 		 */
   1254 		resettodr();
   1255 	}
   1256 
   1257 	/* Disable interrupts. */
   1258 	splhigh();
   1259 
   1260 	/* If rebooting and a dump is requested do it. */
   1261 #if 0
   1262 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1263 #else
   1264 	if (howto & RB_DUMP)
   1265 #endif
   1266 		dumpsys();
   1267 
   1268 haltsys:
   1269 
   1270 	/* run any shutdown hooks */
   1271 	doshutdownhooks();
   1272 
   1273 #ifdef BOOTKEY
   1274 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1275 	cnpollc(1);	/* for proper keyboard command handling */
   1276 	cngetc();
   1277 	cnpollc(0);
   1278 	printf("\n");
   1279 #endif
   1280 
   1281 	/* Finally, halt/reboot the system. */
   1282 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1283 	prom_halt(howto & RB_HALT);
   1284 	/*NOTREACHED*/
   1285 }
   1286 
   1287 /*
   1288  * These variables are needed by /sbin/savecore
   1289  */
   1290 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1291 int 	dumpsize = 0;		/* pages */
   1292 long	dumplo = 0; 		/* blocks */
   1293 
   1294 /*
   1295  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1296  */
   1297 int
   1298 cpu_dumpsize()
   1299 {
   1300 	int size;
   1301 
   1302 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1303 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1304 	if (roundup(size, dbtob(1)) != dbtob(1))
   1305 		return -1;
   1306 
   1307 	return (1);
   1308 }
   1309 
   1310 /*
   1311  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1312  */
   1313 u_long
   1314 cpu_dump_mempagecnt()
   1315 {
   1316 	u_long i, n;
   1317 
   1318 	n = 0;
   1319 	for (i = 0; i < mem_cluster_cnt; i++)
   1320 		n += atop(mem_clusters[i].size);
   1321 	return (n);
   1322 }
   1323 
   1324 /*
   1325  * cpu_dump: dump machine-dependent kernel core dump headers.
   1326  */
   1327 int
   1328 cpu_dump()
   1329 {
   1330 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1331 	char buf[dbtob(1)];
   1332 	kcore_seg_t *segp;
   1333 	cpu_kcore_hdr_t *cpuhdrp;
   1334 	phys_ram_seg_t *memsegp;
   1335 	int i;
   1336 
   1337 	dump = bdevsw[major(dumpdev)].d_dump;
   1338 
   1339 	bzero(buf, sizeof buf);
   1340 	segp = (kcore_seg_t *)buf;
   1341 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1342 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1343 	    ALIGN(sizeof(*cpuhdrp))];
   1344 
   1345 	/*
   1346 	 * Generate a segment header.
   1347 	 */
   1348 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1349 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1350 
   1351 	/*
   1352 	 * Add the machine-dependent header info.
   1353 	 */
   1354 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
   1355 	cpuhdrp->page_size = PAGE_SIZE;
   1356 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1357 
   1358 	/*
   1359 	 * Fill in the memory segment descriptors.
   1360 	 */
   1361 	for (i = 0; i < mem_cluster_cnt; i++) {
   1362 		memsegp[i].start = mem_clusters[i].start;
   1363 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1364 	}
   1365 
   1366 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1367 }
   1368 
   1369 /*
   1370  * This is called by main to set dumplo and dumpsize.
   1371  * Dumps always skip the first CLBYTES of disk space
   1372  * in case there might be a disk label stored there.
   1373  * If there is extra space, put dump at the end to
   1374  * reduce the chance that swapping trashes it.
   1375  */
   1376 void
   1377 cpu_dumpconf()
   1378 {
   1379 	int nblks, dumpblks;	/* size of dump area */
   1380 	int maj;
   1381 
   1382 	if (dumpdev == NODEV)
   1383 		goto bad;
   1384 	maj = major(dumpdev);
   1385 	if (maj < 0 || maj >= nblkdev)
   1386 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1387 	if (bdevsw[maj].d_psize == NULL)
   1388 		goto bad;
   1389 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1390 	if (nblks <= ctod(1))
   1391 		goto bad;
   1392 
   1393 	dumpblks = cpu_dumpsize();
   1394 	if (dumpblks < 0)
   1395 		goto bad;
   1396 	dumpblks += ctod(cpu_dump_mempagecnt());
   1397 
   1398 	/* If dump won't fit (incl. room for possible label), punt. */
   1399 	if (dumpblks > (nblks - ctod(1)))
   1400 		goto bad;
   1401 
   1402 	/* Put dump at end of partition */
   1403 	dumplo = nblks - dumpblks;
   1404 
   1405 	/* dumpsize is in page units, and doesn't include headers. */
   1406 	dumpsize = cpu_dump_mempagecnt();
   1407 	return;
   1408 
   1409 bad:
   1410 	dumpsize = 0;
   1411 	return;
   1412 }
   1413 
   1414 /*
   1415  * Dump the kernel's image to the swap partition.
   1416  */
   1417 #define	BYTES_PER_DUMP	NBPG
   1418 
   1419 void
   1420 dumpsys()
   1421 {
   1422 	u_long totalbytesleft, bytes, i, n, memcl;
   1423 	u_long maddr;
   1424 	int psize;
   1425 	daddr_t blkno;
   1426 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1427 	int error;
   1428 
   1429 	/* Save registers. */
   1430 	savectx(&dumppcb);
   1431 
   1432 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1433 	if (dumpdev == NODEV)
   1434 		return;
   1435 
   1436 	/*
   1437 	 * For dumps during autoconfiguration,
   1438 	 * if dump device has already configured...
   1439 	 */
   1440 	if (dumpsize == 0)
   1441 		cpu_dumpconf();
   1442 	if (dumplo <= 0) {
   1443 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1444 		    minor(dumpdev));
   1445 		return;
   1446 	}
   1447 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1448 	    minor(dumpdev), dumplo);
   1449 
   1450 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1451 	printf("dump ");
   1452 	if (psize == -1) {
   1453 		printf("area unavailable\n");
   1454 		return;
   1455 	}
   1456 
   1457 	/* XXX should purge all outstanding keystrokes. */
   1458 
   1459 	if ((error = cpu_dump()) != 0)
   1460 		goto err;
   1461 
   1462 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1463 	blkno = dumplo + cpu_dumpsize();
   1464 	dump = bdevsw[major(dumpdev)].d_dump;
   1465 	error = 0;
   1466 
   1467 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1468 		maddr = mem_clusters[memcl].start;
   1469 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1470 
   1471 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1472 
   1473 			/* Print out how many MBs we to go. */
   1474 			if ((totalbytesleft % (1024*1024)) == 0)
   1475 				printf("%d ", totalbytesleft / (1024 * 1024));
   1476 
   1477 			/* Limit size for next transfer. */
   1478 			n = bytes - i;
   1479 			if (n > BYTES_PER_DUMP)
   1480 				n =  BYTES_PER_DUMP;
   1481 
   1482 			error = (*dump)(dumpdev, blkno,
   1483 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1484 			if (error)
   1485 				goto err;
   1486 			maddr += n;
   1487 			blkno += btodb(n);			/* XXX? */
   1488 
   1489 			/* XXX should look for keystrokes, to cancel. */
   1490 		}
   1491 	}
   1492 
   1493 err:
   1494 	switch (error) {
   1495 
   1496 	case ENXIO:
   1497 		printf("device bad\n");
   1498 		break;
   1499 
   1500 	case EFAULT:
   1501 		printf("device not ready\n");
   1502 		break;
   1503 
   1504 	case EINVAL:
   1505 		printf("area improper\n");
   1506 		break;
   1507 
   1508 	case EIO:
   1509 		printf("i/o error\n");
   1510 		break;
   1511 
   1512 	case EINTR:
   1513 		printf("aborted from console\n");
   1514 		break;
   1515 
   1516 	case 0:
   1517 		printf("succeeded\n");
   1518 		break;
   1519 
   1520 	default:
   1521 		printf("error %d\n", error);
   1522 		break;
   1523 	}
   1524 	printf("\n\n");
   1525 	delay(1000);
   1526 }
   1527 
   1528 void
   1529 frametoreg(framep, regp)
   1530 	struct trapframe *framep;
   1531 	struct reg *regp;
   1532 {
   1533 
   1534 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1535 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1536 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1537 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1538 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1539 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1540 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1541 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1542 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1543 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1544 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1545 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1546 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1547 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1548 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1549 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1550 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1551 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1552 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1553 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1554 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1555 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1556 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1557 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1558 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1559 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1560 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1561 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1562 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1563 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1564 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1565 	regp->r_regs[R_ZERO] = 0;
   1566 }
   1567 
   1568 void
   1569 regtoframe(regp, framep)
   1570 	struct reg *regp;
   1571 	struct trapframe *framep;
   1572 {
   1573 
   1574 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1575 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1576 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1577 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1578 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1579 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1580 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1581 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1582 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1583 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1584 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1585 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1586 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1587 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1588 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1589 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1590 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1591 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1592 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1593 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1594 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1595 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1596 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1597 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1598 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1599 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1600 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1601 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1602 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1603 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1604 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1605 	/* ??? = regp->r_regs[R_ZERO]; */
   1606 }
   1607 
   1608 void
   1609 printregs(regp)
   1610 	struct reg *regp;
   1611 {
   1612 	int i;
   1613 
   1614 	for (i = 0; i < 32; i++)
   1615 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1616 		   i & 1 ? "\n" : "\t");
   1617 }
   1618 
   1619 void
   1620 regdump(framep)
   1621 	struct trapframe *framep;
   1622 {
   1623 	struct reg reg;
   1624 
   1625 	frametoreg(framep, &reg);
   1626 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1627 
   1628 	printf("REGISTERS:\n");
   1629 	printregs(&reg);
   1630 }
   1631 
   1632 #ifdef DEBUG
   1633 int sigdebug = 0;
   1634 int sigpid = 0;
   1635 #define	SDB_FOLLOW	0x01
   1636 #define	SDB_KSTACK	0x02
   1637 #endif
   1638 
   1639 /*
   1640  * Send an interrupt to process.
   1641  */
   1642 void
   1643 sendsig(catcher, sig, mask, code)
   1644 	sig_t catcher;
   1645 	int sig, mask;
   1646 	u_long code;
   1647 {
   1648 	struct proc *p = curproc;
   1649 	struct sigcontext *scp, ksc;
   1650 	struct trapframe *frame;
   1651 	struct sigacts *psp = p->p_sigacts;
   1652 	int oonstack, fsize, rndfsize;
   1653 	extern char sigcode[], esigcode[];
   1654 	extern struct proc *fpcurproc;
   1655 
   1656 	frame = p->p_md.md_tf;
   1657 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1658 	fsize = sizeof ksc;
   1659 	rndfsize = ((fsize + 15) / 16) * 16;
   1660 	/*
   1661 	 * Allocate and validate space for the signal handler
   1662 	 * context. Note that if the stack is in P0 space, the
   1663 	 * call to grow() is a nop, and the useracc() check
   1664 	 * will fail if the process has not already allocated
   1665 	 * the space with a `brk'.
   1666 	 */
   1667 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1668 	    (psp->ps_sigonstack & sigmask(sig))) {
   1669 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1670 		    psp->ps_sigstk.ss_size - rndfsize);
   1671 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1672 	} else
   1673 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1674 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1675 #if defined(UVM)
   1676 		(void)uvm_grow(p, (u_long)scp);
   1677 #else
   1678 		(void)grow(p, (u_long)scp);
   1679 #endif
   1680 #ifdef DEBUG
   1681 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1682 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1683 		    sig, &oonstack, scp);
   1684 #endif
   1685 #if defined(UVM)
   1686 	if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1687 #else
   1688 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1689 #endif
   1690 #ifdef DEBUG
   1691 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1692 			printf("sendsig(%d): useracc failed on sig %d\n",
   1693 			    p->p_pid, sig);
   1694 #endif
   1695 		/*
   1696 		 * Process has trashed its stack; give it an illegal
   1697 		 * instruction to halt it in its tracks.
   1698 		 */
   1699 		SIGACTION(p, SIGILL) = SIG_DFL;
   1700 		sig = sigmask(SIGILL);
   1701 		p->p_sigignore &= ~sig;
   1702 		p->p_sigcatch &= ~sig;
   1703 		p->p_sigmask &= ~sig;
   1704 		psignal(p, SIGILL);
   1705 		return;
   1706 	}
   1707 
   1708 	/*
   1709 	 * Build the signal context to be used by sigreturn.
   1710 	 */
   1711 	ksc.sc_onstack = oonstack;
   1712 	ksc.sc_mask = mask;
   1713 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1714 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1715 
   1716 	/* copy the registers. */
   1717 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1718 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1719 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1720 
   1721 	/* save the floating-point state, if necessary, then copy it. */
   1722 	if (p == fpcurproc) {
   1723 		alpha_pal_wrfen(1);
   1724 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1725 		alpha_pal_wrfen(0);
   1726 		fpcurproc = NULL;
   1727 	}
   1728 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1729 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1730 	    sizeof(struct fpreg));
   1731 	ksc.sc_fp_control = 0;					/* XXX ? */
   1732 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1733 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1734 
   1735 
   1736 #ifdef COMPAT_OSF1
   1737 	/*
   1738 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1739 	 */
   1740 #endif
   1741 
   1742 	/*
   1743 	 * copy the frame out to userland.
   1744 	 */
   1745 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1746 #ifdef DEBUG
   1747 	if (sigdebug & SDB_FOLLOW)
   1748 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1749 		    scp, code);
   1750 #endif
   1751 
   1752 	/*
   1753 	 * Set up the registers to return to sigcode.
   1754 	 */
   1755 	frame->tf_regs[FRAME_PC] =
   1756 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1757 	frame->tf_regs[FRAME_A0] = sig;
   1758 	frame->tf_regs[FRAME_A1] = code;
   1759 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1760 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1761 	alpha_pal_wrusp((unsigned long)scp);
   1762 
   1763 #ifdef DEBUG
   1764 	if (sigdebug & SDB_FOLLOW)
   1765 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1766 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1767 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1768 		printf("sendsig(%d): sig %d returns\n",
   1769 		    p->p_pid, sig);
   1770 #endif
   1771 }
   1772 
   1773 /*
   1774  * System call to cleanup state after a signal
   1775  * has been taken.  Reset signal mask and
   1776  * stack state from context left by sendsig (above).
   1777  * Return to previous pc and psl as specified by
   1778  * context left by sendsig. Check carefully to
   1779  * make sure that the user has not modified the
   1780  * psl to gain improper priviledges or to cause
   1781  * a machine fault.
   1782  */
   1783 /* ARGSUSED */
   1784 int
   1785 sys_sigreturn(p, v, retval)
   1786 	struct proc *p;
   1787 	void *v;
   1788 	register_t *retval;
   1789 {
   1790 	struct sys_sigreturn_args /* {
   1791 		syscallarg(struct sigcontext *) sigcntxp;
   1792 	} */ *uap = v;
   1793 	struct sigcontext *scp, ksc;
   1794 	extern struct proc *fpcurproc;
   1795 
   1796 	scp = SCARG(uap, sigcntxp);
   1797 #ifdef DEBUG
   1798 	if (sigdebug & SDB_FOLLOW)
   1799 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1800 #endif
   1801 
   1802 	if (ALIGN(scp) != (u_int64_t)scp)
   1803 		return (EINVAL);
   1804 
   1805 	/*
   1806 	 * Test and fetch the context structure.
   1807 	 * We grab it all at once for speed.
   1808 	 */
   1809 #if defined(UVM)
   1810 	if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1811 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1812 		return (EINVAL);
   1813 #else
   1814 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1815 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1816 		return (EINVAL);
   1817 #endif
   1818 
   1819 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1820 		return (EINVAL);
   1821 	/*
   1822 	 * Restore the user-supplied information
   1823 	 */
   1824 	if (ksc.sc_onstack)
   1825 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1826 	else
   1827 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1828 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1829 
   1830 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1831 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1832 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1833 
   1834 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1835 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1836 
   1837 	/* XXX ksc.sc_ownedfp ? */
   1838 	if (p == fpcurproc)
   1839 		fpcurproc = NULL;
   1840 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1841 	    sizeof(struct fpreg));
   1842 	/* XXX ksc.sc_fp_control ? */
   1843 
   1844 #ifdef DEBUG
   1845 	if (sigdebug & SDB_FOLLOW)
   1846 		printf("sigreturn(%d): returns\n", p->p_pid);
   1847 #endif
   1848 	return (EJUSTRETURN);
   1849 }
   1850 
   1851 /*
   1852  * machine dependent system variables.
   1853  */
   1854 int
   1855 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1856 	int *name;
   1857 	u_int namelen;
   1858 	void *oldp;
   1859 	size_t *oldlenp;
   1860 	void *newp;
   1861 	size_t newlen;
   1862 	struct proc *p;
   1863 {
   1864 	dev_t consdev;
   1865 
   1866 	/* all sysctl names at this level are terminal */
   1867 	if (namelen != 1)
   1868 		return (ENOTDIR);		/* overloaded */
   1869 
   1870 	switch (name[0]) {
   1871 	case CPU_CONSDEV:
   1872 		if (cn_tab != NULL)
   1873 			consdev = cn_tab->cn_dev;
   1874 		else
   1875 			consdev = NODEV;
   1876 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1877 			sizeof consdev));
   1878 
   1879 	case CPU_ROOT_DEVICE:
   1880 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1881 		    root_device->dv_xname));
   1882 
   1883 	case CPU_UNALIGNED_PRINT:
   1884 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1885 		    &alpha_unaligned_print));
   1886 
   1887 	case CPU_UNALIGNED_FIX:
   1888 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1889 		    &alpha_unaligned_fix));
   1890 
   1891 	case CPU_UNALIGNED_SIGBUS:
   1892 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1893 		    &alpha_unaligned_sigbus));
   1894 
   1895 	case CPU_BOOTED_KERNEL:
   1896 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1897 		    bootinfo.booted_kernel));
   1898 
   1899 	default:
   1900 		return (EOPNOTSUPP);
   1901 	}
   1902 	/* NOTREACHED */
   1903 }
   1904 
   1905 /*
   1906  * Set registers on exec.
   1907  */
   1908 void
   1909 setregs(p, pack, stack)
   1910 	register struct proc *p;
   1911 	struct exec_package *pack;
   1912 	u_long stack;
   1913 {
   1914 	struct trapframe *tfp = p->p_md.md_tf;
   1915 	extern struct proc *fpcurproc;
   1916 #ifdef DEBUG
   1917 	int i;
   1918 #endif
   1919 
   1920 #ifdef DEBUG
   1921 	/*
   1922 	 * Crash and dump, if the user requested it.
   1923 	 */
   1924 	if (boothowto & RB_DUMP)
   1925 		panic("crash requested by boot flags");
   1926 #endif
   1927 
   1928 #ifdef DEBUG
   1929 	for (i = 0; i < FRAME_SIZE; i++)
   1930 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1931 #else
   1932 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1933 #endif
   1934 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1935 #define FP_RN 2 /* XXX */
   1936 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1937 	alpha_pal_wrusp(stack);
   1938 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1939 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1940 
   1941 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1942 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1943 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1944 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1945 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1946 
   1947 	p->p_md.md_flags &= ~MDP_FPUSED;
   1948 	if (fpcurproc == p)
   1949 		fpcurproc = NULL;
   1950 }
   1951 
   1952 void
   1953 netintr()
   1954 {
   1955 	int n, s;
   1956 
   1957 	s = splhigh();
   1958 	n = netisr;
   1959 	netisr = 0;
   1960 	splx(s);
   1961 
   1962 #define	DONETISR(bit, fn)						\
   1963 	do {								\
   1964 		if (n & (1 << (bit)))					\
   1965 			fn;						\
   1966 	} while (0)
   1967 
   1968 #ifdef INET
   1969 #if NARP > 0
   1970 	DONETISR(NETISR_ARP, arpintr());
   1971 #endif
   1972 	DONETISR(NETISR_IP, ipintr());
   1973 #endif
   1974 #ifdef NETATALK
   1975 	DONETISR(NETISR_ATALK, atintr());
   1976 #endif
   1977 #ifdef NS
   1978 	DONETISR(NETISR_NS, nsintr());
   1979 #endif
   1980 #ifdef ISO
   1981 	DONETISR(NETISR_ISO, clnlintr());
   1982 #endif
   1983 #ifdef CCITT
   1984 	DONETISR(NETISR_CCITT, ccittintr());
   1985 #endif
   1986 #ifdef NATM
   1987 	DONETISR(NETISR_NATM, natmintr());
   1988 #endif
   1989 #if NPPP > 1
   1990 	DONETISR(NETISR_PPP, pppintr());
   1991 #endif
   1992 
   1993 #undef DONETISR
   1994 }
   1995 
   1996 void
   1997 do_sir()
   1998 {
   1999 	u_int64_t n;
   2000 
   2001 	do {
   2002 		(void)splhigh();
   2003 		n = ssir;
   2004 		ssir = 0;
   2005 		splsoft();		/* don't recurse through spl0() */
   2006 
   2007 #if defined(UVM)
   2008 #define	COUNT_SOFT	uvmexp.softs++
   2009 #else
   2010 #define	COUNT_SOFT	cnt.v_soft++
   2011 #endif
   2012 
   2013 #define	DO_SIR(bit, fn)							\
   2014 		do {							\
   2015 			if (n & (bit)) {				\
   2016 				COUNT_SOFT;				\
   2017 				fn;					\
   2018 			}						\
   2019 		} while (0)
   2020 
   2021 		DO_SIR(SIR_NET, netintr());
   2022 		DO_SIR(SIR_CLOCK, softclock());
   2023 
   2024 #undef COUNT_SOFT
   2025 #undef DO_SIR
   2026 	} while (ssir != 0);
   2027 }
   2028 
   2029 int
   2030 spl0()
   2031 {
   2032 
   2033 	if (ssir)
   2034 		do_sir();		/* it lowers the IPL itself */
   2035 
   2036 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2037 }
   2038 
   2039 /*
   2040  * The following primitives manipulate the run queues.  _whichqs tells which
   2041  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2042  * into queues, Remrunqueue removes them from queues.  The running process is
   2043  * on no queue, other processes are on a queue related to p->p_priority,
   2044  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2045  * available queues.
   2046  */
   2047 /*
   2048  * setrunqueue(p)
   2049  *	proc *p;
   2050  *
   2051  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2052  */
   2053 
   2054 void
   2055 setrunqueue(p)
   2056 	struct proc *p;
   2057 {
   2058 	int bit;
   2059 
   2060 	/* firewall: p->p_back must be NULL */
   2061 	if (p->p_back != NULL)
   2062 		panic("setrunqueue");
   2063 
   2064 	bit = p->p_priority >> 2;
   2065 	whichqs |= (1 << bit);
   2066 	p->p_forw = (struct proc *)&qs[bit];
   2067 	p->p_back = qs[bit].ph_rlink;
   2068 	p->p_back->p_forw = p;
   2069 	qs[bit].ph_rlink = p;
   2070 }
   2071 
   2072 /*
   2073  * remrunqueue(p)
   2074  *
   2075  * Call should be made at splclock().
   2076  */
   2077 void
   2078 remrunqueue(p)
   2079 	struct proc *p;
   2080 {
   2081 	int bit;
   2082 
   2083 	bit = p->p_priority >> 2;
   2084 	if ((whichqs & (1 << bit)) == 0)
   2085 		panic("remrunqueue");
   2086 
   2087 	p->p_back->p_forw = p->p_forw;
   2088 	p->p_forw->p_back = p->p_back;
   2089 	p->p_back = NULL;	/* for firewall checking. */
   2090 
   2091 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2092 		whichqs &= ~(1 << bit);
   2093 }
   2094 
   2095 /*
   2096  * Return the best possible estimate of the time in the timeval
   2097  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2098  * We guarantee that the time will be greater than the value obtained by a
   2099  * previous call.
   2100  */
   2101 void
   2102 microtime(tvp)
   2103 	register struct timeval *tvp;
   2104 {
   2105 	int s = splclock();
   2106 	static struct timeval lasttime;
   2107 
   2108 	*tvp = time;
   2109 #ifdef notdef
   2110 	tvp->tv_usec += clkread();
   2111 	while (tvp->tv_usec > 1000000) {
   2112 		tvp->tv_sec++;
   2113 		tvp->tv_usec -= 1000000;
   2114 	}
   2115 #endif
   2116 	if (tvp->tv_sec == lasttime.tv_sec &&
   2117 	    tvp->tv_usec <= lasttime.tv_usec &&
   2118 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2119 		tvp->tv_sec++;
   2120 		tvp->tv_usec -= 1000000;
   2121 	}
   2122 	lasttime = *tvp;
   2123 	splx(s);
   2124 }
   2125 
   2126 /*
   2127  * Wait "n" microseconds.
   2128  */
   2129 void
   2130 delay(n)
   2131 	unsigned long n;
   2132 {
   2133 	long N = cycles_per_usec * (n);
   2134 
   2135 	while (N > 0)				/* XXX */
   2136 		N -= 3;				/* XXX */
   2137 }
   2138 
   2139 #if defined(COMPAT_OSF1) || 1		/* XXX */
   2140 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2141 	    u_long));
   2142 
   2143 void
   2144 cpu_exec_ecoff_setregs(p, epp, stack)
   2145 	struct proc *p;
   2146 	struct exec_package *epp;
   2147 	u_long stack;
   2148 {
   2149 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2150 
   2151 	setregs(p, epp, stack);
   2152 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2153 }
   2154 
   2155 /*
   2156  * cpu_exec_ecoff_hook():
   2157  *	cpu-dependent ECOFF format hook for execve().
   2158  *
   2159  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2160  *
   2161  */
   2162 int
   2163 cpu_exec_ecoff_hook(p, epp)
   2164 	struct proc *p;
   2165 	struct exec_package *epp;
   2166 {
   2167 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2168 	extern struct emul emul_netbsd;
   2169 #ifdef COMPAT_OSF1
   2170 	extern struct emul emul_osf1;
   2171 #endif
   2172 
   2173 	switch (execp->f.f_magic) {
   2174 #ifdef COMPAT_OSF1
   2175 	case ECOFF_MAGIC_ALPHA:
   2176 		epp->ep_emul = &emul_osf1;
   2177 		break;
   2178 #endif
   2179 
   2180 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2181 		epp->ep_emul = &emul_netbsd;
   2182 		break;
   2183 
   2184 	default:
   2185 		return ENOEXEC;
   2186 	}
   2187 	return 0;
   2188 }
   2189 #endif
   2190 
   2191 int
   2192 alpha_pa_access(pa)
   2193 	u_long pa;
   2194 {
   2195 	int i;
   2196 
   2197 	for (i = 0; i < mem_cluster_cnt; i++) {
   2198 		if (pa < mem_clusters[i].start)
   2199 			continue;
   2200 		if ((pa - mem_clusters[i].start) >=
   2201 		    (mem_clusters[i].size & ~PAGE_MASK))
   2202 			continue;
   2203 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2204 	}
   2205 	return (PROT_NONE);
   2206 }
   2207 
   2208 /* XXX XXX BEGIN XXX XXX */
   2209 vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   2210 								/* XXX */
   2211 vm_offset_t							/* XXX */
   2212 alpha_XXX_dmamap(v)						/* XXX */
   2213 	vm_offset_t v;						/* XXX */
   2214 {								/* XXX */
   2215 								/* XXX */
   2216 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2217 }								/* XXX */
   2218 /* XXX XXX END XXX XXX */
   2219