machdep.c revision 1.133 1 /* $NetBSD: machdep.c,v 1.133 1998/07/05 22:48:05 jonathan Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.133 1998/07/05 22:48:05 jonathan Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #ifdef REAL_CLISTS
95 #include <sys/clist.h>
96 #endif
97 #include <sys/callout.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/mman.h>
101 #include <sys/msgbuf.h>
102 #include <sys/ioctl.h>
103 #include <sys/tty.h>
104 #include <sys/user.h>
105 #include <sys/exec.h>
106 #include <sys/exec_ecoff.h>
107 #include <vm/vm.h>
108 #include <sys/sysctl.h>
109 #include <sys/core.h>
110 #include <sys/kcore.h>
111 #include <machine/kcore.h>
112 #ifdef SYSVMSG
113 #include <sys/msg.h>
114 #endif
115 #ifdef SYSVSEM
116 #include <sys/sem.h>
117 #endif
118 #ifdef SYSVSHM
119 #include <sys/shm.h>
120 #endif
121
122 #include <sys/mount.h>
123 #include <sys/syscallargs.h>
124
125 #include <vm/vm_kern.h>
126
127 #if defined(UVM)
128 #include <uvm/uvm_extern.h>
129 #endif
130
131 #include <dev/cons.h>
132
133 #include <machine/autoconf.h>
134 #include <machine/cpu.h>
135 #include <machine/reg.h>
136 #include <machine/rpb.h>
137 #include <machine/prom.h>
138 #include <machine/conf.h>
139
140 #include <net/netisr.h>
141 #include <net/if.h>
142
143 #ifdef INET
144 #include <net/route.h>
145 #include <netinet/in.h>
146 #include <netinet/ip_var.h>
147 #include "arp.h"
148 #if NARP > 0
149 #include <netinet/if_inarp.h>
150 #endif
151 #endif
152 #ifdef NS
153 #include <netns/ns_var.h>
154 #endif
155 #ifdef ISO
156 #include <netiso/iso.h>
157 #include <netiso/clnp.h>
158 #endif
159 #ifdef CCITT
160 #include <netccitt/x25.h>
161 #include <netccitt/pk.h>
162 #include <netccitt/pk_extern.h>
163 #endif
164 #ifdef NATM
165 #include <netnatm/natm.h>
166 #endif
167 #ifdef NETATALK
168 #include <netatalk/at_extern.h>
169 #endif
170 #include "ppp.h"
171 #if NPPP > 0
172 #include <net/ppp_defs.h>
173 #include <net/if_ppp.h>
174 #endif
175
176 #ifdef DDB
177 #include <machine/db_machdep.h>
178 #include <ddb/db_access.h>
179 #include <ddb/db_sym.h>
180 #include <ddb/db_extern.h>
181 #include <ddb/db_interface.h>
182 #endif
183
184 #if defined(UVM)
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188 #else
189 vm_map_t buffer_map;
190 #endif
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 int nswbuf = 0;
196 #ifdef NBUF
197 int nbuf = NBUF;
198 #else
199 int nbuf = 0;
200 #endif
201 #ifdef BUFPAGES
202 int bufpages = BUFPAGES;
203 #else
204 int bufpages = 0;
205 #endif
206 caddr_t msgbufaddr;
207
208 int maxmem; /* max memory per process */
209
210 int totalphysmem; /* total amount of physical memory in system */
211 int physmem; /* physical memory used by NetBSD + some rsvd */
212 int resvmem; /* amount of memory reserved for PROM */
213 int unusedmem; /* amount of memory for OS that we don't use */
214 int unknownmem; /* amount of memory with an unknown use */
215
216 int cputype; /* system type, from the RPB */
217
218 /*
219 * XXX We need an address to which we can assign things so that they
220 * won't be optimized away because we didn't use the value.
221 */
222 u_int32_t no_optimize;
223
224 /* the following is used externally (sysctl_hw) */
225 char machine[] = MACHINE; /* from <machine/param.h> */
226 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 char cpu_model[128];
228
229 struct user *proc0paddr;
230
231 /* Number of machine cycles per microsecond */
232 u_int64_t cycles_per_usec;
233
234 /* number of cpus in the box. really! */
235 int ncpus;
236
237 struct bootinfo_kernel bootinfo;
238
239 /* For built-in TCDS */
240 #if defined(DEC_3000_300) || defined(DEC_3000_500)
241 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
242 #endif
243
244 struct platform platform;
245
246 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
247 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
248 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
249
250 #ifdef DDB
251 /* start and end of kernel symbol table */
252 void *ksym_start, *ksym_end;
253 #endif
254
255 /* for cpu_sysctl() */
256 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
257 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
258 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
259
260 /*
261 * XXX This should be dynamically sized, but we have the chicken-egg problem!
262 * XXX it should also be larger than it is, because not all of the mddt
263 * XXX clusters end up being used for VM.
264 */
265 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
266 int mem_cluster_cnt;
267
268 caddr_t allocsys __P((caddr_t));
269 int cpu_dump __P((void));
270 int cpu_dumpsize __P((void));
271 u_long cpu_dump_mempagecnt __P((void));
272 void dumpsys __P((void));
273 void identifycpu __P((void));
274 void netintr __P((void));
275 void printregs __P((struct reg *));
276
277 void
278 alpha_init(pfn, ptb, bim, bip, biv)
279 u_long pfn; /* first free PFN number */
280 u_long ptb; /* PFN of current level 1 page table */
281 u_long bim; /* bootinfo magic */
282 u_long bip; /* bootinfo pointer */
283 u_long biv; /* bootinfo version */
284 {
285 extern char kernel_text[], _end[];
286 struct mddt *mddtp;
287 struct mddt_cluster *memc;
288 int i, mddtweird;
289 struct vm_physseg *vps;
290 vm_offset_t kernstart, kernend;
291 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
292 vm_size_t size;
293 char *p;
294 caddr_t v;
295 char *bootinfo_msg;
296
297 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
298
299 /*
300 * Turn off interrupts (not mchecks) and floating point.
301 * Make sure the instruction and data streams are consistent.
302 */
303 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
304 alpha_pal_wrfen(0);
305 ALPHA_TBIA();
306 alpha_pal_imb();
307
308 /*
309 * Get critical system information (if possible, from the
310 * information provided by the boot program).
311 */
312 bootinfo_msg = NULL;
313 if (bim == BOOTINFO_MAGIC) {
314 if (biv == 0) { /* backward compat */
315 biv = *(u_long *)bip;
316 bip += 8;
317 }
318 switch (biv) {
319 case 1: {
320 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
321
322 bootinfo.ssym = v1p->ssym;
323 bootinfo.esym = v1p->esym;
324 /* hwrpb may not be provided by boot block in v1 */
325 if (v1p->hwrpb != NULL) {
326 bootinfo.hwrpb_phys =
327 ((struct rpb *)v1p->hwrpb)->rpb_phys;
328 bootinfo.hwrpb_size = v1p->hwrpbsize;
329 } else {
330 bootinfo.hwrpb_phys =
331 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
332 bootinfo.hwrpb_size =
333 ((struct rpb *)HWRPB_ADDR)->rpb_size;
334 }
335 bcopy(v1p->boot_flags, bootinfo.boot_flags,
336 min(sizeof v1p->boot_flags,
337 sizeof bootinfo.boot_flags));
338 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
339 min(sizeof v1p->booted_kernel,
340 sizeof bootinfo.booted_kernel));
341 /* booted dev not provided in bootinfo */
342 init_prom_interface((struct rpb *)
343 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
344 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
345 sizeof bootinfo.booted_dev);
346 break;
347 }
348 default:
349 bootinfo_msg = "unknown bootinfo version";
350 goto nobootinfo;
351 }
352 } else {
353 bootinfo_msg = "boot program did not pass bootinfo";
354 nobootinfo:
355 bootinfo.ssym = (u_long)_end;
356 bootinfo.esym = (u_long)_end;
357 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
358 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
359 init_prom_interface((struct rpb *)HWRPB_ADDR);
360 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
361 sizeof bootinfo.boot_flags);
362 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
363 sizeof bootinfo.booted_kernel);
364 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
365 sizeof bootinfo.booted_dev);
366 }
367
368 /*
369 * Initialize the kernel's mapping of the RPB. It's needed for
370 * lots of things.
371 */
372 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
373
374 #if defined(DEC_3000_300) || defined(DEC_3000_500)
375 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
376 hwrpb->rpb_type == ST_DEC_3000_500) {
377 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
378 sizeof(dec_3000_scsiid));
379 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
380 sizeof(dec_3000_scsifast));
381 }
382 #endif
383
384 /*
385 * Remember how many cycles there are per microsecond,
386 * so that we can use delay(). Round up, for safety.
387 */
388 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
389
390 /*
391 * Initalize the (temporary) bootstrap console interface, so
392 * we can use printf until the VM system starts being setup.
393 * The real console is initialized before then.
394 */
395 init_bootstrap_console();
396
397 /* OUTPUT NOW ALLOWED */
398
399 /* delayed from above */
400 if (bootinfo_msg)
401 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
402 bootinfo_msg, bim, bip, biv);
403
404 /*
405 * Point interrupt/exception vectors to our own.
406 */
407 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
408 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
409 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
410 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
411 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
412 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
413
414 /*
415 * Clear pending machine checks and error reports, and enable
416 * system- and processor-correctable error reporting.
417 */
418 alpha_pal_wrmces(alpha_pal_rdmces() &
419 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
420
421 /*
422 * Find out what hardware we're on, and do basic initialization.
423 */
424 cputype = hwrpb->rpb_type;
425 if (cputype >= ncpuinit) {
426 platform_not_supported();
427 /* NOTREACHED */
428 }
429 (*cpuinit[cputype].init)();
430 strcpy(cpu_model, platform.model);
431
432 /*
433 * Initalize the real console, so the the bootstrap console is
434 * no longer necessary.
435 */
436 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
437 if (!pmap_uses_prom_console())
438 #endif
439 (*platform.cons_init)();
440
441 #ifdef DIAGNOSTIC
442 /* Paranoid sanity checking */
443
444 /* We should always be running on the the primary. */
445 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
446
447 /*
448 * On single-CPU systypes, the primary should always be CPU 0,
449 * except on Alpha 8200 systems where the CPU id is related
450 * to the VID, which is related to the Turbo Laser node id.
451 */
452 if (cputype != ST_DEC_21000)
453 assert(hwrpb->rpb_primary_cpu_id == 0);
454 #endif
455
456 /* NO MORE FIRMWARE ACCESS ALLOWED */
457 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
458 /*
459 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
460 * XXX pmap_uses_prom_console() evaluates to non-zero.)
461 */
462 #endif
463
464 /*
465 * find out this system's page size
466 */
467 PAGE_SIZE = hwrpb->rpb_page_size;
468 if (PAGE_SIZE != 8192)
469 panic("page size %d != 8192?!", PAGE_SIZE);
470
471 /*
472 * Initialize PAGE_SIZE-dependent variables.
473 */
474 #if defined(UVM)
475 uvm_setpagesize();
476 #else
477 vm_set_page_size();
478 #endif
479
480 /*
481 * Find the beginning and end of the kernel (and leave a
482 * bit of space before the beginning for the bootstrap
483 * stack).
484 */
485 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
486 #ifdef DDB
487 ksym_start = (void *)bootinfo.ssym;
488 ksym_end = (void *)bootinfo.esym;
489 kernend = (vm_offset_t)round_page(ksym_end);
490 #else
491 kernend = (vm_offset_t)round_page(_end);
492 #endif
493
494 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
495 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
496
497 /*
498 * Find out how much memory is available, by looking at
499 * the memory cluster descriptors. This also tries to do
500 * its best to detect things things that have never been seen
501 * before...
502 */
503 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
504
505 /* MDDT SANITY CHECKING */
506 mddtweird = 0;
507 if (mddtp->mddt_cluster_cnt < 2) {
508 mddtweird = 1;
509 printf("WARNING: weird number of mem clusters: %d\n",
510 mddtp->mddt_cluster_cnt);
511 }
512
513 #if 0
514 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
515 #endif
516
517 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
518 memc = &mddtp->mddt_clusters[i];
519 #if 0
520 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
521 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
522 #endif
523 totalphysmem += memc->mddt_pg_cnt;
524 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
525 mem_clusters[mem_cluster_cnt].start =
526 ptoa(memc->mddt_pfn);
527 mem_clusters[mem_cluster_cnt].size =
528 ptoa(memc->mddt_pg_cnt);
529 if (memc->mddt_usage & MDDT_mbz ||
530 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
531 memc->mddt_usage & MDDT_PALCODE)
532 mem_clusters[mem_cluster_cnt].size |=
533 PROT_READ;
534 else
535 mem_clusters[mem_cluster_cnt].size |=
536 PROT_READ | PROT_WRITE | PROT_EXEC;
537 mem_cluster_cnt++;
538 }
539
540 if (memc->mddt_usage & MDDT_mbz) {
541 mddtweird = 1;
542 printf("WARNING: mem cluster %d has weird "
543 "usage 0x%lx\n", i, memc->mddt_usage);
544 unknownmem += memc->mddt_pg_cnt;
545 continue;
546 }
547 if (memc->mddt_usage & MDDT_NONVOLATILE) {
548 /* XXX should handle these... */
549 printf("WARNING: skipping non-volatile mem "
550 "cluster %d\n", i);
551 unusedmem += memc->mddt_pg_cnt;
552 continue;
553 }
554 if (memc->mddt_usage & MDDT_PALCODE) {
555 resvmem += memc->mddt_pg_cnt;
556 continue;
557 }
558
559 /*
560 * We have a memory cluster available for system
561 * software use. We must determine if this cluster
562 * holds the kernel.
563 */
564 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
565 /*
566 * XXX If the kernel uses the PROM console, we only use the
567 * XXX memory after the kernel in the first system segment,
568 * XXX to avoid clobbering prom mapping, data, etc.
569 */
570 if (!pmap_uses_prom_console() || physmem == 0) {
571 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
572 physmem += memc->mddt_pg_cnt;
573 pfn0 = memc->mddt_pfn;
574 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
575 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
576 /*
577 * Must compute the location of the kernel
578 * within the segment.
579 */
580 #if 0
581 printf("Cluster %d contains kernel\n", i);
582 #endif
583 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
584 if (!pmap_uses_prom_console()) {
585 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
586 if (pfn0 < kernstartpfn) {
587 /*
588 * There is a chunk before the kernel.
589 */
590 #if 0
591 printf("Loading chunk before kernel: "
592 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
593 #endif
594 #if defined(UVM)
595 uvm_page_physload(pfn0, kernstartpfn,
596 pfn0, kernstartpfn);
597 #else
598 vm_page_physload(pfn0, kernstartpfn,
599 pfn0, kernstartpfn);
600 #endif
601 }
602 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
603 }
604 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
605 if (kernendpfn < pfn1) {
606 /*
607 * There is a chunk after the kernel.
608 */
609 #if 0
610 printf("Loading chunk after kernel: "
611 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
612 #endif
613 #if defined(UVM)
614 uvm_page_physload(kernendpfn, pfn1,
615 kernendpfn, pfn1);
616 #else
617 vm_page_physload(kernendpfn, pfn1,
618 kernendpfn, pfn1);
619 #endif
620 }
621 } else {
622 /*
623 * Just load this cluster as one chunk.
624 */
625 #if 0
626 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
627 pfn0, pfn1);
628 #endif
629 #if defined(UVM)
630 uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
631 #else
632 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
633 #endif
634 }
635 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
636 }
637 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
638 }
639
640 /*
641 * Dump out the MDDT if it looks odd...
642 */
643 if (mddtweird) {
644 printf("\n");
645 printf("complete memory cluster information:\n");
646 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
647 printf("mddt %d:\n", i);
648 printf("\tpfn %lx\n",
649 mddtp->mddt_clusters[i].mddt_pfn);
650 printf("\tcnt %lx\n",
651 mddtp->mddt_clusters[i].mddt_pg_cnt);
652 printf("\ttest %lx\n",
653 mddtp->mddt_clusters[i].mddt_pg_test);
654 printf("\tbva %lx\n",
655 mddtp->mddt_clusters[i].mddt_v_bitaddr);
656 printf("\tbpa %lx\n",
657 mddtp->mddt_clusters[i].mddt_p_bitaddr);
658 printf("\tbcksum %lx\n",
659 mddtp->mddt_clusters[i].mddt_bit_cksum);
660 printf("\tusage %lx\n",
661 mddtp->mddt_clusters[i].mddt_usage);
662 }
663 printf("\n");
664 }
665
666 if (totalphysmem == 0)
667 panic("can't happen: system seems to have no memory!");
668
669 #ifdef LIMITMEM
670 /*
671 * XXX Kludge so we can run on machines with memory larger
672 * XXX than 1G until all device drivers are converted to
673 * XXX use bus_dma. (Relies on the fact that vm_physmem
674 * XXX sorted in order of increasing addresses.)
675 */
676 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
677
678 printf("******** LIMITING MEMORY TO %dMB **********\n",
679 LIMITMEM);
680
681 do {
682 u_long ovf;
683
684 vps = &vm_physmem[vm_nphysseg - 1];
685
686 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
687 /*
688 * If the start is too high, just drop
689 * the whole segment.
690 *
691 * XXX can start != avail_start in this
692 * XXX case? wouldn't that mean that
693 * XXX some memory was stolen above the
694 * XXX limit? What to do?
695 */
696 ovf = vps->end - vps->start;
697 vm_nphysseg--;
698 } else {
699 /*
700 * If the start is OK, calculate how much
701 * to drop and drop it.
702 */
703 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
704 vps->end -= ovf;
705 vps->avail_end -= ovf;
706 }
707 physmem -= ovf;
708 unusedmem += ovf;
709 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
710 }
711 #endif /* LIMITMEM */
712
713 maxmem = physmem;
714
715 #if 0
716 printf("totalphysmem = %d\n", totalphysmem);
717 printf("physmem = %d\n", physmem);
718 printf("resvmem = %d\n", resvmem);
719 printf("unusedmem = %d\n", unusedmem);
720 printf("unknownmem = %d\n", unknownmem);
721 #endif
722
723 /*
724 * Adjust some parameters if the amount of physmem
725 * available would cause us to croak. This is completely
726 * eyeballed and isn't meant to be the final answer.
727 * vm_phys_size is probably the only one to really worry
728 * about.
729 *
730 * It's for booting a GENERIC kernel on a large memory platform.
731 */
732 if (physmem >= atop(128 * 1024 * 1024)) {
733 vm_mbuf_size <<= 1;
734 vm_kmem_size <<= 3;
735 vm_phys_size <<= 2;
736 }
737
738 /*
739 * Initialize error message buffer (at end of core).
740 */
741 {
742 size_t sz = round_page(MSGBUFSIZE);
743
744 vps = &vm_physmem[vm_nphysseg - 1];
745
746 /* shrink so that it'll fit in the last segment */
747 if ((vps->avail_end - vps->avail_start) < atop(sz))
748 sz = ptoa(vps->avail_end - vps->avail_start);
749
750 vps->end -= atop(sz);
751 vps->avail_end -= atop(sz);
752 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
753 initmsgbuf(msgbufaddr, sz);
754
755 /* Remove the last segment if it now has no pages. */
756 if (vps->start == vps->end)
757 vm_nphysseg--;
758
759 /* warn if the message buffer had to be shrunk */
760 if (sz != round_page(MSGBUFSIZE))
761 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
762 round_page(MSGBUFSIZE), sz);
763
764 }
765
766 /*
767 * Init mapping for u page(s) for proc 0
768 */
769 proc0.p_addr = proc0paddr =
770 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
771
772 /*
773 * Allocate space for system data structures. These data structures
774 * are allocated here instead of cpu_startup() because physical
775 * memory is directly addressable. We don't have to map these into
776 * virtual address space.
777 */
778 size = (vm_size_t)allocsys(0);
779 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
780 if ((allocsys(v) - v) != size)
781 panic("alpha_init: table size inconsistency");
782
783 /*
784 * Initialize the virtual memory system, and set the
785 * page table base register in proc 0's PCB.
786 */
787 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
788 hwrpb->rpb_max_asn);
789
790 /*
791 * Initialize the rest of proc 0's PCB, and cache its physical
792 * address.
793 */
794 proc0.p_md.md_pcbpaddr =
795 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
796
797 /*
798 * Set the kernel sp, reserving space for an (empty) trapframe,
799 * and make proc0's trapframe pointer point to it for sanity.
800 */
801 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
802 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
803 proc0.p_md.md_tf =
804 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
805
806 /*
807 * Look at arguments passed to us and compute boothowto.
808 */
809
810 boothowto = RB_SINGLE;
811 #ifdef KADB
812 boothowto |= RB_KDB;
813 #endif
814 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
815 /*
816 * Note that we'd really like to differentiate case here,
817 * but the Alpha AXP Architecture Reference Manual
818 * says that we shouldn't.
819 */
820 switch (*p) {
821 case 'a': /* autoboot */
822 case 'A':
823 boothowto &= ~RB_SINGLE;
824 break;
825
826 #ifdef DEBUG
827 case 'c': /* crash dump immediately after autoconfig */
828 case 'C':
829 boothowto |= RB_DUMP;
830 break;
831 #endif
832
833 #if defined(KGDB) || defined(DDB)
834 case 'd': /* break into the kernel debugger ASAP */
835 case 'D':
836 boothowto |= RB_KDB;
837 break;
838 #endif
839
840 case 'h': /* always halt, never reboot */
841 case 'H':
842 boothowto |= RB_HALT;
843 break;
844
845 #if 0
846 case 'm': /* mini root present in memory */
847 case 'M':
848 boothowto |= RB_MINIROOT;
849 break;
850 #endif
851
852 case 'n': /* askname */
853 case 'N':
854 boothowto |= RB_ASKNAME;
855 break;
856
857 case 's': /* single-user (default, supported for sanity) */
858 case 'S':
859 boothowto |= RB_SINGLE;
860 break;
861
862 case '-':
863 /*
864 * Just ignore this. It's not required, but it's
865 * common for it to be passed regardless.
866 */
867 break;
868
869 default:
870 printf("Unrecognized boot flag '%c'.\n", *p);
871 break;
872 }
873 }
874
875 /*
876 * Initialize debuggers, and break into them if appropriate.
877 */
878 #ifdef DDB
879 db_machine_init();
880 ddb_init(ksym_start, ksym_end);
881 if (boothowto & RB_KDB)
882 Debugger();
883 #endif
884 #ifdef KGDB
885 if (boothowto & RB_KDB)
886 kgdb_connect(0);
887 #endif
888
889 /*
890 * Figure out the number of cpus in the box, from RPB fields.
891 * Really. We mean it.
892 */
893 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
894 struct pcs *pcsp;
895
896 pcsp = LOCATE_PCS(hwrpb, i);
897 if ((pcsp->pcs_flags & PCS_PP) != 0)
898 ncpus++;
899 }
900
901 /*
902 * Figure out our clock frequency, from RPB fields.
903 */
904 hz = hwrpb->rpb_intr_freq >> 12;
905 if (!(60 <= hz && hz <= 10240)) {
906 hz = 1024;
907 #ifdef DIAGNOSTIC
908 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
909 hwrpb->rpb_intr_freq, hz);
910 #endif
911 }
912
913 }
914
915 /*
916 * Allocate space for system data structures. We are given
917 * a starting virtual address and we return a final virtual
918 * address; along the way we set each data structure pointer.
919 *
920 * We call allocsys() with 0 to find out how much space we want,
921 * allocate that much and fill it with zeroes, and the call
922 * allocsys() again with the correct base virtual address.
923 */
924 caddr_t
925 allocsys(v)
926 caddr_t v;
927 {
928
929 #define valloc(name, type, num) \
930 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
931 #ifdef REAL_CLISTS
932 valloc(cfree, struct cblock, nclist);
933 #endif
934 valloc(callout, struct callout, ncallout);
935 #ifdef SYSVSHM
936 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
937 #endif
938 #ifdef SYSVSEM
939 valloc(sema, struct semid_ds, seminfo.semmni);
940 valloc(sem, struct sem, seminfo.semmns);
941 /* This is pretty disgusting! */
942 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
943 #endif
944 #ifdef SYSVMSG
945 valloc(msgpool, char, msginfo.msgmax);
946 valloc(msgmaps, struct msgmap, msginfo.msgseg);
947 valloc(msghdrs, struct msg, msginfo.msgtql);
948 valloc(msqids, struct msqid_ds, msginfo.msgmni);
949 #endif
950
951 /*
952 * Determine how many buffers to allocate.
953 * We allocate 10% of memory for buffer space. Insure a
954 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
955 * headers as file i/o buffers.
956 */
957 if (bufpages == 0)
958 bufpages = (physmem * 10) / (CLSIZE * 100);
959 if (nbuf == 0) {
960 nbuf = bufpages;
961 if (nbuf < 16)
962 nbuf = 16;
963 }
964 if (nswbuf == 0) {
965 nswbuf = (nbuf / 2) &~ 1; /* force even */
966 if (nswbuf > 256)
967 nswbuf = 256; /* sanity */
968 }
969 #if !defined(UVM)
970 valloc(swbuf, struct buf, nswbuf);
971 #endif
972 valloc(buf, struct buf, nbuf);
973 return (v);
974 #undef valloc
975 }
976
977 void
978 consinit()
979 {
980
981 /*
982 * Everything related to console initialization is done
983 * in alpha_init().
984 */
985 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
986 printf("consinit: %susing prom console\n",
987 pmap_uses_prom_console() ? "" : "not ");
988 #endif
989 }
990
991 #include "pckbc.h"
992 #include "pckbd.h"
993 #if (NPCKBC > 0) && (NPCKBD == 0)
994
995 #include <machine/bus.h>
996 #include <dev/isa/pckbcvar.h>
997
998 /*
999 * This is called by the pbkbc driver if no pckbd is configured.
1000 * On the i386, it is used to glue in the old, deprecated console
1001 * code. On the Alpha, it does nothing.
1002 */
1003 int
1004 pckbc_machdep_cnattach(kbctag, kbcslot)
1005 pckbc_tag_t kbctag;
1006 pckbc_slot_t kbcslot;
1007 {
1008
1009 return (ENXIO);
1010 }
1011 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1012
1013 void
1014 cpu_startup()
1015 {
1016 register unsigned i;
1017 int base, residual;
1018 vm_offset_t minaddr, maxaddr;
1019 vm_size_t size;
1020 #if defined(DEBUG)
1021 extern int pmapdebug;
1022 int opmapdebug = pmapdebug;
1023
1024 pmapdebug = 0;
1025 #endif
1026
1027 /*
1028 * Good {morning,afternoon,evening,night}.
1029 */
1030 printf(version);
1031 identifycpu();
1032 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1033 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1034 if (unusedmem)
1035 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1036 if (unknownmem)
1037 printf("WARNING: %d bytes of memory with unknown purpose\n",
1038 ctob(unknownmem));
1039
1040 /*
1041 * Allocate virtual address space for file I/O buffers.
1042 * Note they are different than the array of headers, 'buf',
1043 * and usually occupy more virtual memory than physical.
1044 */
1045 size = MAXBSIZE * nbuf;
1046 #if defined(UVM)
1047 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1048 NULL, UVM_UNKNOWN_OFFSET,
1049 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1050 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1051 panic("startup: cannot allocate VM for buffers");
1052 #else
1053 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1054 &maxaddr, size, TRUE);
1055 minaddr = (vm_offset_t)buffers;
1056 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1057 &minaddr, size, FALSE) != KERN_SUCCESS)
1058 panic("startup: cannot allocate buffers");
1059 #endif /* UVM */
1060 base = bufpages / nbuf;
1061 residual = bufpages % nbuf;
1062 for (i = 0; i < nbuf; i++) {
1063 #if defined(UVM)
1064 vm_size_t curbufsize;
1065 vm_offset_t curbuf;
1066 struct vm_page *pg;
1067
1068 /*
1069 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1070 * that MAXBSIZE space, we allocate and map (base+1) pages
1071 * for the first "residual" buffers, and then we allocate
1072 * "base" pages for the rest.
1073 */
1074 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1075 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1076
1077 while (curbufsize) {
1078 pg = uvm_pagealloc(NULL, 0, NULL);
1079 if (pg == NULL)
1080 panic("cpu_startup: not enough memory for "
1081 "buffer cache");
1082 #if defined(PMAP_NEW)
1083 pmap_kenter_pgs(curbuf, &pg, 1);
1084 #else
1085 pmap_enter(kernel_map->pmap, curbuf,
1086 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1087 #endif
1088 curbuf += PAGE_SIZE;
1089 curbufsize -= PAGE_SIZE;
1090 }
1091 #else /* ! UVM */
1092 vm_size_t curbufsize;
1093 vm_offset_t curbuf;
1094
1095 /*
1096 * First <residual> buffers get (base+1) physical pages
1097 * allocated for them. The rest get (base) physical pages.
1098 *
1099 * The rest of each buffer occupies virtual space,
1100 * but has no physical memory allocated for it.
1101 */
1102 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1103 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1104 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1105 vm_map_simplify(buffer_map, curbuf);
1106 #endif /* UVM */
1107 }
1108 /*
1109 * Allocate a submap for exec arguments. This map effectively
1110 * limits the number of processes exec'ing at any time.
1111 */
1112 #if defined(UVM)
1113 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1114 16 * NCARGS, TRUE, FALSE, NULL);
1115 #else
1116 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1117 16 * NCARGS, TRUE);
1118 #endif
1119
1120 /*
1121 * Allocate a submap for physio
1122 */
1123 #if defined(UVM)
1124 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1125 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1126 #else
1127 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1128 VM_PHYS_SIZE, TRUE);
1129 #endif
1130
1131 /*
1132 * Finally, allocate mbuf cluster submap.
1133 */
1134 #if defined(UVM)
1135 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1136 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1137 #else
1138 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1139 VM_MBUF_SIZE, FALSE);
1140 #endif
1141 /*
1142 * Initialize callouts
1143 */
1144 callfree = callout;
1145 for (i = 1; i < ncallout; i++)
1146 callout[i-1].c_next = &callout[i];
1147 callout[i-1].c_next = NULL;
1148
1149 #if defined(DEBUG)
1150 pmapdebug = opmapdebug;
1151 #endif
1152 #if defined(UVM)
1153 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1154 #else
1155 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1156 #endif
1157 printf("using %ld buffers containing %ld bytes of memory\n",
1158 (long)nbuf, (long)(bufpages * CLBYTES));
1159
1160 /*
1161 * Set up buffers, so they can be used to read disk labels.
1162 */
1163 bufinit();
1164
1165 /*
1166 * Configure the system.
1167 */
1168 configure();
1169
1170 /*
1171 * Note that bootstrapping is finished, and set the HWRPB up
1172 * to do restarts.
1173 */
1174 hwrpb_restart_setup();
1175 }
1176
1177 /*
1178 * Retrieve the platform name from the DSR.
1179 */
1180 const char *
1181 alpha_dsr_sysname()
1182 {
1183 struct dsrdb *dsr;
1184 const char *sysname;
1185
1186 /*
1187 * DSR does not exist on early HWRPB versions.
1188 */
1189 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1190 return (NULL);
1191
1192 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1193 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1194 sizeof(u_int64_t)));
1195 return (sysname);
1196 }
1197
1198 /*
1199 * Lookup the system specified system variation in the provided table,
1200 * returning the model string on match.
1201 */
1202 const char *
1203 alpha_variation_name(variation, avtp)
1204 u_int64_t variation;
1205 const struct alpha_variation_table *avtp;
1206 {
1207 int i;
1208
1209 for (i = 0; avtp[i].avt_model != NULL; i++)
1210 if (avtp[i].avt_variation == variation)
1211 return (avtp[i].avt_model);
1212 return (NULL);
1213 }
1214
1215 /*
1216 * Generate a default platform name based for unknown system variations.
1217 */
1218 const char *
1219 alpha_unknown_sysname()
1220 {
1221 static char s[128]; /* safe size */
1222
1223 sprintf(s, "%s family, unknown model variation 0x%lx",
1224 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1225 return ((const char *)s);
1226 }
1227
1228 void
1229 identifycpu()
1230 {
1231
1232 /*
1233 * print out CPU identification information.
1234 */
1235 printf("%s, %ldMHz\n", cpu_model,
1236 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1237 printf("%ld byte page size, %d processor%s.\n",
1238 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1239 #if 0
1240 /* this isn't defined for any systems that we run on? */
1241 printf("serial number 0x%lx 0x%lx\n",
1242 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1243
1244 /* and these aren't particularly useful! */
1245 printf("variation: 0x%lx, revision 0x%lx\n",
1246 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1247 #endif
1248 }
1249
1250 int waittime = -1;
1251 struct pcb dumppcb;
1252
1253 void
1254 cpu_reboot(howto, bootstr)
1255 int howto;
1256 char *bootstr;
1257 {
1258 extern int cold;
1259
1260 /* If system is cold, just halt. */
1261 if (cold) {
1262 howto |= RB_HALT;
1263 goto haltsys;
1264 }
1265
1266 /* If "always halt" was specified as a boot flag, obey. */
1267 if ((boothowto & RB_HALT) != 0)
1268 howto |= RB_HALT;
1269
1270 boothowto = howto;
1271 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1272 waittime = 0;
1273 vfs_shutdown();
1274 /*
1275 * If we've been adjusting the clock, the todr
1276 * will be out of synch; adjust it now.
1277 */
1278 resettodr();
1279 }
1280
1281 /* Disable interrupts. */
1282 splhigh();
1283
1284 /* If rebooting and a dump is requested do it. */
1285 #if 0
1286 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1287 #else
1288 if (howto & RB_DUMP)
1289 #endif
1290 dumpsys();
1291
1292 haltsys:
1293
1294 /* run any shutdown hooks */
1295 doshutdownhooks();
1296
1297 #ifdef BOOTKEY
1298 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1299 cnpollc(1); /* for proper keyboard command handling */
1300 cngetc();
1301 cnpollc(0);
1302 printf("\n");
1303 #endif
1304
1305 /* Finally, powerdown/halt/reboot the system. */
1306 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1307 platform.powerdown != NULL) {
1308 (*platform.powerdown)();
1309 printf("WARNING: powerdown failed!\n");
1310 }
1311 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1312 prom_halt(howto & RB_HALT);
1313 /*NOTREACHED*/
1314 }
1315
1316 /*
1317 * These variables are needed by /sbin/savecore
1318 */
1319 u_long dumpmag = 0x8fca0101; /* magic number */
1320 int dumpsize = 0; /* pages */
1321 long dumplo = 0; /* blocks */
1322
1323 /*
1324 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1325 */
1326 int
1327 cpu_dumpsize()
1328 {
1329 int size;
1330
1331 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1332 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1333 if (roundup(size, dbtob(1)) != dbtob(1))
1334 return -1;
1335
1336 return (1);
1337 }
1338
1339 /*
1340 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1341 */
1342 u_long
1343 cpu_dump_mempagecnt()
1344 {
1345 u_long i, n;
1346
1347 n = 0;
1348 for (i = 0; i < mem_cluster_cnt; i++)
1349 n += atop(mem_clusters[i].size);
1350 return (n);
1351 }
1352
1353 /*
1354 * cpu_dump: dump machine-dependent kernel core dump headers.
1355 */
1356 int
1357 cpu_dump()
1358 {
1359 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1360 char buf[dbtob(1)];
1361 kcore_seg_t *segp;
1362 cpu_kcore_hdr_t *cpuhdrp;
1363 phys_ram_seg_t *memsegp;
1364 int i;
1365
1366 dump = bdevsw[major(dumpdev)].d_dump;
1367
1368 bzero(buf, sizeof buf);
1369 segp = (kcore_seg_t *)buf;
1370 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1371 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1372 ALIGN(sizeof(*cpuhdrp))];
1373
1374 /*
1375 * Generate a segment header.
1376 */
1377 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1378 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1379
1380 /*
1381 * Add the machine-dependent header info.
1382 */
1383 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1384 cpuhdrp->page_size = PAGE_SIZE;
1385 cpuhdrp->nmemsegs = mem_cluster_cnt;
1386
1387 /*
1388 * Fill in the memory segment descriptors.
1389 */
1390 for (i = 0; i < mem_cluster_cnt; i++) {
1391 memsegp[i].start = mem_clusters[i].start;
1392 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1393 }
1394
1395 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1396 }
1397
1398 /*
1399 * This is called by main to set dumplo and dumpsize.
1400 * Dumps always skip the first CLBYTES of disk space
1401 * in case there might be a disk label stored there.
1402 * If there is extra space, put dump at the end to
1403 * reduce the chance that swapping trashes it.
1404 */
1405 void
1406 cpu_dumpconf()
1407 {
1408 int nblks, dumpblks; /* size of dump area */
1409 int maj;
1410
1411 if (dumpdev == NODEV)
1412 goto bad;
1413 maj = major(dumpdev);
1414 if (maj < 0 || maj >= nblkdev)
1415 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1416 if (bdevsw[maj].d_psize == NULL)
1417 goto bad;
1418 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1419 if (nblks <= ctod(1))
1420 goto bad;
1421
1422 dumpblks = cpu_dumpsize();
1423 if (dumpblks < 0)
1424 goto bad;
1425 dumpblks += ctod(cpu_dump_mempagecnt());
1426
1427 /* If dump won't fit (incl. room for possible label), punt. */
1428 if (dumpblks > (nblks - ctod(1)))
1429 goto bad;
1430
1431 /* Put dump at end of partition */
1432 dumplo = nblks - dumpblks;
1433
1434 /* dumpsize is in page units, and doesn't include headers. */
1435 dumpsize = cpu_dump_mempagecnt();
1436 return;
1437
1438 bad:
1439 dumpsize = 0;
1440 return;
1441 }
1442
1443 /*
1444 * Dump the kernel's image to the swap partition.
1445 */
1446 #define BYTES_PER_DUMP NBPG
1447
1448 void
1449 dumpsys()
1450 {
1451 u_long totalbytesleft, bytes, i, n, memcl;
1452 u_long maddr;
1453 int psize;
1454 daddr_t blkno;
1455 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1456 int error;
1457
1458 /* Save registers. */
1459 savectx(&dumppcb);
1460
1461 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1462 if (dumpdev == NODEV)
1463 return;
1464
1465 /*
1466 * For dumps during autoconfiguration,
1467 * if dump device has already configured...
1468 */
1469 if (dumpsize == 0)
1470 cpu_dumpconf();
1471 if (dumplo <= 0) {
1472 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1473 minor(dumpdev));
1474 return;
1475 }
1476 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1477 minor(dumpdev), dumplo);
1478
1479 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1480 printf("dump ");
1481 if (psize == -1) {
1482 printf("area unavailable\n");
1483 return;
1484 }
1485
1486 /* XXX should purge all outstanding keystrokes. */
1487
1488 if ((error = cpu_dump()) != 0)
1489 goto err;
1490
1491 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1492 blkno = dumplo + cpu_dumpsize();
1493 dump = bdevsw[major(dumpdev)].d_dump;
1494 error = 0;
1495
1496 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1497 maddr = mem_clusters[memcl].start;
1498 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1499
1500 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1501
1502 /* Print out how many MBs we to go. */
1503 if ((totalbytesleft % (1024*1024)) == 0)
1504 printf("%d ", totalbytesleft / (1024 * 1024));
1505
1506 /* Limit size for next transfer. */
1507 n = bytes - i;
1508 if (n > BYTES_PER_DUMP)
1509 n = BYTES_PER_DUMP;
1510
1511 error = (*dump)(dumpdev, blkno,
1512 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1513 if (error)
1514 goto err;
1515 maddr += n;
1516 blkno += btodb(n); /* XXX? */
1517
1518 /* XXX should look for keystrokes, to cancel. */
1519 }
1520 }
1521
1522 err:
1523 switch (error) {
1524
1525 case ENXIO:
1526 printf("device bad\n");
1527 break;
1528
1529 case EFAULT:
1530 printf("device not ready\n");
1531 break;
1532
1533 case EINVAL:
1534 printf("area improper\n");
1535 break;
1536
1537 case EIO:
1538 printf("i/o error\n");
1539 break;
1540
1541 case EINTR:
1542 printf("aborted from console\n");
1543 break;
1544
1545 case 0:
1546 printf("succeeded\n");
1547 break;
1548
1549 default:
1550 printf("error %d\n", error);
1551 break;
1552 }
1553 printf("\n\n");
1554 delay(1000);
1555 }
1556
1557 void
1558 frametoreg(framep, regp)
1559 struct trapframe *framep;
1560 struct reg *regp;
1561 {
1562
1563 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1564 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1565 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1566 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1567 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1568 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1569 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1570 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1571 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1572 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1573 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1574 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1575 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1576 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1577 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1578 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1579 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1580 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1581 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1582 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1583 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1584 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1585 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1586 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1587 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1588 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1589 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1590 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1591 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1592 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1593 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1594 regp->r_regs[R_ZERO] = 0;
1595 }
1596
1597 void
1598 regtoframe(regp, framep)
1599 struct reg *regp;
1600 struct trapframe *framep;
1601 {
1602
1603 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1604 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1605 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1606 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1607 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1608 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1609 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1610 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1611 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1612 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1613 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1614 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1615 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1616 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1617 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1618 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1619 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1620 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1621 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1622 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1623 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1624 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1625 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1626 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1627 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1628 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1629 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1630 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1631 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1632 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1633 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1634 /* ??? = regp->r_regs[R_ZERO]; */
1635 }
1636
1637 void
1638 printregs(regp)
1639 struct reg *regp;
1640 {
1641 int i;
1642
1643 for (i = 0; i < 32; i++)
1644 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1645 i & 1 ? "\n" : "\t");
1646 }
1647
1648 void
1649 regdump(framep)
1650 struct trapframe *framep;
1651 {
1652 struct reg reg;
1653
1654 frametoreg(framep, ®);
1655 reg.r_regs[R_SP] = alpha_pal_rdusp();
1656
1657 printf("REGISTERS:\n");
1658 printregs(®);
1659 }
1660
1661 #ifdef DEBUG
1662 int sigdebug = 0;
1663 int sigpid = 0;
1664 #define SDB_FOLLOW 0x01
1665 #define SDB_KSTACK 0x02
1666 #endif
1667
1668 /*
1669 * Send an interrupt to process.
1670 */
1671 void
1672 sendsig(catcher, sig, mask, code)
1673 sig_t catcher;
1674 int sig, mask;
1675 u_long code;
1676 {
1677 struct proc *p = curproc;
1678 struct sigcontext *scp, ksc;
1679 struct trapframe *frame;
1680 struct sigacts *psp = p->p_sigacts;
1681 int oonstack, fsize, rndfsize;
1682 extern char sigcode[], esigcode[];
1683 extern struct proc *fpcurproc;
1684
1685 frame = p->p_md.md_tf;
1686 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1687 fsize = sizeof ksc;
1688 rndfsize = ((fsize + 15) / 16) * 16;
1689 /*
1690 * Allocate and validate space for the signal handler
1691 * context. Note that if the stack is in P0 space, the
1692 * call to grow() is a nop, and the useracc() check
1693 * will fail if the process has not already allocated
1694 * the space with a `brk'.
1695 */
1696 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1697 (psp->ps_sigonstack & sigmask(sig))) {
1698 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1699 psp->ps_sigstk.ss_size - rndfsize);
1700 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1701 } else
1702 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1703 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1704 #if defined(UVM)
1705 (void)uvm_grow(p, (u_long)scp);
1706 #else
1707 (void)grow(p, (u_long)scp);
1708 #endif
1709 #ifdef DEBUG
1710 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1711 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1712 sig, &oonstack, scp);
1713 #endif
1714 #if defined(UVM)
1715 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1716 #else
1717 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1718 #endif
1719 #ifdef DEBUG
1720 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1721 printf("sendsig(%d): useracc failed on sig %d\n",
1722 p->p_pid, sig);
1723 #endif
1724 /*
1725 * Process has trashed its stack; give it an illegal
1726 * instruction to halt it in its tracks.
1727 */
1728 SIGACTION(p, SIGILL) = SIG_DFL;
1729 sig = sigmask(SIGILL);
1730 p->p_sigignore &= ~sig;
1731 p->p_sigcatch &= ~sig;
1732 p->p_sigmask &= ~sig;
1733 psignal(p, SIGILL);
1734 return;
1735 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1736 }
1737 #else
1738 }
1739 #endif
1740
1741 /*
1742 * Build the signal context to be used by sigreturn.
1743 */
1744 ksc.sc_onstack = oonstack;
1745 ksc.sc_mask = mask;
1746 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1747 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1748
1749 /* copy the registers. */
1750 frametoreg(frame, (struct reg *)ksc.sc_regs);
1751 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1752 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1753
1754 /* save the floating-point state, if necessary, then copy it. */
1755 if (p == fpcurproc) {
1756 alpha_pal_wrfen(1);
1757 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1758 alpha_pal_wrfen(0);
1759 fpcurproc = NULL;
1760 }
1761 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1762 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1763 sizeof(struct fpreg));
1764 ksc.sc_fp_control = 0; /* XXX ? */
1765 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1766 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1767
1768
1769 #ifdef COMPAT_OSF1
1770 /*
1771 * XXX Create an OSF/1-style sigcontext and associated goo.
1772 */
1773 #endif
1774
1775 /*
1776 * copy the frame out to userland.
1777 */
1778 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1779 #ifdef DEBUG
1780 if (sigdebug & SDB_FOLLOW)
1781 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1782 scp, code);
1783 #endif
1784
1785 /*
1786 * Set up the registers to return to sigcode.
1787 */
1788 frame->tf_regs[FRAME_PC] =
1789 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1790 frame->tf_regs[FRAME_A0] = sig;
1791 frame->tf_regs[FRAME_A1] = code;
1792 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1793 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1794 alpha_pal_wrusp((unsigned long)scp);
1795
1796 #ifdef DEBUG
1797 if (sigdebug & SDB_FOLLOW)
1798 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1799 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1800 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1801 printf("sendsig(%d): sig %d returns\n",
1802 p->p_pid, sig);
1803 #endif
1804 }
1805
1806 /*
1807 * System call to cleanup state after a signal
1808 * has been taken. Reset signal mask and
1809 * stack state from context left by sendsig (above).
1810 * Return to previous pc and psl as specified by
1811 * context left by sendsig. Check carefully to
1812 * make sure that the user has not modified the
1813 * psl to gain improper priviledges or to cause
1814 * a machine fault.
1815 */
1816 /* ARGSUSED */
1817 int
1818 sys_sigreturn(p, v, retval)
1819 struct proc *p;
1820 void *v;
1821 register_t *retval;
1822 {
1823 struct sys_sigreturn_args /* {
1824 syscallarg(struct sigcontext *) sigcntxp;
1825 } */ *uap = v;
1826 struct sigcontext *scp, ksc;
1827 extern struct proc *fpcurproc;
1828
1829 scp = SCARG(uap, sigcntxp);
1830 #ifdef DEBUG
1831 if (sigdebug & SDB_FOLLOW)
1832 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1833 #endif
1834
1835 if (ALIGN(scp) != (u_int64_t)scp)
1836 return (EINVAL);
1837
1838 /*
1839 * Test and fetch the context structure.
1840 * We grab it all at once for speed.
1841 */
1842 #if defined(UVM)
1843 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1844 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1845 return (EINVAL);
1846 #else
1847 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1848 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1849 return (EINVAL);
1850 #endif
1851
1852 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1853 return (EINVAL);
1854 /*
1855 * Restore the user-supplied information
1856 */
1857 if (ksc.sc_onstack)
1858 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1859 else
1860 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1861 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1862
1863 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1864 p->p_md.md_tf->tf_regs[FRAME_PS] =
1865 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1866
1867 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1868 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1869
1870 /* XXX ksc.sc_ownedfp ? */
1871 if (p == fpcurproc)
1872 fpcurproc = NULL;
1873 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1874 sizeof(struct fpreg));
1875 /* XXX ksc.sc_fp_control ? */
1876
1877 #ifdef DEBUG
1878 if (sigdebug & SDB_FOLLOW)
1879 printf("sigreturn(%d): returns\n", p->p_pid);
1880 #endif
1881 return (EJUSTRETURN);
1882 }
1883
1884 /*
1885 * machine dependent system variables.
1886 */
1887 int
1888 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1889 int *name;
1890 u_int namelen;
1891 void *oldp;
1892 size_t *oldlenp;
1893 void *newp;
1894 size_t newlen;
1895 struct proc *p;
1896 {
1897 dev_t consdev;
1898
1899 /* all sysctl names at this level are terminal */
1900 if (namelen != 1)
1901 return (ENOTDIR); /* overloaded */
1902
1903 switch (name[0]) {
1904 case CPU_CONSDEV:
1905 if (cn_tab != NULL)
1906 consdev = cn_tab->cn_dev;
1907 else
1908 consdev = NODEV;
1909 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1910 sizeof consdev));
1911
1912 case CPU_ROOT_DEVICE:
1913 return (sysctl_rdstring(oldp, oldlenp, newp,
1914 root_device->dv_xname));
1915
1916 case CPU_UNALIGNED_PRINT:
1917 return (sysctl_int(oldp, oldlenp, newp, newlen,
1918 &alpha_unaligned_print));
1919
1920 case CPU_UNALIGNED_FIX:
1921 return (sysctl_int(oldp, oldlenp, newp, newlen,
1922 &alpha_unaligned_fix));
1923
1924 case CPU_UNALIGNED_SIGBUS:
1925 return (sysctl_int(oldp, oldlenp, newp, newlen,
1926 &alpha_unaligned_sigbus));
1927
1928 case CPU_BOOTED_KERNEL:
1929 return (sysctl_rdstring(oldp, oldlenp, newp,
1930 bootinfo.booted_kernel));
1931
1932 default:
1933 return (EOPNOTSUPP);
1934 }
1935 /* NOTREACHED */
1936 }
1937
1938 /*
1939 * Set registers on exec.
1940 */
1941 void
1942 setregs(p, pack, stack)
1943 register struct proc *p;
1944 struct exec_package *pack;
1945 u_long stack;
1946 {
1947 struct trapframe *tfp = p->p_md.md_tf;
1948 extern struct proc *fpcurproc;
1949 #ifdef DEBUG
1950 int i;
1951 #endif
1952
1953 #ifdef DEBUG
1954 /*
1955 * Crash and dump, if the user requested it.
1956 */
1957 if (boothowto & RB_DUMP)
1958 panic("crash requested by boot flags");
1959 #endif
1960
1961 #ifdef DEBUG
1962 for (i = 0; i < FRAME_SIZE; i++)
1963 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1964 #else
1965 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1966 #endif
1967 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1968 #define FP_RN 2 /* XXX */
1969 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1970 alpha_pal_wrusp(stack);
1971 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1972 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1973
1974 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1975 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1976 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1977 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1978 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1979
1980 p->p_md.md_flags &= ~MDP_FPUSED;
1981 if (fpcurproc == p)
1982 fpcurproc = NULL;
1983 }
1984
1985 void
1986 netintr()
1987 {
1988 int n, s;
1989
1990 s = splhigh();
1991 n = netisr;
1992 netisr = 0;
1993 splx(s);
1994
1995 #define DONETISR(bit, fn) \
1996 do { \
1997 if (n & (1 << (bit))) \
1998 fn; \
1999 } while (0)
2000
2001 #ifdef INET
2002 #if NARP > 0
2003 DONETISR(NETISR_ARP, arpintr());
2004 #endif
2005 DONETISR(NETISR_IP, ipintr());
2006 #endif
2007 #ifdef NETATALK
2008 DONETISR(NETISR_ATALK, atintr());
2009 #endif
2010 #ifdef NS
2011 DONETISR(NETISR_NS, nsintr());
2012 #endif
2013 #ifdef ISO
2014 DONETISR(NETISR_ISO, clnlintr());
2015 #endif
2016 #ifdef CCITT
2017 DONETISR(NETISR_CCITT, ccittintr());
2018 #endif
2019 #ifdef NATM
2020 DONETISR(NETISR_NATM, natmintr());
2021 #endif
2022 #if NPPP > 1
2023 DONETISR(NETISR_PPP, pppintr());
2024 #endif
2025
2026 #undef DONETISR
2027 }
2028
2029 void
2030 do_sir()
2031 {
2032 u_int64_t n;
2033
2034 do {
2035 (void)splhigh();
2036 n = ssir;
2037 ssir = 0;
2038 splsoft(); /* don't recurse through spl0() */
2039
2040 #if defined(UVM)
2041 #define COUNT_SOFT uvmexp.softs++
2042 #else
2043 #define COUNT_SOFT cnt.v_soft++
2044 #endif
2045
2046 #define DO_SIR(bit, fn) \
2047 do { \
2048 if (n & (bit)) { \
2049 COUNT_SOFT; \
2050 fn; \
2051 } \
2052 } while (0)
2053
2054 DO_SIR(SIR_NET, netintr());
2055 DO_SIR(SIR_CLOCK, softclock());
2056
2057 #undef COUNT_SOFT
2058 #undef DO_SIR
2059 } while (ssir != 0);
2060 }
2061
2062 int
2063 spl0()
2064 {
2065
2066 if (ssir)
2067 do_sir(); /* it lowers the IPL itself */
2068
2069 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2070 }
2071
2072 /*
2073 * The following primitives manipulate the run queues. _whichqs tells which
2074 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2075 * into queues, Remrunqueue removes them from queues. The running process is
2076 * on no queue, other processes are on a queue related to p->p_priority,
2077 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2078 * available queues.
2079 */
2080 /*
2081 * setrunqueue(p)
2082 * proc *p;
2083 *
2084 * Call should be made at splclock(), and p->p_stat should be SRUN.
2085 */
2086
2087 void
2088 setrunqueue(p)
2089 struct proc *p;
2090 {
2091 int bit;
2092
2093 /* firewall: p->p_back must be NULL */
2094 if (p->p_back != NULL)
2095 panic("setrunqueue");
2096
2097 bit = p->p_priority >> 2;
2098 whichqs |= (1 << bit);
2099 p->p_forw = (struct proc *)&qs[bit];
2100 p->p_back = qs[bit].ph_rlink;
2101 p->p_back->p_forw = p;
2102 qs[bit].ph_rlink = p;
2103 }
2104
2105 /*
2106 * remrunqueue(p)
2107 *
2108 * Call should be made at splclock().
2109 */
2110 void
2111 remrunqueue(p)
2112 struct proc *p;
2113 {
2114 int bit;
2115
2116 bit = p->p_priority >> 2;
2117 if ((whichqs & (1 << bit)) == 0)
2118 panic("remrunqueue");
2119
2120 p->p_back->p_forw = p->p_forw;
2121 p->p_forw->p_back = p->p_back;
2122 p->p_back = NULL; /* for firewall checking. */
2123
2124 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2125 whichqs &= ~(1 << bit);
2126 }
2127
2128 /*
2129 * Return the best possible estimate of the time in the timeval
2130 * to which tvp points. Unfortunately, we can't read the hardware registers.
2131 * We guarantee that the time will be greater than the value obtained by a
2132 * previous call.
2133 */
2134 void
2135 microtime(tvp)
2136 register struct timeval *tvp;
2137 {
2138 int s = splclock();
2139 static struct timeval lasttime;
2140
2141 *tvp = time;
2142 #ifdef notdef
2143 tvp->tv_usec += clkread();
2144 while (tvp->tv_usec > 1000000) {
2145 tvp->tv_sec++;
2146 tvp->tv_usec -= 1000000;
2147 }
2148 #endif
2149 if (tvp->tv_sec == lasttime.tv_sec &&
2150 tvp->tv_usec <= lasttime.tv_usec &&
2151 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2152 tvp->tv_sec++;
2153 tvp->tv_usec -= 1000000;
2154 }
2155 lasttime = *tvp;
2156 splx(s);
2157 }
2158
2159 /*
2160 * Wait "n" microseconds.
2161 */
2162 void
2163 delay(n)
2164 unsigned long n;
2165 {
2166 long N = cycles_per_usec * (n);
2167
2168 while (N > 0) /* XXX */
2169 N -= 3; /* XXX */
2170 }
2171
2172 #if defined(COMPAT_OSF1) || 1 /* XXX */
2173 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2174 u_long));
2175
2176 void
2177 cpu_exec_ecoff_setregs(p, epp, stack)
2178 struct proc *p;
2179 struct exec_package *epp;
2180 u_long stack;
2181 {
2182 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2183
2184 setregs(p, epp, stack);
2185 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2186 }
2187
2188 /*
2189 * cpu_exec_ecoff_hook():
2190 * cpu-dependent ECOFF format hook for execve().
2191 *
2192 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2193 *
2194 */
2195 int
2196 cpu_exec_ecoff_hook(p, epp)
2197 struct proc *p;
2198 struct exec_package *epp;
2199 {
2200 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2201 extern struct emul emul_netbsd;
2202 #ifdef COMPAT_OSF1
2203 extern struct emul emul_osf1;
2204 #endif
2205
2206 switch (execp->f.f_magic) {
2207 #ifdef COMPAT_OSF1
2208 case ECOFF_MAGIC_ALPHA:
2209 epp->ep_emul = &emul_osf1;
2210 break;
2211 #endif
2212
2213 case ECOFF_MAGIC_NETBSD_ALPHA:
2214 epp->ep_emul = &emul_netbsd;
2215 break;
2216
2217 default:
2218 return ENOEXEC;
2219 }
2220 return 0;
2221 }
2222 #endif
2223
2224 int
2225 alpha_pa_access(pa)
2226 u_long pa;
2227 {
2228 int i;
2229
2230 for (i = 0; i < mem_cluster_cnt; i++) {
2231 if (pa < mem_clusters[i].start)
2232 continue;
2233 if ((pa - mem_clusters[i].start) >=
2234 (mem_clusters[i].size & ~PAGE_MASK))
2235 continue;
2236 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2237 }
2238 return (PROT_NONE);
2239 }
2240
2241 /* XXX XXX BEGIN XXX XXX */
2242 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2243 /* XXX */
2244 vm_offset_t /* XXX */
2245 alpha_XXX_dmamap(v) /* XXX */
2246 vm_offset_t v; /* XXX */
2247 { /* XXX */
2248 /* XXX */
2249 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2250 } /* XXX */
2251 /* XXX XXX END XXX XXX */
2252