machdep.c revision 1.13 1 /* $NetBSD: machdep.c,v 1.13 1995/12/20 00:19:49 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #ifdef REAL_CLISTS
41 #include <sys/clist.h>
42 #endif
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/msgbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/tty.h>
49 #include <sys/user.h>
50 #include <sys/exec.h>
51 #include <sys/exec_ecoff.h>
52 #include <sys/sysctl.h>
53 #ifdef SYSVMSG
54 #include <sys/msg.h>
55 #endif
56 #ifdef SYSVSEM
57 #include <sys/sem.h>
58 #endif
59 #ifdef SYSVSHM
60 #include <sys/shm.h>
61 #endif
62
63 #include <sys/mount.h>
64 #include <sys/syscallargs.h>
65
66 #include <vm/vm_kern.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/cpu.h>
71 #include <machine/reg.h>
72 #include <machine/rpb.h>
73 #include <machine/prom.h>
74
75 #ifdef DEC_3000_500
76 #include <alpha/alpha/dec_3000_500.h>
77 #endif
78 #ifdef DEC_3000_300
79 #include <alpha/alpha/dec_3000_300.h>
80 #endif
81 #ifdef DEC_2100_A50
82 #include <alpha/alpha/dec_2100_a50.h>
83 #endif
84 #ifdef DEC_KN20AA
85 #include <alpha/alpha/dec_kn20aa.h>
86 #endif
87 #ifdef DEC_AXPPCI_33
88 #include <alpha/alpha/dec_axppci_33.h>
89 #endif
90 #ifdef DEC_21000
91 #include <alpha/alpha/dec_21000.h>
92 #endif
93
94 #include <net/netisr.h>
95 #include "ether.h"
96
97 #include "le.h" /* XXX for le_iomem creation */
98
99 vm_map_t buffer_map;
100
101 void dumpsys __P((void));
102
103 /*
104 * Declare these as initialized data so we can patch them.
105 */
106 int nswbuf = 0;
107 #ifdef NBUF
108 int nbuf = NBUF;
109 #else
110 int nbuf = 0;
111 #endif
112 #ifdef BUFPAGES
113 int bufpages = BUFPAGES;
114 #else
115 int bufpages = 0;
116 #endif
117 int msgbufmapped = 0; /* set when safe to use msgbuf */
118 int maxmem; /* max memory per process */
119
120 int totalphysmem; /* total amount of physical memory in system */
121 int physmem; /* physical memory used by NetBSD + some rsvd */
122 int firstusablepage; /* first usable memory page */
123 int lastusablepage; /* last usable memory page */
124 int resvmem; /* amount of memory reserved for PROM */
125 int unusedmem; /* amount of memory for OS that we don't use */
126 int unknownmem; /* amount of memory with an unknown use */
127
128 int cputype; /* system type, from the RPB */
129
130 /*
131 * XXX We need an address to which we can assign things so that they
132 * won't be optimized away because we didn't use the value.
133 */
134 u_int32_t no_optimize;
135
136 /* the following is used externally (sysctl_hw) */
137 char machine[] = "alpha";
138 char *cpu_model;
139 char *model_names[] = {
140 "UNKNOWN (0)",
141 "Alpha Demonstration Unit",
142 "DEC 4000 (\"Cobra\")",
143 "DEC 7000 (\"Ruby\")",
144 "DEC 3000/500 (\"Flamingo\") family",
145 "UNKNOWN (5)",
146 "DEC 2000/300 (\"Jensen\")",
147 "DEC 3000/300 (\"Pelican\")",
148 "UNKNOWN (8)",
149 "DEC 2100/A500 (\"Sable\")",
150 "AXPvme 64",
151 "AXPpci 33 (\"NoName\")",
152 "DEC 21000 (\"TurboLaser\")",
153 "DEC 2100/A50 (\"Avanti\") family",
154 "Mustang",
155 "DEC KN20AA",
156 "UNKNOWN (16)",
157 "DEC 1000 (\"Mikasa\")",
158 };
159 int nmodel_names = sizeof model_names/sizeof model_names[0];
160
161 struct user *proc0paddr;
162
163 /* Number of machine cycles per microsecond */
164 u_int64_t cycles_per_usec;
165
166 /* some memory areas for device DMA. "ick." */
167 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
168
169 /* Interrupt vectors (in locore) */
170 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
171
172 /* number of cpus in the box. really! */
173 int ncpus;
174
175 /* various CPU-specific functions. */
176 char *(*cpu_modelname) __P((void));
177 void (*cpu_consinit) __P((char *));
178 dev_t (*cpu_bootdev) __P((char *));
179 char *cpu_iobus;
180
181 char *boot_file, *boot_flags, *boot_console, *boot_dev;
182
183 int
184 alpha_init(pfn, ptb, argc, argv, envp)
185 u_long pfn; /* first free PFN number */
186 u_long ptb; /* PFN of current level 1 page table */
187 u_long argc;
188 char *argv[], *envp[];
189 {
190 extern char _end[];
191 caddr_t start, v;
192 struct mddt *mddtp;
193 int i, mddtweird;
194 char *p;
195
196 /*
197 * Turn off interrupts and floating point.
198 * Make sure the instruction and data streams are consistent.
199 */
200 (void)splhigh();
201 pal_wrfen(0);
202 TBIA();
203 IMB();
204
205 /*
206 * get address of the restart block, while we the bootstrap
207 * mapping is still around.
208 */
209 hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
210
211 /*
212 * Remember how many cycles there are per microsecond,
213 * so that we can use delay(). Round up, for safety.
214 */
215 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
216
217 /*
218 * Init the PROM interface, so we can use printf
219 * until PROM mappings go away in consinit.
220 */
221 init_prom_interface();
222
223 /*
224 * Point interrupt/exception vectors to our own.
225 */
226 pal_wrent(XentInt, 0);
227 pal_wrent(XentArith, 1);
228 pal_wrent(XentMM, 2);
229 pal_wrent(XentIF, 3);
230 pal_wrent(XentUna, 4);
231 pal_wrent(XentSys, 5);
232
233 /*
234 * Find out how much memory is available, by looking at
235 * the memory cluster descriptors. This also tries to do
236 * its best to detect things things that have never been seen
237 * before...
238 *
239 * XXX Assumes that the first "system" cluster is the
240 * only one we can use. Is the second (etc.) system cluster
241 * (if one happens to exist) guaranteed to be contiguous? or...?
242 */
243 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
244
245 /*
246 * BEGIN MDDT WEIRDNESS CHECKING
247 */
248 mddtweird = 0;
249
250 #define cnt mddtp->mddt_cluster_cnt
251 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
252 if (cnt != 2 && cnt != 3) {
253 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
254 mddtweird = 1;
255 } else if (usage(0) != MDDT_PALCODE ||
256 usage(1) != MDDT_SYSTEM ||
257 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
258 mddtweird = 1;
259 printf("WARNING: %d mem clusters, but weird config\n", cnt);
260 }
261
262 for (i = 0; i < cnt; i++) {
263 if ((usage(i) & MDDT_mbz) != 0) {
264 printf("WARNING: mem cluster %d has weird usage %lx\n",
265 i, usage(i));
266 mddtweird = 1;
267 }
268 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
269 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
270 mddtweird = 1;
271 }
272 /* XXX other things to check? */
273 }
274 #undef cnt
275 #undef usage
276
277 if (mddtweird) {
278 printf("\n");
279 printf("complete memory cluster information:\n");
280 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
281 printf("mddt %d:\n", i);
282 printf("\tpfn %lx\n",
283 mddtp->mddt_clusters[i].mddt_pfn);
284 printf("\tcnt %lx\n",
285 mddtp->mddt_clusters[i].mddt_pg_cnt);
286 printf("\ttest %lx\n",
287 mddtp->mddt_clusters[i].mddt_pg_test);
288 printf("\tbva %lx\n",
289 mddtp->mddt_clusters[i].mddt_v_bitaddr);
290 printf("\tbpa %lx\n",
291 mddtp->mddt_clusters[i].mddt_p_bitaddr);
292 printf("\tbcksum %lx\n",
293 mddtp->mddt_clusters[i].mddt_bit_cksum);
294 printf("\tusage %lx\n",
295 mddtp->mddt_clusters[i].mddt_usage);
296 }
297 printf("\n");
298 }
299 /*
300 * END MDDT WEIRDNESS CHECKING
301 */
302
303 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
304 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
305 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
306 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
307 if ((usage(i) & MDDT_mbz) != 0)
308 unknownmem += pgcnt(i);
309 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
310 resvmem += pgcnt(i);
311 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
312 /*
313 * assumes that the system cluster listed is
314 * one we're in...
315 */
316 if (physmem != resvmem) {
317 physmem += pgcnt(i);
318 firstusablepage =
319 mddtp->mddt_clusters[i].mddt_pfn;
320 lastusablepage = firstusablepage + pgcnt(i) - 1;
321 } else
322 unusedmem += pgcnt(i);
323 }
324 #undef usage
325 #undef pgcnt
326 }
327 if (totalphysmem == 0)
328 panic("can't happen: system seems to have no memory!");
329 maxmem = physmem;
330
331 #if 0
332 printf("totalphysmem = %d\n", totalphysmem);
333 printf("physmem = %d\n", physmem);
334 printf("firstusablepage = %d\n", firstusablepage);
335 printf("lastusablepage = %d\n", lastusablepage);
336 printf("resvmem = %d\n", resvmem);
337 printf("unusedmem = %d\n", unusedmem);
338 printf("unknownmem = %d\n", unknownmem);
339 #endif
340
341 /*
342 * find out this CPU's page size
343 */
344 PAGE_SIZE = hwrpb->rpb_page_size;
345 if (PAGE_SIZE != 8192)
346 panic("page size %d != 8192?!", PAGE_SIZE);
347
348 v = (caddr_t)alpha_round_page(_end);
349 /*
350 * Init mapping for u page(s) for proc 0
351 */
352 start = v;
353 curproc->p_addr = proc0paddr = (struct user *)v;
354 v += UPAGES * NBPG;
355
356 /*
357 * Find out what hardware we're on, and remember its type name.
358 */
359 cputype = hwrpb->rpb_type;
360 switch (cputype) {
361 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
362 case ST_DEC_3000_500:
363 cpu_modelname = dec_3000_500_modelname;
364 cpu_consinit = dec_3000_500_consinit;
365 cpu_bootdev = dec_3000_500_bootdev;
366 cpu_iobus = "tcasic";
367 break;
368 #endif
369
370 #ifdef DEC_3000_300
371 case ST_DEC_3000_300:
372 cpu_modelname = dec_3000_300_modelname;
373 cpu_consinit = dec_3000_300_consinit;
374 cpu_bootdev = dec_3000_300_bootdev;
375 cpu_iobus = "tcasic";
376 break;
377 #endif
378
379 #ifdef DEC_2100_A50
380 case ST_DEC_2100_A50:
381 cpu_modelname = dec_2100_a50_modelname;
382 cpu_consinit = dec_2100_a50_consinit;
383 cpu_bootdev = dec_2100_a50_bootdev;
384 cpu_iobus = "apecs";
385 break;
386 #endif
387
388 #ifdef DEC_KN20AA
389 case ST_DEC_KN20AA:
390 cpu_modelname = dec_kn20aa_modelname;
391 cpu_consinit = dec_kn20aa_consinit;
392 cpu_bootdev = dec_kn20aa_bootdev;
393 cpu_iobus = "cia";
394 break;
395 #endif
396
397 #ifdef DEC_AXPPCI_33
398 case ST_DEC_AXPPCI_33:
399 cpu_modelname = dec_axppci_33_modelname;
400 cpu_consinit = dec_axppci_33_consinit;
401 cpu_bootdev = dec_axppci_33_bootdev;
402 cpu_iobus = "lca";
403 break;
404 #endif
405
406 #ifdef DEC_2000_300
407 case ST_DEC_2000_300:
408 cpu_modelname = dec_2000_300_modelname;
409 cpu_consinit = dec_2000_300_consinit;
410 cpu_bootdev = dec_2000_300_bootdev;
411 cpu_iobus = "ibus";
412 XXX DEC 2000/300 NOT SUPPORTED
413 break;
414 #endif
415
416 #ifdef DEC_21000
417 case ST_DEC_21000:
418 cpu_modelname = dec_21000_modelname;
419 cpu_consinit = dec_21000_consinit;
420 cpu_bootdev = dec_21000_bootdev;
421 cpu_iobus = "tlsb";
422 break;
423 #endif
424
425 default:
426 if (cputype > nmodel_names)
427 panic("Unknown system type %d", cputype);
428 else
429 panic("Support for %s system type not in kernel.",
430 model_names[cputype]);
431 }
432
433 cpu_model = (*cpu_modelname)();
434 if (cpu_model == NULL)
435 cpu_model = model_names[cputype];
436
437 #if NLE > 0
438 /*
439 * Grab 128K at the top of physical memory for the lance chip
440 * on machines where it does dma through the I/O ASIC.
441 * It must be physically contiguous and aligned on a 128K boundary.
442 */
443 if (cputype == ST_DEC_3000_500 ||
444 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
445 lastusablepage -= btoc(128 * 1024);
446 le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
447 }
448 #endif /* NLE */
449
450 /*
451 * Initialize error message buffer (at end of core).
452 */
453 lastusablepage -= btoc(sizeof (struct msgbuf));
454 msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
455 msgbufmapped = 1;
456
457 /*
458 * Allocate space for system data structures.
459 * The first available kernel virtual address is in "v".
460 * As pages of kernel virtual memory are allocated, "v" is incremented.
461 *
462 * These data structures are allocated here instead of cpu_startup()
463 * because physical memory is directly addressable. We don't have
464 * to map these into virtual address space.
465 */
466 #define valloc(name, type, num) \
467 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
468 #define valloclim(name, type, num, lim) \
469 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
470 #ifdef REAL_CLISTS
471 valloc(cfree, struct cblock, nclist);
472 #endif
473 valloc(callout, struct callout, ncallout);
474 valloc(swapmap, struct map, nswapmap = maxproc * 2);
475 #ifdef SYSVSHM
476 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
477 #endif
478 #ifdef SYSVSEM
479 valloc(sema, struct semid_ds, seminfo.semmni);
480 valloc(sem, struct sem, seminfo.semmns);
481 /* This is pretty disgusting! */
482 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
483 #endif
484 #ifdef SYSVMSG
485 valloc(msgpool, char, msginfo.msgmax);
486 valloc(msgmaps, struct msgmap, msginfo.msgseg);
487 valloc(msghdrs, struct msg, msginfo.msgtql);
488 valloc(msqids, struct msqid_ds, msginfo.msgmni);
489 #endif
490
491 /*
492 * Determine how many buffers to allocate.
493 * We allocate the BSD standard of 10% of memory for the first
494 * 2 Meg, and 5% of remaining memory for buffer space. Insure a
495 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
496 * headers as file i/o buffers.
497 */
498 if (bufpages == 0)
499 bufpages = (btoc(2 * 1024 * 1024) + physmem) /
500 (20 * CLSIZE);
501 if (nbuf == 0) {
502 nbuf = bufpages;
503 if (nbuf < 16)
504 nbuf = 16;
505 }
506 if (nswbuf == 0) {
507 nswbuf = (nbuf / 2) &~ 1; /* force even */
508 if (nswbuf > 256)
509 nswbuf = 256; /* sanity */
510 }
511 valloc(swbuf, struct buf, nswbuf);
512 valloc(buf, struct buf, nbuf);
513
514 /*
515 * Clear allocated memory.
516 */
517 bzero(start, v - start);
518
519 /*
520 * Initialize the virtual memory system, and set the
521 * page table base register in proc 0's PCB.
522 */
523 pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
524
525 /*
526 * Initialize the rest of proc 0's PCB, and cache its physical
527 * address.
528 */
529 proc0.p_md.md_pcbpaddr =
530 (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
531
532 /*
533 * Set the kernel sp, reserving space for an (empty) trapframe,
534 * and make proc0's trapframe pointer point to it for sanity.
535 */
536 proc0paddr->u_pcb.pcb_ksp =
537 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
538 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
539
540 /*
541 * figure out what arguments we have
542 */
543 switch (argc) {
544 default:
545 printf("weird number of arguments from boot: %d\n", argc);
546 if (argc < 1)
547 break;
548 /* FALLTHRU */
549 case 4:
550 boot_dev = argv[3];
551 /* FALLTHRU */
552 case 3:
553 boot_console = argv[2];
554 /* FALLTHRU */
555 case 2:
556 boot_flags = argv[1];
557 /* FALLTHRU */
558 case 1:
559 boot_file = argv[0];
560 /* FALLTHRU */
561 }
562
563 /*
564 * Look at arguments and compute bootdev.
565 * XXX NOT HERE.
566 */
567 #if 0
568 { /* XXX */
569 extern dev_t bootdev; /* XXX */
570 bootdev = (*cpu_bootdev)(boot_dev);
571 } /* XXX */
572 #endif
573
574 /*
575 * Look at arguments passed to us and compute boothowto.
576 */
577 boothowto = RB_SINGLE;
578 #ifdef GENERIC
579 boothowto |= RB_ASKNAME;
580 #endif
581 #ifdef KADB
582 boothowto |= RB_KDB;
583 #endif
584 for (p = boot_flags; p && *p != '\0'; p++) {
585 switch (*p) {
586 case 'a': /* autoboot */
587 case 'A': /* DEC's notion of autoboot */
588 boothowto &= ~RB_SINGLE;
589 break;
590
591 case 'd': /* use compiled in default root */
592 boothowto |= RB_DFLTROOT;
593 break;
594
595 case 'm': /* mini root present in memory */
596 boothowto |= RB_MINIROOT;
597 break;
598
599 case 'n': /* ask for names */
600 boothowto |= RB_ASKNAME;
601 break;
602
603 case 'N': /* don't ask for names */
604 boothowto &= ~RB_ASKNAME;
605 }
606 }
607
608 /*
609 * Figure out the number of cpus in the box, from RPB fields.
610 * Really. We mean it.
611 */
612 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
613 struct pcs *pcsp;
614
615 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
616 (i * hwrpb->rpb_pcs_size));
617 if ((pcsp->pcs_flags & PCS_PP) != 0)
618 ncpus++;
619 }
620
621 return (0);
622 }
623
624 consinit()
625 {
626
627 (*cpu_consinit)(boot_console);
628 pmap_unmap_prom();
629 }
630
631 cpu_startup()
632 {
633 register unsigned i;
634 register caddr_t v;
635 int base, residual;
636 vm_offset_t minaddr, maxaddr;
637 vm_size_t size;
638 #ifdef DEBUG
639 extern int pmapdebug;
640 int opmapdebug = pmapdebug;
641
642 pmapdebug = 0;
643 #endif
644
645 /*
646 * Good {morning,afternoon,evening,night}.
647 */
648 printf(version);
649 identifycpu();
650 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
651 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
652 if (unusedmem)
653 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
654 if (unknownmem)
655 printf("WARNING: %d bytes of memory with unknown purpose\n",
656 ctob(unknownmem));
657
658 /*
659 * Allocate virtual address space for file I/O buffers.
660 * Note they are different than the array of headers, 'buf',
661 * and usually occupy more virtual memory than physical.
662 */
663 size = MAXBSIZE * nbuf;
664 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
665 &maxaddr, size, TRUE);
666 minaddr = (vm_offset_t)buffers;
667 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
668 &minaddr, size, FALSE) != KERN_SUCCESS)
669 panic("startup: cannot allocate buffers");
670 base = bufpages / nbuf;
671 residual = bufpages % nbuf;
672 for (i = 0; i < nbuf; i++) {
673 vm_size_t curbufsize;
674 vm_offset_t curbuf;
675
676 /*
677 * First <residual> buffers get (base+1) physical pages
678 * allocated for them. The rest get (base) physical pages.
679 *
680 * The rest of each buffer occupies virtual space,
681 * but has no physical memory allocated for it.
682 */
683 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
684 curbufsize = CLBYTES * (i < residual ? base+1 : base);
685 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
686 vm_map_simplify(buffer_map, curbuf);
687 }
688 /*
689 * Allocate a submap for exec arguments. This map effectively
690 * limits the number of processes exec'ing at any time.
691 */
692 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
693 16 * NCARGS, TRUE);
694
695 /*
696 * Allocate a submap for physio
697 */
698 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
699 VM_PHYS_SIZE, TRUE);
700
701 /*
702 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
703 * we use the more space efficient malloc in place of kmem_alloc.
704 */
705 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
706 M_MBUF, M_NOWAIT);
707 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
708 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
709 VM_MBUF_SIZE, FALSE);
710 /*
711 * Initialize callouts
712 */
713 callfree = callout;
714 for (i = 1; i < ncallout; i++)
715 callout[i-1].c_next = &callout[i];
716 callout[i-1].c_next = NULL;
717
718 #ifdef DEBUG
719 pmapdebug = opmapdebug;
720 #endif
721 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
722 printf("using %ld buffers containing %ld bytes of memory\n",
723 (long)nbuf, (long)(bufpages * CLBYTES));
724
725 /*
726 * Set up buffers, so they can be used to read disk labels.
727 */
728 bufinit();
729
730 /*
731 * Configure the system.
732 */
733 configure();
734 }
735
736 identifycpu()
737 {
738
739 /*
740 * print out CPU identification information.
741 */
742 printf("%s, %dMHz\n", cpu_model,
743 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
744 printf("%d byte page size, %d processor%s.\n",
745 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
746 #if 0
747 /* this isn't defined for any systems that we run on? */
748 printf("serial number 0x%lx 0x%lx\n",
749 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
750
751 /* and these aren't particularly useful! */
752 printf("variation: 0x%lx, revision 0x%lx\n",
753 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
754 #endif
755 }
756
757 int waittime = -1;
758 struct pcb dumppcb;
759
760 boot(howto)
761 int howto;
762 {
763 extern int cold;
764
765 /* If system is cold, just halt. */
766 if (cold) {
767 howto |= RB_HALT;
768 goto haltsys;
769 }
770
771 boothowto = howto;
772 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
773 waittime = 0;
774 vfs_shutdown();
775 /*
776 * If we've been adjusting the clock, the todr
777 * will be out of synch; adjust it now.
778 */
779 resettodr();
780 }
781
782 /* Disable interrupts. */
783 splhigh();
784
785 /* If rebooting and a dump is requested do it. */
786 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
787 savectx(&dumppcb, 0);
788 dumpsys();
789 }
790
791 haltsys:
792
793 /* run any shutdown hooks */
794 doshutdownhooks();
795
796 #ifdef BOOTKEY
797 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
798 cngetc();
799 printf("\n");
800 #endif
801
802 /* Finally, halt/reboot the system. */
803 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
804 prom_halt(howto & RB_HALT);
805 /*NOTREACHED*/
806 }
807
808 /*
809 * These variables are needed by /sbin/savecore
810 */
811 u_long dumpmag = 0x8fca0101; /* magic number */
812 int dumpsize = 0; /* pages */
813 long dumplo = 0; /* blocks */
814
815 /*
816 * This is called by configure to set dumplo and dumpsize.
817 * Dumps always skip the first CLBYTES of disk space
818 * in case there might be a disk label stored there.
819 * If there is extra space, put dump at the end to
820 * reduce the chance that swapping trashes it.
821 */
822 void
823 dumpconf()
824 {
825 int nblks; /* size of dump area */
826 int maj;
827
828 if (dumpdev == NODEV)
829 return;
830 maj = major(dumpdev);
831 if (maj < 0 || maj >= nblkdev)
832 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
833 if (bdevsw[maj].d_psize == NULL)
834 return;
835 nblks = (*bdevsw[maj].d_psize)(dumpdev);
836 if (nblks <= ctod(1))
837 return;
838
839 /* XXX XXX XXX STARTING MEMORY LOCATION */
840 dumpsize = physmem;
841
842 /* Always skip the first CLBYTES, in case there is a label there. */
843 if (dumplo < ctod(1))
844 dumplo = ctod(1);
845
846 /* Put dump at end of partition, and make it fit. */
847 if (dumpsize > dtoc(nblks - dumplo))
848 dumpsize = dtoc(nblks - dumplo);
849 if (dumplo < nblks - ctod(dumpsize))
850 dumplo = nblks - ctod(dumpsize);
851 }
852
853 /*
854 * Doadump comes here after turning off memory management and
855 * getting on the dump stack, either when called above, or by
856 * the auto-restart code.
857 */
858 void
859 dumpsys()
860 {
861
862 msgbufmapped = 0;
863 if (dumpdev == NODEV)
864 return;
865 if (dumpsize == 0) {
866 dumpconf();
867 if (dumpsize == 0)
868 return;
869 }
870 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
871
872 printf("dump ");
873 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
874
875 case ENXIO:
876 printf("device bad\n");
877 break;
878
879 case EFAULT:
880 printf("device not ready\n");
881 break;
882
883 case EINVAL:
884 printf("area improper\n");
885 break;
886
887 case EIO:
888 printf("i/o error\n");
889 break;
890
891 case EINTR:
892 printf("aborted from console\n");
893 break;
894
895 default:
896 printf("succeeded\n");
897 break;
898 }
899 printf("\n\n");
900 delay(1000);
901 }
902
903 void
904 frametoreg(framep, regp)
905 struct trapframe *framep;
906 struct reg *regp;
907 {
908
909 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
910 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
911 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
912 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
913 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
914 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
915 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
916 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
917 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
918 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
919 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
920 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
921 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
922 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
923 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
924 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
925 regp->r_regs[R_A0] = framep->tf_a0;
926 regp->r_regs[R_A1] = framep->tf_a1;
927 regp->r_regs[R_A2] = framep->tf_a2;
928 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
929 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
930 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
931 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
932 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
933 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
934 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
935 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
936 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
937 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
938 regp->r_regs[R_GP] = framep->tf_gp;
939 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
940 regp->r_regs[R_ZERO] = 0;
941 }
942
943 void
944 regtoframe(regp, framep)
945 struct reg *regp;
946 struct trapframe *framep;
947 {
948
949 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
950 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
951 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
952 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
953 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
954 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
955 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
956 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
957 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
958 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
959 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
960 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
961 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
962 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
963 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
964 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
965 framep->tf_a0 = regp->r_regs[R_A0];
966 framep->tf_a1 = regp->r_regs[R_A1];
967 framep->tf_a2 = regp->r_regs[R_A2];
968 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
969 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
970 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
971 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
972 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
973 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
974 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
975 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
976 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
977 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
978 framep->tf_gp = regp->r_regs[R_GP];
979 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
980 /* ??? = regp->r_regs[R_ZERO]; */
981 }
982
983 void
984 printregs(regp)
985 struct reg *regp;
986 {
987 int i;
988
989 for (i = 0; i < 32; i++)
990 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
991 i & 1 ? "\n" : "\t");
992 }
993
994 void
995 regdump(framep)
996 struct trapframe *framep;
997 {
998 struct reg reg;
999
1000 frametoreg(framep, ®);
1001 printf("REGISTERS:\n");
1002 printregs(®);
1003 }
1004
1005 #ifdef DEBUG
1006 int sigdebug = 0;
1007 int sigpid = 0;
1008 #define SDB_FOLLOW 0x01
1009 #define SDB_KSTACK 0x02
1010 #endif
1011
1012 /*
1013 * Send an interrupt to process.
1014 */
1015 void
1016 sendsig(catcher, sig, mask, code)
1017 sig_t catcher;
1018 int sig, mask;
1019 u_long code;
1020 {
1021 struct proc *p = curproc;
1022 struct sigcontext *scp, ksc;
1023 struct trapframe *frame;
1024 struct sigacts *psp = p->p_sigacts;
1025 int oonstack, fsize, rndfsize;
1026 extern char sigcode[], esigcode[];
1027 extern struct proc *fpcurproc;
1028
1029 frame = p->p_md.md_tf;
1030 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1031 fsize = sizeof ksc;
1032 rndfsize = ((fsize + 15) / 16) * 16;
1033 /*
1034 * Allocate and validate space for the signal handler
1035 * context. Note that if the stack is in P0 space, the
1036 * call to grow() is a nop, and the useracc() check
1037 * will fail if the process has not already allocated
1038 * the space with a `brk'.
1039 */
1040 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1041 (psp->ps_sigonstack & sigmask(sig))) {
1042 scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
1043 psp->ps_sigstk.ss_size - rndfsize);
1044 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1045 } else
1046 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1047 rndfsize);
1048 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1049 (void)grow(p, (u_long)scp);
1050 #ifdef DEBUG
1051 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1052 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1053 sig, &oonstack, scp);
1054 #endif
1055 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1056 #ifdef DEBUG
1057 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1058 printf("sendsig(%d): useracc failed on sig %d\n",
1059 p->p_pid, sig);
1060 #endif
1061 /*
1062 * Process has trashed its stack; give it an illegal
1063 * instruction to halt it in its tracks.
1064 */
1065 SIGACTION(p, SIGILL) = SIG_DFL;
1066 sig = sigmask(SIGILL);
1067 p->p_sigignore &= ~sig;
1068 p->p_sigcatch &= ~sig;
1069 p->p_sigmask &= ~sig;
1070 psignal(p, SIGILL);
1071 return;
1072 }
1073
1074 /*
1075 * Build the signal context to be used by sigreturn.
1076 */
1077 ksc.sc_onstack = oonstack;
1078 ksc.sc_mask = mask;
1079 ksc.sc_pc = frame->tf_pc;
1080 ksc.sc_ps = frame->tf_ps;
1081
1082 /* copy the registers. */
1083 frametoreg(frame, (struct reg *)ksc.sc_regs);
1084 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1085
1086 /* save the floating-point state, if necessary, then copy it. */
1087 if (p == fpcurproc) {
1088 pal_wrfen(1);
1089 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1090 pal_wrfen(0);
1091 fpcurproc = NULL;
1092 }
1093 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1094 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1095 sizeof(struct fpreg));
1096 ksc.sc_fp_control = 0; /* XXX ? */
1097 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1098 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1099
1100
1101 #ifdef COMPAT_OSF1
1102 /*
1103 * XXX Create an OSF/1-style sigcontext and associated goo.
1104 */
1105 #endif
1106
1107 /*
1108 * copy the frame out to userland.
1109 */
1110 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1111 #ifdef DEBUG
1112 if (sigdebug & SDB_FOLLOW)
1113 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1114 scp, code);
1115 #endif
1116
1117 /*
1118 * Set up the registers to return to sigcode.
1119 */
1120 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1121 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1122 frame->tf_a0 = sig;
1123 frame->tf_a1 = code;
1124 frame->tf_a2 = (u_int64_t)scp;
1125 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1126
1127 #ifdef DEBUG
1128 if (sigdebug & SDB_FOLLOW)
1129 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1130 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1131 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1132 printf("sendsig(%d): sig %d returns\n",
1133 p->p_pid, sig);
1134 #endif
1135 }
1136
1137 /*
1138 * System call to cleanup state after a signal
1139 * has been taken. Reset signal mask and
1140 * stack state from context left by sendsig (above).
1141 * Return to previous pc and psl as specified by
1142 * context left by sendsig. Check carefully to
1143 * make sure that the user has not modified the
1144 * psl to gain improper priviledges or to cause
1145 * a machine fault.
1146 */
1147 /* ARGSUSED */
1148 int
1149 sys_sigreturn(p, v, retval)
1150 struct proc *p;
1151 void *v;
1152 register_t *retval;
1153 {
1154 struct sys_sigreturn_args /* {
1155 syscallarg(struct sigcontext *) sigcntxp;
1156 } */ *uap = v;
1157 struct sigcontext *scp, ksc;
1158 extern struct proc *fpcurproc;
1159
1160 scp = SCARG(uap, sigcntxp);
1161 #ifdef DEBUG
1162 if (sigdebug & SDB_FOLLOW)
1163 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1164 #endif
1165
1166 if (ALIGN(scp) != (u_int64_t)scp)
1167 return (EINVAL);
1168
1169 /*
1170 * Test and fetch the context structure.
1171 * We grab it all at once for speed.
1172 */
1173 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1174 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1175 return (EINVAL);
1176
1177 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1178 return (EINVAL);
1179 /*
1180 * Restore the user-supplied information
1181 */
1182 if (ksc.sc_onstack)
1183 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1184 else
1185 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1186 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1187
1188 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1189 p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1190
1191 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1192
1193 /* XXX ksc.sc_ownedfp ? */
1194 if (p == fpcurproc)
1195 fpcurproc = NULL;
1196 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1197 sizeof(struct fpreg));
1198 /* XXX ksc.sc_fp_control ? */
1199
1200 #ifdef DEBUG
1201 if (sigdebug & SDB_FOLLOW)
1202 printf("sigreturn(%d): returns\n", p->p_pid);
1203 #endif
1204 return (EJUSTRETURN);
1205 }
1206
1207 /*
1208 * machine dependent system variables.
1209 */
1210 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1211 int *name;
1212 u_int namelen;
1213 void *oldp;
1214 size_t *oldlenp;
1215 void *newp;
1216 size_t newlen;
1217 struct proc *p;
1218 {
1219 dev_t consdev;
1220
1221 /* all sysctl names at this level are terminal */
1222 if (namelen != 1)
1223 return (ENOTDIR); /* overloaded */
1224
1225 switch (name[0]) {
1226 case CPU_CONSDEV:
1227 if (cn_tab != NULL)
1228 consdev = cn_tab->cn_dev;
1229 else
1230 consdev = NODEV;
1231 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1232 sizeof consdev));
1233 default:
1234 return (EOPNOTSUPP);
1235 }
1236 /* NOTREACHED */
1237 }
1238
1239 /*
1240 * Set registers on exec.
1241 */
1242 void
1243 setregs(p, pack, stack, retval)
1244 register struct proc *p;
1245 struct exec_package *pack;
1246 u_long stack;
1247 register_t *retval;
1248 {
1249 struct trapframe *tfp = p->p_md.md_tf;
1250 int i;
1251 extern struct proc *fpcurproc;
1252
1253 #ifdef DEBUG
1254 for (i = 0; i < FRAME_NSAVEREGS; i++)
1255 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1256 tfp->tf_gp = 0xbabefacedeadbeef;
1257 tfp->tf_a0 = 0xbabefacedeadbeef;
1258 tfp->tf_a1 = 0xbabefacedeadbeef;
1259 tfp->tf_a2 = 0xbabefacedeadbeef;
1260 #else
1261 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1262 tfp->tf_gp = 0;
1263 tfp->tf_a0 = 0;
1264 tfp->tf_a1 = 0;
1265 tfp->tf_a2 = 0;
1266 #endif
1267 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1268 #define FP_RN 2 /* XXX */
1269 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1270 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1271 tfp->tf_ps = PSL_USERSET;
1272 tfp->tf_pc = pack->ep_entry & ~3;
1273
1274 p->p_md.md_flags & ~MDP_FPUSED;
1275 if (fpcurproc == p)
1276 fpcurproc = NULL;
1277
1278 retval[0] = retval[1] = 0;
1279 }
1280
1281 void
1282 netintr()
1283 {
1284 #ifdef INET
1285 #if NETHER > 0
1286 if (netisr & (1 << NETISR_ARP)) {
1287 netisr &= ~(1 << NETISR_ARP);
1288 arpintr();
1289 }
1290 #endif
1291 if (netisr & (1 << NETISR_IP)) {
1292 netisr &= ~(1 << NETISR_IP);
1293 ipintr();
1294 }
1295 #endif
1296 #ifdef NS
1297 if (netisr & (1 << NETISR_NS)) {
1298 netisr &= ~(1 << NETISR_NS);
1299 nsintr();
1300 }
1301 #endif
1302 #ifdef ISO
1303 if (netisr & (1 << NETISR_ISO)) {
1304 netisr &= ~(1 << NETISR_ISO);
1305 clnlintr();
1306 }
1307 #endif
1308 #ifdef CCITT
1309 if (netisr & (1 << NETISR_CCITT)) {
1310 netisr &= ~(1 << NETISR_CCITT);
1311 ccittintr();
1312 }
1313 #endif
1314 #ifdef PPP
1315 if (netisr & (1 << NETISR_PPP)) {
1316 netisr &= ~(1 << NETISR_CCITT);
1317 pppintr();
1318 }
1319 #endif
1320 }
1321
1322 void
1323 do_sir()
1324 {
1325
1326 if (ssir & SIR_NET) {
1327 siroff(SIR_NET);
1328 cnt.v_soft++;
1329 netintr();
1330 }
1331 if (ssir & SIR_CLOCK) {
1332 siroff(SIR_CLOCK);
1333 cnt.v_soft++;
1334 softclock();
1335 }
1336 }
1337
1338 int
1339 spl0()
1340 {
1341
1342 if (ssir) {
1343 splsoft();
1344 do_sir();
1345 }
1346
1347 return (pal_swpipl(PSL_IPL_0));
1348 }
1349
1350 /*
1351 * The following primitives manipulate the run queues. _whichqs tells which
1352 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1353 * into queues, Remrq removes them from queues. The running process is on
1354 * no queue, other processes are on a queue related to p->p_priority, divided
1355 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1356 * queues.
1357 */
1358 /*
1359 * setrunqueue(p)
1360 * proc *p;
1361 *
1362 * Call should be made at splclock(), and p->p_stat should be SRUN.
1363 */
1364
1365 void
1366 setrunqueue(p)
1367 struct proc *p;
1368 {
1369 int bit;
1370
1371 /* firewall: p->p_back must be NULL */
1372 if (p->p_back != NULL)
1373 panic("setrunqueue");
1374
1375 bit = p->p_priority >> 2;
1376 whichqs |= (1 << bit);
1377 p->p_forw = (struct proc *)&qs[bit];
1378 p->p_back = qs[bit].ph_rlink;
1379 p->p_back->p_forw = p;
1380 qs[bit].ph_rlink = p;
1381 }
1382
1383 /*
1384 * Remrq(p)
1385 *
1386 * Call should be made at splclock().
1387 */
1388 void
1389 remrq(p)
1390 struct proc *p;
1391 {
1392 int bit;
1393
1394 bit = p->p_priority >> 2;
1395 if ((whichqs & (1 << bit)) == 0)
1396 panic("remrq");
1397
1398 p->p_back->p_forw = p->p_forw;
1399 p->p_forw->p_back = p->p_back;
1400 p->p_back = NULL; /* for firewall checking. */
1401
1402 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1403 whichqs &= ~(1 << bit);
1404 }
1405
1406 /*
1407 * Return the best possible estimate of the time in the timeval
1408 * to which tvp points. Unfortunately, we can't read the hardware registers.
1409 * We guarantee that the time will be greater than the value obtained by a
1410 * previous call.
1411 */
1412 void
1413 microtime(tvp)
1414 register struct timeval *tvp;
1415 {
1416 int s = splclock();
1417 static struct timeval lasttime;
1418
1419 *tvp = time;
1420 #ifdef notdef
1421 tvp->tv_usec += clkread();
1422 while (tvp->tv_usec > 1000000) {
1423 tvp->tv_sec++;
1424 tvp->tv_usec -= 1000000;
1425 }
1426 #endif
1427 if (tvp->tv_sec == lasttime.tv_sec &&
1428 tvp->tv_usec <= lasttime.tv_usec &&
1429 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1430 tvp->tv_sec++;
1431 tvp->tv_usec -= 1000000;
1432 }
1433 lasttime = *tvp;
1434 splx(s);
1435 }
1436
1437 #if defined(COMPAT_OSF1) || 1 /* XXX */
1438 void
1439 cpu_exec_ecoff_setregs(p, pack, stack, retval)
1440 struct proc *p;
1441 struct exec_package *pack;
1442 u_long stack;
1443 register_t *retval;
1444 {
1445 struct ecoff_aouthdr *eap;
1446
1447 setregs(p, pack, stack, retval);
1448
1449 eap = (struct ecoff_aouthdr *)
1450 ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
1451 p->p_md.md_tf->tf_gp = eap->ea_gp_value;
1452 }
1453
1454 /*
1455 * cpu_exec_ecoff_hook():
1456 * cpu-dependent ECOFF format hook for execve().
1457 *
1458 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1459 *
1460 */
1461 int
1462 cpu_exec_ecoff_hook(p, epp, eap)
1463 struct proc *p;
1464 struct exec_package *epp;
1465 struct ecoff_aouthdr *eap;
1466 {
1467 struct ecoff_filehdr *efp = epp->ep_hdr;
1468 extern struct emul emul_netbsd;
1469 #ifdef COMPAT_OSF1
1470 extern struct emul emul_osf1;
1471 #endif
1472
1473 switch (efp->ef_magic) {
1474 #ifdef COMPAT_OSF1
1475 case ECOFF_MAGIC_ALPHA:
1476 epp->ep_emul = &emul_osf1;
1477 break;
1478 #endif
1479
1480 case ECOFF_MAGIC_NETBSD_ALPHA:
1481 epp->ep_emul = &emul_netbsd;
1482 break;
1483
1484 default:
1485 return ENOEXEC;
1486 }
1487 return 0;
1488 }
1489 #endif
1490
1491 vm_offset_t
1492 vtophys(vaddr)
1493 vm_offset_t vaddr;
1494 {
1495 vm_offset_t paddr;
1496
1497 if (vaddr < K0SEG_BEGIN) {
1498 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1499 paddr = vaddr;
1500 } else if (vaddr < K0SEG_END)
1501 paddr = k0segtophys(vaddr);
1502 else
1503 paddr = vatopa(vaddr);
1504
1505 #if 0
1506 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1507 #endif
1508
1509 return (paddr);
1510 }
1511