Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.132
      1 /* $NetBSD: machdep.c,v 1.132 1998/07/05 06:49:02 jonathan Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_uvm.h"
     69 #include "opt_pmap_new.h"
     70 #include "opt_dec_3000_300.h"
     71 #include "opt_dec_3000_500.h"
     72 #include "opt_compat_osf1.h"
     73 #include "opt_inet.h"
     74 #include "opt_atalk.h"
     75 #include "opt_ccitt.h"
     76 #include "opt_iso.h"
     77 #include "opt_ns.h"
     78 
     79 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     80 
     81 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.132 1998/07/05 06:49:02 jonathan Exp $");
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/kernel.h>
     87 #include <sys/map.h>
     88 #include <sys/proc.h>
     89 #include <sys/buf.h>
     90 #include <sys/reboot.h>
     91 #include <sys/device.h>
     92 #include <sys/file.h>
     93 #ifdef REAL_CLISTS
     94 #include <sys/clist.h>
     95 #endif
     96 #include <sys/callout.h>
     97 #include <sys/malloc.h>
     98 #include <sys/mbuf.h>
     99 #include <sys/mman.h>
    100 #include <sys/msgbuf.h>
    101 #include <sys/ioctl.h>
    102 #include <sys/tty.h>
    103 #include <sys/user.h>
    104 #include <sys/exec.h>
    105 #include <sys/exec_ecoff.h>
    106 #include <vm/vm.h>
    107 #include <sys/sysctl.h>
    108 #include <sys/core.h>
    109 #include <sys/kcore.h>
    110 #include <machine/kcore.h>
    111 #ifdef SYSVMSG
    112 #include <sys/msg.h>
    113 #endif
    114 #ifdef SYSVSEM
    115 #include <sys/sem.h>
    116 #endif
    117 #ifdef SYSVSHM
    118 #include <sys/shm.h>
    119 #endif
    120 
    121 #include <sys/mount.h>
    122 #include <sys/syscallargs.h>
    123 
    124 #include <vm/vm_kern.h>
    125 
    126 #if defined(UVM)
    127 #include <uvm/uvm_extern.h>
    128 #endif
    129 
    130 #include <dev/cons.h>
    131 
    132 #include <machine/autoconf.h>
    133 #include <machine/cpu.h>
    134 #include <machine/reg.h>
    135 #include <machine/rpb.h>
    136 #include <machine/prom.h>
    137 #include <machine/conf.h>
    138 
    139 #include <net/netisr.h>
    140 #include <net/if.h>
    141 
    142 #ifdef INET
    143 #include <net/route.h>
    144 #include <netinet/in.h>
    145 #include <netinet/ip_var.h>
    146 #include "arp.h"
    147 #if NARP > 0
    148 #include <netinet/if_inarp.h>
    149 #endif
    150 #endif
    151 #ifdef NS
    152 #include <netns/ns_var.h>
    153 #endif
    154 #ifdef ISO
    155 #include <netiso/iso.h>
    156 #include <netiso/clnp.h>
    157 #endif
    158 #ifdef CCITT
    159 #include <netccitt/x25.h>
    160 #include <netccitt/pk.h>
    161 #include <netccitt/pk_extern.h>
    162 #endif
    163 #ifdef NATM
    164 #include <netnatm/natm.h>
    165 #endif
    166 #ifdef NETATALK
    167 #include <netatalk/at_extern.h>
    168 #endif
    169 #include "ppp.h"
    170 #if NPPP > 0
    171 #include <net/ppp_defs.h>
    172 #include <net/if_ppp.h>
    173 #endif
    174 
    175 #ifdef DDB
    176 #include <machine/db_machdep.h>
    177 #include <ddb/db_access.h>
    178 #include <ddb/db_sym.h>
    179 #include <ddb/db_extern.h>
    180 #include <ddb/db_interface.h>
    181 #endif
    182 
    183 #if defined(UVM)
    184 vm_map_t exec_map = NULL;
    185 vm_map_t mb_map = NULL;
    186 vm_map_t phys_map = NULL;
    187 #else
    188 vm_map_t buffer_map;
    189 #endif
    190 
    191 /*
    192  * Declare these as initialized data so we can patch them.
    193  */
    194 int	nswbuf = 0;
    195 #ifdef	NBUF
    196 int	nbuf = NBUF;
    197 #else
    198 int	nbuf = 0;
    199 #endif
    200 #ifdef	BUFPAGES
    201 int	bufpages = BUFPAGES;
    202 #else
    203 int	bufpages = 0;
    204 #endif
    205 caddr_t msgbufaddr;
    206 
    207 int	maxmem;			/* max memory per process */
    208 
    209 int	totalphysmem;		/* total amount of physical memory in system */
    210 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    211 int	resvmem;		/* amount of memory reserved for PROM */
    212 int	unusedmem;		/* amount of memory for OS that we don't use */
    213 int	unknownmem;		/* amount of memory with an unknown use */
    214 
    215 int	cputype;		/* system type, from the RPB */
    216 
    217 /*
    218  * XXX We need an address to which we can assign things so that they
    219  * won't be optimized away because we didn't use the value.
    220  */
    221 u_int32_t no_optimize;
    222 
    223 /* the following is used externally (sysctl_hw) */
    224 char	machine[] = MACHINE;		/* from <machine/param.h> */
    225 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    226 char	cpu_model[128];
    227 
    228 struct	user *proc0paddr;
    229 
    230 /* Number of machine cycles per microsecond */
    231 u_int64_t	cycles_per_usec;
    232 
    233 /* number of cpus in the box.  really! */
    234 int		ncpus;
    235 
    236 struct bootinfo_kernel bootinfo;
    237 
    238 /* For built-in TCDS */
    239 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    240 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    241 #endif
    242 
    243 struct platform platform;
    244 
    245 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    246 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    247 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    248 
    249 #ifdef DDB
    250 /* start and end of kernel symbol table */
    251 void	*ksym_start, *ksym_end;
    252 #endif
    253 
    254 /* for cpu_sysctl() */
    255 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    256 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    257 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    258 
    259 /*
    260  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    261  * XXX it should also be larger than it is, because not all of the mddt
    262  * XXX clusters end up being used for VM.
    263  */
    264 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    265 int	mem_cluster_cnt;
    266 
    267 caddr_t	allocsys __P((caddr_t));
    268 int	cpu_dump __P((void));
    269 int	cpu_dumpsize __P((void));
    270 u_long	cpu_dump_mempagecnt __P((void));
    271 void	dumpsys __P((void));
    272 void	identifycpu __P((void));
    273 void	netintr __P((void));
    274 void	printregs __P((struct reg *));
    275 
    276 void
    277 alpha_init(pfn, ptb, bim, bip, biv)
    278 	u_long pfn;		/* first free PFN number */
    279 	u_long ptb;		/* PFN of current level 1 page table */
    280 	u_long bim;		/* bootinfo magic */
    281 	u_long bip;		/* bootinfo pointer */
    282 	u_long biv;		/* bootinfo version */
    283 {
    284 	extern char kernel_text[], _end[];
    285 	struct mddt *mddtp;
    286 	struct mddt_cluster *memc;
    287 	int i, mddtweird;
    288 	struct vm_physseg *vps;
    289 	vm_offset_t kernstart, kernend;
    290 	vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
    291 	vm_size_t size;
    292 	char *p;
    293 	caddr_t v;
    294 	char *bootinfo_msg;
    295 
    296 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    297 
    298 	/*
    299 	 * Turn off interrupts (not mchecks) and floating point.
    300 	 * Make sure the instruction and data streams are consistent.
    301 	 */
    302 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    303 	alpha_pal_wrfen(0);
    304 	ALPHA_TBIA();
    305 	alpha_pal_imb();
    306 
    307 	/*
    308 	 * Get critical system information (if possible, from the
    309 	 * information provided by the boot program).
    310 	 */
    311 	bootinfo_msg = NULL;
    312 	if (bim == BOOTINFO_MAGIC) {
    313 		if (biv == 0) {		/* backward compat */
    314 			biv = *(u_long *)bip;
    315 			bip += 8;
    316 		}
    317 		switch (biv) {
    318 		case 1: {
    319 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    320 
    321 			bootinfo.ssym = v1p->ssym;
    322 			bootinfo.esym = v1p->esym;
    323 			/* hwrpb may not be provided by boot block in v1 */
    324 			if (v1p->hwrpb != NULL) {
    325 				bootinfo.hwrpb_phys =
    326 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    327 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    328 			} else {
    329 				bootinfo.hwrpb_phys =
    330 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    331 				bootinfo.hwrpb_size =
    332 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    333 			}
    334 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    335 			    min(sizeof v1p->boot_flags,
    336 			      sizeof bootinfo.boot_flags));
    337 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    338 			    min(sizeof v1p->booted_kernel,
    339 			      sizeof bootinfo.booted_kernel));
    340 			/* booted dev not provided in bootinfo */
    341 			init_prom_interface((struct rpb *)
    342 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    343                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    344 			    sizeof bootinfo.booted_dev);
    345 			break;
    346 		}
    347 		default:
    348 			bootinfo_msg = "unknown bootinfo version";
    349 			goto nobootinfo;
    350 		}
    351 	} else {
    352 		bootinfo_msg = "boot program did not pass bootinfo";
    353 nobootinfo:
    354 		bootinfo.ssym = (u_long)_end;
    355 		bootinfo.esym = (u_long)_end;
    356 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    357 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    358 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    359 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    360 		    sizeof bootinfo.boot_flags);
    361 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    362 		    sizeof bootinfo.booted_kernel);
    363 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    364 		    sizeof bootinfo.booted_dev);
    365 	}
    366 
    367 	/*
    368 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    369 	 * lots of things.
    370 	 */
    371 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    372 
    373 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    374 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    375 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    376 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    377 		    sizeof(dec_3000_scsiid));
    378 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    379 		    sizeof(dec_3000_scsifast));
    380 	}
    381 #endif
    382 
    383 	/*
    384 	 * Remember how many cycles there are per microsecond,
    385 	 * so that we can use delay().  Round up, for safety.
    386 	 */
    387 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    388 
    389 	/*
    390 	 * Initalize the (temporary) bootstrap console interface, so
    391 	 * we can use printf until the VM system starts being setup.
    392 	 * The real console is initialized before then.
    393 	 */
    394 	init_bootstrap_console();
    395 
    396 	/* OUTPUT NOW ALLOWED */
    397 
    398 	/* delayed from above */
    399 	if (bootinfo_msg)
    400 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    401 		    bootinfo_msg, bim, bip, biv);
    402 
    403 	/*
    404 	 * Point interrupt/exception vectors to our own.
    405 	 */
    406 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    407 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    408 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    409 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    410 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    411 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    412 
    413 	/*
    414 	 * Clear pending machine checks and error reports, and enable
    415 	 * system- and processor-correctable error reporting.
    416 	 */
    417 	alpha_pal_wrmces(alpha_pal_rdmces() &
    418 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    419 
    420 	/*
    421 	 * Find out what hardware we're on, and do basic initialization.
    422 	 */
    423 	cputype = hwrpb->rpb_type;
    424 	if (cputype >= ncpuinit) {
    425 		platform_not_supported();
    426 		/* NOTREACHED */
    427 	}
    428 	(*cpuinit[cputype].init)();
    429 	strcpy(cpu_model, platform.model);
    430 
    431 	/*
    432 	 * Initalize the real console, so the the bootstrap console is
    433 	 * no longer necessary.
    434 	 */
    435 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    436 	if (!pmap_uses_prom_console())
    437 #endif
    438 		(*platform.cons_init)();
    439 
    440 #ifdef DIAGNOSTIC
    441 	/* Paranoid sanity checking */
    442 
    443 	/* We should always be running on the the primary. */
    444 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    445 
    446 	/*
    447 	 * On single-CPU systypes, the primary should always be CPU 0,
    448 	 * except on Alpha 8200 systems where the CPU id is related
    449 	 * to the VID, which is related to the Turbo Laser node id.
    450 	 */
    451 	if (cputype != ST_DEC_21000)
    452 		assert(hwrpb->rpb_primary_cpu_id == 0);
    453 #endif
    454 
    455 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    456 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    457 	/*
    458 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    459 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    460 	 */
    461 #endif
    462 
    463 	/*
    464 	 * find out this system's page size
    465 	 */
    466 	PAGE_SIZE = hwrpb->rpb_page_size;
    467 	if (PAGE_SIZE != 8192)
    468 		panic("page size %d != 8192?!", PAGE_SIZE);
    469 
    470 	/*
    471 	 * Initialize PAGE_SIZE-dependent variables.
    472 	 */
    473 #if defined(UVM)
    474 	uvm_setpagesize();
    475 #else
    476 	vm_set_page_size();
    477 #endif
    478 
    479 	/*
    480 	 * Find the beginning and end of the kernel (and leave a
    481 	 * bit of space before the beginning for the bootstrap
    482 	 * stack).
    483 	 */
    484 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    485 #ifdef DDB
    486 	ksym_start = (void *)bootinfo.ssym;
    487 	ksym_end   = (void *)bootinfo.esym;
    488 	kernend = (vm_offset_t)round_page(ksym_end);
    489 #else
    490 	kernend = (vm_offset_t)round_page(_end);
    491 #endif
    492 
    493 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    494 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    495 
    496 	/*
    497 	 * Find out how much memory is available, by looking at
    498 	 * the memory cluster descriptors.  This also tries to do
    499 	 * its best to detect things things that have never been seen
    500 	 * before...
    501 	 */
    502 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    503 
    504 	/* MDDT SANITY CHECKING */
    505 	mddtweird = 0;
    506 	if (mddtp->mddt_cluster_cnt < 2) {
    507 		mddtweird = 1;
    508 		printf("WARNING: weird number of mem clusters: %d\n",
    509 		    mddtp->mddt_cluster_cnt);
    510 	}
    511 
    512 #if 0
    513 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    514 #endif
    515 
    516 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    517 		memc = &mddtp->mddt_clusters[i];
    518 #if 0
    519 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    520 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    521 #endif
    522 		totalphysmem += memc->mddt_pg_cnt;
    523 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    524 			mem_clusters[mem_cluster_cnt].start =
    525 			    ptoa(memc->mddt_pfn);
    526 			mem_clusters[mem_cluster_cnt].size =
    527 			    ptoa(memc->mddt_pg_cnt);
    528 			if (memc->mddt_usage & MDDT_mbz ||
    529 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    530 			    memc->mddt_usage & MDDT_PALCODE)
    531 				mem_clusters[mem_cluster_cnt].size |=
    532 				    PROT_READ;
    533 			else
    534 				mem_clusters[mem_cluster_cnt].size |=
    535 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    536 			mem_cluster_cnt++;
    537 		}
    538 
    539 		if (memc->mddt_usage & MDDT_mbz) {
    540 			mddtweird = 1;
    541 			printf("WARNING: mem cluster %d has weird "
    542 			    "usage 0x%lx\n", i, memc->mddt_usage);
    543 			unknownmem += memc->mddt_pg_cnt;
    544 			continue;
    545 		}
    546 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    547 			/* XXX should handle these... */
    548 			printf("WARNING: skipping non-volatile mem "
    549 			    "cluster %d\n", i);
    550 			unusedmem += memc->mddt_pg_cnt;
    551 			continue;
    552 		}
    553 		if (memc->mddt_usage & MDDT_PALCODE) {
    554 			resvmem += memc->mddt_pg_cnt;
    555 			continue;
    556 		}
    557 
    558 		/*
    559 		 * We have a memory cluster available for system
    560 		 * software use.  We must determine if this cluster
    561 		 * holds the kernel.
    562 		 */
    563 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    564 		/*
    565 		 * XXX If the kernel uses the PROM console, we only use the
    566 		 * XXX memory after the kernel in the first system segment,
    567 		 * XXX to avoid clobbering prom mapping, data, etc.
    568 		 */
    569 	    if (!pmap_uses_prom_console() || physmem == 0) {
    570 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    571 		physmem += memc->mddt_pg_cnt;
    572 		pfn0 = memc->mddt_pfn;
    573 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    574 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    575 			/*
    576 			 * Must compute the location of the kernel
    577 			 * within the segment.
    578 			 */
    579 #if 0
    580 			printf("Cluster %d contains kernel\n", i);
    581 #endif
    582 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    583 		    if (!pmap_uses_prom_console()) {
    584 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    585 			if (pfn0 < kernstartpfn) {
    586 				/*
    587 				 * There is a chunk before the kernel.
    588 				 */
    589 #if 0
    590 				printf("Loading chunk before kernel: "
    591 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    592 #endif
    593 #if defined(UVM)
    594 				uvm_page_physload(pfn0, kernstartpfn,
    595 				    pfn0, kernstartpfn);
    596 #else
    597 				vm_page_physload(pfn0, kernstartpfn,
    598 				    pfn0, kernstartpfn);
    599 #endif
    600 			}
    601 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    602 		    }
    603 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    604 			if (kernendpfn < pfn1) {
    605 				/*
    606 				 * There is a chunk after the kernel.
    607 				 */
    608 #if 0
    609 				printf("Loading chunk after kernel: "
    610 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    611 #endif
    612 #if defined(UVM)
    613 				uvm_page_physload(kernendpfn, pfn1,
    614 				    kernendpfn, pfn1);
    615 #else
    616 				vm_page_physload(kernendpfn, pfn1,
    617 				    kernendpfn, pfn1);
    618 #endif
    619 			}
    620 		} else {
    621 			/*
    622 			 * Just load this cluster as one chunk.
    623 			 */
    624 #if 0
    625 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    626 			    pfn0, pfn1);
    627 #endif
    628 #if defined(UVM)
    629 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
    630 #else
    631 			vm_page_physload(pfn0, pfn1, pfn0, pfn1);
    632 #endif
    633 		}
    634 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    635 	    }
    636 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    637 	}
    638 
    639 	/*
    640 	 * Dump out the MDDT if it looks odd...
    641 	 */
    642 	if (mddtweird) {
    643 		printf("\n");
    644 		printf("complete memory cluster information:\n");
    645 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    646 			printf("mddt %d:\n", i);
    647 			printf("\tpfn %lx\n",
    648 			    mddtp->mddt_clusters[i].mddt_pfn);
    649 			printf("\tcnt %lx\n",
    650 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    651 			printf("\ttest %lx\n",
    652 			    mddtp->mddt_clusters[i].mddt_pg_test);
    653 			printf("\tbva %lx\n",
    654 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    655 			printf("\tbpa %lx\n",
    656 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    657 			printf("\tbcksum %lx\n",
    658 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    659 			printf("\tusage %lx\n",
    660 			    mddtp->mddt_clusters[i].mddt_usage);
    661 		}
    662 		printf("\n");
    663 	}
    664 
    665 	if (totalphysmem == 0)
    666 		panic("can't happen: system seems to have no memory!");
    667 
    668 #ifdef LIMITMEM
    669 	/*
    670 	 * XXX Kludge so we can run on machines with memory larger
    671 	 * XXX than 1G until all device drivers are converted to
    672 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    673 	 * XXX sorted in order of increasing addresses.)
    674 	 */
    675 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    676 
    677 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    678 		    LIMITMEM);
    679 
    680 		do {
    681 			u_long ovf;
    682 
    683 			vps = &vm_physmem[vm_nphysseg - 1];
    684 
    685 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    686 				/*
    687 				 * If the start is too high, just drop
    688 				 * the whole segment.
    689 				 *
    690 				 * XXX can start != avail_start in this
    691 				 * XXX case?  wouldn't that mean that
    692 				 * XXX some memory was stolen above the
    693 				 * XXX limit?  What to do?
    694 				 */
    695 				ovf = vps->end - vps->start;
    696 				vm_nphysseg--;
    697 			} else {
    698 				/*
    699 				 * If the start is OK, calculate how much
    700 				 * to drop and drop it.
    701 				 */
    702 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    703 				vps->end -= ovf;
    704 				vps->avail_end -= ovf;
    705 			}
    706 			physmem -= ovf;
    707 			unusedmem += ovf;
    708 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    709 	}
    710 #endif /* LIMITMEM */
    711 
    712 	maxmem = physmem;
    713 
    714 #if 0
    715 	printf("totalphysmem = %d\n", totalphysmem);
    716 	printf("physmem = %d\n", physmem);
    717 	printf("resvmem = %d\n", resvmem);
    718 	printf("unusedmem = %d\n", unusedmem);
    719 	printf("unknownmem = %d\n", unknownmem);
    720 #endif
    721 
    722 	/*
    723 	 * Adjust some parameters if the amount of physmem
    724 	 * available would cause us to croak. This is completely
    725 	 * eyeballed and isn't meant to be the final answer.
    726 	 * vm_phys_size is probably the only one to really worry
    727 	 * about.
    728  	 *
    729 	 * It's for booting a GENERIC kernel on a large memory platform.
    730 	 */
    731 	if (physmem >= atop(128 * 1024 * 1024)) {
    732 		vm_mbuf_size <<= 1;
    733 		vm_kmem_size <<= 3;
    734 		vm_phys_size <<= 2;
    735 	}
    736 
    737 	/*
    738 	 * Initialize error message buffer (at end of core).
    739 	 */
    740 	{
    741 		size_t sz = round_page(MSGBUFSIZE);
    742 
    743 		vps = &vm_physmem[vm_nphysseg - 1];
    744 
    745 		/* shrink so that it'll fit in the last segment */
    746 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    747 			sz = ptoa(vps->avail_end - vps->avail_start);
    748 
    749 		vps->end -= atop(sz);
    750 		vps->avail_end -= atop(sz);
    751 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    752 		initmsgbuf(msgbufaddr, sz);
    753 
    754 		/* Remove the last segment if it now has no pages. */
    755 		if (vps->start == vps->end)
    756 			vm_nphysseg--;
    757 
    758 		/* warn if the message buffer had to be shrunk */
    759 		if (sz != round_page(MSGBUFSIZE))
    760 			printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
    761 			    round_page(MSGBUFSIZE), sz);
    762 
    763 	}
    764 
    765 	/*
    766 	 * Init mapping for u page(s) for proc 0
    767 	 */
    768 	proc0.p_addr = proc0paddr =
    769 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    770 
    771 	/*
    772 	 * Allocate space for system data structures.  These data structures
    773 	 * are allocated here instead of cpu_startup() because physical
    774 	 * memory is directly addressable.  We don't have to map these into
    775 	 * virtual address space.
    776 	 */
    777 	size = (vm_size_t)allocsys(0);
    778 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    779 	if ((allocsys(v) - v) != size)
    780 		panic("alpha_init: table size inconsistency");
    781 
    782 	/*
    783 	 * Initialize the virtual memory system, and set the
    784 	 * page table base register in proc 0's PCB.
    785 	 */
    786 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    787 	    hwrpb->rpb_max_asn);
    788 
    789 	/*
    790 	 * Initialize the rest of proc 0's PCB, and cache its physical
    791 	 * address.
    792 	 */
    793 	proc0.p_md.md_pcbpaddr =
    794 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    795 
    796 	/*
    797 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    798 	 * and make proc0's trapframe pointer point to it for sanity.
    799 	 */
    800 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    801 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    802 	proc0.p_md.md_tf =
    803 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    804 
    805 	/*
    806 	 * Look at arguments passed to us and compute boothowto.
    807 	 */
    808 
    809 	boothowto = RB_SINGLE;
    810 #ifdef KADB
    811 	boothowto |= RB_KDB;
    812 #endif
    813 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    814 		/*
    815 		 * Note that we'd really like to differentiate case here,
    816 		 * but the Alpha AXP Architecture Reference Manual
    817 		 * says that we shouldn't.
    818 		 */
    819 		switch (*p) {
    820 		case 'a': /* autoboot */
    821 		case 'A':
    822 			boothowto &= ~RB_SINGLE;
    823 			break;
    824 
    825 #ifdef DEBUG
    826 		case 'c': /* crash dump immediately after autoconfig */
    827 		case 'C':
    828 			boothowto |= RB_DUMP;
    829 			break;
    830 #endif
    831 
    832 #if defined(KGDB) || defined(DDB)
    833 		case 'd': /* break into the kernel debugger ASAP */
    834 		case 'D':
    835 			boothowto |= RB_KDB;
    836 			break;
    837 #endif
    838 
    839 		case 'h': /* always halt, never reboot */
    840 		case 'H':
    841 			boothowto |= RB_HALT;
    842 			break;
    843 
    844 #if 0
    845 		case 'm': /* mini root present in memory */
    846 		case 'M':
    847 			boothowto |= RB_MINIROOT;
    848 			break;
    849 #endif
    850 
    851 		case 'n': /* askname */
    852 		case 'N':
    853 			boothowto |= RB_ASKNAME;
    854 			break;
    855 
    856 		case 's': /* single-user (default, supported for sanity) */
    857 		case 'S':
    858 			boothowto |= RB_SINGLE;
    859 			break;
    860 
    861 		case '-':
    862 			/*
    863 			 * Just ignore this.  It's not required, but it's
    864 			 * common for it to be passed regardless.
    865 			 */
    866 			break;
    867 
    868 		default:
    869 			printf("Unrecognized boot flag '%c'.\n", *p);
    870 			break;
    871 		}
    872 	}
    873 
    874 	/*
    875 	 * Initialize debuggers, and break into them if appropriate.
    876 	 */
    877 #ifdef DDB
    878 	db_machine_init();
    879 	ddb_init(ksym_start, ksym_end);
    880 	if (boothowto & RB_KDB)
    881 		Debugger();
    882 #endif
    883 #ifdef KGDB
    884 	if (boothowto & RB_KDB)
    885 		kgdb_connect(0);
    886 #endif
    887 
    888 	/*
    889 	 * Figure out the number of cpus in the box, from RPB fields.
    890 	 * Really.  We mean it.
    891 	 */
    892 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    893 		struct pcs *pcsp;
    894 
    895 		pcsp = LOCATE_PCS(hwrpb, i);
    896 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    897 			ncpus++;
    898 	}
    899 
    900 	/*
    901 	 * Figure out our clock frequency, from RPB fields.
    902 	 */
    903 	hz = hwrpb->rpb_intr_freq >> 12;
    904 	if (!(60 <= hz && hz <= 10240)) {
    905 		hz = 1024;
    906 #ifdef DIAGNOSTIC
    907 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    908 			hwrpb->rpb_intr_freq, hz);
    909 #endif
    910 	}
    911 
    912 }
    913 
    914 /*
    915  * Allocate space for system data structures.  We are given
    916  * a starting virtual address and we return a final virtual
    917  * address; along the way we set each data structure pointer.
    918  *
    919  * We call allocsys() with 0 to find out how much space we want,
    920  * allocate that much and fill it with zeroes, and the call
    921  * allocsys() again with the correct base virtual address.
    922  */
    923 caddr_t
    924 allocsys(v)
    925 	caddr_t v;
    926 {
    927 
    928 #define valloc(name, type, num) \
    929 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    930 #ifdef REAL_CLISTS
    931 	valloc(cfree, struct cblock, nclist);
    932 #endif
    933 	valloc(callout, struct callout, ncallout);
    934 #ifdef SYSVSHM
    935 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    936 #endif
    937 #ifdef SYSVSEM
    938 	valloc(sema, struct semid_ds, seminfo.semmni);
    939 	valloc(sem, struct sem, seminfo.semmns);
    940 	/* This is pretty disgusting! */
    941 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    942 #endif
    943 #ifdef SYSVMSG
    944 	valloc(msgpool, char, msginfo.msgmax);
    945 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    946 	valloc(msghdrs, struct msg, msginfo.msgtql);
    947 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    948 #endif
    949 
    950 	/*
    951 	 * Determine how many buffers to allocate.
    952 	 * We allocate 10% of memory for buffer space.  Insure a
    953 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    954 	 * headers as file i/o buffers.
    955 	 */
    956 	if (bufpages == 0)
    957 		bufpages = (physmem * 10) / (CLSIZE * 100);
    958 	if (nbuf == 0) {
    959 		nbuf = bufpages;
    960 		if (nbuf < 16)
    961 			nbuf = 16;
    962 	}
    963 	if (nswbuf == 0) {
    964 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    965 		if (nswbuf > 256)
    966 			nswbuf = 256;		/* sanity */
    967 	}
    968 #if !defined(UVM)
    969 	valloc(swbuf, struct buf, nswbuf);
    970 #endif
    971 	valloc(buf, struct buf, nbuf);
    972 	return (v);
    973 #undef valloc
    974 }
    975 
    976 void
    977 consinit()
    978 {
    979 
    980 	/*
    981 	 * Everything related to console initialization is done
    982 	 * in alpha_init().
    983 	 */
    984 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    985 	printf("consinit: %susing prom console\n",
    986 	    pmap_uses_prom_console() ? "" : "not ");
    987 #endif
    988 }
    989 
    990 #include "pckbc.h"
    991 #include "pckbd.h"
    992 #if (NPCKBC > 0) && (NPCKBD == 0)
    993 
    994 #include <machine/bus.h>
    995 #include <dev/isa/pckbcvar.h>
    996 
    997 /*
    998  * This is called by the pbkbc driver if no pckbd is configured.
    999  * On the i386, it is used to glue in the old, deprecated console
   1000  * code.  On the Alpha, it does nothing.
   1001  */
   1002 int
   1003 pckbc_machdep_cnattach(kbctag, kbcslot)
   1004 	pckbc_tag_t kbctag;
   1005 	pckbc_slot_t kbcslot;
   1006 {
   1007 
   1008 	return (ENXIO);
   1009 }
   1010 #endif /* NPCKBC > 0 && NPCKBD == 0 */
   1011 
   1012 void
   1013 cpu_startup()
   1014 {
   1015 	register unsigned i;
   1016 	int base, residual;
   1017 	vm_offset_t minaddr, maxaddr;
   1018 	vm_size_t size;
   1019 #if defined(DEBUG)
   1020 	extern int pmapdebug;
   1021 	int opmapdebug = pmapdebug;
   1022 
   1023 	pmapdebug = 0;
   1024 #endif
   1025 
   1026 	/*
   1027 	 * Good {morning,afternoon,evening,night}.
   1028 	 */
   1029 	printf(version);
   1030 	identifycpu();
   1031 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
   1032 	    ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
   1033 	if (unusedmem)
   1034 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
   1035 	if (unknownmem)
   1036 		printf("WARNING: %d bytes of memory with unknown purpose\n",
   1037 		    ctob(unknownmem));
   1038 
   1039 	/*
   1040 	 * Allocate virtual address space for file I/O buffers.
   1041 	 * Note they are different than the array of headers, 'buf',
   1042 	 * and usually occupy more virtual memory than physical.
   1043 	 */
   1044 	size = MAXBSIZE * nbuf;
   1045 #if defined(UVM)
   1046 	if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
   1047 		    NULL, UVM_UNKNOWN_OFFSET,
   1048 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1049 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1050 		panic("startup: cannot allocate VM for buffers");
   1051 #else
   1052 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
   1053 	    &maxaddr, size, TRUE);
   1054 	minaddr = (vm_offset_t)buffers;
   1055 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
   1056 			&minaddr, size, FALSE) != KERN_SUCCESS)
   1057 		panic("startup: cannot allocate buffers");
   1058 #endif /* UVM */
   1059 	base = bufpages / nbuf;
   1060 	residual = bufpages % nbuf;
   1061 	for (i = 0; i < nbuf; i++) {
   1062 #if defined(UVM)
   1063 		vm_size_t curbufsize;
   1064 		vm_offset_t curbuf;
   1065 		struct vm_page *pg;
   1066 
   1067 		/*
   1068 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1069 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1070 		 * for the first "residual" buffers, and then we allocate
   1071 		 * "base" pages for the rest.
   1072 		 */
   1073 		curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
   1074 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1075 
   1076 		while (curbufsize) {
   1077 			pg = uvm_pagealloc(NULL, 0, NULL);
   1078 			if (pg == NULL)
   1079 				panic("cpu_startup: not enough memory for "
   1080 				    "buffer cache");
   1081 #if defined(PMAP_NEW)
   1082 			pmap_kenter_pgs(curbuf, &pg, 1);
   1083 #else
   1084 			pmap_enter(kernel_map->pmap, curbuf,
   1085 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1086 #endif
   1087 			curbuf += PAGE_SIZE;
   1088 			curbufsize -= PAGE_SIZE;
   1089 		}
   1090 #else /* ! UVM */
   1091 		vm_size_t curbufsize;
   1092 		vm_offset_t curbuf;
   1093 
   1094 		/*
   1095 		 * First <residual> buffers get (base+1) physical pages
   1096 		 * allocated for them.  The rest get (base) physical pages.
   1097 		 *
   1098 		 * The rest of each buffer occupies virtual space,
   1099 		 * but has no physical memory allocated for it.
   1100 		 */
   1101 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
   1102 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
   1103 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
   1104 		vm_map_simplify(buffer_map, curbuf);
   1105 #endif /* UVM */
   1106 	}
   1107 	/*
   1108 	 * Allocate a submap for exec arguments.  This map effectively
   1109 	 * limits the number of processes exec'ing at any time.
   1110 	 */
   1111 #if defined(UVM)
   1112 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1113 				   16 * NCARGS, TRUE, FALSE, NULL);
   1114 #else
   1115 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1116 				 16 * NCARGS, TRUE);
   1117 #endif
   1118 
   1119 	/*
   1120 	 * Allocate a submap for physio
   1121 	 */
   1122 #if defined(UVM)
   1123 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1124 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1125 #else
   1126 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1127 				 VM_PHYS_SIZE, TRUE);
   1128 #endif
   1129 
   1130 	/*
   1131 	 * Finally, allocate mbuf cluster submap.
   1132 	 */
   1133 #if defined(UVM)
   1134 	mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1135 				 VM_MBUF_SIZE, FALSE, FALSE, NULL);
   1136 #else
   1137 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1138 			       VM_MBUF_SIZE, FALSE);
   1139 #endif
   1140 	/*
   1141 	 * Initialize callouts
   1142 	 */
   1143 	callfree = callout;
   1144 	for (i = 1; i < ncallout; i++)
   1145 		callout[i-1].c_next = &callout[i];
   1146 	callout[i-1].c_next = NULL;
   1147 
   1148 #if defined(DEBUG)
   1149 	pmapdebug = opmapdebug;
   1150 #endif
   1151 #if defined(UVM)
   1152 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1153 #else
   1154 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
   1155 #endif
   1156 	printf("using %ld buffers containing %ld bytes of memory\n",
   1157 		(long)nbuf, (long)(bufpages * CLBYTES));
   1158 
   1159 	/*
   1160 	 * Set up buffers, so they can be used to read disk labels.
   1161 	 */
   1162 	bufinit();
   1163 
   1164 	/*
   1165 	 * Configure the system.
   1166 	 */
   1167 	configure();
   1168 
   1169 	/*
   1170 	 * Note that bootstrapping is finished, and set the HWRPB up
   1171 	 * to do restarts.
   1172 	 */
   1173 	hwrpb_restart_setup();
   1174 }
   1175 
   1176 /*
   1177  * Retrieve the platform name from the DSR.
   1178  */
   1179 const char *
   1180 alpha_dsr_sysname()
   1181 {
   1182 	struct dsrdb *dsr;
   1183 	const char *sysname;
   1184 
   1185 	/*
   1186 	 * DSR does not exist on early HWRPB versions.
   1187 	 */
   1188 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1189 		return (NULL);
   1190 
   1191 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1192 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1193 	    sizeof(u_int64_t)));
   1194 	return (sysname);
   1195 }
   1196 
   1197 /*
   1198  * Lookup the system specified system variation in the provided table,
   1199  * returning the model string on match.
   1200  */
   1201 const char *
   1202 alpha_variation_name(variation, avtp)
   1203 	u_int64_t variation;
   1204 	const struct alpha_variation_table *avtp;
   1205 {
   1206 	int i;
   1207 
   1208 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1209 		if (avtp[i].avt_variation == variation)
   1210 			return (avtp[i].avt_model);
   1211 	return (NULL);
   1212 }
   1213 
   1214 /*
   1215  * Generate a default platform name based for unknown system variations.
   1216  */
   1217 const char *
   1218 alpha_unknown_sysname()
   1219 {
   1220 	static char s[128];		/* safe size */
   1221 
   1222 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1223 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1224 	return ((const char *)s);
   1225 }
   1226 
   1227 void
   1228 identifycpu()
   1229 {
   1230 
   1231 	/*
   1232 	 * print out CPU identification information.
   1233 	 */
   1234 	printf("%s, %ldMHz\n", cpu_model,
   1235 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1236 	printf("%ld byte page size, %d processor%s.\n",
   1237 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1238 #if 0
   1239 	/* this isn't defined for any systems that we run on? */
   1240 	printf("serial number 0x%lx 0x%lx\n",
   1241 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1242 
   1243 	/* and these aren't particularly useful! */
   1244 	printf("variation: 0x%lx, revision 0x%lx\n",
   1245 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1246 #endif
   1247 }
   1248 
   1249 int	waittime = -1;
   1250 struct pcb dumppcb;
   1251 
   1252 void
   1253 cpu_reboot(howto, bootstr)
   1254 	int howto;
   1255 	char *bootstr;
   1256 {
   1257 	extern int cold;
   1258 
   1259 	/* If system is cold, just halt. */
   1260 	if (cold) {
   1261 		howto |= RB_HALT;
   1262 		goto haltsys;
   1263 	}
   1264 
   1265 	/* If "always halt" was specified as a boot flag, obey. */
   1266 	if ((boothowto & RB_HALT) != 0)
   1267 		howto |= RB_HALT;
   1268 
   1269 	boothowto = howto;
   1270 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1271 		waittime = 0;
   1272 		vfs_shutdown();
   1273 		/*
   1274 		 * If we've been adjusting the clock, the todr
   1275 		 * will be out of synch; adjust it now.
   1276 		 */
   1277 		resettodr();
   1278 	}
   1279 
   1280 	/* Disable interrupts. */
   1281 	splhigh();
   1282 
   1283 	/* If rebooting and a dump is requested do it. */
   1284 #if 0
   1285 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1286 #else
   1287 	if (howto & RB_DUMP)
   1288 #endif
   1289 		dumpsys();
   1290 
   1291 haltsys:
   1292 
   1293 	/* run any shutdown hooks */
   1294 	doshutdownhooks();
   1295 
   1296 #ifdef BOOTKEY
   1297 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1298 	cnpollc(1);	/* for proper keyboard command handling */
   1299 	cngetc();
   1300 	cnpollc(0);
   1301 	printf("\n");
   1302 #endif
   1303 
   1304 	/* Finally, powerdown/halt/reboot the system. */
   1305 	if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
   1306 	    platform.powerdown != NULL) {
   1307 		(*platform.powerdown)();
   1308 		printf("WARNING: powerdown failed!\n");
   1309 	}
   1310 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1311 	prom_halt(howto & RB_HALT);
   1312 	/*NOTREACHED*/
   1313 }
   1314 
   1315 /*
   1316  * These variables are needed by /sbin/savecore
   1317  */
   1318 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1319 int 	dumpsize = 0;		/* pages */
   1320 long	dumplo = 0; 		/* blocks */
   1321 
   1322 /*
   1323  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1324  */
   1325 int
   1326 cpu_dumpsize()
   1327 {
   1328 	int size;
   1329 
   1330 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1331 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1332 	if (roundup(size, dbtob(1)) != dbtob(1))
   1333 		return -1;
   1334 
   1335 	return (1);
   1336 }
   1337 
   1338 /*
   1339  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1340  */
   1341 u_long
   1342 cpu_dump_mempagecnt()
   1343 {
   1344 	u_long i, n;
   1345 
   1346 	n = 0;
   1347 	for (i = 0; i < mem_cluster_cnt; i++)
   1348 		n += atop(mem_clusters[i].size);
   1349 	return (n);
   1350 }
   1351 
   1352 /*
   1353  * cpu_dump: dump machine-dependent kernel core dump headers.
   1354  */
   1355 int
   1356 cpu_dump()
   1357 {
   1358 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1359 	char buf[dbtob(1)];
   1360 	kcore_seg_t *segp;
   1361 	cpu_kcore_hdr_t *cpuhdrp;
   1362 	phys_ram_seg_t *memsegp;
   1363 	int i;
   1364 
   1365 	dump = bdevsw[major(dumpdev)].d_dump;
   1366 
   1367 	bzero(buf, sizeof buf);
   1368 	segp = (kcore_seg_t *)buf;
   1369 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1370 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1371 	    ALIGN(sizeof(*cpuhdrp))];
   1372 
   1373 	/*
   1374 	 * Generate a segment header.
   1375 	 */
   1376 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1377 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1378 
   1379 	/*
   1380 	 * Add the machine-dependent header info.
   1381 	 */
   1382 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
   1383 	cpuhdrp->page_size = PAGE_SIZE;
   1384 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1385 
   1386 	/*
   1387 	 * Fill in the memory segment descriptors.
   1388 	 */
   1389 	for (i = 0; i < mem_cluster_cnt; i++) {
   1390 		memsegp[i].start = mem_clusters[i].start;
   1391 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1392 	}
   1393 
   1394 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1395 }
   1396 
   1397 /*
   1398  * This is called by main to set dumplo and dumpsize.
   1399  * Dumps always skip the first CLBYTES of disk space
   1400  * in case there might be a disk label stored there.
   1401  * If there is extra space, put dump at the end to
   1402  * reduce the chance that swapping trashes it.
   1403  */
   1404 void
   1405 cpu_dumpconf()
   1406 {
   1407 	int nblks, dumpblks;	/* size of dump area */
   1408 	int maj;
   1409 
   1410 	if (dumpdev == NODEV)
   1411 		goto bad;
   1412 	maj = major(dumpdev);
   1413 	if (maj < 0 || maj >= nblkdev)
   1414 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1415 	if (bdevsw[maj].d_psize == NULL)
   1416 		goto bad;
   1417 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1418 	if (nblks <= ctod(1))
   1419 		goto bad;
   1420 
   1421 	dumpblks = cpu_dumpsize();
   1422 	if (dumpblks < 0)
   1423 		goto bad;
   1424 	dumpblks += ctod(cpu_dump_mempagecnt());
   1425 
   1426 	/* If dump won't fit (incl. room for possible label), punt. */
   1427 	if (dumpblks > (nblks - ctod(1)))
   1428 		goto bad;
   1429 
   1430 	/* Put dump at end of partition */
   1431 	dumplo = nblks - dumpblks;
   1432 
   1433 	/* dumpsize is in page units, and doesn't include headers. */
   1434 	dumpsize = cpu_dump_mempagecnt();
   1435 	return;
   1436 
   1437 bad:
   1438 	dumpsize = 0;
   1439 	return;
   1440 }
   1441 
   1442 /*
   1443  * Dump the kernel's image to the swap partition.
   1444  */
   1445 #define	BYTES_PER_DUMP	NBPG
   1446 
   1447 void
   1448 dumpsys()
   1449 {
   1450 	u_long totalbytesleft, bytes, i, n, memcl;
   1451 	u_long maddr;
   1452 	int psize;
   1453 	daddr_t blkno;
   1454 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1455 	int error;
   1456 
   1457 	/* Save registers. */
   1458 	savectx(&dumppcb);
   1459 
   1460 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1461 	if (dumpdev == NODEV)
   1462 		return;
   1463 
   1464 	/*
   1465 	 * For dumps during autoconfiguration,
   1466 	 * if dump device has already configured...
   1467 	 */
   1468 	if (dumpsize == 0)
   1469 		cpu_dumpconf();
   1470 	if (dumplo <= 0) {
   1471 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1472 		    minor(dumpdev));
   1473 		return;
   1474 	}
   1475 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1476 	    minor(dumpdev), dumplo);
   1477 
   1478 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1479 	printf("dump ");
   1480 	if (psize == -1) {
   1481 		printf("area unavailable\n");
   1482 		return;
   1483 	}
   1484 
   1485 	/* XXX should purge all outstanding keystrokes. */
   1486 
   1487 	if ((error = cpu_dump()) != 0)
   1488 		goto err;
   1489 
   1490 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1491 	blkno = dumplo + cpu_dumpsize();
   1492 	dump = bdevsw[major(dumpdev)].d_dump;
   1493 	error = 0;
   1494 
   1495 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1496 		maddr = mem_clusters[memcl].start;
   1497 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1498 
   1499 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1500 
   1501 			/* Print out how many MBs we to go. */
   1502 			if ((totalbytesleft % (1024*1024)) == 0)
   1503 				printf("%d ", totalbytesleft / (1024 * 1024));
   1504 
   1505 			/* Limit size for next transfer. */
   1506 			n = bytes - i;
   1507 			if (n > BYTES_PER_DUMP)
   1508 				n =  BYTES_PER_DUMP;
   1509 
   1510 			error = (*dump)(dumpdev, blkno,
   1511 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1512 			if (error)
   1513 				goto err;
   1514 			maddr += n;
   1515 			blkno += btodb(n);			/* XXX? */
   1516 
   1517 			/* XXX should look for keystrokes, to cancel. */
   1518 		}
   1519 	}
   1520 
   1521 err:
   1522 	switch (error) {
   1523 
   1524 	case ENXIO:
   1525 		printf("device bad\n");
   1526 		break;
   1527 
   1528 	case EFAULT:
   1529 		printf("device not ready\n");
   1530 		break;
   1531 
   1532 	case EINVAL:
   1533 		printf("area improper\n");
   1534 		break;
   1535 
   1536 	case EIO:
   1537 		printf("i/o error\n");
   1538 		break;
   1539 
   1540 	case EINTR:
   1541 		printf("aborted from console\n");
   1542 		break;
   1543 
   1544 	case 0:
   1545 		printf("succeeded\n");
   1546 		break;
   1547 
   1548 	default:
   1549 		printf("error %d\n", error);
   1550 		break;
   1551 	}
   1552 	printf("\n\n");
   1553 	delay(1000);
   1554 }
   1555 
   1556 void
   1557 frametoreg(framep, regp)
   1558 	struct trapframe *framep;
   1559 	struct reg *regp;
   1560 {
   1561 
   1562 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1563 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1564 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1565 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1566 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1567 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1568 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1569 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1570 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1571 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1572 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1573 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1574 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1575 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1576 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1577 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1578 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1579 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1580 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1581 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1582 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1583 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1584 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1585 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1586 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1587 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1588 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1589 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1590 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1591 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1592 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1593 	regp->r_regs[R_ZERO] = 0;
   1594 }
   1595 
   1596 void
   1597 regtoframe(regp, framep)
   1598 	struct reg *regp;
   1599 	struct trapframe *framep;
   1600 {
   1601 
   1602 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1603 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1604 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1605 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1606 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1607 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1608 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1609 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1610 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1611 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1612 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1613 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1614 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1615 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1616 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1617 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1618 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1619 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1620 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1621 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1622 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1623 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1624 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1625 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1626 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1627 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1628 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1629 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1630 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1631 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1632 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1633 	/* ??? = regp->r_regs[R_ZERO]; */
   1634 }
   1635 
   1636 void
   1637 printregs(regp)
   1638 	struct reg *regp;
   1639 {
   1640 	int i;
   1641 
   1642 	for (i = 0; i < 32; i++)
   1643 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1644 		   i & 1 ? "\n" : "\t");
   1645 }
   1646 
   1647 void
   1648 regdump(framep)
   1649 	struct trapframe *framep;
   1650 {
   1651 	struct reg reg;
   1652 
   1653 	frametoreg(framep, &reg);
   1654 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1655 
   1656 	printf("REGISTERS:\n");
   1657 	printregs(&reg);
   1658 }
   1659 
   1660 #ifdef DEBUG
   1661 int sigdebug = 0;
   1662 int sigpid = 0;
   1663 #define	SDB_FOLLOW	0x01
   1664 #define	SDB_KSTACK	0x02
   1665 #endif
   1666 
   1667 /*
   1668  * Send an interrupt to process.
   1669  */
   1670 void
   1671 sendsig(catcher, sig, mask, code)
   1672 	sig_t catcher;
   1673 	int sig, mask;
   1674 	u_long code;
   1675 {
   1676 	struct proc *p = curproc;
   1677 	struct sigcontext *scp, ksc;
   1678 	struct trapframe *frame;
   1679 	struct sigacts *psp = p->p_sigacts;
   1680 	int oonstack, fsize, rndfsize;
   1681 	extern char sigcode[], esigcode[];
   1682 	extern struct proc *fpcurproc;
   1683 
   1684 	frame = p->p_md.md_tf;
   1685 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1686 	fsize = sizeof ksc;
   1687 	rndfsize = ((fsize + 15) / 16) * 16;
   1688 	/*
   1689 	 * Allocate and validate space for the signal handler
   1690 	 * context. Note that if the stack is in P0 space, the
   1691 	 * call to grow() is a nop, and the useracc() check
   1692 	 * will fail if the process has not already allocated
   1693 	 * the space with a `brk'.
   1694 	 */
   1695 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1696 	    (psp->ps_sigonstack & sigmask(sig))) {
   1697 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1698 		    psp->ps_sigstk.ss_size - rndfsize);
   1699 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1700 	} else
   1701 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1702 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1703 #if defined(UVM)
   1704 		(void)uvm_grow(p, (u_long)scp);
   1705 #else
   1706 		(void)grow(p, (u_long)scp);
   1707 #endif
   1708 #ifdef DEBUG
   1709 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1710 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1711 		    sig, &oonstack, scp);
   1712 #endif
   1713 #if defined(UVM)
   1714 	if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1715 #else
   1716 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1717 #endif
   1718 #ifdef DEBUG
   1719 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1720 			printf("sendsig(%d): useracc failed on sig %d\n",
   1721 			    p->p_pid, sig);
   1722 #endif
   1723 		/*
   1724 		 * Process has trashed its stack; give it an illegal
   1725 		 * instruction to halt it in its tracks.
   1726 		 */
   1727 		SIGACTION(p, SIGILL) = SIG_DFL;
   1728 		sig = sigmask(SIGILL);
   1729 		p->p_sigignore &= ~sig;
   1730 		p->p_sigcatch &= ~sig;
   1731 		p->p_sigmask &= ~sig;
   1732 		psignal(p, SIGILL);
   1733 		return;
   1734 #if !defined(UVM)	/* this construct will balance braces for ctags(1) */
   1735 	}
   1736 #else
   1737 	}
   1738 #endif
   1739 
   1740 	/*
   1741 	 * Build the signal context to be used by sigreturn.
   1742 	 */
   1743 	ksc.sc_onstack = oonstack;
   1744 	ksc.sc_mask = mask;
   1745 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1746 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1747 
   1748 	/* copy the registers. */
   1749 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1750 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1751 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1752 
   1753 	/* save the floating-point state, if necessary, then copy it. */
   1754 	if (p == fpcurproc) {
   1755 		alpha_pal_wrfen(1);
   1756 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1757 		alpha_pal_wrfen(0);
   1758 		fpcurproc = NULL;
   1759 	}
   1760 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1761 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1762 	    sizeof(struct fpreg));
   1763 	ksc.sc_fp_control = 0;					/* XXX ? */
   1764 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1765 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1766 
   1767 
   1768 #ifdef COMPAT_OSF1
   1769 	/*
   1770 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1771 	 */
   1772 #endif
   1773 
   1774 	/*
   1775 	 * copy the frame out to userland.
   1776 	 */
   1777 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1778 #ifdef DEBUG
   1779 	if (sigdebug & SDB_FOLLOW)
   1780 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1781 		    scp, code);
   1782 #endif
   1783 
   1784 	/*
   1785 	 * Set up the registers to return to sigcode.
   1786 	 */
   1787 	frame->tf_regs[FRAME_PC] =
   1788 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1789 	frame->tf_regs[FRAME_A0] = sig;
   1790 	frame->tf_regs[FRAME_A1] = code;
   1791 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1792 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1793 	alpha_pal_wrusp((unsigned long)scp);
   1794 
   1795 #ifdef DEBUG
   1796 	if (sigdebug & SDB_FOLLOW)
   1797 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1798 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1799 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1800 		printf("sendsig(%d): sig %d returns\n",
   1801 		    p->p_pid, sig);
   1802 #endif
   1803 }
   1804 
   1805 /*
   1806  * System call to cleanup state after a signal
   1807  * has been taken.  Reset signal mask and
   1808  * stack state from context left by sendsig (above).
   1809  * Return to previous pc and psl as specified by
   1810  * context left by sendsig. Check carefully to
   1811  * make sure that the user has not modified the
   1812  * psl to gain improper priviledges or to cause
   1813  * a machine fault.
   1814  */
   1815 /* ARGSUSED */
   1816 int
   1817 sys_sigreturn(p, v, retval)
   1818 	struct proc *p;
   1819 	void *v;
   1820 	register_t *retval;
   1821 {
   1822 	struct sys_sigreturn_args /* {
   1823 		syscallarg(struct sigcontext *) sigcntxp;
   1824 	} */ *uap = v;
   1825 	struct sigcontext *scp, ksc;
   1826 	extern struct proc *fpcurproc;
   1827 
   1828 	scp = SCARG(uap, sigcntxp);
   1829 #ifdef DEBUG
   1830 	if (sigdebug & SDB_FOLLOW)
   1831 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1832 #endif
   1833 
   1834 	if (ALIGN(scp) != (u_int64_t)scp)
   1835 		return (EINVAL);
   1836 
   1837 	/*
   1838 	 * Test and fetch the context structure.
   1839 	 * We grab it all at once for speed.
   1840 	 */
   1841 #if defined(UVM)
   1842 	if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1843 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1844 		return (EINVAL);
   1845 #else
   1846 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1847 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1848 		return (EINVAL);
   1849 #endif
   1850 
   1851 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1852 		return (EINVAL);
   1853 	/*
   1854 	 * Restore the user-supplied information
   1855 	 */
   1856 	if (ksc.sc_onstack)
   1857 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1858 	else
   1859 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1860 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1861 
   1862 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1863 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1864 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1865 
   1866 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1867 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1868 
   1869 	/* XXX ksc.sc_ownedfp ? */
   1870 	if (p == fpcurproc)
   1871 		fpcurproc = NULL;
   1872 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1873 	    sizeof(struct fpreg));
   1874 	/* XXX ksc.sc_fp_control ? */
   1875 
   1876 #ifdef DEBUG
   1877 	if (sigdebug & SDB_FOLLOW)
   1878 		printf("sigreturn(%d): returns\n", p->p_pid);
   1879 #endif
   1880 	return (EJUSTRETURN);
   1881 }
   1882 
   1883 /*
   1884  * machine dependent system variables.
   1885  */
   1886 int
   1887 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1888 	int *name;
   1889 	u_int namelen;
   1890 	void *oldp;
   1891 	size_t *oldlenp;
   1892 	void *newp;
   1893 	size_t newlen;
   1894 	struct proc *p;
   1895 {
   1896 	dev_t consdev;
   1897 
   1898 	/* all sysctl names at this level are terminal */
   1899 	if (namelen != 1)
   1900 		return (ENOTDIR);		/* overloaded */
   1901 
   1902 	switch (name[0]) {
   1903 	case CPU_CONSDEV:
   1904 		if (cn_tab != NULL)
   1905 			consdev = cn_tab->cn_dev;
   1906 		else
   1907 			consdev = NODEV;
   1908 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1909 			sizeof consdev));
   1910 
   1911 	case CPU_ROOT_DEVICE:
   1912 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1913 		    root_device->dv_xname));
   1914 
   1915 	case CPU_UNALIGNED_PRINT:
   1916 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1917 		    &alpha_unaligned_print));
   1918 
   1919 	case CPU_UNALIGNED_FIX:
   1920 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1921 		    &alpha_unaligned_fix));
   1922 
   1923 	case CPU_UNALIGNED_SIGBUS:
   1924 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1925 		    &alpha_unaligned_sigbus));
   1926 
   1927 	case CPU_BOOTED_KERNEL:
   1928 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1929 		    bootinfo.booted_kernel));
   1930 
   1931 	default:
   1932 		return (EOPNOTSUPP);
   1933 	}
   1934 	/* NOTREACHED */
   1935 }
   1936 
   1937 /*
   1938  * Set registers on exec.
   1939  */
   1940 void
   1941 setregs(p, pack, stack)
   1942 	register struct proc *p;
   1943 	struct exec_package *pack;
   1944 	u_long stack;
   1945 {
   1946 	struct trapframe *tfp = p->p_md.md_tf;
   1947 	extern struct proc *fpcurproc;
   1948 #ifdef DEBUG
   1949 	int i;
   1950 #endif
   1951 
   1952 #ifdef DEBUG
   1953 	/*
   1954 	 * Crash and dump, if the user requested it.
   1955 	 */
   1956 	if (boothowto & RB_DUMP)
   1957 		panic("crash requested by boot flags");
   1958 #endif
   1959 
   1960 #ifdef DEBUG
   1961 	for (i = 0; i < FRAME_SIZE; i++)
   1962 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1963 #else
   1964 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1965 #endif
   1966 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1967 #define FP_RN 2 /* XXX */
   1968 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1969 	alpha_pal_wrusp(stack);
   1970 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1971 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1972 
   1973 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1974 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1975 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1976 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1977 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1978 
   1979 	p->p_md.md_flags &= ~MDP_FPUSED;
   1980 	if (fpcurproc == p)
   1981 		fpcurproc = NULL;
   1982 }
   1983 
   1984 void
   1985 netintr()
   1986 {
   1987 	int n, s;
   1988 
   1989 	s = splhigh();
   1990 	n = netisr;
   1991 	netisr = 0;
   1992 	splx(s);
   1993 
   1994 #define	DONETISR(bit, fn)						\
   1995 	do {								\
   1996 		if (n & (1 << (bit)))					\
   1997 			fn;						\
   1998 	} while (0)
   1999 
   2000 #ifdef INET
   2001 #if NARP > 0
   2002 	DONETISR(NETISR_ARP, arpintr());
   2003 #endif
   2004 	DONETISR(NETISR_IP, ipintr());
   2005 #endif
   2006 #ifdef NETATALK
   2007 	DONETISR(NETISR_ATALK, atintr());
   2008 #endif
   2009 #ifdef NS
   2010 	DONETISR(NETISR_NS, nsintr());
   2011 #endif
   2012 #ifdef ISO
   2013 	DONETISR(NETISR_ISO, clnlintr());
   2014 #endif
   2015 #ifdef CCITT
   2016 	DONETISR(NETISR_CCITT, ccittintr());
   2017 #endif
   2018 #ifdef NATM
   2019 	DONETISR(NETISR_NATM, natmintr());
   2020 #endif
   2021 #if NPPP > 1
   2022 	DONETISR(NETISR_PPP, pppintr());
   2023 #endif
   2024 
   2025 #undef DONETISR
   2026 }
   2027 
   2028 void
   2029 do_sir()
   2030 {
   2031 	u_int64_t n;
   2032 
   2033 	do {
   2034 		(void)splhigh();
   2035 		n = ssir;
   2036 		ssir = 0;
   2037 		splsoft();		/* don't recurse through spl0() */
   2038 
   2039 #if defined(UVM)
   2040 #define	COUNT_SOFT	uvmexp.softs++
   2041 #else
   2042 #define	COUNT_SOFT	cnt.v_soft++
   2043 #endif
   2044 
   2045 #define	DO_SIR(bit, fn)							\
   2046 		do {							\
   2047 			if (n & (bit)) {				\
   2048 				COUNT_SOFT;				\
   2049 				fn;					\
   2050 			}						\
   2051 		} while (0)
   2052 
   2053 		DO_SIR(SIR_NET, netintr());
   2054 		DO_SIR(SIR_CLOCK, softclock());
   2055 
   2056 #undef COUNT_SOFT
   2057 #undef DO_SIR
   2058 	} while (ssir != 0);
   2059 }
   2060 
   2061 int
   2062 spl0()
   2063 {
   2064 
   2065 	if (ssir)
   2066 		do_sir();		/* it lowers the IPL itself */
   2067 
   2068 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2069 }
   2070 
   2071 /*
   2072  * The following primitives manipulate the run queues.  _whichqs tells which
   2073  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2074  * into queues, Remrunqueue removes them from queues.  The running process is
   2075  * on no queue, other processes are on a queue related to p->p_priority,
   2076  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2077  * available queues.
   2078  */
   2079 /*
   2080  * setrunqueue(p)
   2081  *	proc *p;
   2082  *
   2083  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2084  */
   2085 
   2086 void
   2087 setrunqueue(p)
   2088 	struct proc *p;
   2089 {
   2090 	int bit;
   2091 
   2092 	/* firewall: p->p_back must be NULL */
   2093 	if (p->p_back != NULL)
   2094 		panic("setrunqueue");
   2095 
   2096 	bit = p->p_priority >> 2;
   2097 	whichqs |= (1 << bit);
   2098 	p->p_forw = (struct proc *)&qs[bit];
   2099 	p->p_back = qs[bit].ph_rlink;
   2100 	p->p_back->p_forw = p;
   2101 	qs[bit].ph_rlink = p;
   2102 }
   2103 
   2104 /*
   2105  * remrunqueue(p)
   2106  *
   2107  * Call should be made at splclock().
   2108  */
   2109 void
   2110 remrunqueue(p)
   2111 	struct proc *p;
   2112 {
   2113 	int bit;
   2114 
   2115 	bit = p->p_priority >> 2;
   2116 	if ((whichqs & (1 << bit)) == 0)
   2117 		panic("remrunqueue");
   2118 
   2119 	p->p_back->p_forw = p->p_forw;
   2120 	p->p_forw->p_back = p->p_back;
   2121 	p->p_back = NULL;	/* for firewall checking. */
   2122 
   2123 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2124 		whichqs &= ~(1 << bit);
   2125 }
   2126 
   2127 /*
   2128  * Return the best possible estimate of the time in the timeval
   2129  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2130  * We guarantee that the time will be greater than the value obtained by a
   2131  * previous call.
   2132  */
   2133 void
   2134 microtime(tvp)
   2135 	register struct timeval *tvp;
   2136 {
   2137 	int s = splclock();
   2138 	static struct timeval lasttime;
   2139 
   2140 	*tvp = time;
   2141 #ifdef notdef
   2142 	tvp->tv_usec += clkread();
   2143 	while (tvp->tv_usec > 1000000) {
   2144 		tvp->tv_sec++;
   2145 		tvp->tv_usec -= 1000000;
   2146 	}
   2147 #endif
   2148 	if (tvp->tv_sec == lasttime.tv_sec &&
   2149 	    tvp->tv_usec <= lasttime.tv_usec &&
   2150 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2151 		tvp->tv_sec++;
   2152 		tvp->tv_usec -= 1000000;
   2153 	}
   2154 	lasttime = *tvp;
   2155 	splx(s);
   2156 }
   2157 
   2158 /*
   2159  * Wait "n" microseconds.
   2160  */
   2161 void
   2162 delay(n)
   2163 	unsigned long n;
   2164 {
   2165 	long N = cycles_per_usec * (n);
   2166 
   2167 	while (N > 0)				/* XXX */
   2168 		N -= 3;				/* XXX */
   2169 }
   2170 
   2171 #if defined(COMPAT_OSF1) || 1		/* XXX */
   2172 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2173 	    u_long));
   2174 
   2175 void
   2176 cpu_exec_ecoff_setregs(p, epp, stack)
   2177 	struct proc *p;
   2178 	struct exec_package *epp;
   2179 	u_long stack;
   2180 {
   2181 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2182 
   2183 	setregs(p, epp, stack);
   2184 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2185 }
   2186 
   2187 /*
   2188  * cpu_exec_ecoff_hook():
   2189  *	cpu-dependent ECOFF format hook for execve().
   2190  *
   2191  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2192  *
   2193  */
   2194 int
   2195 cpu_exec_ecoff_hook(p, epp)
   2196 	struct proc *p;
   2197 	struct exec_package *epp;
   2198 {
   2199 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2200 	extern struct emul emul_netbsd;
   2201 #ifdef COMPAT_OSF1
   2202 	extern struct emul emul_osf1;
   2203 #endif
   2204 
   2205 	switch (execp->f.f_magic) {
   2206 #ifdef COMPAT_OSF1
   2207 	case ECOFF_MAGIC_ALPHA:
   2208 		epp->ep_emul = &emul_osf1;
   2209 		break;
   2210 #endif
   2211 
   2212 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2213 		epp->ep_emul = &emul_netbsd;
   2214 		break;
   2215 
   2216 	default:
   2217 		return ENOEXEC;
   2218 	}
   2219 	return 0;
   2220 }
   2221 #endif
   2222 
   2223 int
   2224 alpha_pa_access(pa)
   2225 	u_long pa;
   2226 {
   2227 	int i;
   2228 
   2229 	for (i = 0; i < mem_cluster_cnt; i++) {
   2230 		if (pa < mem_clusters[i].start)
   2231 			continue;
   2232 		if ((pa - mem_clusters[i].start) >=
   2233 		    (mem_clusters[i].size & ~PAGE_MASK))
   2234 			continue;
   2235 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2236 	}
   2237 	return (PROT_NONE);
   2238 }
   2239 
   2240 /* XXX XXX BEGIN XXX XXX */
   2241 vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   2242 								/* XXX */
   2243 vm_offset_t							/* XXX */
   2244 alpha_XXX_dmamap(v)						/* XXX */
   2245 	vm_offset_t v;						/* XXX */
   2246 {								/* XXX */
   2247 								/* XXX */
   2248 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2249 }								/* XXX */
   2250 /* XXX XXX END XXX XXX */
   2251