machdep.c revision 1.131 1 /* $NetBSD: machdep.c,v 1.131 1998/07/05 04:37:35 jonathan Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77
78 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
79
80 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.131 1998/07/05 04:37:35 jonathan Exp $");
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/signalvar.h>
85 #include <sys/kernel.h>
86 #include <sys/map.h>
87 #include <sys/proc.h>
88 #include <sys/buf.h>
89 #include <sys/reboot.h>
90 #include <sys/device.h>
91 #include <sys/file.h>
92 #ifdef REAL_CLISTS
93 #include <sys/clist.h>
94 #endif
95 #include <sys/callout.h>
96 #include <sys/malloc.h>
97 #include <sys/mbuf.h>
98 #include <sys/mman.h>
99 #include <sys/msgbuf.h>
100 #include <sys/ioctl.h>
101 #include <sys/tty.h>
102 #include <sys/user.h>
103 #include <sys/exec.h>
104 #include <sys/exec_ecoff.h>
105 #include <vm/vm.h>
106 #include <sys/sysctl.h>
107 #include <sys/core.h>
108 #include <sys/kcore.h>
109 #include <machine/kcore.h>
110 #ifdef SYSVMSG
111 #include <sys/msg.h>
112 #endif
113 #ifdef SYSVSEM
114 #include <sys/sem.h>
115 #endif
116 #ifdef SYSVSHM
117 #include <sys/shm.h>
118 #endif
119
120 #include <sys/mount.h>
121 #include <sys/syscallargs.h>
122
123 #include <vm/vm_kern.h>
124
125 #if defined(UVM)
126 #include <uvm/uvm_extern.h>
127 #endif
128
129 #include <dev/cons.h>
130
131 #include <machine/autoconf.h>
132 #include <machine/cpu.h>
133 #include <machine/reg.h>
134 #include <machine/rpb.h>
135 #include <machine/prom.h>
136 #include <machine/conf.h>
137
138 #include <net/netisr.h>
139 #include <net/if.h>
140
141 #ifdef INET
142 #include <net/route.h>
143 #include <netinet/in.h>
144 #include <netinet/ip_var.h>
145 #include "arp.h"
146 #if NARP > 0
147 #include <netinet/if_inarp.h>
148 #endif
149 #endif
150 #ifdef NS
151 #include <netns/ns_var.h>
152 #endif
153 #ifdef ISO
154 #include <netiso/iso.h>
155 #include <netiso/clnp.h>
156 #endif
157 #ifdef CCITT
158 #include <netccitt/x25.h>
159 #include <netccitt/pk.h>
160 #include <netccitt/pk_extern.h>
161 #endif
162 #ifdef NATM
163 #include <netnatm/natm.h>
164 #endif
165 #ifdef NETATALK
166 #include <netatalk/at_extern.h>
167 #endif
168 #include "ppp.h"
169 #if NPPP > 0
170 #include <net/ppp_defs.h>
171 #include <net/if_ppp.h>
172 #endif
173
174 #ifdef DDB
175 #include <machine/db_machdep.h>
176 #include <ddb/db_access.h>
177 #include <ddb/db_sym.h>
178 #include <ddb/db_extern.h>
179 #include <ddb/db_interface.h>
180 #endif
181
182 #if defined(UVM)
183 vm_map_t exec_map = NULL;
184 vm_map_t mb_map = NULL;
185 vm_map_t phys_map = NULL;
186 #else
187 vm_map_t buffer_map;
188 #endif
189
190 /*
191 * Declare these as initialized data so we can patch them.
192 */
193 int nswbuf = 0;
194 #ifdef NBUF
195 int nbuf = NBUF;
196 #else
197 int nbuf = 0;
198 #endif
199 #ifdef BUFPAGES
200 int bufpages = BUFPAGES;
201 #else
202 int bufpages = 0;
203 #endif
204 caddr_t msgbufaddr;
205
206 int maxmem; /* max memory per process */
207
208 int totalphysmem; /* total amount of physical memory in system */
209 int physmem; /* physical memory used by NetBSD + some rsvd */
210 int resvmem; /* amount of memory reserved for PROM */
211 int unusedmem; /* amount of memory for OS that we don't use */
212 int unknownmem; /* amount of memory with an unknown use */
213
214 int cputype; /* system type, from the RPB */
215
216 /*
217 * XXX We need an address to which we can assign things so that they
218 * won't be optimized away because we didn't use the value.
219 */
220 u_int32_t no_optimize;
221
222 /* the following is used externally (sysctl_hw) */
223 char machine[] = MACHINE; /* from <machine/param.h> */
224 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
225 char cpu_model[128];
226
227 struct user *proc0paddr;
228
229 /* Number of machine cycles per microsecond */
230 u_int64_t cycles_per_usec;
231
232 /* number of cpus in the box. really! */
233 int ncpus;
234
235 struct bootinfo_kernel bootinfo;
236
237 /* For built-in TCDS */
238 #if defined(DEC_3000_300) || defined(DEC_3000_500)
239 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
240 #endif
241
242 struct platform platform;
243
244 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
245 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
246 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
247
248 #ifdef DDB
249 /* start and end of kernel symbol table */
250 void *ksym_start, *ksym_end;
251 #endif
252
253 /* for cpu_sysctl() */
254 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
255 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
256 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
257
258 /*
259 * XXX This should be dynamically sized, but we have the chicken-egg problem!
260 * XXX it should also be larger than it is, because not all of the mddt
261 * XXX clusters end up being used for VM.
262 */
263 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
264 int mem_cluster_cnt;
265
266 caddr_t allocsys __P((caddr_t));
267 int cpu_dump __P((void));
268 int cpu_dumpsize __P((void));
269 u_long cpu_dump_mempagecnt __P((void));
270 void dumpsys __P((void));
271 void identifycpu __P((void));
272 void netintr __P((void));
273 void printregs __P((struct reg *));
274
275 void
276 alpha_init(pfn, ptb, bim, bip, biv)
277 u_long pfn; /* first free PFN number */
278 u_long ptb; /* PFN of current level 1 page table */
279 u_long bim; /* bootinfo magic */
280 u_long bip; /* bootinfo pointer */
281 u_long biv; /* bootinfo version */
282 {
283 extern char kernel_text[], _end[];
284 struct mddt *mddtp;
285 struct mddt_cluster *memc;
286 int i, mddtweird;
287 struct vm_physseg *vps;
288 vm_offset_t kernstart, kernend;
289 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
290 vm_size_t size;
291 char *p;
292 caddr_t v;
293 char *bootinfo_msg;
294
295 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
296
297 /*
298 * Turn off interrupts (not mchecks) and floating point.
299 * Make sure the instruction and data streams are consistent.
300 */
301 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
302 alpha_pal_wrfen(0);
303 ALPHA_TBIA();
304 alpha_pal_imb();
305
306 /*
307 * Get critical system information (if possible, from the
308 * information provided by the boot program).
309 */
310 bootinfo_msg = NULL;
311 if (bim == BOOTINFO_MAGIC) {
312 if (biv == 0) { /* backward compat */
313 biv = *(u_long *)bip;
314 bip += 8;
315 }
316 switch (biv) {
317 case 1: {
318 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
319
320 bootinfo.ssym = v1p->ssym;
321 bootinfo.esym = v1p->esym;
322 /* hwrpb may not be provided by boot block in v1 */
323 if (v1p->hwrpb != NULL) {
324 bootinfo.hwrpb_phys =
325 ((struct rpb *)v1p->hwrpb)->rpb_phys;
326 bootinfo.hwrpb_size = v1p->hwrpbsize;
327 } else {
328 bootinfo.hwrpb_phys =
329 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
330 bootinfo.hwrpb_size =
331 ((struct rpb *)HWRPB_ADDR)->rpb_size;
332 }
333 bcopy(v1p->boot_flags, bootinfo.boot_flags,
334 min(sizeof v1p->boot_flags,
335 sizeof bootinfo.boot_flags));
336 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
337 min(sizeof v1p->booted_kernel,
338 sizeof bootinfo.booted_kernel));
339 /* booted dev not provided in bootinfo */
340 init_prom_interface((struct rpb *)
341 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
342 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
343 sizeof bootinfo.booted_dev);
344 break;
345 }
346 default:
347 bootinfo_msg = "unknown bootinfo version";
348 goto nobootinfo;
349 }
350 } else {
351 bootinfo_msg = "boot program did not pass bootinfo";
352 nobootinfo:
353 bootinfo.ssym = (u_long)_end;
354 bootinfo.esym = (u_long)_end;
355 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
356 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
357 init_prom_interface((struct rpb *)HWRPB_ADDR);
358 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
359 sizeof bootinfo.boot_flags);
360 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
361 sizeof bootinfo.booted_kernel);
362 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
363 sizeof bootinfo.booted_dev);
364 }
365
366 /*
367 * Initialize the kernel's mapping of the RPB. It's needed for
368 * lots of things.
369 */
370 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
371
372 #if defined(DEC_3000_300) || defined(DEC_3000_500)
373 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
374 hwrpb->rpb_type == ST_DEC_3000_500) {
375 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
376 sizeof(dec_3000_scsiid));
377 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
378 sizeof(dec_3000_scsifast));
379 }
380 #endif
381
382 /*
383 * Remember how many cycles there are per microsecond,
384 * so that we can use delay(). Round up, for safety.
385 */
386 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
387
388 /*
389 * Initalize the (temporary) bootstrap console interface, so
390 * we can use printf until the VM system starts being setup.
391 * The real console is initialized before then.
392 */
393 init_bootstrap_console();
394
395 /* OUTPUT NOW ALLOWED */
396
397 /* delayed from above */
398 if (bootinfo_msg)
399 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
400 bootinfo_msg, bim, bip, biv);
401
402 /*
403 * Point interrupt/exception vectors to our own.
404 */
405 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
406 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
407 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
408 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
409 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
410 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
411
412 /*
413 * Clear pending machine checks and error reports, and enable
414 * system- and processor-correctable error reporting.
415 */
416 alpha_pal_wrmces(alpha_pal_rdmces() &
417 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
418
419 /*
420 * Find out what hardware we're on, and do basic initialization.
421 */
422 cputype = hwrpb->rpb_type;
423 if (cputype >= ncpuinit) {
424 platform_not_supported();
425 /* NOTREACHED */
426 }
427 (*cpuinit[cputype].init)();
428 strcpy(cpu_model, platform.model);
429
430 /*
431 * Initalize the real console, so the the bootstrap console is
432 * no longer necessary.
433 */
434 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
435 if (!pmap_uses_prom_console())
436 #endif
437 (*platform.cons_init)();
438
439 #ifdef DIAGNOSTIC
440 /* Paranoid sanity checking */
441
442 /* We should always be running on the the primary. */
443 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
444
445 /*
446 * On single-CPU systypes, the primary should always be CPU 0,
447 * except on Alpha 8200 systems where the CPU id is related
448 * to the VID, which is related to the Turbo Laser node id.
449 */
450 if (cputype != ST_DEC_21000)
451 assert(hwrpb->rpb_primary_cpu_id == 0);
452 #endif
453
454 /* NO MORE FIRMWARE ACCESS ALLOWED */
455 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
456 /*
457 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
458 * XXX pmap_uses_prom_console() evaluates to non-zero.)
459 */
460 #endif
461
462 /*
463 * find out this system's page size
464 */
465 PAGE_SIZE = hwrpb->rpb_page_size;
466 if (PAGE_SIZE != 8192)
467 panic("page size %d != 8192?!", PAGE_SIZE);
468
469 /*
470 * Initialize PAGE_SIZE-dependent variables.
471 */
472 #if defined(UVM)
473 uvm_setpagesize();
474 #else
475 vm_set_page_size();
476 #endif
477
478 /*
479 * Find the beginning and end of the kernel (and leave a
480 * bit of space before the beginning for the bootstrap
481 * stack).
482 */
483 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
484 #ifdef DDB
485 ksym_start = (void *)bootinfo.ssym;
486 ksym_end = (void *)bootinfo.esym;
487 kernend = (vm_offset_t)round_page(ksym_end);
488 #else
489 kernend = (vm_offset_t)round_page(_end);
490 #endif
491
492 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
493 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
494
495 /*
496 * Find out how much memory is available, by looking at
497 * the memory cluster descriptors. This also tries to do
498 * its best to detect things things that have never been seen
499 * before...
500 */
501 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
502
503 /* MDDT SANITY CHECKING */
504 mddtweird = 0;
505 if (mddtp->mddt_cluster_cnt < 2) {
506 mddtweird = 1;
507 printf("WARNING: weird number of mem clusters: %d\n",
508 mddtp->mddt_cluster_cnt);
509 }
510
511 #if 0
512 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
513 #endif
514
515 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
516 memc = &mddtp->mddt_clusters[i];
517 #if 0
518 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
519 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
520 #endif
521 totalphysmem += memc->mddt_pg_cnt;
522 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
523 mem_clusters[mem_cluster_cnt].start =
524 ptoa(memc->mddt_pfn);
525 mem_clusters[mem_cluster_cnt].size =
526 ptoa(memc->mddt_pg_cnt);
527 if (memc->mddt_usage & MDDT_mbz ||
528 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
529 memc->mddt_usage & MDDT_PALCODE)
530 mem_clusters[mem_cluster_cnt].size |=
531 PROT_READ;
532 else
533 mem_clusters[mem_cluster_cnt].size |=
534 PROT_READ | PROT_WRITE | PROT_EXEC;
535 mem_cluster_cnt++;
536 }
537
538 if (memc->mddt_usage & MDDT_mbz) {
539 mddtweird = 1;
540 printf("WARNING: mem cluster %d has weird "
541 "usage 0x%lx\n", i, memc->mddt_usage);
542 unknownmem += memc->mddt_pg_cnt;
543 continue;
544 }
545 if (memc->mddt_usage & MDDT_NONVOLATILE) {
546 /* XXX should handle these... */
547 printf("WARNING: skipping non-volatile mem "
548 "cluster %d\n", i);
549 unusedmem += memc->mddt_pg_cnt;
550 continue;
551 }
552 if (memc->mddt_usage & MDDT_PALCODE) {
553 resvmem += memc->mddt_pg_cnt;
554 continue;
555 }
556
557 /*
558 * We have a memory cluster available for system
559 * software use. We must determine if this cluster
560 * holds the kernel.
561 */
562 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
563 /*
564 * XXX If the kernel uses the PROM console, we only use the
565 * XXX memory after the kernel in the first system segment,
566 * XXX to avoid clobbering prom mapping, data, etc.
567 */
568 if (!pmap_uses_prom_console() || physmem == 0) {
569 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
570 physmem += memc->mddt_pg_cnt;
571 pfn0 = memc->mddt_pfn;
572 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
573 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
574 /*
575 * Must compute the location of the kernel
576 * within the segment.
577 */
578 #if 0
579 printf("Cluster %d contains kernel\n", i);
580 #endif
581 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
582 if (!pmap_uses_prom_console()) {
583 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
584 if (pfn0 < kernstartpfn) {
585 /*
586 * There is a chunk before the kernel.
587 */
588 #if 0
589 printf("Loading chunk before kernel: "
590 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
591 #endif
592 #if defined(UVM)
593 uvm_page_physload(pfn0, kernstartpfn,
594 pfn0, kernstartpfn);
595 #else
596 vm_page_physload(pfn0, kernstartpfn,
597 pfn0, kernstartpfn);
598 #endif
599 }
600 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
601 }
602 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
603 if (kernendpfn < pfn1) {
604 /*
605 * There is a chunk after the kernel.
606 */
607 #if 0
608 printf("Loading chunk after kernel: "
609 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
610 #endif
611 #if defined(UVM)
612 uvm_page_physload(kernendpfn, pfn1,
613 kernendpfn, pfn1);
614 #else
615 vm_page_physload(kernendpfn, pfn1,
616 kernendpfn, pfn1);
617 #endif
618 }
619 } else {
620 /*
621 * Just load this cluster as one chunk.
622 */
623 #if 0
624 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
625 pfn0, pfn1);
626 #endif
627 #if defined(UVM)
628 uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
629 #else
630 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
631 #endif
632 }
633 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
634 }
635 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
636 }
637
638 /*
639 * Dump out the MDDT if it looks odd...
640 */
641 if (mddtweird) {
642 printf("\n");
643 printf("complete memory cluster information:\n");
644 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
645 printf("mddt %d:\n", i);
646 printf("\tpfn %lx\n",
647 mddtp->mddt_clusters[i].mddt_pfn);
648 printf("\tcnt %lx\n",
649 mddtp->mddt_clusters[i].mddt_pg_cnt);
650 printf("\ttest %lx\n",
651 mddtp->mddt_clusters[i].mddt_pg_test);
652 printf("\tbva %lx\n",
653 mddtp->mddt_clusters[i].mddt_v_bitaddr);
654 printf("\tbpa %lx\n",
655 mddtp->mddt_clusters[i].mddt_p_bitaddr);
656 printf("\tbcksum %lx\n",
657 mddtp->mddt_clusters[i].mddt_bit_cksum);
658 printf("\tusage %lx\n",
659 mddtp->mddt_clusters[i].mddt_usage);
660 }
661 printf("\n");
662 }
663
664 if (totalphysmem == 0)
665 panic("can't happen: system seems to have no memory!");
666
667 #ifdef LIMITMEM
668 /*
669 * XXX Kludge so we can run on machines with memory larger
670 * XXX than 1G until all device drivers are converted to
671 * XXX use bus_dma. (Relies on the fact that vm_physmem
672 * XXX sorted in order of increasing addresses.)
673 */
674 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
675
676 printf("******** LIMITING MEMORY TO %dMB **********\n",
677 LIMITMEM);
678
679 do {
680 u_long ovf;
681
682 vps = &vm_physmem[vm_nphysseg - 1];
683
684 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
685 /*
686 * If the start is too high, just drop
687 * the whole segment.
688 *
689 * XXX can start != avail_start in this
690 * XXX case? wouldn't that mean that
691 * XXX some memory was stolen above the
692 * XXX limit? What to do?
693 */
694 ovf = vps->end - vps->start;
695 vm_nphysseg--;
696 } else {
697 /*
698 * If the start is OK, calculate how much
699 * to drop and drop it.
700 */
701 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
702 vps->end -= ovf;
703 vps->avail_end -= ovf;
704 }
705 physmem -= ovf;
706 unusedmem += ovf;
707 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
708 }
709 #endif /* LIMITMEM */
710
711 maxmem = physmem;
712
713 #if 0
714 printf("totalphysmem = %d\n", totalphysmem);
715 printf("physmem = %d\n", physmem);
716 printf("resvmem = %d\n", resvmem);
717 printf("unusedmem = %d\n", unusedmem);
718 printf("unknownmem = %d\n", unknownmem);
719 #endif
720
721 /*
722 * Adjust some parameters if the amount of physmem
723 * available would cause us to croak. This is completely
724 * eyeballed and isn't meant to be the final answer.
725 * vm_phys_size is probably the only one to really worry
726 * about.
727 *
728 * It's for booting a GENERIC kernel on a large memory platform.
729 */
730 if (physmem >= atop(128 * 1024 * 1024)) {
731 vm_mbuf_size <<= 1;
732 vm_kmem_size <<= 3;
733 vm_phys_size <<= 2;
734 }
735
736 /*
737 * Initialize error message buffer (at end of core).
738 */
739 {
740 size_t sz = round_page(MSGBUFSIZE);
741
742 vps = &vm_physmem[vm_nphysseg - 1];
743
744 /* shrink so that it'll fit in the last segment */
745 if ((vps->avail_end - vps->avail_start) < atop(sz))
746 sz = ptoa(vps->avail_end - vps->avail_start);
747
748 vps->end -= atop(sz);
749 vps->avail_end -= atop(sz);
750 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
751 initmsgbuf(msgbufaddr, sz);
752
753 /* Remove the last segment if it now has no pages. */
754 if (vps->start == vps->end)
755 vm_nphysseg--;
756
757 /* warn if the message buffer had to be shrunk */
758 if (sz != round_page(MSGBUFSIZE))
759 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
760 round_page(MSGBUFSIZE), sz);
761
762 }
763
764 /*
765 * Init mapping for u page(s) for proc 0
766 */
767 proc0.p_addr = proc0paddr =
768 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
769
770 /*
771 * Allocate space for system data structures. These data structures
772 * are allocated here instead of cpu_startup() because physical
773 * memory is directly addressable. We don't have to map these into
774 * virtual address space.
775 */
776 size = (vm_size_t)allocsys(0);
777 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
778 if ((allocsys(v) - v) != size)
779 panic("alpha_init: table size inconsistency");
780
781 /*
782 * Initialize the virtual memory system, and set the
783 * page table base register in proc 0's PCB.
784 */
785 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
786 hwrpb->rpb_max_asn);
787
788 /*
789 * Initialize the rest of proc 0's PCB, and cache its physical
790 * address.
791 */
792 proc0.p_md.md_pcbpaddr =
793 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
794
795 /*
796 * Set the kernel sp, reserving space for an (empty) trapframe,
797 * and make proc0's trapframe pointer point to it for sanity.
798 */
799 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
800 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
801 proc0.p_md.md_tf =
802 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
803
804 /*
805 * Look at arguments passed to us and compute boothowto.
806 */
807
808 boothowto = RB_SINGLE;
809 #ifdef KADB
810 boothowto |= RB_KDB;
811 #endif
812 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
813 /*
814 * Note that we'd really like to differentiate case here,
815 * but the Alpha AXP Architecture Reference Manual
816 * says that we shouldn't.
817 */
818 switch (*p) {
819 case 'a': /* autoboot */
820 case 'A':
821 boothowto &= ~RB_SINGLE;
822 break;
823
824 #ifdef DEBUG
825 case 'c': /* crash dump immediately after autoconfig */
826 case 'C':
827 boothowto |= RB_DUMP;
828 break;
829 #endif
830
831 #if defined(KGDB) || defined(DDB)
832 case 'd': /* break into the kernel debugger ASAP */
833 case 'D':
834 boothowto |= RB_KDB;
835 break;
836 #endif
837
838 case 'h': /* always halt, never reboot */
839 case 'H':
840 boothowto |= RB_HALT;
841 break;
842
843 #if 0
844 case 'm': /* mini root present in memory */
845 case 'M':
846 boothowto |= RB_MINIROOT;
847 break;
848 #endif
849
850 case 'n': /* askname */
851 case 'N':
852 boothowto |= RB_ASKNAME;
853 break;
854
855 case 's': /* single-user (default, supported for sanity) */
856 case 'S':
857 boothowto |= RB_SINGLE;
858 break;
859
860 case '-':
861 /*
862 * Just ignore this. It's not required, but it's
863 * common for it to be passed regardless.
864 */
865 break;
866
867 default:
868 printf("Unrecognized boot flag '%c'.\n", *p);
869 break;
870 }
871 }
872
873 /*
874 * Initialize debuggers, and break into them if appropriate.
875 */
876 #ifdef DDB
877 db_machine_init();
878 ddb_init(ksym_start, ksym_end);
879 if (boothowto & RB_KDB)
880 Debugger();
881 #endif
882 #ifdef KGDB
883 if (boothowto & RB_KDB)
884 kgdb_connect(0);
885 #endif
886
887 /*
888 * Figure out the number of cpus in the box, from RPB fields.
889 * Really. We mean it.
890 */
891 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
892 struct pcs *pcsp;
893
894 pcsp = LOCATE_PCS(hwrpb, i);
895 if ((pcsp->pcs_flags & PCS_PP) != 0)
896 ncpus++;
897 }
898
899 /*
900 * Figure out our clock frequency, from RPB fields.
901 */
902 hz = hwrpb->rpb_intr_freq >> 12;
903 if (!(60 <= hz && hz <= 10240)) {
904 hz = 1024;
905 #ifdef DIAGNOSTIC
906 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
907 hwrpb->rpb_intr_freq, hz);
908 #endif
909 }
910
911 }
912
913 /*
914 * Allocate space for system data structures. We are given
915 * a starting virtual address and we return a final virtual
916 * address; along the way we set each data structure pointer.
917 *
918 * We call allocsys() with 0 to find out how much space we want,
919 * allocate that much and fill it with zeroes, and the call
920 * allocsys() again with the correct base virtual address.
921 */
922 caddr_t
923 allocsys(v)
924 caddr_t v;
925 {
926
927 #define valloc(name, type, num) \
928 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
929 #ifdef REAL_CLISTS
930 valloc(cfree, struct cblock, nclist);
931 #endif
932 valloc(callout, struct callout, ncallout);
933 #ifdef SYSVSHM
934 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
935 #endif
936 #ifdef SYSVSEM
937 valloc(sema, struct semid_ds, seminfo.semmni);
938 valloc(sem, struct sem, seminfo.semmns);
939 /* This is pretty disgusting! */
940 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
941 #endif
942 #ifdef SYSVMSG
943 valloc(msgpool, char, msginfo.msgmax);
944 valloc(msgmaps, struct msgmap, msginfo.msgseg);
945 valloc(msghdrs, struct msg, msginfo.msgtql);
946 valloc(msqids, struct msqid_ds, msginfo.msgmni);
947 #endif
948
949 /*
950 * Determine how many buffers to allocate.
951 * We allocate 10% of memory for buffer space. Insure a
952 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
953 * headers as file i/o buffers.
954 */
955 if (bufpages == 0)
956 bufpages = (physmem * 10) / (CLSIZE * 100);
957 if (nbuf == 0) {
958 nbuf = bufpages;
959 if (nbuf < 16)
960 nbuf = 16;
961 }
962 if (nswbuf == 0) {
963 nswbuf = (nbuf / 2) &~ 1; /* force even */
964 if (nswbuf > 256)
965 nswbuf = 256; /* sanity */
966 }
967 #if !defined(UVM)
968 valloc(swbuf, struct buf, nswbuf);
969 #endif
970 valloc(buf, struct buf, nbuf);
971 return (v);
972 #undef valloc
973 }
974
975 void
976 consinit()
977 {
978
979 /*
980 * Everything related to console initialization is done
981 * in alpha_init().
982 */
983 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
984 printf("consinit: %susing prom console\n",
985 pmap_uses_prom_console() ? "" : "not ");
986 #endif
987 }
988
989 #include "pckbc.h"
990 #include "pckbd.h"
991 #if (NPCKBC > 0) && (NPCKBD == 0)
992
993 #include <machine/bus.h>
994 #include <dev/isa/pckbcvar.h>
995
996 /*
997 * This is called by the pbkbc driver if no pckbd is configured.
998 * On the i386, it is used to glue in the old, deprecated console
999 * code. On the Alpha, it does nothing.
1000 */
1001 int
1002 pckbc_machdep_cnattach(kbctag, kbcslot)
1003 pckbc_tag_t kbctag;
1004 pckbc_slot_t kbcslot;
1005 {
1006
1007 return (ENXIO);
1008 }
1009 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1010
1011 void
1012 cpu_startup()
1013 {
1014 register unsigned i;
1015 int base, residual;
1016 vm_offset_t minaddr, maxaddr;
1017 vm_size_t size;
1018 #if defined(DEBUG)
1019 extern int pmapdebug;
1020 int opmapdebug = pmapdebug;
1021
1022 pmapdebug = 0;
1023 #endif
1024
1025 /*
1026 * Good {morning,afternoon,evening,night}.
1027 */
1028 printf(version);
1029 identifycpu();
1030 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1031 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1032 if (unusedmem)
1033 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1034 if (unknownmem)
1035 printf("WARNING: %d bytes of memory with unknown purpose\n",
1036 ctob(unknownmem));
1037
1038 /*
1039 * Allocate virtual address space for file I/O buffers.
1040 * Note they are different than the array of headers, 'buf',
1041 * and usually occupy more virtual memory than physical.
1042 */
1043 size = MAXBSIZE * nbuf;
1044 #if defined(UVM)
1045 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1046 NULL, UVM_UNKNOWN_OFFSET,
1047 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1048 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1049 panic("startup: cannot allocate VM for buffers");
1050 #else
1051 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1052 &maxaddr, size, TRUE);
1053 minaddr = (vm_offset_t)buffers;
1054 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1055 &minaddr, size, FALSE) != KERN_SUCCESS)
1056 panic("startup: cannot allocate buffers");
1057 #endif /* UVM */
1058 base = bufpages / nbuf;
1059 residual = bufpages % nbuf;
1060 for (i = 0; i < nbuf; i++) {
1061 #if defined(UVM)
1062 vm_size_t curbufsize;
1063 vm_offset_t curbuf;
1064 struct vm_page *pg;
1065
1066 /*
1067 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1068 * that MAXBSIZE space, we allocate and map (base+1) pages
1069 * for the first "residual" buffers, and then we allocate
1070 * "base" pages for the rest.
1071 */
1072 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1073 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1074
1075 while (curbufsize) {
1076 pg = uvm_pagealloc(NULL, 0, NULL);
1077 if (pg == NULL)
1078 panic("cpu_startup: not enough memory for "
1079 "buffer cache");
1080 #if defined(PMAP_NEW)
1081 pmap_kenter_pgs(curbuf, &pg, 1);
1082 #else
1083 pmap_enter(kernel_map->pmap, curbuf,
1084 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1085 #endif
1086 curbuf += PAGE_SIZE;
1087 curbufsize -= PAGE_SIZE;
1088 }
1089 #else /* ! UVM */
1090 vm_size_t curbufsize;
1091 vm_offset_t curbuf;
1092
1093 /*
1094 * First <residual> buffers get (base+1) physical pages
1095 * allocated for them. The rest get (base) physical pages.
1096 *
1097 * The rest of each buffer occupies virtual space,
1098 * but has no physical memory allocated for it.
1099 */
1100 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1101 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1102 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1103 vm_map_simplify(buffer_map, curbuf);
1104 #endif /* UVM */
1105 }
1106 /*
1107 * Allocate a submap for exec arguments. This map effectively
1108 * limits the number of processes exec'ing at any time.
1109 */
1110 #if defined(UVM)
1111 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1112 16 * NCARGS, TRUE, FALSE, NULL);
1113 #else
1114 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1115 16 * NCARGS, TRUE);
1116 #endif
1117
1118 /*
1119 * Allocate a submap for physio
1120 */
1121 #if defined(UVM)
1122 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1123 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1124 #else
1125 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1126 VM_PHYS_SIZE, TRUE);
1127 #endif
1128
1129 /*
1130 * Finally, allocate mbuf cluster submap.
1131 */
1132 #if defined(UVM)
1133 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1134 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1135 #else
1136 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1137 VM_MBUF_SIZE, FALSE);
1138 #endif
1139 /*
1140 * Initialize callouts
1141 */
1142 callfree = callout;
1143 for (i = 1; i < ncallout; i++)
1144 callout[i-1].c_next = &callout[i];
1145 callout[i-1].c_next = NULL;
1146
1147 #if defined(DEBUG)
1148 pmapdebug = opmapdebug;
1149 #endif
1150 #if defined(UVM)
1151 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1152 #else
1153 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1154 #endif
1155 printf("using %ld buffers containing %ld bytes of memory\n",
1156 (long)nbuf, (long)(bufpages * CLBYTES));
1157
1158 /*
1159 * Set up buffers, so they can be used to read disk labels.
1160 */
1161 bufinit();
1162
1163 /*
1164 * Configure the system.
1165 */
1166 configure();
1167
1168 /*
1169 * Note that bootstrapping is finished, and set the HWRPB up
1170 * to do restarts.
1171 */
1172 hwrpb_restart_setup();
1173 }
1174
1175 /*
1176 * Retrieve the platform name from the DSR.
1177 */
1178 const char *
1179 alpha_dsr_sysname()
1180 {
1181 struct dsrdb *dsr;
1182 const char *sysname;
1183
1184 /*
1185 * DSR does not exist on early HWRPB versions.
1186 */
1187 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1188 return (NULL);
1189
1190 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1191 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1192 sizeof(u_int64_t)));
1193 return (sysname);
1194 }
1195
1196 /*
1197 * Lookup the system specified system variation in the provided table,
1198 * returning the model string on match.
1199 */
1200 const char *
1201 alpha_variation_name(variation, avtp)
1202 u_int64_t variation;
1203 const struct alpha_variation_table *avtp;
1204 {
1205 int i;
1206
1207 for (i = 0; avtp[i].avt_model != NULL; i++)
1208 if (avtp[i].avt_variation == variation)
1209 return (avtp[i].avt_model);
1210 return (NULL);
1211 }
1212
1213 /*
1214 * Generate a default platform name based for unknown system variations.
1215 */
1216 const char *
1217 alpha_unknown_sysname()
1218 {
1219 static char s[128]; /* safe size */
1220
1221 sprintf(s, "%s family, unknown model variation 0x%lx",
1222 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1223 return ((const char *)s);
1224 }
1225
1226 void
1227 identifycpu()
1228 {
1229
1230 /*
1231 * print out CPU identification information.
1232 */
1233 printf("%s, %ldMHz\n", cpu_model,
1234 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1235 printf("%ld byte page size, %d processor%s.\n",
1236 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1237 #if 0
1238 /* this isn't defined for any systems that we run on? */
1239 printf("serial number 0x%lx 0x%lx\n",
1240 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1241
1242 /* and these aren't particularly useful! */
1243 printf("variation: 0x%lx, revision 0x%lx\n",
1244 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1245 #endif
1246 }
1247
1248 int waittime = -1;
1249 struct pcb dumppcb;
1250
1251 void
1252 cpu_reboot(howto, bootstr)
1253 int howto;
1254 char *bootstr;
1255 {
1256 extern int cold;
1257
1258 /* If system is cold, just halt. */
1259 if (cold) {
1260 howto |= RB_HALT;
1261 goto haltsys;
1262 }
1263
1264 /* If "always halt" was specified as a boot flag, obey. */
1265 if ((boothowto & RB_HALT) != 0)
1266 howto |= RB_HALT;
1267
1268 boothowto = howto;
1269 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1270 waittime = 0;
1271 vfs_shutdown();
1272 /*
1273 * If we've been adjusting the clock, the todr
1274 * will be out of synch; adjust it now.
1275 */
1276 resettodr();
1277 }
1278
1279 /* Disable interrupts. */
1280 splhigh();
1281
1282 /* If rebooting and a dump is requested do it. */
1283 #if 0
1284 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1285 #else
1286 if (howto & RB_DUMP)
1287 #endif
1288 dumpsys();
1289
1290 haltsys:
1291
1292 /* run any shutdown hooks */
1293 doshutdownhooks();
1294
1295 #ifdef BOOTKEY
1296 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1297 cnpollc(1); /* for proper keyboard command handling */
1298 cngetc();
1299 cnpollc(0);
1300 printf("\n");
1301 #endif
1302
1303 /* Finally, powerdown/halt/reboot the system. */
1304 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1305 platform.powerdown != NULL) {
1306 (*platform.powerdown)();
1307 printf("WARNING: powerdown failed!\n");
1308 }
1309 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1310 prom_halt(howto & RB_HALT);
1311 /*NOTREACHED*/
1312 }
1313
1314 /*
1315 * These variables are needed by /sbin/savecore
1316 */
1317 u_long dumpmag = 0x8fca0101; /* magic number */
1318 int dumpsize = 0; /* pages */
1319 long dumplo = 0; /* blocks */
1320
1321 /*
1322 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1323 */
1324 int
1325 cpu_dumpsize()
1326 {
1327 int size;
1328
1329 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1330 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1331 if (roundup(size, dbtob(1)) != dbtob(1))
1332 return -1;
1333
1334 return (1);
1335 }
1336
1337 /*
1338 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1339 */
1340 u_long
1341 cpu_dump_mempagecnt()
1342 {
1343 u_long i, n;
1344
1345 n = 0;
1346 for (i = 0; i < mem_cluster_cnt; i++)
1347 n += atop(mem_clusters[i].size);
1348 return (n);
1349 }
1350
1351 /*
1352 * cpu_dump: dump machine-dependent kernel core dump headers.
1353 */
1354 int
1355 cpu_dump()
1356 {
1357 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1358 char buf[dbtob(1)];
1359 kcore_seg_t *segp;
1360 cpu_kcore_hdr_t *cpuhdrp;
1361 phys_ram_seg_t *memsegp;
1362 int i;
1363
1364 dump = bdevsw[major(dumpdev)].d_dump;
1365
1366 bzero(buf, sizeof buf);
1367 segp = (kcore_seg_t *)buf;
1368 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1369 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1370 ALIGN(sizeof(*cpuhdrp))];
1371
1372 /*
1373 * Generate a segment header.
1374 */
1375 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1376 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1377
1378 /*
1379 * Add the machine-dependent header info.
1380 */
1381 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1382 cpuhdrp->page_size = PAGE_SIZE;
1383 cpuhdrp->nmemsegs = mem_cluster_cnt;
1384
1385 /*
1386 * Fill in the memory segment descriptors.
1387 */
1388 for (i = 0; i < mem_cluster_cnt; i++) {
1389 memsegp[i].start = mem_clusters[i].start;
1390 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1391 }
1392
1393 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1394 }
1395
1396 /*
1397 * This is called by main to set dumplo and dumpsize.
1398 * Dumps always skip the first CLBYTES of disk space
1399 * in case there might be a disk label stored there.
1400 * If there is extra space, put dump at the end to
1401 * reduce the chance that swapping trashes it.
1402 */
1403 void
1404 cpu_dumpconf()
1405 {
1406 int nblks, dumpblks; /* size of dump area */
1407 int maj;
1408
1409 if (dumpdev == NODEV)
1410 goto bad;
1411 maj = major(dumpdev);
1412 if (maj < 0 || maj >= nblkdev)
1413 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1414 if (bdevsw[maj].d_psize == NULL)
1415 goto bad;
1416 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1417 if (nblks <= ctod(1))
1418 goto bad;
1419
1420 dumpblks = cpu_dumpsize();
1421 if (dumpblks < 0)
1422 goto bad;
1423 dumpblks += ctod(cpu_dump_mempagecnt());
1424
1425 /* If dump won't fit (incl. room for possible label), punt. */
1426 if (dumpblks > (nblks - ctod(1)))
1427 goto bad;
1428
1429 /* Put dump at end of partition */
1430 dumplo = nblks - dumpblks;
1431
1432 /* dumpsize is in page units, and doesn't include headers. */
1433 dumpsize = cpu_dump_mempagecnt();
1434 return;
1435
1436 bad:
1437 dumpsize = 0;
1438 return;
1439 }
1440
1441 /*
1442 * Dump the kernel's image to the swap partition.
1443 */
1444 #define BYTES_PER_DUMP NBPG
1445
1446 void
1447 dumpsys()
1448 {
1449 u_long totalbytesleft, bytes, i, n, memcl;
1450 u_long maddr;
1451 int psize;
1452 daddr_t blkno;
1453 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1454 int error;
1455
1456 /* Save registers. */
1457 savectx(&dumppcb);
1458
1459 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1460 if (dumpdev == NODEV)
1461 return;
1462
1463 /*
1464 * For dumps during autoconfiguration,
1465 * if dump device has already configured...
1466 */
1467 if (dumpsize == 0)
1468 cpu_dumpconf();
1469 if (dumplo <= 0) {
1470 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1471 minor(dumpdev));
1472 return;
1473 }
1474 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1475 minor(dumpdev), dumplo);
1476
1477 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1478 printf("dump ");
1479 if (psize == -1) {
1480 printf("area unavailable\n");
1481 return;
1482 }
1483
1484 /* XXX should purge all outstanding keystrokes. */
1485
1486 if ((error = cpu_dump()) != 0)
1487 goto err;
1488
1489 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1490 blkno = dumplo + cpu_dumpsize();
1491 dump = bdevsw[major(dumpdev)].d_dump;
1492 error = 0;
1493
1494 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1495 maddr = mem_clusters[memcl].start;
1496 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1497
1498 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1499
1500 /* Print out how many MBs we to go. */
1501 if ((totalbytesleft % (1024*1024)) == 0)
1502 printf("%d ", totalbytesleft / (1024 * 1024));
1503
1504 /* Limit size for next transfer. */
1505 n = bytes - i;
1506 if (n > BYTES_PER_DUMP)
1507 n = BYTES_PER_DUMP;
1508
1509 error = (*dump)(dumpdev, blkno,
1510 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1511 if (error)
1512 goto err;
1513 maddr += n;
1514 blkno += btodb(n); /* XXX? */
1515
1516 /* XXX should look for keystrokes, to cancel. */
1517 }
1518 }
1519
1520 err:
1521 switch (error) {
1522
1523 case ENXIO:
1524 printf("device bad\n");
1525 break;
1526
1527 case EFAULT:
1528 printf("device not ready\n");
1529 break;
1530
1531 case EINVAL:
1532 printf("area improper\n");
1533 break;
1534
1535 case EIO:
1536 printf("i/o error\n");
1537 break;
1538
1539 case EINTR:
1540 printf("aborted from console\n");
1541 break;
1542
1543 case 0:
1544 printf("succeeded\n");
1545 break;
1546
1547 default:
1548 printf("error %d\n", error);
1549 break;
1550 }
1551 printf("\n\n");
1552 delay(1000);
1553 }
1554
1555 void
1556 frametoreg(framep, regp)
1557 struct trapframe *framep;
1558 struct reg *regp;
1559 {
1560
1561 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1562 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1563 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1564 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1565 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1566 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1567 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1568 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1569 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1570 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1571 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1572 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1573 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1574 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1575 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1576 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1577 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1578 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1579 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1580 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1581 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1582 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1583 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1584 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1585 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1586 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1587 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1588 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1589 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1590 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1591 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1592 regp->r_regs[R_ZERO] = 0;
1593 }
1594
1595 void
1596 regtoframe(regp, framep)
1597 struct reg *regp;
1598 struct trapframe *framep;
1599 {
1600
1601 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1602 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1603 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1604 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1605 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1606 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1607 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1608 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1609 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1610 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1611 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1612 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1613 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1614 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1615 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1616 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1617 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1618 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1619 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1620 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1621 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1622 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1623 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1624 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1625 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1626 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1627 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1628 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1629 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1630 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1631 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1632 /* ??? = regp->r_regs[R_ZERO]; */
1633 }
1634
1635 void
1636 printregs(regp)
1637 struct reg *regp;
1638 {
1639 int i;
1640
1641 for (i = 0; i < 32; i++)
1642 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1643 i & 1 ? "\n" : "\t");
1644 }
1645
1646 void
1647 regdump(framep)
1648 struct trapframe *framep;
1649 {
1650 struct reg reg;
1651
1652 frametoreg(framep, ®);
1653 reg.r_regs[R_SP] = alpha_pal_rdusp();
1654
1655 printf("REGISTERS:\n");
1656 printregs(®);
1657 }
1658
1659 #ifdef DEBUG
1660 int sigdebug = 0;
1661 int sigpid = 0;
1662 #define SDB_FOLLOW 0x01
1663 #define SDB_KSTACK 0x02
1664 #endif
1665
1666 /*
1667 * Send an interrupt to process.
1668 */
1669 void
1670 sendsig(catcher, sig, mask, code)
1671 sig_t catcher;
1672 int sig, mask;
1673 u_long code;
1674 {
1675 struct proc *p = curproc;
1676 struct sigcontext *scp, ksc;
1677 struct trapframe *frame;
1678 struct sigacts *psp = p->p_sigacts;
1679 int oonstack, fsize, rndfsize;
1680 extern char sigcode[], esigcode[];
1681 extern struct proc *fpcurproc;
1682
1683 frame = p->p_md.md_tf;
1684 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1685 fsize = sizeof ksc;
1686 rndfsize = ((fsize + 15) / 16) * 16;
1687 /*
1688 * Allocate and validate space for the signal handler
1689 * context. Note that if the stack is in P0 space, the
1690 * call to grow() is a nop, and the useracc() check
1691 * will fail if the process has not already allocated
1692 * the space with a `brk'.
1693 */
1694 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1695 (psp->ps_sigonstack & sigmask(sig))) {
1696 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1697 psp->ps_sigstk.ss_size - rndfsize);
1698 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1699 } else
1700 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1701 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1702 #if defined(UVM)
1703 (void)uvm_grow(p, (u_long)scp);
1704 #else
1705 (void)grow(p, (u_long)scp);
1706 #endif
1707 #ifdef DEBUG
1708 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1709 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1710 sig, &oonstack, scp);
1711 #endif
1712 #if defined(UVM)
1713 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1714 #else
1715 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1716 #endif
1717 #ifdef DEBUG
1718 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1719 printf("sendsig(%d): useracc failed on sig %d\n",
1720 p->p_pid, sig);
1721 #endif
1722 /*
1723 * Process has trashed its stack; give it an illegal
1724 * instruction to halt it in its tracks.
1725 */
1726 SIGACTION(p, SIGILL) = SIG_DFL;
1727 sig = sigmask(SIGILL);
1728 p->p_sigignore &= ~sig;
1729 p->p_sigcatch &= ~sig;
1730 p->p_sigmask &= ~sig;
1731 psignal(p, SIGILL);
1732 return;
1733 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1734 }
1735 #else
1736 }
1737 #endif
1738
1739 /*
1740 * Build the signal context to be used by sigreturn.
1741 */
1742 ksc.sc_onstack = oonstack;
1743 ksc.sc_mask = mask;
1744 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1745 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1746
1747 /* copy the registers. */
1748 frametoreg(frame, (struct reg *)ksc.sc_regs);
1749 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1750 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1751
1752 /* save the floating-point state, if necessary, then copy it. */
1753 if (p == fpcurproc) {
1754 alpha_pal_wrfen(1);
1755 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1756 alpha_pal_wrfen(0);
1757 fpcurproc = NULL;
1758 }
1759 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1760 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1761 sizeof(struct fpreg));
1762 ksc.sc_fp_control = 0; /* XXX ? */
1763 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1764 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1765
1766
1767 #ifdef COMPAT_OSF1
1768 /*
1769 * XXX Create an OSF/1-style sigcontext and associated goo.
1770 */
1771 #endif
1772
1773 /*
1774 * copy the frame out to userland.
1775 */
1776 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1777 #ifdef DEBUG
1778 if (sigdebug & SDB_FOLLOW)
1779 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1780 scp, code);
1781 #endif
1782
1783 /*
1784 * Set up the registers to return to sigcode.
1785 */
1786 frame->tf_regs[FRAME_PC] =
1787 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1788 frame->tf_regs[FRAME_A0] = sig;
1789 frame->tf_regs[FRAME_A1] = code;
1790 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1791 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1792 alpha_pal_wrusp((unsigned long)scp);
1793
1794 #ifdef DEBUG
1795 if (sigdebug & SDB_FOLLOW)
1796 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1797 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1798 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1799 printf("sendsig(%d): sig %d returns\n",
1800 p->p_pid, sig);
1801 #endif
1802 }
1803
1804 /*
1805 * System call to cleanup state after a signal
1806 * has been taken. Reset signal mask and
1807 * stack state from context left by sendsig (above).
1808 * Return to previous pc and psl as specified by
1809 * context left by sendsig. Check carefully to
1810 * make sure that the user has not modified the
1811 * psl to gain improper priviledges or to cause
1812 * a machine fault.
1813 */
1814 /* ARGSUSED */
1815 int
1816 sys_sigreturn(p, v, retval)
1817 struct proc *p;
1818 void *v;
1819 register_t *retval;
1820 {
1821 struct sys_sigreturn_args /* {
1822 syscallarg(struct sigcontext *) sigcntxp;
1823 } */ *uap = v;
1824 struct sigcontext *scp, ksc;
1825 extern struct proc *fpcurproc;
1826
1827 scp = SCARG(uap, sigcntxp);
1828 #ifdef DEBUG
1829 if (sigdebug & SDB_FOLLOW)
1830 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1831 #endif
1832
1833 if (ALIGN(scp) != (u_int64_t)scp)
1834 return (EINVAL);
1835
1836 /*
1837 * Test and fetch the context structure.
1838 * We grab it all at once for speed.
1839 */
1840 #if defined(UVM)
1841 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1842 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1843 return (EINVAL);
1844 #else
1845 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1846 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1847 return (EINVAL);
1848 #endif
1849
1850 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1851 return (EINVAL);
1852 /*
1853 * Restore the user-supplied information
1854 */
1855 if (ksc.sc_onstack)
1856 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1857 else
1858 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1859 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1860
1861 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1862 p->p_md.md_tf->tf_regs[FRAME_PS] =
1863 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1864
1865 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1866 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1867
1868 /* XXX ksc.sc_ownedfp ? */
1869 if (p == fpcurproc)
1870 fpcurproc = NULL;
1871 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1872 sizeof(struct fpreg));
1873 /* XXX ksc.sc_fp_control ? */
1874
1875 #ifdef DEBUG
1876 if (sigdebug & SDB_FOLLOW)
1877 printf("sigreturn(%d): returns\n", p->p_pid);
1878 #endif
1879 return (EJUSTRETURN);
1880 }
1881
1882 /*
1883 * machine dependent system variables.
1884 */
1885 int
1886 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1887 int *name;
1888 u_int namelen;
1889 void *oldp;
1890 size_t *oldlenp;
1891 void *newp;
1892 size_t newlen;
1893 struct proc *p;
1894 {
1895 dev_t consdev;
1896
1897 /* all sysctl names at this level are terminal */
1898 if (namelen != 1)
1899 return (ENOTDIR); /* overloaded */
1900
1901 switch (name[0]) {
1902 case CPU_CONSDEV:
1903 if (cn_tab != NULL)
1904 consdev = cn_tab->cn_dev;
1905 else
1906 consdev = NODEV;
1907 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1908 sizeof consdev));
1909
1910 case CPU_ROOT_DEVICE:
1911 return (sysctl_rdstring(oldp, oldlenp, newp,
1912 root_device->dv_xname));
1913
1914 case CPU_UNALIGNED_PRINT:
1915 return (sysctl_int(oldp, oldlenp, newp, newlen,
1916 &alpha_unaligned_print));
1917
1918 case CPU_UNALIGNED_FIX:
1919 return (sysctl_int(oldp, oldlenp, newp, newlen,
1920 &alpha_unaligned_fix));
1921
1922 case CPU_UNALIGNED_SIGBUS:
1923 return (sysctl_int(oldp, oldlenp, newp, newlen,
1924 &alpha_unaligned_sigbus));
1925
1926 case CPU_BOOTED_KERNEL:
1927 return (sysctl_rdstring(oldp, oldlenp, newp,
1928 bootinfo.booted_kernel));
1929
1930 default:
1931 return (EOPNOTSUPP);
1932 }
1933 /* NOTREACHED */
1934 }
1935
1936 /*
1937 * Set registers on exec.
1938 */
1939 void
1940 setregs(p, pack, stack)
1941 register struct proc *p;
1942 struct exec_package *pack;
1943 u_long stack;
1944 {
1945 struct trapframe *tfp = p->p_md.md_tf;
1946 extern struct proc *fpcurproc;
1947 #ifdef DEBUG
1948 int i;
1949 #endif
1950
1951 #ifdef DEBUG
1952 /*
1953 * Crash and dump, if the user requested it.
1954 */
1955 if (boothowto & RB_DUMP)
1956 panic("crash requested by boot flags");
1957 #endif
1958
1959 #ifdef DEBUG
1960 for (i = 0; i < FRAME_SIZE; i++)
1961 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1962 #else
1963 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1964 #endif
1965 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1966 #define FP_RN 2 /* XXX */
1967 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1968 alpha_pal_wrusp(stack);
1969 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1970 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1971
1972 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1973 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1974 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1975 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1976 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1977
1978 p->p_md.md_flags &= ~MDP_FPUSED;
1979 if (fpcurproc == p)
1980 fpcurproc = NULL;
1981 }
1982
1983 void
1984 netintr()
1985 {
1986 int n, s;
1987
1988 s = splhigh();
1989 n = netisr;
1990 netisr = 0;
1991 splx(s);
1992
1993 #define DONETISR(bit, fn) \
1994 do { \
1995 if (n & (1 << (bit))) \
1996 fn; \
1997 } while (0)
1998
1999 #ifdef INET
2000 #if NARP > 0
2001 DONETISR(NETISR_ARP, arpintr());
2002 #endif
2003 DONETISR(NETISR_IP, ipintr());
2004 #endif
2005 #ifdef NETATALK
2006 DONETISR(NETISR_ATALK, atintr());
2007 #endif
2008 #ifdef NS
2009 DONETISR(NETISR_NS, nsintr());
2010 #endif
2011 #ifdef ISO
2012 DONETISR(NETISR_ISO, clnlintr());
2013 #endif
2014 #ifdef CCITT
2015 DONETISR(NETISR_CCITT, ccittintr());
2016 #endif
2017 #ifdef NATM
2018 DONETISR(NETISR_NATM, natmintr());
2019 #endif
2020 #if NPPP > 1
2021 DONETISR(NETISR_PPP, pppintr());
2022 #endif
2023
2024 #undef DONETISR
2025 }
2026
2027 void
2028 do_sir()
2029 {
2030 u_int64_t n;
2031
2032 do {
2033 (void)splhigh();
2034 n = ssir;
2035 ssir = 0;
2036 splsoft(); /* don't recurse through spl0() */
2037
2038 #if defined(UVM)
2039 #define COUNT_SOFT uvmexp.softs++
2040 #else
2041 #define COUNT_SOFT cnt.v_soft++
2042 #endif
2043
2044 #define DO_SIR(bit, fn) \
2045 do { \
2046 if (n & (bit)) { \
2047 COUNT_SOFT; \
2048 fn; \
2049 } \
2050 } while (0)
2051
2052 DO_SIR(SIR_NET, netintr());
2053 DO_SIR(SIR_CLOCK, softclock());
2054
2055 #undef COUNT_SOFT
2056 #undef DO_SIR
2057 } while (ssir != 0);
2058 }
2059
2060 int
2061 spl0()
2062 {
2063
2064 if (ssir)
2065 do_sir(); /* it lowers the IPL itself */
2066
2067 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2068 }
2069
2070 /*
2071 * The following primitives manipulate the run queues. _whichqs tells which
2072 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2073 * into queues, Remrunqueue removes them from queues. The running process is
2074 * on no queue, other processes are on a queue related to p->p_priority,
2075 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2076 * available queues.
2077 */
2078 /*
2079 * setrunqueue(p)
2080 * proc *p;
2081 *
2082 * Call should be made at splclock(), and p->p_stat should be SRUN.
2083 */
2084
2085 void
2086 setrunqueue(p)
2087 struct proc *p;
2088 {
2089 int bit;
2090
2091 /* firewall: p->p_back must be NULL */
2092 if (p->p_back != NULL)
2093 panic("setrunqueue");
2094
2095 bit = p->p_priority >> 2;
2096 whichqs |= (1 << bit);
2097 p->p_forw = (struct proc *)&qs[bit];
2098 p->p_back = qs[bit].ph_rlink;
2099 p->p_back->p_forw = p;
2100 qs[bit].ph_rlink = p;
2101 }
2102
2103 /*
2104 * remrunqueue(p)
2105 *
2106 * Call should be made at splclock().
2107 */
2108 void
2109 remrunqueue(p)
2110 struct proc *p;
2111 {
2112 int bit;
2113
2114 bit = p->p_priority >> 2;
2115 if ((whichqs & (1 << bit)) == 0)
2116 panic("remrunqueue");
2117
2118 p->p_back->p_forw = p->p_forw;
2119 p->p_forw->p_back = p->p_back;
2120 p->p_back = NULL; /* for firewall checking. */
2121
2122 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2123 whichqs &= ~(1 << bit);
2124 }
2125
2126 /*
2127 * Return the best possible estimate of the time in the timeval
2128 * to which tvp points. Unfortunately, we can't read the hardware registers.
2129 * We guarantee that the time will be greater than the value obtained by a
2130 * previous call.
2131 */
2132 void
2133 microtime(tvp)
2134 register struct timeval *tvp;
2135 {
2136 int s = splclock();
2137 static struct timeval lasttime;
2138
2139 *tvp = time;
2140 #ifdef notdef
2141 tvp->tv_usec += clkread();
2142 while (tvp->tv_usec > 1000000) {
2143 tvp->tv_sec++;
2144 tvp->tv_usec -= 1000000;
2145 }
2146 #endif
2147 if (tvp->tv_sec == lasttime.tv_sec &&
2148 tvp->tv_usec <= lasttime.tv_usec &&
2149 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2150 tvp->tv_sec++;
2151 tvp->tv_usec -= 1000000;
2152 }
2153 lasttime = *tvp;
2154 splx(s);
2155 }
2156
2157 /*
2158 * Wait "n" microseconds.
2159 */
2160 void
2161 delay(n)
2162 unsigned long n;
2163 {
2164 long N = cycles_per_usec * (n);
2165
2166 while (N > 0) /* XXX */
2167 N -= 3; /* XXX */
2168 }
2169
2170 #if defined(COMPAT_OSF1) || 1 /* XXX */
2171 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2172 u_long));
2173
2174 void
2175 cpu_exec_ecoff_setregs(p, epp, stack)
2176 struct proc *p;
2177 struct exec_package *epp;
2178 u_long stack;
2179 {
2180 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2181
2182 setregs(p, epp, stack);
2183 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2184 }
2185
2186 /*
2187 * cpu_exec_ecoff_hook():
2188 * cpu-dependent ECOFF format hook for execve().
2189 *
2190 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2191 *
2192 */
2193 int
2194 cpu_exec_ecoff_hook(p, epp)
2195 struct proc *p;
2196 struct exec_package *epp;
2197 {
2198 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2199 extern struct emul emul_netbsd;
2200 #ifdef COMPAT_OSF1
2201 extern struct emul emul_osf1;
2202 #endif
2203
2204 switch (execp->f.f_magic) {
2205 #ifdef COMPAT_OSF1
2206 case ECOFF_MAGIC_ALPHA:
2207 epp->ep_emul = &emul_osf1;
2208 break;
2209 #endif
2210
2211 case ECOFF_MAGIC_NETBSD_ALPHA:
2212 epp->ep_emul = &emul_netbsd;
2213 break;
2214
2215 default:
2216 return ENOEXEC;
2217 }
2218 return 0;
2219 }
2220 #endif
2221
2222 int
2223 alpha_pa_access(pa)
2224 u_long pa;
2225 {
2226 int i;
2227
2228 for (i = 0; i < mem_cluster_cnt; i++) {
2229 if (pa < mem_clusters[i].start)
2230 continue;
2231 if ((pa - mem_clusters[i].start) >=
2232 (mem_clusters[i].size & ~PAGE_MASK))
2233 continue;
2234 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2235 }
2236 return (PROT_NONE);
2237 }
2238
2239 /* XXX XXX BEGIN XXX XXX */
2240 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2241 /* XXX */
2242 vm_offset_t /* XXX */
2243 alpha_XXX_dmamap(v) /* XXX */
2244 vm_offset_t v; /* XXX */
2245 { /* XXX */
2246 /* XXX */
2247 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2248 } /* XXX */
2249 /* XXX XXX END XXX XXX */
2250