machdep.c revision 1.129 1 /* $NetBSD: machdep.c,v 1.129 1998/07/05 00:51:04 jonathan Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.129 1998/07/05 00:51:04 jonathan Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/map.h>
85 #include <sys/proc.h>
86 #include <sys/buf.h>
87 #include <sys/reboot.h>
88 #include <sys/device.h>
89 #include <sys/file.h>
90 #ifdef REAL_CLISTS
91 #include <sys/clist.h>
92 #endif
93 #include <sys/callout.h>
94 #include <sys/malloc.h>
95 #include <sys/mbuf.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <sys/user.h>
101 #include <sys/exec.h>
102 #include <sys/exec_ecoff.h>
103 #include <vm/vm.h>
104 #include <sys/sysctl.h>
105 #include <sys/core.h>
106 #include <sys/kcore.h>
107 #include <machine/kcore.h>
108 #ifdef SYSVMSG
109 #include <sys/msg.h>
110 #endif
111 #ifdef SYSVSEM
112 #include <sys/sem.h>
113 #endif
114 #ifdef SYSVSHM
115 #include <sys/shm.h>
116 #endif
117
118 #include <sys/mount.h>
119 #include <sys/syscallargs.h>
120
121 #include <vm/vm_kern.h>
122
123 #if defined(UVM)
124 #include <uvm/uvm_extern.h>
125 #endif
126
127 #include <dev/cons.h>
128
129 #include <machine/autoconf.h>
130 #include <machine/cpu.h>
131 #include <machine/reg.h>
132 #include <machine/rpb.h>
133 #include <machine/prom.h>
134 #include <machine/conf.h>
135
136 #include <net/netisr.h>
137 #include <net/if.h>
138
139 #ifdef INET
140 #include <net/route.h>
141 #include <netinet/in.h>
142 #include <netinet/ip_var.h>
143 #include "arp.h"
144 #if NARP > 0
145 #include <netinet/if_inarp.h>
146 #endif
147 #endif
148 #ifdef NS
149 #include <netns/ns_var.h>
150 #endif
151 #ifdef ISO
152 #include <netiso/iso.h>
153 #include <netiso/clnp.h>
154 #endif
155 #ifdef CCITT
156 #include <netccitt/x25.h>
157 #include <netccitt/pk.h>
158 #include <netccitt/pk_extern.h>
159 #endif
160 #ifdef NATM
161 #include <netnatm/natm.h>
162 #endif
163 #ifdef NETATALK
164 #include <netatalk/at_extern.h>
165 #endif
166 #include "ppp.h"
167 #if NPPP > 0
168 #include <net/ppp_defs.h>
169 #include <net/if_ppp.h>
170 #endif
171
172 #ifdef DDB
173 #include <machine/db_machdep.h>
174 #include <ddb/db_access.h>
175 #include <ddb/db_sym.h>
176 #include <ddb/db_extern.h>
177 #include <ddb/db_interface.h>
178 #endif
179
180 #if defined(UVM)
181 vm_map_t exec_map = NULL;
182 vm_map_t mb_map = NULL;
183 vm_map_t phys_map = NULL;
184 #else
185 vm_map_t buffer_map;
186 #endif
187
188 /*
189 * Declare these as initialized data so we can patch them.
190 */
191 int nswbuf = 0;
192 #ifdef NBUF
193 int nbuf = NBUF;
194 #else
195 int nbuf = 0;
196 #endif
197 #ifdef BUFPAGES
198 int bufpages = BUFPAGES;
199 #else
200 int bufpages = 0;
201 #endif
202 caddr_t msgbufaddr;
203
204 int maxmem; /* max memory per process */
205
206 int totalphysmem; /* total amount of physical memory in system */
207 int physmem; /* physical memory used by NetBSD + some rsvd */
208 int resvmem; /* amount of memory reserved for PROM */
209 int unusedmem; /* amount of memory for OS that we don't use */
210 int unknownmem; /* amount of memory with an unknown use */
211
212 int cputype; /* system type, from the RPB */
213
214 /*
215 * XXX We need an address to which we can assign things so that they
216 * won't be optimized away because we didn't use the value.
217 */
218 u_int32_t no_optimize;
219
220 /* the following is used externally (sysctl_hw) */
221 char machine[] = MACHINE; /* from <machine/param.h> */
222 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
223 char cpu_model[128];
224
225 struct user *proc0paddr;
226
227 /* Number of machine cycles per microsecond */
228 u_int64_t cycles_per_usec;
229
230 /* number of cpus in the box. really! */
231 int ncpus;
232
233 struct bootinfo_kernel bootinfo;
234
235 /* For built-in TCDS */
236 #if defined(DEC_3000_300) || defined(DEC_3000_500)
237 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
238 #endif
239
240 struct platform platform;
241
242 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
243 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
244 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
245
246 #ifdef DDB
247 /* start and end of kernel symbol table */
248 void *ksym_start, *ksym_end;
249 #endif
250
251 /* for cpu_sysctl() */
252 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
253 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
254 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
255
256 /*
257 * XXX This should be dynamically sized, but we have the chicken-egg problem!
258 * XXX it should also be larger than it is, because not all of the mddt
259 * XXX clusters end up being used for VM.
260 */
261 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
262 int mem_cluster_cnt;
263
264 caddr_t allocsys __P((caddr_t));
265 int cpu_dump __P((void));
266 int cpu_dumpsize __P((void));
267 u_long cpu_dump_mempagecnt __P((void));
268 void dumpsys __P((void));
269 void identifycpu __P((void));
270 void netintr __P((void));
271 void printregs __P((struct reg *));
272
273 void
274 alpha_init(pfn, ptb, bim, bip, biv)
275 u_long pfn; /* first free PFN number */
276 u_long ptb; /* PFN of current level 1 page table */
277 u_long bim; /* bootinfo magic */
278 u_long bip; /* bootinfo pointer */
279 u_long biv; /* bootinfo version */
280 {
281 extern char kernel_text[], _end[];
282 struct mddt *mddtp;
283 struct mddt_cluster *memc;
284 int i, mddtweird;
285 struct vm_physseg *vps;
286 vm_offset_t kernstart, kernend;
287 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
288 vm_size_t size;
289 char *p;
290 caddr_t v;
291 char *bootinfo_msg;
292
293 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
294
295 /*
296 * Turn off interrupts (not mchecks) and floating point.
297 * Make sure the instruction and data streams are consistent.
298 */
299 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
300 alpha_pal_wrfen(0);
301 ALPHA_TBIA();
302 alpha_pal_imb();
303
304 /*
305 * Get critical system information (if possible, from the
306 * information provided by the boot program).
307 */
308 bootinfo_msg = NULL;
309 if (bim == BOOTINFO_MAGIC) {
310 if (biv == 0) { /* backward compat */
311 biv = *(u_long *)bip;
312 bip += 8;
313 }
314 switch (biv) {
315 case 1: {
316 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
317
318 bootinfo.ssym = v1p->ssym;
319 bootinfo.esym = v1p->esym;
320 /* hwrpb may not be provided by boot block in v1 */
321 if (v1p->hwrpb != NULL) {
322 bootinfo.hwrpb_phys =
323 ((struct rpb *)v1p->hwrpb)->rpb_phys;
324 bootinfo.hwrpb_size = v1p->hwrpbsize;
325 } else {
326 bootinfo.hwrpb_phys =
327 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
328 bootinfo.hwrpb_size =
329 ((struct rpb *)HWRPB_ADDR)->rpb_size;
330 }
331 bcopy(v1p->boot_flags, bootinfo.boot_flags,
332 min(sizeof v1p->boot_flags,
333 sizeof bootinfo.boot_flags));
334 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
335 min(sizeof v1p->booted_kernel,
336 sizeof bootinfo.booted_kernel));
337 /* booted dev not provided in bootinfo */
338 init_prom_interface((struct rpb *)
339 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
340 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
341 sizeof bootinfo.booted_dev);
342 break;
343 }
344 default:
345 bootinfo_msg = "unknown bootinfo version";
346 goto nobootinfo;
347 }
348 } else {
349 bootinfo_msg = "boot program did not pass bootinfo";
350 nobootinfo:
351 bootinfo.ssym = (u_long)_end;
352 bootinfo.esym = (u_long)_end;
353 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
354 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
355 init_prom_interface((struct rpb *)HWRPB_ADDR);
356 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
357 sizeof bootinfo.boot_flags);
358 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
359 sizeof bootinfo.booted_kernel);
360 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
361 sizeof bootinfo.booted_dev);
362 }
363
364 /*
365 * Initialize the kernel's mapping of the RPB. It's needed for
366 * lots of things.
367 */
368 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
369
370 #if defined(DEC_3000_300) || defined(DEC_3000_500)
371 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
372 hwrpb->rpb_type == ST_DEC_3000_500) {
373 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
374 sizeof(dec_3000_scsiid));
375 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
376 sizeof(dec_3000_scsifast));
377 }
378 #endif
379
380 /*
381 * Remember how many cycles there are per microsecond,
382 * so that we can use delay(). Round up, for safety.
383 */
384 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
385
386 /*
387 * Initalize the (temporary) bootstrap console interface, so
388 * we can use printf until the VM system starts being setup.
389 * The real console is initialized before then.
390 */
391 init_bootstrap_console();
392
393 /* OUTPUT NOW ALLOWED */
394
395 /* delayed from above */
396 if (bootinfo_msg)
397 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
398 bootinfo_msg, bim, bip, biv);
399
400 /*
401 * Point interrupt/exception vectors to our own.
402 */
403 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
404 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
405 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
406 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
407 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
408 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
409
410 /*
411 * Clear pending machine checks and error reports, and enable
412 * system- and processor-correctable error reporting.
413 */
414 alpha_pal_wrmces(alpha_pal_rdmces() &
415 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
416
417 /*
418 * Find out what hardware we're on, and do basic initialization.
419 */
420 cputype = hwrpb->rpb_type;
421 if (cputype >= ncpuinit) {
422 platform_not_supported();
423 /* NOTREACHED */
424 }
425 (*cpuinit[cputype].init)();
426 strcpy(cpu_model, platform.model);
427
428 /*
429 * Initalize the real console, so the the bootstrap console is
430 * no longer necessary.
431 */
432 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
433 if (!pmap_uses_prom_console())
434 #endif
435 (*platform.cons_init)();
436
437 #ifdef DIAGNOSTIC
438 /* Paranoid sanity checking */
439
440 /* We should always be running on the the primary. */
441 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
442
443 /*
444 * On single-CPU systypes, the primary should always be CPU 0,
445 * except on Alpha 8200 systems where the CPU id is related
446 * to the VID, which is related to the Turbo Laser node id.
447 */
448 if (cputype != ST_DEC_21000)
449 assert(hwrpb->rpb_primary_cpu_id == 0);
450 #endif
451
452 /* NO MORE FIRMWARE ACCESS ALLOWED */
453 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
454 /*
455 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
456 * XXX pmap_uses_prom_console() evaluates to non-zero.)
457 */
458 #endif
459
460 /*
461 * find out this system's page size
462 */
463 PAGE_SIZE = hwrpb->rpb_page_size;
464 if (PAGE_SIZE != 8192)
465 panic("page size %d != 8192?!", PAGE_SIZE);
466
467 /*
468 * Initialize PAGE_SIZE-dependent variables.
469 */
470 #if defined(UVM)
471 uvm_setpagesize();
472 #else
473 vm_set_page_size();
474 #endif
475
476 /*
477 * Find the beginning and end of the kernel (and leave a
478 * bit of space before the beginning for the bootstrap
479 * stack).
480 */
481 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
482 #ifdef DDB
483 ksym_start = (void *)bootinfo.ssym;
484 ksym_end = (void *)bootinfo.esym;
485 kernend = (vm_offset_t)round_page(ksym_end);
486 #else
487 kernend = (vm_offset_t)round_page(_end);
488 #endif
489
490 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
491 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
492
493 /*
494 * Find out how much memory is available, by looking at
495 * the memory cluster descriptors. This also tries to do
496 * its best to detect things things that have never been seen
497 * before...
498 */
499 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
500
501 /* MDDT SANITY CHECKING */
502 mddtweird = 0;
503 if (mddtp->mddt_cluster_cnt < 2) {
504 mddtweird = 1;
505 printf("WARNING: weird number of mem clusters: %d\n",
506 mddtp->mddt_cluster_cnt);
507 }
508
509 #if 0
510 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
511 #endif
512
513 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
514 memc = &mddtp->mddt_clusters[i];
515 #if 0
516 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
517 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
518 #endif
519 totalphysmem += memc->mddt_pg_cnt;
520 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
521 mem_clusters[mem_cluster_cnt].start =
522 ptoa(memc->mddt_pfn);
523 mem_clusters[mem_cluster_cnt].size =
524 ptoa(memc->mddt_pg_cnt);
525 if (memc->mddt_usage & MDDT_mbz ||
526 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
527 memc->mddt_usage & MDDT_PALCODE)
528 mem_clusters[mem_cluster_cnt].size |=
529 PROT_READ;
530 else
531 mem_clusters[mem_cluster_cnt].size |=
532 PROT_READ | PROT_WRITE | PROT_EXEC;
533 mem_cluster_cnt++;
534 }
535
536 if (memc->mddt_usage & MDDT_mbz) {
537 mddtweird = 1;
538 printf("WARNING: mem cluster %d has weird "
539 "usage 0x%lx\n", i, memc->mddt_usage);
540 unknownmem += memc->mddt_pg_cnt;
541 continue;
542 }
543 if (memc->mddt_usage & MDDT_NONVOLATILE) {
544 /* XXX should handle these... */
545 printf("WARNING: skipping non-volatile mem "
546 "cluster %d\n", i);
547 unusedmem += memc->mddt_pg_cnt;
548 continue;
549 }
550 if (memc->mddt_usage & MDDT_PALCODE) {
551 resvmem += memc->mddt_pg_cnt;
552 continue;
553 }
554
555 /*
556 * We have a memory cluster available for system
557 * software use. We must determine if this cluster
558 * holds the kernel.
559 */
560 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
561 /*
562 * XXX If the kernel uses the PROM console, we only use the
563 * XXX memory after the kernel in the first system segment,
564 * XXX to avoid clobbering prom mapping, data, etc.
565 */
566 if (!pmap_uses_prom_console() || physmem == 0) {
567 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
568 physmem += memc->mddt_pg_cnt;
569 pfn0 = memc->mddt_pfn;
570 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
571 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
572 /*
573 * Must compute the location of the kernel
574 * within the segment.
575 */
576 #if 0
577 printf("Cluster %d contains kernel\n", i);
578 #endif
579 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
580 if (!pmap_uses_prom_console()) {
581 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
582 if (pfn0 < kernstartpfn) {
583 /*
584 * There is a chunk before the kernel.
585 */
586 #if 0
587 printf("Loading chunk before kernel: "
588 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
589 #endif
590 #if defined(UVM)
591 uvm_page_physload(pfn0, kernstartpfn,
592 pfn0, kernstartpfn);
593 #else
594 vm_page_physload(pfn0, kernstartpfn,
595 pfn0, kernstartpfn);
596 #endif
597 }
598 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
599 }
600 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
601 if (kernendpfn < pfn1) {
602 /*
603 * There is a chunk after the kernel.
604 */
605 #if 0
606 printf("Loading chunk after kernel: "
607 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
608 #endif
609 #if defined(UVM)
610 uvm_page_physload(kernendpfn, pfn1,
611 kernendpfn, pfn1);
612 #else
613 vm_page_physload(kernendpfn, pfn1,
614 kernendpfn, pfn1);
615 #endif
616 }
617 } else {
618 /*
619 * Just load this cluster as one chunk.
620 */
621 #if 0
622 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
623 pfn0, pfn1);
624 #endif
625 #if defined(UVM)
626 uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
627 #else
628 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
629 #endif
630 }
631 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
632 }
633 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
634 }
635
636 /*
637 * Dump out the MDDT if it looks odd...
638 */
639 if (mddtweird) {
640 printf("\n");
641 printf("complete memory cluster information:\n");
642 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
643 printf("mddt %d:\n", i);
644 printf("\tpfn %lx\n",
645 mddtp->mddt_clusters[i].mddt_pfn);
646 printf("\tcnt %lx\n",
647 mddtp->mddt_clusters[i].mddt_pg_cnt);
648 printf("\ttest %lx\n",
649 mddtp->mddt_clusters[i].mddt_pg_test);
650 printf("\tbva %lx\n",
651 mddtp->mddt_clusters[i].mddt_v_bitaddr);
652 printf("\tbpa %lx\n",
653 mddtp->mddt_clusters[i].mddt_p_bitaddr);
654 printf("\tbcksum %lx\n",
655 mddtp->mddt_clusters[i].mddt_bit_cksum);
656 printf("\tusage %lx\n",
657 mddtp->mddt_clusters[i].mddt_usage);
658 }
659 printf("\n");
660 }
661
662 if (totalphysmem == 0)
663 panic("can't happen: system seems to have no memory!");
664
665 #ifdef LIMITMEM
666 /*
667 * XXX Kludge so we can run on machines with memory larger
668 * XXX than 1G until all device drivers are converted to
669 * XXX use bus_dma. (Relies on the fact that vm_physmem
670 * XXX sorted in order of increasing addresses.)
671 */
672 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
673
674 printf("******** LIMITING MEMORY TO %dMB **********\n",
675 LIMITMEM);
676
677 do {
678 u_long ovf;
679
680 vps = &vm_physmem[vm_nphysseg - 1];
681
682 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
683 /*
684 * If the start is too high, just drop
685 * the whole segment.
686 *
687 * XXX can start != avail_start in this
688 * XXX case? wouldn't that mean that
689 * XXX some memory was stolen above the
690 * XXX limit? What to do?
691 */
692 ovf = vps->end - vps->start;
693 vm_nphysseg--;
694 } else {
695 /*
696 * If the start is OK, calculate how much
697 * to drop and drop it.
698 */
699 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
700 vps->end -= ovf;
701 vps->avail_end -= ovf;
702 }
703 physmem -= ovf;
704 unusedmem += ovf;
705 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
706 }
707 #endif /* LIMITMEM */
708
709 maxmem = physmem;
710
711 #if 0
712 printf("totalphysmem = %d\n", totalphysmem);
713 printf("physmem = %d\n", physmem);
714 printf("resvmem = %d\n", resvmem);
715 printf("unusedmem = %d\n", unusedmem);
716 printf("unknownmem = %d\n", unknownmem);
717 #endif
718
719 /*
720 * Adjust some parameters if the amount of physmem
721 * available would cause us to croak. This is completely
722 * eyeballed and isn't meant to be the final answer.
723 * vm_phys_size is probably the only one to really worry
724 * about.
725 *
726 * It's for booting a GENERIC kernel on a large memory platform.
727 */
728 if (physmem >= atop(128 * 1024 * 1024)) {
729 vm_mbuf_size <<= 1;
730 vm_kmem_size <<= 3;
731 vm_phys_size <<= 2;
732 }
733
734 /*
735 * Initialize error message buffer (at end of core).
736 */
737 {
738 size_t sz = round_page(MSGBUFSIZE);
739
740 vps = &vm_physmem[vm_nphysseg - 1];
741
742 /* shrink so that it'll fit in the last segment */
743 if ((vps->avail_end - vps->avail_start) < atop(sz))
744 sz = ptoa(vps->avail_end - vps->avail_start);
745
746 vps->end -= atop(sz);
747 vps->avail_end -= atop(sz);
748 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
749 initmsgbuf(msgbufaddr, sz);
750
751 /* Remove the last segment if it now has no pages. */
752 if (vps->start == vps->end)
753 vm_nphysseg--;
754
755 /* warn if the message buffer had to be shrunk */
756 if (sz != round_page(MSGBUFSIZE))
757 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
758 round_page(MSGBUFSIZE), sz);
759
760 }
761
762 /*
763 * Init mapping for u page(s) for proc 0
764 */
765 proc0.p_addr = proc0paddr =
766 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
767
768 /*
769 * Allocate space for system data structures. These data structures
770 * are allocated here instead of cpu_startup() because physical
771 * memory is directly addressable. We don't have to map these into
772 * virtual address space.
773 */
774 size = (vm_size_t)allocsys(0);
775 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
776 if ((allocsys(v) - v) != size)
777 panic("alpha_init: table size inconsistency");
778
779 /*
780 * Initialize the virtual memory system, and set the
781 * page table base register in proc 0's PCB.
782 */
783 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
784 hwrpb->rpb_max_asn);
785
786 /*
787 * Initialize the rest of proc 0's PCB, and cache its physical
788 * address.
789 */
790 proc0.p_md.md_pcbpaddr =
791 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
792
793 /*
794 * Set the kernel sp, reserving space for an (empty) trapframe,
795 * and make proc0's trapframe pointer point to it for sanity.
796 */
797 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
798 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
799 proc0.p_md.md_tf =
800 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
801
802 /*
803 * Look at arguments passed to us and compute boothowto.
804 */
805
806 boothowto = RB_SINGLE;
807 #ifdef KADB
808 boothowto |= RB_KDB;
809 #endif
810 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
811 /*
812 * Note that we'd really like to differentiate case here,
813 * but the Alpha AXP Architecture Reference Manual
814 * says that we shouldn't.
815 */
816 switch (*p) {
817 case 'a': /* autoboot */
818 case 'A':
819 boothowto &= ~RB_SINGLE;
820 break;
821
822 #ifdef DEBUG
823 case 'c': /* crash dump immediately after autoconfig */
824 case 'C':
825 boothowto |= RB_DUMP;
826 break;
827 #endif
828
829 #if defined(KGDB) || defined(DDB)
830 case 'd': /* break into the kernel debugger ASAP */
831 case 'D':
832 boothowto |= RB_KDB;
833 break;
834 #endif
835
836 case 'h': /* always halt, never reboot */
837 case 'H':
838 boothowto |= RB_HALT;
839 break;
840
841 #if 0
842 case 'm': /* mini root present in memory */
843 case 'M':
844 boothowto |= RB_MINIROOT;
845 break;
846 #endif
847
848 case 'n': /* askname */
849 case 'N':
850 boothowto |= RB_ASKNAME;
851 break;
852
853 case 's': /* single-user (default, supported for sanity) */
854 case 'S':
855 boothowto |= RB_SINGLE;
856 break;
857
858 case '-':
859 /*
860 * Just ignore this. It's not required, but it's
861 * common for it to be passed regardless.
862 */
863 break;
864
865 default:
866 printf("Unrecognized boot flag '%c'.\n", *p);
867 break;
868 }
869 }
870
871 /*
872 * Initialize debuggers, and break into them if appropriate.
873 */
874 #ifdef DDB
875 db_machine_init();
876 ddb_init(ksym_start, ksym_end);
877 if (boothowto & RB_KDB)
878 Debugger();
879 #endif
880 #ifdef KGDB
881 if (boothowto & RB_KDB)
882 kgdb_connect(0);
883 #endif
884
885 /*
886 * Figure out the number of cpus in the box, from RPB fields.
887 * Really. We mean it.
888 */
889 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
890 struct pcs *pcsp;
891
892 pcsp = LOCATE_PCS(hwrpb, i);
893 if ((pcsp->pcs_flags & PCS_PP) != 0)
894 ncpus++;
895 }
896
897 /*
898 * Figure out our clock frequency, from RPB fields.
899 */
900 hz = hwrpb->rpb_intr_freq >> 12;
901 if (!(60 <= hz && hz <= 10240)) {
902 hz = 1024;
903 #ifdef DIAGNOSTIC
904 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
905 hwrpb->rpb_intr_freq, hz);
906 #endif
907 }
908
909 }
910
911 /*
912 * Allocate space for system data structures. We are given
913 * a starting virtual address and we return a final virtual
914 * address; along the way we set each data structure pointer.
915 *
916 * We call allocsys() with 0 to find out how much space we want,
917 * allocate that much and fill it with zeroes, and the call
918 * allocsys() again with the correct base virtual address.
919 */
920 caddr_t
921 allocsys(v)
922 caddr_t v;
923 {
924
925 #define valloc(name, type, num) \
926 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
927 #ifdef REAL_CLISTS
928 valloc(cfree, struct cblock, nclist);
929 #endif
930 valloc(callout, struct callout, ncallout);
931 #ifdef SYSVSHM
932 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
933 #endif
934 #ifdef SYSVSEM
935 valloc(sema, struct semid_ds, seminfo.semmni);
936 valloc(sem, struct sem, seminfo.semmns);
937 /* This is pretty disgusting! */
938 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
939 #endif
940 #ifdef SYSVMSG
941 valloc(msgpool, char, msginfo.msgmax);
942 valloc(msgmaps, struct msgmap, msginfo.msgseg);
943 valloc(msghdrs, struct msg, msginfo.msgtql);
944 valloc(msqids, struct msqid_ds, msginfo.msgmni);
945 #endif
946
947 /*
948 * Determine how many buffers to allocate.
949 * We allocate 10% of memory for buffer space. Insure a
950 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
951 * headers as file i/o buffers.
952 */
953 if (bufpages == 0)
954 bufpages = (physmem * 10) / (CLSIZE * 100);
955 if (nbuf == 0) {
956 nbuf = bufpages;
957 if (nbuf < 16)
958 nbuf = 16;
959 }
960 if (nswbuf == 0) {
961 nswbuf = (nbuf / 2) &~ 1; /* force even */
962 if (nswbuf > 256)
963 nswbuf = 256; /* sanity */
964 }
965 #if !defined(UVM)
966 valloc(swbuf, struct buf, nswbuf);
967 #endif
968 valloc(buf, struct buf, nbuf);
969 return (v);
970 #undef valloc
971 }
972
973 void
974 consinit()
975 {
976
977 /*
978 * Everything related to console initialization is done
979 * in alpha_init().
980 */
981 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
982 printf("consinit: %susing prom console\n",
983 pmap_uses_prom_console() ? "" : "not ");
984 #endif
985 }
986
987 #include "pckbc.h"
988 #include "pckbd.h"
989 #if (NPCKBC > 0) && (NPCKBD == 0)
990
991 #include <machine/bus.h>
992 #include <dev/isa/pckbcvar.h>
993
994 /*
995 * This is called by the pbkbc driver if no pckbd is configured.
996 * On the i386, it is used to glue in the old, deprecated console
997 * code. On the Alpha, it does nothing.
998 */
999 int
1000 pckbc_machdep_cnattach(kbctag, kbcslot)
1001 pckbc_tag_t kbctag;
1002 pckbc_slot_t kbcslot;
1003 {
1004
1005 return (ENXIO);
1006 }
1007 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1008
1009 void
1010 cpu_startup()
1011 {
1012 register unsigned i;
1013 int base, residual;
1014 vm_offset_t minaddr, maxaddr;
1015 vm_size_t size;
1016 #if defined(DEBUG)
1017 extern int pmapdebug;
1018 int opmapdebug = pmapdebug;
1019
1020 pmapdebug = 0;
1021 #endif
1022
1023 /*
1024 * Good {morning,afternoon,evening,night}.
1025 */
1026 printf(version);
1027 identifycpu();
1028 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1029 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1030 if (unusedmem)
1031 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1032 if (unknownmem)
1033 printf("WARNING: %d bytes of memory with unknown purpose\n",
1034 ctob(unknownmem));
1035
1036 /*
1037 * Allocate virtual address space for file I/O buffers.
1038 * Note they are different than the array of headers, 'buf',
1039 * and usually occupy more virtual memory than physical.
1040 */
1041 size = MAXBSIZE * nbuf;
1042 #if defined(UVM)
1043 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1044 NULL, UVM_UNKNOWN_OFFSET,
1045 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1046 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1047 panic("startup: cannot allocate VM for buffers");
1048 #else
1049 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1050 &maxaddr, size, TRUE);
1051 minaddr = (vm_offset_t)buffers;
1052 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1053 &minaddr, size, FALSE) != KERN_SUCCESS)
1054 panic("startup: cannot allocate buffers");
1055 #endif /* UVM */
1056 base = bufpages / nbuf;
1057 residual = bufpages % nbuf;
1058 for (i = 0; i < nbuf; i++) {
1059 #if defined(UVM)
1060 vm_size_t curbufsize;
1061 vm_offset_t curbuf;
1062 struct vm_page *pg;
1063
1064 /*
1065 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1066 * that MAXBSIZE space, we allocate and map (base+1) pages
1067 * for the first "residual" buffers, and then we allocate
1068 * "base" pages for the rest.
1069 */
1070 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1071 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1072
1073 while (curbufsize) {
1074 pg = uvm_pagealloc(NULL, 0, NULL);
1075 if (pg == NULL)
1076 panic("cpu_startup: not enough memory for "
1077 "buffer cache");
1078 #if defined(PMAP_NEW)
1079 pmap_kenter_pgs(curbuf, &pg, 1);
1080 #else
1081 pmap_enter(kernel_map->pmap, curbuf,
1082 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1083 #endif
1084 curbuf += PAGE_SIZE;
1085 curbufsize -= PAGE_SIZE;
1086 }
1087 #else /* ! UVM */
1088 vm_size_t curbufsize;
1089 vm_offset_t curbuf;
1090
1091 /*
1092 * First <residual> buffers get (base+1) physical pages
1093 * allocated for them. The rest get (base) physical pages.
1094 *
1095 * The rest of each buffer occupies virtual space,
1096 * but has no physical memory allocated for it.
1097 */
1098 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1099 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1100 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1101 vm_map_simplify(buffer_map, curbuf);
1102 #endif /* UVM */
1103 }
1104 /*
1105 * Allocate a submap for exec arguments. This map effectively
1106 * limits the number of processes exec'ing at any time.
1107 */
1108 #if defined(UVM)
1109 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1110 16 * NCARGS, TRUE, FALSE, NULL);
1111 #else
1112 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1113 16 * NCARGS, TRUE);
1114 #endif
1115
1116 /*
1117 * Allocate a submap for physio
1118 */
1119 #if defined(UVM)
1120 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1121 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1122 #else
1123 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1124 VM_PHYS_SIZE, TRUE);
1125 #endif
1126
1127 /*
1128 * Finally, allocate mbuf cluster submap.
1129 */
1130 #if defined(UVM)
1131 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1132 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1133 #else
1134 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1135 VM_MBUF_SIZE, FALSE);
1136 #endif
1137 /*
1138 * Initialize callouts
1139 */
1140 callfree = callout;
1141 for (i = 1; i < ncallout; i++)
1142 callout[i-1].c_next = &callout[i];
1143 callout[i-1].c_next = NULL;
1144
1145 #if defined(DEBUG)
1146 pmapdebug = opmapdebug;
1147 #endif
1148 #if defined(UVM)
1149 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1150 #else
1151 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1152 #endif
1153 printf("using %ld buffers containing %ld bytes of memory\n",
1154 (long)nbuf, (long)(bufpages * CLBYTES));
1155
1156 /*
1157 * Set up buffers, so they can be used to read disk labels.
1158 */
1159 bufinit();
1160
1161 /*
1162 * Configure the system.
1163 */
1164 configure();
1165
1166 /*
1167 * Note that bootstrapping is finished, and set the HWRPB up
1168 * to do restarts.
1169 */
1170 hwrpb_restart_setup();
1171 }
1172
1173 /*
1174 * Retrieve the platform name from the DSR.
1175 */
1176 const char *
1177 alpha_dsr_sysname()
1178 {
1179 struct dsrdb *dsr;
1180 const char *sysname;
1181
1182 /*
1183 * DSR does not exist on early HWRPB versions.
1184 */
1185 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1186 return (NULL);
1187
1188 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1189 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1190 sizeof(u_int64_t)));
1191 return (sysname);
1192 }
1193
1194 /*
1195 * Lookup the system specified system variation in the provided table,
1196 * returning the model string on match.
1197 */
1198 const char *
1199 alpha_variation_name(variation, avtp)
1200 u_int64_t variation;
1201 const struct alpha_variation_table *avtp;
1202 {
1203 int i;
1204
1205 for (i = 0; avtp[i].avt_model != NULL; i++)
1206 if (avtp[i].avt_variation == variation)
1207 return (avtp[i].avt_model);
1208 return (NULL);
1209 }
1210
1211 /*
1212 * Generate a default platform name based for unknown system variations.
1213 */
1214 const char *
1215 alpha_unknown_sysname()
1216 {
1217 static char s[128]; /* safe size */
1218
1219 sprintf(s, "%s family, unknown model variation 0x%lx",
1220 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1221 return ((const char *)s);
1222 }
1223
1224 void
1225 identifycpu()
1226 {
1227
1228 /*
1229 * print out CPU identification information.
1230 */
1231 printf("%s, %ldMHz\n", cpu_model,
1232 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1233 printf("%ld byte page size, %d processor%s.\n",
1234 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1235 #if 0
1236 /* this isn't defined for any systems that we run on? */
1237 printf("serial number 0x%lx 0x%lx\n",
1238 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1239
1240 /* and these aren't particularly useful! */
1241 printf("variation: 0x%lx, revision 0x%lx\n",
1242 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1243 #endif
1244 }
1245
1246 int waittime = -1;
1247 struct pcb dumppcb;
1248
1249 void
1250 cpu_reboot(howto, bootstr)
1251 int howto;
1252 char *bootstr;
1253 {
1254 extern int cold;
1255
1256 /* If system is cold, just halt. */
1257 if (cold) {
1258 howto |= RB_HALT;
1259 goto haltsys;
1260 }
1261
1262 /* If "always halt" was specified as a boot flag, obey. */
1263 if ((boothowto & RB_HALT) != 0)
1264 howto |= RB_HALT;
1265
1266 boothowto = howto;
1267 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1268 waittime = 0;
1269 vfs_shutdown();
1270 /*
1271 * If we've been adjusting the clock, the todr
1272 * will be out of synch; adjust it now.
1273 */
1274 resettodr();
1275 }
1276
1277 /* Disable interrupts. */
1278 splhigh();
1279
1280 /* If rebooting and a dump is requested do it. */
1281 #if 0
1282 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1283 #else
1284 if (howto & RB_DUMP)
1285 #endif
1286 dumpsys();
1287
1288 haltsys:
1289
1290 /* run any shutdown hooks */
1291 doshutdownhooks();
1292
1293 #ifdef BOOTKEY
1294 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1295 cnpollc(1); /* for proper keyboard command handling */
1296 cngetc();
1297 cnpollc(0);
1298 printf("\n");
1299 #endif
1300
1301 /* Finally, powerdown/halt/reboot the system. */
1302 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1303 platform.powerdown != NULL) {
1304 (*platform.powerdown)();
1305 printf("WARNING: powerdown failed!\n");
1306 }
1307 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1308 prom_halt(howto & RB_HALT);
1309 /*NOTREACHED*/
1310 }
1311
1312 /*
1313 * These variables are needed by /sbin/savecore
1314 */
1315 u_long dumpmag = 0x8fca0101; /* magic number */
1316 int dumpsize = 0; /* pages */
1317 long dumplo = 0; /* blocks */
1318
1319 /*
1320 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1321 */
1322 int
1323 cpu_dumpsize()
1324 {
1325 int size;
1326
1327 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1328 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1329 if (roundup(size, dbtob(1)) != dbtob(1))
1330 return -1;
1331
1332 return (1);
1333 }
1334
1335 /*
1336 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1337 */
1338 u_long
1339 cpu_dump_mempagecnt()
1340 {
1341 u_long i, n;
1342
1343 n = 0;
1344 for (i = 0; i < mem_cluster_cnt; i++)
1345 n += atop(mem_clusters[i].size);
1346 return (n);
1347 }
1348
1349 /*
1350 * cpu_dump: dump machine-dependent kernel core dump headers.
1351 */
1352 int
1353 cpu_dump()
1354 {
1355 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1356 char buf[dbtob(1)];
1357 kcore_seg_t *segp;
1358 cpu_kcore_hdr_t *cpuhdrp;
1359 phys_ram_seg_t *memsegp;
1360 int i;
1361
1362 dump = bdevsw[major(dumpdev)].d_dump;
1363
1364 bzero(buf, sizeof buf);
1365 segp = (kcore_seg_t *)buf;
1366 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1367 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1368 ALIGN(sizeof(*cpuhdrp))];
1369
1370 /*
1371 * Generate a segment header.
1372 */
1373 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1374 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1375
1376 /*
1377 * Add the machine-dependent header info.
1378 */
1379 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1380 cpuhdrp->page_size = PAGE_SIZE;
1381 cpuhdrp->nmemsegs = mem_cluster_cnt;
1382
1383 /*
1384 * Fill in the memory segment descriptors.
1385 */
1386 for (i = 0; i < mem_cluster_cnt; i++) {
1387 memsegp[i].start = mem_clusters[i].start;
1388 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1389 }
1390
1391 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1392 }
1393
1394 /*
1395 * This is called by main to set dumplo and dumpsize.
1396 * Dumps always skip the first CLBYTES of disk space
1397 * in case there might be a disk label stored there.
1398 * If there is extra space, put dump at the end to
1399 * reduce the chance that swapping trashes it.
1400 */
1401 void
1402 cpu_dumpconf()
1403 {
1404 int nblks, dumpblks; /* size of dump area */
1405 int maj;
1406
1407 if (dumpdev == NODEV)
1408 goto bad;
1409 maj = major(dumpdev);
1410 if (maj < 0 || maj >= nblkdev)
1411 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1412 if (bdevsw[maj].d_psize == NULL)
1413 goto bad;
1414 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1415 if (nblks <= ctod(1))
1416 goto bad;
1417
1418 dumpblks = cpu_dumpsize();
1419 if (dumpblks < 0)
1420 goto bad;
1421 dumpblks += ctod(cpu_dump_mempagecnt());
1422
1423 /* If dump won't fit (incl. room for possible label), punt. */
1424 if (dumpblks > (nblks - ctod(1)))
1425 goto bad;
1426
1427 /* Put dump at end of partition */
1428 dumplo = nblks - dumpblks;
1429
1430 /* dumpsize is in page units, and doesn't include headers. */
1431 dumpsize = cpu_dump_mempagecnt();
1432 return;
1433
1434 bad:
1435 dumpsize = 0;
1436 return;
1437 }
1438
1439 /*
1440 * Dump the kernel's image to the swap partition.
1441 */
1442 #define BYTES_PER_DUMP NBPG
1443
1444 void
1445 dumpsys()
1446 {
1447 u_long totalbytesleft, bytes, i, n, memcl;
1448 u_long maddr;
1449 int psize;
1450 daddr_t blkno;
1451 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1452 int error;
1453
1454 /* Save registers. */
1455 savectx(&dumppcb);
1456
1457 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1458 if (dumpdev == NODEV)
1459 return;
1460
1461 /*
1462 * For dumps during autoconfiguration,
1463 * if dump device has already configured...
1464 */
1465 if (dumpsize == 0)
1466 cpu_dumpconf();
1467 if (dumplo <= 0) {
1468 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1469 minor(dumpdev));
1470 return;
1471 }
1472 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1473 minor(dumpdev), dumplo);
1474
1475 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1476 printf("dump ");
1477 if (psize == -1) {
1478 printf("area unavailable\n");
1479 return;
1480 }
1481
1482 /* XXX should purge all outstanding keystrokes. */
1483
1484 if ((error = cpu_dump()) != 0)
1485 goto err;
1486
1487 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1488 blkno = dumplo + cpu_dumpsize();
1489 dump = bdevsw[major(dumpdev)].d_dump;
1490 error = 0;
1491
1492 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1493 maddr = mem_clusters[memcl].start;
1494 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1495
1496 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1497
1498 /* Print out how many MBs we to go. */
1499 if ((totalbytesleft % (1024*1024)) == 0)
1500 printf("%d ", totalbytesleft / (1024 * 1024));
1501
1502 /* Limit size for next transfer. */
1503 n = bytes - i;
1504 if (n > BYTES_PER_DUMP)
1505 n = BYTES_PER_DUMP;
1506
1507 error = (*dump)(dumpdev, blkno,
1508 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1509 if (error)
1510 goto err;
1511 maddr += n;
1512 blkno += btodb(n); /* XXX? */
1513
1514 /* XXX should look for keystrokes, to cancel. */
1515 }
1516 }
1517
1518 err:
1519 switch (error) {
1520
1521 case ENXIO:
1522 printf("device bad\n");
1523 break;
1524
1525 case EFAULT:
1526 printf("device not ready\n");
1527 break;
1528
1529 case EINVAL:
1530 printf("area improper\n");
1531 break;
1532
1533 case EIO:
1534 printf("i/o error\n");
1535 break;
1536
1537 case EINTR:
1538 printf("aborted from console\n");
1539 break;
1540
1541 case 0:
1542 printf("succeeded\n");
1543 break;
1544
1545 default:
1546 printf("error %d\n", error);
1547 break;
1548 }
1549 printf("\n\n");
1550 delay(1000);
1551 }
1552
1553 void
1554 frametoreg(framep, regp)
1555 struct trapframe *framep;
1556 struct reg *regp;
1557 {
1558
1559 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1560 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1561 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1562 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1563 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1564 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1565 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1566 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1567 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1568 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1569 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1570 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1571 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1572 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1573 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1574 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1575 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1576 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1577 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1578 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1579 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1580 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1581 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1582 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1583 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1584 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1585 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1586 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1587 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1588 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1589 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1590 regp->r_regs[R_ZERO] = 0;
1591 }
1592
1593 void
1594 regtoframe(regp, framep)
1595 struct reg *regp;
1596 struct trapframe *framep;
1597 {
1598
1599 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1600 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1601 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1602 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1603 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1604 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1605 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1606 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1607 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1608 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1609 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1610 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1611 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1612 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1613 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1614 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1615 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1616 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1617 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1618 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1619 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1620 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1621 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1622 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1623 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1624 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1625 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1626 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1627 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1628 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1629 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1630 /* ??? = regp->r_regs[R_ZERO]; */
1631 }
1632
1633 void
1634 printregs(regp)
1635 struct reg *regp;
1636 {
1637 int i;
1638
1639 for (i = 0; i < 32; i++)
1640 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1641 i & 1 ? "\n" : "\t");
1642 }
1643
1644 void
1645 regdump(framep)
1646 struct trapframe *framep;
1647 {
1648 struct reg reg;
1649
1650 frametoreg(framep, ®);
1651 reg.r_regs[R_SP] = alpha_pal_rdusp();
1652
1653 printf("REGISTERS:\n");
1654 printregs(®);
1655 }
1656
1657 #ifdef DEBUG
1658 int sigdebug = 0;
1659 int sigpid = 0;
1660 #define SDB_FOLLOW 0x01
1661 #define SDB_KSTACK 0x02
1662 #endif
1663
1664 /*
1665 * Send an interrupt to process.
1666 */
1667 void
1668 sendsig(catcher, sig, mask, code)
1669 sig_t catcher;
1670 int sig, mask;
1671 u_long code;
1672 {
1673 struct proc *p = curproc;
1674 struct sigcontext *scp, ksc;
1675 struct trapframe *frame;
1676 struct sigacts *psp = p->p_sigacts;
1677 int oonstack, fsize, rndfsize;
1678 extern char sigcode[], esigcode[];
1679 extern struct proc *fpcurproc;
1680
1681 frame = p->p_md.md_tf;
1682 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1683 fsize = sizeof ksc;
1684 rndfsize = ((fsize + 15) / 16) * 16;
1685 /*
1686 * Allocate and validate space for the signal handler
1687 * context. Note that if the stack is in P0 space, the
1688 * call to grow() is a nop, and the useracc() check
1689 * will fail if the process has not already allocated
1690 * the space with a `brk'.
1691 */
1692 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1693 (psp->ps_sigonstack & sigmask(sig))) {
1694 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1695 psp->ps_sigstk.ss_size - rndfsize);
1696 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1697 } else
1698 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1699 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1700 #if defined(UVM)
1701 (void)uvm_grow(p, (u_long)scp);
1702 #else
1703 (void)grow(p, (u_long)scp);
1704 #endif
1705 #ifdef DEBUG
1706 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1707 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1708 sig, &oonstack, scp);
1709 #endif
1710 #if defined(UVM)
1711 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1712 #else
1713 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1714 #endif
1715 #ifdef DEBUG
1716 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1717 printf("sendsig(%d): useracc failed on sig %d\n",
1718 p->p_pid, sig);
1719 #endif
1720 /*
1721 * Process has trashed its stack; give it an illegal
1722 * instruction to halt it in its tracks.
1723 */
1724 SIGACTION(p, SIGILL) = SIG_DFL;
1725 sig = sigmask(SIGILL);
1726 p->p_sigignore &= ~sig;
1727 p->p_sigcatch &= ~sig;
1728 p->p_sigmask &= ~sig;
1729 psignal(p, SIGILL);
1730 return;
1731 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1732 }
1733 #else
1734 }
1735 #endif
1736
1737 /*
1738 * Build the signal context to be used by sigreturn.
1739 */
1740 ksc.sc_onstack = oonstack;
1741 ksc.sc_mask = mask;
1742 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1743 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1744
1745 /* copy the registers. */
1746 frametoreg(frame, (struct reg *)ksc.sc_regs);
1747 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1748 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1749
1750 /* save the floating-point state, if necessary, then copy it. */
1751 if (p == fpcurproc) {
1752 alpha_pal_wrfen(1);
1753 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1754 alpha_pal_wrfen(0);
1755 fpcurproc = NULL;
1756 }
1757 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1758 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1759 sizeof(struct fpreg));
1760 ksc.sc_fp_control = 0; /* XXX ? */
1761 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1762 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1763
1764
1765 #ifdef COMPAT_OSF1
1766 /*
1767 * XXX Create an OSF/1-style sigcontext and associated goo.
1768 */
1769 #endif
1770
1771 /*
1772 * copy the frame out to userland.
1773 */
1774 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1775 #ifdef DEBUG
1776 if (sigdebug & SDB_FOLLOW)
1777 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1778 scp, code);
1779 #endif
1780
1781 /*
1782 * Set up the registers to return to sigcode.
1783 */
1784 frame->tf_regs[FRAME_PC] =
1785 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1786 frame->tf_regs[FRAME_A0] = sig;
1787 frame->tf_regs[FRAME_A1] = code;
1788 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1789 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1790 alpha_pal_wrusp((unsigned long)scp);
1791
1792 #ifdef DEBUG
1793 if (sigdebug & SDB_FOLLOW)
1794 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1795 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1796 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1797 printf("sendsig(%d): sig %d returns\n",
1798 p->p_pid, sig);
1799 #endif
1800 }
1801
1802 /*
1803 * System call to cleanup state after a signal
1804 * has been taken. Reset signal mask and
1805 * stack state from context left by sendsig (above).
1806 * Return to previous pc and psl as specified by
1807 * context left by sendsig. Check carefully to
1808 * make sure that the user has not modified the
1809 * psl to gain improper priviledges or to cause
1810 * a machine fault.
1811 */
1812 /* ARGSUSED */
1813 int
1814 sys_sigreturn(p, v, retval)
1815 struct proc *p;
1816 void *v;
1817 register_t *retval;
1818 {
1819 struct sys_sigreturn_args /* {
1820 syscallarg(struct sigcontext *) sigcntxp;
1821 } */ *uap = v;
1822 struct sigcontext *scp, ksc;
1823 extern struct proc *fpcurproc;
1824
1825 scp = SCARG(uap, sigcntxp);
1826 #ifdef DEBUG
1827 if (sigdebug & SDB_FOLLOW)
1828 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1829 #endif
1830
1831 if (ALIGN(scp) != (u_int64_t)scp)
1832 return (EINVAL);
1833
1834 /*
1835 * Test and fetch the context structure.
1836 * We grab it all at once for speed.
1837 */
1838 #if defined(UVM)
1839 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1840 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1841 return (EINVAL);
1842 #else
1843 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1844 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1845 return (EINVAL);
1846 #endif
1847
1848 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1849 return (EINVAL);
1850 /*
1851 * Restore the user-supplied information
1852 */
1853 if (ksc.sc_onstack)
1854 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1855 else
1856 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1857 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1858
1859 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1860 p->p_md.md_tf->tf_regs[FRAME_PS] =
1861 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1862
1863 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1864 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1865
1866 /* XXX ksc.sc_ownedfp ? */
1867 if (p == fpcurproc)
1868 fpcurproc = NULL;
1869 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1870 sizeof(struct fpreg));
1871 /* XXX ksc.sc_fp_control ? */
1872
1873 #ifdef DEBUG
1874 if (sigdebug & SDB_FOLLOW)
1875 printf("sigreturn(%d): returns\n", p->p_pid);
1876 #endif
1877 return (EJUSTRETURN);
1878 }
1879
1880 /*
1881 * machine dependent system variables.
1882 */
1883 int
1884 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1885 int *name;
1886 u_int namelen;
1887 void *oldp;
1888 size_t *oldlenp;
1889 void *newp;
1890 size_t newlen;
1891 struct proc *p;
1892 {
1893 dev_t consdev;
1894
1895 /* all sysctl names at this level are terminal */
1896 if (namelen != 1)
1897 return (ENOTDIR); /* overloaded */
1898
1899 switch (name[0]) {
1900 case CPU_CONSDEV:
1901 if (cn_tab != NULL)
1902 consdev = cn_tab->cn_dev;
1903 else
1904 consdev = NODEV;
1905 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1906 sizeof consdev));
1907
1908 case CPU_ROOT_DEVICE:
1909 return (sysctl_rdstring(oldp, oldlenp, newp,
1910 root_device->dv_xname));
1911
1912 case CPU_UNALIGNED_PRINT:
1913 return (sysctl_int(oldp, oldlenp, newp, newlen,
1914 &alpha_unaligned_print));
1915
1916 case CPU_UNALIGNED_FIX:
1917 return (sysctl_int(oldp, oldlenp, newp, newlen,
1918 &alpha_unaligned_fix));
1919
1920 case CPU_UNALIGNED_SIGBUS:
1921 return (sysctl_int(oldp, oldlenp, newp, newlen,
1922 &alpha_unaligned_sigbus));
1923
1924 case CPU_BOOTED_KERNEL:
1925 return (sysctl_rdstring(oldp, oldlenp, newp,
1926 bootinfo.booted_kernel));
1927
1928 default:
1929 return (EOPNOTSUPP);
1930 }
1931 /* NOTREACHED */
1932 }
1933
1934 /*
1935 * Set registers on exec.
1936 */
1937 void
1938 setregs(p, pack, stack)
1939 register struct proc *p;
1940 struct exec_package *pack;
1941 u_long stack;
1942 {
1943 struct trapframe *tfp = p->p_md.md_tf;
1944 extern struct proc *fpcurproc;
1945 #ifdef DEBUG
1946 int i;
1947 #endif
1948
1949 #ifdef DEBUG
1950 /*
1951 * Crash and dump, if the user requested it.
1952 */
1953 if (boothowto & RB_DUMP)
1954 panic("crash requested by boot flags");
1955 #endif
1956
1957 #ifdef DEBUG
1958 for (i = 0; i < FRAME_SIZE; i++)
1959 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1960 #else
1961 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1962 #endif
1963 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1964 #define FP_RN 2 /* XXX */
1965 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1966 alpha_pal_wrusp(stack);
1967 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1968 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1969
1970 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1971 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1972 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1973 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1974 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1975
1976 p->p_md.md_flags &= ~MDP_FPUSED;
1977 if (fpcurproc == p)
1978 fpcurproc = NULL;
1979 }
1980
1981 void
1982 netintr()
1983 {
1984 int n, s;
1985
1986 s = splhigh();
1987 n = netisr;
1988 netisr = 0;
1989 splx(s);
1990
1991 #define DONETISR(bit, fn) \
1992 do { \
1993 if (n & (1 << (bit))) \
1994 fn; \
1995 } while (0)
1996
1997 #ifdef INET
1998 #if NARP > 0
1999 DONETISR(NETISR_ARP, arpintr());
2000 #endif
2001 DONETISR(NETISR_IP, ipintr());
2002 #endif
2003 #ifdef NETATALK
2004 DONETISR(NETISR_ATALK, atintr());
2005 #endif
2006 #ifdef NS
2007 DONETISR(NETISR_NS, nsintr());
2008 #endif
2009 #ifdef ISO
2010 DONETISR(NETISR_ISO, clnlintr());
2011 #endif
2012 #ifdef CCITT
2013 DONETISR(NETISR_CCITT, ccittintr());
2014 #endif
2015 #ifdef NATM
2016 DONETISR(NETISR_NATM, natmintr());
2017 #endif
2018 #if NPPP > 1
2019 DONETISR(NETISR_PPP, pppintr());
2020 #endif
2021
2022 #undef DONETISR
2023 }
2024
2025 void
2026 do_sir()
2027 {
2028 u_int64_t n;
2029
2030 do {
2031 (void)splhigh();
2032 n = ssir;
2033 ssir = 0;
2034 splsoft(); /* don't recurse through spl0() */
2035
2036 #if defined(UVM)
2037 #define COUNT_SOFT uvmexp.softs++
2038 #else
2039 #define COUNT_SOFT cnt.v_soft++
2040 #endif
2041
2042 #define DO_SIR(bit, fn) \
2043 do { \
2044 if (n & (bit)) { \
2045 COUNT_SOFT; \
2046 fn; \
2047 } \
2048 } while (0)
2049
2050 DO_SIR(SIR_NET, netintr());
2051 DO_SIR(SIR_CLOCK, softclock());
2052
2053 #undef COUNT_SOFT
2054 #undef DO_SIR
2055 } while (ssir != 0);
2056 }
2057
2058 int
2059 spl0()
2060 {
2061
2062 if (ssir)
2063 do_sir(); /* it lowers the IPL itself */
2064
2065 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2066 }
2067
2068 /*
2069 * The following primitives manipulate the run queues. _whichqs tells which
2070 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2071 * into queues, Remrunqueue removes them from queues. The running process is
2072 * on no queue, other processes are on a queue related to p->p_priority,
2073 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2074 * available queues.
2075 */
2076 /*
2077 * setrunqueue(p)
2078 * proc *p;
2079 *
2080 * Call should be made at splclock(), and p->p_stat should be SRUN.
2081 */
2082
2083 void
2084 setrunqueue(p)
2085 struct proc *p;
2086 {
2087 int bit;
2088
2089 /* firewall: p->p_back must be NULL */
2090 if (p->p_back != NULL)
2091 panic("setrunqueue");
2092
2093 bit = p->p_priority >> 2;
2094 whichqs |= (1 << bit);
2095 p->p_forw = (struct proc *)&qs[bit];
2096 p->p_back = qs[bit].ph_rlink;
2097 p->p_back->p_forw = p;
2098 qs[bit].ph_rlink = p;
2099 }
2100
2101 /*
2102 * remrunqueue(p)
2103 *
2104 * Call should be made at splclock().
2105 */
2106 void
2107 remrunqueue(p)
2108 struct proc *p;
2109 {
2110 int bit;
2111
2112 bit = p->p_priority >> 2;
2113 if ((whichqs & (1 << bit)) == 0)
2114 panic("remrunqueue");
2115
2116 p->p_back->p_forw = p->p_forw;
2117 p->p_forw->p_back = p->p_back;
2118 p->p_back = NULL; /* for firewall checking. */
2119
2120 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2121 whichqs &= ~(1 << bit);
2122 }
2123
2124 /*
2125 * Return the best possible estimate of the time in the timeval
2126 * to which tvp points. Unfortunately, we can't read the hardware registers.
2127 * We guarantee that the time will be greater than the value obtained by a
2128 * previous call.
2129 */
2130 void
2131 microtime(tvp)
2132 register struct timeval *tvp;
2133 {
2134 int s = splclock();
2135 static struct timeval lasttime;
2136
2137 *tvp = time;
2138 #ifdef notdef
2139 tvp->tv_usec += clkread();
2140 while (tvp->tv_usec > 1000000) {
2141 tvp->tv_sec++;
2142 tvp->tv_usec -= 1000000;
2143 }
2144 #endif
2145 if (tvp->tv_sec == lasttime.tv_sec &&
2146 tvp->tv_usec <= lasttime.tv_usec &&
2147 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2148 tvp->tv_sec++;
2149 tvp->tv_usec -= 1000000;
2150 }
2151 lasttime = *tvp;
2152 splx(s);
2153 }
2154
2155 /*
2156 * Wait "n" microseconds.
2157 */
2158 void
2159 delay(n)
2160 unsigned long n;
2161 {
2162 long N = cycles_per_usec * (n);
2163
2164 while (N > 0) /* XXX */
2165 N -= 3; /* XXX */
2166 }
2167
2168 #if defined(COMPAT_OSF1) || 1 /* XXX */
2169 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2170 u_long));
2171
2172 void
2173 cpu_exec_ecoff_setregs(p, epp, stack)
2174 struct proc *p;
2175 struct exec_package *epp;
2176 u_long stack;
2177 {
2178 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2179
2180 setregs(p, epp, stack);
2181 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2182 }
2183
2184 /*
2185 * cpu_exec_ecoff_hook():
2186 * cpu-dependent ECOFF format hook for execve().
2187 *
2188 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2189 *
2190 */
2191 int
2192 cpu_exec_ecoff_hook(p, epp)
2193 struct proc *p;
2194 struct exec_package *epp;
2195 {
2196 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2197 extern struct emul emul_netbsd;
2198 #ifdef COMPAT_OSF1
2199 extern struct emul emul_osf1;
2200 #endif
2201
2202 switch (execp->f.f_magic) {
2203 #ifdef COMPAT_OSF1
2204 case ECOFF_MAGIC_ALPHA:
2205 epp->ep_emul = &emul_osf1;
2206 break;
2207 #endif
2208
2209 case ECOFF_MAGIC_NETBSD_ALPHA:
2210 epp->ep_emul = &emul_netbsd;
2211 break;
2212
2213 default:
2214 return ENOEXEC;
2215 }
2216 return 0;
2217 }
2218 #endif
2219
2220 int
2221 alpha_pa_access(pa)
2222 u_long pa;
2223 {
2224 int i;
2225
2226 for (i = 0; i < mem_cluster_cnt; i++) {
2227 if (pa < mem_clusters[i].start)
2228 continue;
2229 if ((pa - mem_clusters[i].start) >=
2230 (mem_clusters[i].size & ~PAGE_MASK))
2231 continue;
2232 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2233 }
2234 return (PROT_NONE);
2235 }
2236
2237 /* XXX XXX BEGIN XXX XXX */
2238 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2239 /* XXX */
2240 vm_offset_t /* XXX */
2241 alpha_XXX_dmamap(v) /* XXX */
2242 vm_offset_t v; /* XXX */
2243 { /* XXX */
2244 /* XXX */
2245 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2246 } /* XXX */
2247 /* XXX XXX END XXX XXX */
2248