machdep.c revision 1.134 1 /* $NetBSD: machdep.c,v 1.134 1998/07/08 00:41:32 mjacob Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.134 1998/07/08 00:41:32 mjacob Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #ifdef REAL_CLISTS
95 #include <sys/clist.h>
96 #endif
97 #include <sys/callout.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/mman.h>
101 #include <sys/msgbuf.h>
102 #include <sys/ioctl.h>
103 #include <sys/tty.h>
104 #include <sys/user.h>
105 #include <sys/exec.h>
106 #include <sys/exec_ecoff.h>
107 #include <vm/vm.h>
108 #include <sys/sysctl.h>
109 #include <sys/core.h>
110 #include <sys/kcore.h>
111 #include <machine/kcore.h>
112 #ifdef SYSVMSG
113 #include <sys/msg.h>
114 #endif
115 #ifdef SYSVSEM
116 #include <sys/sem.h>
117 #endif
118 #ifdef SYSVSHM
119 #include <sys/shm.h>
120 #endif
121
122 #include <sys/mount.h>
123 #include <sys/syscallargs.h>
124
125 #include <vm/vm_kern.h>
126
127 #if defined(UVM)
128 #include <uvm/uvm_extern.h>
129 #endif
130
131 #include <dev/cons.h>
132
133 #include <machine/autoconf.h>
134 #include <machine/cpu.h>
135 #include <machine/reg.h>
136 #include <machine/rpb.h>
137 #include <machine/prom.h>
138 #include <machine/conf.h>
139
140 #include <net/netisr.h>
141 #include <net/if.h>
142
143 #ifdef INET
144 #include <net/route.h>
145 #include <netinet/in.h>
146 #include <netinet/ip_var.h>
147 #include "arp.h"
148 #if NARP > 0
149 #include <netinet/if_inarp.h>
150 #endif
151 #endif
152 #ifdef NS
153 #include <netns/ns_var.h>
154 #endif
155 #ifdef ISO
156 #include <netiso/iso.h>
157 #include <netiso/clnp.h>
158 #endif
159 #ifdef CCITT
160 #include <netccitt/x25.h>
161 #include <netccitt/pk.h>
162 #include <netccitt/pk_extern.h>
163 #endif
164 #ifdef NATM
165 #include <netnatm/natm.h>
166 #endif
167 #ifdef NETATALK
168 #include <netatalk/at_extern.h>
169 #endif
170 #include "ppp.h"
171 #if NPPP > 0
172 #include <net/ppp_defs.h>
173 #include <net/if_ppp.h>
174 #endif
175
176 #ifdef DDB
177 #include <machine/db_machdep.h>
178 #include <ddb/db_access.h>
179 #include <ddb/db_sym.h>
180 #include <ddb/db_extern.h>
181 #include <ddb/db_interface.h>
182 #endif
183
184 #if defined(UVM)
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188 #else
189 vm_map_t buffer_map;
190 #endif
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 int nswbuf = 0;
196 #ifdef NBUF
197 int nbuf = NBUF;
198 #else
199 int nbuf = 0;
200 #endif
201 #ifdef BUFPAGES
202 int bufpages = BUFPAGES;
203 #else
204 int bufpages = 0;
205 #endif
206 caddr_t msgbufaddr;
207
208 int maxmem; /* max memory per process */
209
210 int totalphysmem; /* total amount of physical memory in system */
211 int physmem; /* physical memory used by NetBSD + some rsvd */
212 int resvmem; /* amount of memory reserved for PROM */
213 int unusedmem; /* amount of memory for OS that we don't use */
214 int unknownmem; /* amount of memory with an unknown use */
215
216 int cputype; /* system type, from the RPB */
217
218 /*
219 * XXX We need an address to which we can assign things so that they
220 * won't be optimized away because we didn't use the value.
221 */
222 u_int32_t no_optimize;
223
224 /* the following is used externally (sysctl_hw) */
225 char machine[] = MACHINE; /* from <machine/param.h> */
226 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 char cpu_model[128];
228
229 struct user *proc0paddr;
230
231 /* Number of machine cycles per microsecond */
232 u_int64_t cycles_per_usec;
233
234 /* number of cpus in the box. really! */
235 int ncpus;
236
237 /* machine check info array, fleshed out in allocsys */
238 struct mchkinfo *mchkinfo;
239
240 struct bootinfo_kernel bootinfo;
241
242 /* For built-in TCDS */
243 #if defined(DEC_3000_300) || defined(DEC_3000_500)
244 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
245 #endif
246
247 struct platform platform;
248
249 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
250 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
251 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
252
253 #ifdef DDB
254 /* start and end of kernel symbol table */
255 void *ksym_start, *ksym_end;
256 #endif
257
258 /* for cpu_sysctl() */
259 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
260 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
261 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
262
263 /*
264 * XXX This should be dynamically sized, but we have the chicken-egg problem!
265 * XXX it should also be larger than it is, because not all of the mddt
266 * XXX clusters end up being used for VM.
267 */
268 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
269 int mem_cluster_cnt;
270
271 caddr_t allocsys __P((caddr_t));
272 int cpu_dump __P((void));
273 int cpu_dumpsize __P((void));
274 u_long cpu_dump_mempagecnt __P((void));
275 void dumpsys __P((void));
276 void identifycpu __P((void));
277 void netintr __P((void));
278 void printregs __P((struct reg *));
279
280 void
281 alpha_init(pfn, ptb, bim, bip, biv)
282 u_long pfn; /* first free PFN number */
283 u_long ptb; /* PFN of current level 1 page table */
284 u_long bim; /* bootinfo magic */
285 u_long bip; /* bootinfo pointer */
286 u_long biv; /* bootinfo version */
287 {
288 extern char kernel_text[], _end[];
289 struct mddt *mddtp;
290 struct mddt_cluster *memc;
291 int i, mddtweird;
292 struct vm_physseg *vps;
293 vm_offset_t kernstart, kernend;
294 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
295 vm_size_t size;
296 char *p;
297 caddr_t v;
298 char *bootinfo_msg;
299
300 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
301
302 /*
303 * Turn off interrupts (not mchecks) and floating point.
304 * Make sure the instruction and data streams are consistent.
305 */
306 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
307 alpha_pal_wrfen(0);
308 ALPHA_TBIA();
309 alpha_pal_imb();
310
311 /*
312 * Get critical system information (if possible, from the
313 * information provided by the boot program).
314 */
315 bootinfo_msg = NULL;
316 if (bim == BOOTINFO_MAGIC) {
317 if (biv == 0) { /* backward compat */
318 biv = *(u_long *)bip;
319 bip += 8;
320 }
321 switch (biv) {
322 case 1: {
323 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
324
325 bootinfo.ssym = v1p->ssym;
326 bootinfo.esym = v1p->esym;
327 /* hwrpb may not be provided by boot block in v1 */
328 if (v1p->hwrpb != NULL) {
329 bootinfo.hwrpb_phys =
330 ((struct rpb *)v1p->hwrpb)->rpb_phys;
331 bootinfo.hwrpb_size = v1p->hwrpbsize;
332 } else {
333 bootinfo.hwrpb_phys =
334 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
335 bootinfo.hwrpb_size =
336 ((struct rpb *)HWRPB_ADDR)->rpb_size;
337 }
338 bcopy(v1p->boot_flags, bootinfo.boot_flags,
339 min(sizeof v1p->boot_flags,
340 sizeof bootinfo.boot_flags));
341 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
342 min(sizeof v1p->booted_kernel,
343 sizeof bootinfo.booted_kernel));
344 /* booted dev not provided in bootinfo */
345 init_prom_interface((struct rpb *)
346 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
347 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
348 sizeof bootinfo.booted_dev);
349 break;
350 }
351 default:
352 bootinfo_msg = "unknown bootinfo version";
353 goto nobootinfo;
354 }
355 } else {
356 bootinfo_msg = "boot program did not pass bootinfo";
357 nobootinfo:
358 bootinfo.ssym = (u_long)_end;
359 bootinfo.esym = (u_long)_end;
360 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
361 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
362 init_prom_interface((struct rpb *)HWRPB_ADDR);
363 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
364 sizeof bootinfo.boot_flags);
365 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
366 sizeof bootinfo.booted_kernel);
367 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
368 sizeof bootinfo.booted_dev);
369 }
370
371 /*
372 * Initialize the kernel's mapping of the RPB. It's needed for
373 * lots of things.
374 */
375 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
376
377 #if defined(DEC_3000_300) || defined(DEC_3000_500)
378 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
379 hwrpb->rpb_type == ST_DEC_3000_500) {
380 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
381 sizeof(dec_3000_scsiid));
382 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
383 sizeof(dec_3000_scsifast));
384 }
385 #endif
386
387 /*
388 * Remember how many cycles there are per microsecond,
389 * so that we can use delay(). Round up, for safety.
390 */
391 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
392
393 /*
394 * Initalize the (temporary) bootstrap console interface, so
395 * we can use printf until the VM system starts being setup.
396 * The real console is initialized before then.
397 */
398 init_bootstrap_console();
399
400 /* OUTPUT NOW ALLOWED */
401
402 /* delayed from above */
403 if (bootinfo_msg)
404 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
405 bootinfo_msg, bim, bip, biv);
406
407 /*
408 * Point interrupt/exception vectors to our own.
409 */
410 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
411 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
412 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
413 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
414 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
415 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
416
417 /*
418 * Clear pending machine checks and error reports, and enable
419 * system- and processor-correctable error reporting.
420 */
421 alpha_pal_wrmces(alpha_pal_rdmces() &
422 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
423
424 /*
425 * Find out what hardware we're on, and do basic initialization.
426 */
427 cputype = hwrpb->rpb_type;
428 if (cputype >= ncpuinit) {
429 platform_not_supported();
430 /* NOTREACHED */
431 }
432 (*cpuinit[cputype].init)();
433 strcpy(cpu_model, platform.model);
434
435 /*
436 * Initalize the real console, so the the bootstrap console is
437 * no longer necessary.
438 */
439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
440 if (!pmap_uses_prom_console())
441 #endif
442 (*platform.cons_init)();
443
444 #ifdef DIAGNOSTIC
445 /* Paranoid sanity checking */
446
447 /* We should always be running on the the primary. */
448 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
449
450 /*
451 * On single-CPU systypes, the primary should always be CPU 0,
452 * except on Alpha 8200 systems where the CPU id is related
453 * to the VID, which is related to the Turbo Laser node id.
454 */
455 if (cputype != ST_DEC_21000)
456 assert(hwrpb->rpb_primary_cpu_id == 0);
457 #endif
458
459 /* NO MORE FIRMWARE ACCESS ALLOWED */
460 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
461 /*
462 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
463 * XXX pmap_uses_prom_console() evaluates to non-zero.)
464 */
465 #endif
466
467 /*
468 * find out this system's page size
469 */
470 PAGE_SIZE = hwrpb->rpb_page_size;
471 if (PAGE_SIZE != 8192)
472 panic("page size %d != 8192?!", PAGE_SIZE);
473
474 /*
475 * Initialize PAGE_SIZE-dependent variables.
476 */
477 #if defined(UVM)
478 uvm_setpagesize();
479 #else
480 vm_set_page_size();
481 #endif
482
483 /*
484 * Find the beginning and end of the kernel (and leave a
485 * bit of space before the beginning for the bootstrap
486 * stack).
487 */
488 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
489 #ifdef DDB
490 ksym_start = (void *)bootinfo.ssym;
491 ksym_end = (void *)bootinfo.esym;
492 kernend = (vm_offset_t)round_page(ksym_end);
493 #else
494 kernend = (vm_offset_t)round_page(_end);
495 #endif
496
497 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
498 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
499
500 /*
501 * Find out how much memory is available, by looking at
502 * the memory cluster descriptors. This also tries to do
503 * its best to detect things things that have never been seen
504 * before...
505 */
506 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
507
508 /* MDDT SANITY CHECKING */
509 mddtweird = 0;
510 if (mddtp->mddt_cluster_cnt < 2) {
511 mddtweird = 1;
512 printf("WARNING: weird number of mem clusters: %d\n",
513 mddtp->mddt_cluster_cnt);
514 }
515
516 #if 0
517 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
518 #endif
519
520 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
521 memc = &mddtp->mddt_clusters[i];
522 #if 0
523 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
524 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
525 #endif
526 totalphysmem += memc->mddt_pg_cnt;
527 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
528 mem_clusters[mem_cluster_cnt].start =
529 ptoa(memc->mddt_pfn);
530 mem_clusters[mem_cluster_cnt].size =
531 ptoa(memc->mddt_pg_cnt);
532 if (memc->mddt_usage & MDDT_mbz ||
533 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
534 memc->mddt_usage & MDDT_PALCODE)
535 mem_clusters[mem_cluster_cnt].size |=
536 PROT_READ;
537 else
538 mem_clusters[mem_cluster_cnt].size |=
539 PROT_READ | PROT_WRITE | PROT_EXEC;
540 mem_cluster_cnt++;
541 }
542
543 if (memc->mddt_usage & MDDT_mbz) {
544 mddtweird = 1;
545 printf("WARNING: mem cluster %d has weird "
546 "usage 0x%lx\n", i, memc->mddt_usage);
547 unknownmem += memc->mddt_pg_cnt;
548 continue;
549 }
550 if (memc->mddt_usage & MDDT_NONVOLATILE) {
551 /* XXX should handle these... */
552 printf("WARNING: skipping non-volatile mem "
553 "cluster %d\n", i);
554 unusedmem += memc->mddt_pg_cnt;
555 continue;
556 }
557 if (memc->mddt_usage & MDDT_PALCODE) {
558 resvmem += memc->mddt_pg_cnt;
559 continue;
560 }
561
562 /*
563 * We have a memory cluster available for system
564 * software use. We must determine if this cluster
565 * holds the kernel.
566 */
567 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
568 /*
569 * XXX If the kernel uses the PROM console, we only use the
570 * XXX memory after the kernel in the first system segment,
571 * XXX to avoid clobbering prom mapping, data, etc.
572 */
573 if (!pmap_uses_prom_console() || physmem == 0) {
574 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
575 physmem += memc->mddt_pg_cnt;
576 pfn0 = memc->mddt_pfn;
577 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
578 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
579 /*
580 * Must compute the location of the kernel
581 * within the segment.
582 */
583 #if 0
584 printf("Cluster %d contains kernel\n", i);
585 #endif
586 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
587 if (!pmap_uses_prom_console()) {
588 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
589 if (pfn0 < kernstartpfn) {
590 /*
591 * There is a chunk before the kernel.
592 */
593 #if 0
594 printf("Loading chunk before kernel: "
595 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
596 #endif
597 #if defined(UVM)
598 uvm_page_physload(pfn0, kernstartpfn,
599 pfn0, kernstartpfn);
600 #else
601 vm_page_physload(pfn0, kernstartpfn,
602 pfn0, kernstartpfn);
603 #endif
604 }
605 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
606 }
607 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
608 if (kernendpfn < pfn1) {
609 /*
610 * There is a chunk after the kernel.
611 */
612 #if 0
613 printf("Loading chunk after kernel: "
614 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
615 #endif
616 #if defined(UVM)
617 uvm_page_physload(kernendpfn, pfn1,
618 kernendpfn, pfn1);
619 #else
620 vm_page_physload(kernendpfn, pfn1,
621 kernendpfn, pfn1);
622 #endif
623 }
624 } else {
625 /*
626 * Just load this cluster as one chunk.
627 */
628 #if 0
629 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
630 pfn0, pfn1);
631 #endif
632 #if defined(UVM)
633 uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
634 #else
635 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
636 #endif
637 }
638 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
639 }
640 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
641 }
642
643 /*
644 * Dump out the MDDT if it looks odd...
645 */
646 if (mddtweird) {
647 printf("\n");
648 printf("complete memory cluster information:\n");
649 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
650 printf("mddt %d:\n", i);
651 printf("\tpfn %lx\n",
652 mddtp->mddt_clusters[i].mddt_pfn);
653 printf("\tcnt %lx\n",
654 mddtp->mddt_clusters[i].mddt_pg_cnt);
655 printf("\ttest %lx\n",
656 mddtp->mddt_clusters[i].mddt_pg_test);
657 printf("\tbva %lx\n",
658 mddtp->mddt_clusters[i].mddt_v_bitaddr);
659 printf("\tbpa %lx\n",
660 mddtp->mddt_clusters[i].mddt_p_bitaddr);
661 printf("\tbcksum %lx\n",
662 mddtp->mddt_clusters[i].mddt_bit_cksum);
663 printf("\tusage %lx\n",
664 mddtp->mddt_clusters[i].mddt_usage);
665 }
666 printf("\n");
667 }
668
669 if (totalphysmem == 0)
670 panic("can't happen: system seems to have no memory!");
671
672 #ifdef LIMITMEM
673 /*
674 * XXX Kludge so we can run on machines with memory larger
675 * XXX than 1G until all device drivers are converted to
676 * XXX use bus_dma. (Relies on the fact that vm_physmem
677 * XXX sorted in order of increasing addresses.)
678 */
679 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
680
681 printf("******** LIMITING MEMORY TO %dMB **********\n",
682 LIMITMEM);
683
684 do {
685 u_long ovf;
686
687 vps = &vm_physmem[vm_nphysseg - 1];
688
689 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
690 /*
691 * If the start is too high, just drop
692 * the whole segment.
693 *
694 * XXX can start != avail_start in this
695 * XXX case? wouldn't that mean that
696 * XXX some memory was stolen above the
697 * XXX limit? What to do?
698 */
699 ovf = vps->end - vps->start;
700 vm_nphysseg--;
701 } else {
702 /*
703 * If the start is OK, calculate how much
704 * to drop and drop it.
705 */
706 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
707 vps->end -= ovf;
708 vps->avail_end -= ovf;
709 }
710 physmem -= ovf;
711 unusedmem += ovf;
712 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
713 }
714 #endif /* LIMITMEM */
715
716 maxmem = physmem;
717
718 #if 0
719 printf("totalphysmem = %d\n", totalphysmem);
720 printf("physmem = %d\n", physmem);
721 printf("resvmem = %d\n", resvmem);
722 printf("unusedmem = %d\n", unusedmem);
723 printf("unknownmem = %d\n", unknownmem);
724 #endif
725
726 /*
727 * Adjust some parameters if the amount of physmem
728 * available would cause us to croak. This is completely
729 * eyeballed and isn't meant to be the final answer.
730 * vm_phys_size is probably the only one to really worry
731 * about.
732 *
733 * It's for booting a GENERIC kernel on a large memory platform.
734 */
735 if (physmem >= atop(128 * 1024 * 1024)) {
736 vm_mbuf_size <<= 1;
737 vm_kmem_size <<= 3;
738 vm_phys_size <<= 2;
739 }
740
741 /*
742 * Initialize error message buffer (at end of core).
743 */
744 {
745 size_t sz = round_page(MSGBUFSIZE);
746
747 vps = &vm_physmem[vm_nphysseg - 1];
748
749 /* shrink so that it'll fit in the last segment */
750 if ((vps->avail_end - vps->avail_start) < atop(sz))
751 sz = ptoa(vps->avail_end - vps->avail_start);
752
753 vps->end -= atop(sz);
754 vps->avail_end -= atop(sz);
755 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
756 initmsgbuf(msgbufaddr, sz);
757
758 /* Remove the last segment if it now has no pages. */
759 if (vps->start == vps->end)
760 vm_nphysseg--;
761
762 /* warn if the message buffer had to be shrunk */
763 if (sz != round_page(MSGBUFSIZE))
764 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
765 round_page(MSGBUFSIZE), sz);
766
767 }
768
769 /*
770 * Init mapping for u page(s) for proc 0
771 */
772 proc0.p_addr = proc0paddr =
773 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
774
775 /*
776 * Figure out the number of cpus in the box, from RPB fields.
777 * Really. We mean it.
778 *
779 * Do it here because we need to know this in allocsys.
780 */
781 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
782 struct pcs *pcsp;
783
784 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
785 (i * hwrpb->rpb_pcs_size));
786 if ((pcsp->pcs_flags & PCS_PP) != 0)
787 ncpus++;
788 }
789
790 /*
791 * Allocate space for system data structures. These data structures
792 * are allocated here instead of cpu_startup() because physical
793 * memory is directly addressable. We don't have to map these into
794 * virtual address space.
795 */
796 size = (vm_size_t)allocsys(0);
797 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
798 if ((allocsys(v) - v) != size)
799 panic("alpha_init: table size inconsistency");
800
801 /*
802 * Initialize the virtual memory system, and set the
803 * page table base register in proc 0's PCB.
804 */
805 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
806 hwrpb->rpb_max_asn);
807
808 /*
809 * Initialize the rest of proc 0's PCB, and cache its physical
810 * address.
811 */
812 proc0.p_md.md_pcbpaddr =
813 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
814
815 /*
816 * Set the kernel sp, reserving space for an (empty) trapframe,
817 * and make proc0's trapframe pointer point to it for sanity.
818 */
819 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
820 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
821 proc0.p_md.md_tf =
822 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
823
824 /*
825 * Look at arguments passed to us and compute boothowto.
826 */
827
828 boothowto = RB_SINGLE;
829 #ifdef KADB
830 boothowto |= RB_KDB;
831 #endif
832 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
833 /*
834 * Note that we'd really like to differentiate case here,
835 * but the Alpha AXP Architecture Reference Manual
836 * says that we shouldn't.
837 */
838 switch (*p) {
839 case 'a': /* autoboot */
840 case 'A':
841 boothowto &= ~RB_SINGLE;
842 break;
843
844 #ifdef DEBUG
845 case 'c': /* crash dump immediately after autoconfig */
846 case 'C':
847 boothowto |= RB_DUMP;
848 break;
849 #endif
850
851 #if defined(KGDB) || defined(DDB)
852 case 'd': /* break into the kernel debugger ASAP */
853 case 'D':
854 boothowto |= RB_KDB;
855 break;
856 #endif
857
858 case 'h': /* always halt, never reboot */
859 case 'H':
860 boothowto |= RB_HALT;
861 break;
862
863 #if 0
864 case 'm': /* mini root present in memory */
865 case 'M':
866 boothowto |= RB_MINIROOT;
867 break;
868 #endif
869
870 case 'n': /* askname */
871 case 'N':
872 boothowto |= RB_ASKNAME;
873 break;
874
875 case 's': /* single-user (default, supported for sanity) */
876 case 'S':
877 boothowto |= RB_SINGLE;
878 break;
879
880 case '-':
881 /*
882 * Just ignore this. It's not required, but it's
883 * common for it to be passed regardless.
884 */
885 break;
886
887 default:
888 printf("Unrecognized boot flag '%c'.\n", *p);
889 break;
890 }
891 }
892
893 /*
894 * Initialize debuggers, and break into them if appropriate.
895 */
896 #ifdef DDB
897 db_machine_init();
898 ddb_init(ksym_start, ksym_end);
899 if (boothowto & RB_KDB)
900 Debugger();
901 #endif
902 #ifdef KGDB
903 if (boothowto & RB_KDB)
904 kgdb_connect(0);
905 #endif
906 /*
907 * Figure out our clock frequency, from RPB fields.
908 */
909 hz = hwrpb->rpb_intr_freq >> 12;
910 if (!(60 <= hz && hz <= 10240)) {
911 hz = 1024;
912 #ifdef DIAGNOSTIC
913 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
914 hwrpb->rpb_intr_freq, hz);
915 #endif
916 }
917 }
918
919 /*
920 * Allocate space for system data structures. We are given
921 * a starting virtual address and we return a final virtual
922 * address; along the way we set each data structure pointer.
923 *
924 * We call allocsys() with 0 to find out how much space we want,
925 * allocate that much and fill it with zeroes, and the call
926 * allocsys() again with the correct base virtual address.
927 */
928 caddr_t
929 allocsys(v)
930 caddr_t v;
931 {
932
933 #define valloc(name, type, num) \
934 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
935
936 #ifdef REAL_CLISTS
937 valloc(cfree, struct cblock, nclist);
938 #endif
939 valloc(callout, struct callout, ncallout);
940 #ifdef SYSVSHM
941 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
942 #endif
943 #ifdef SYSVSEM
944 valloc(sema, struct semid_ds, seminfo.semmni);
945 valloc(sem, struct sem, seminfo.semmns);
946 /* This is pretty disgusting! */
947 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
948 #endif
949 #ifdef SYSVMSG
950 valloc(msgpool, char, msginfo.msgmax);
951 valloc(msgmaps, struct msgmap, msginfo.msgseg);
952 valloc(msghdrs, struct msg, msginfo.msgtql);
953 valloc(msqids, struct msqid_ds, msginfo.msgmni);
954 #endif
955
956 /*
957 * Determine how many buffers to allocate.
958 * We allocate 10% of memory for buffer space. Insure a
959 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
960 * headers as file i/o buffers.
961 */
962 if (bufpages == 0)
963 bufpages = (physmem * 10) / (CLSIZE * 100);
964 if (nbuf == 0) {
965 nbuf = bufpages;
966 if (nbuf < 16)
967 nbuf = 16;
968 }
969 if (nswbuf == 0) {
970 nswbuf = (nbuf / 2) &~ 1; /* force even */
971 if (nswbuf > 256)
972 nswbuf = 256; /* sanity */
973 }
974 #if !defined(UVM)
975 valloc(swbuf, struct buf, nswbuf);
976 #endif
977 valloc(buf, struct buf, nbuf);
978 valloc(mchkinfo, struct mchkinfo, ncpus);
979 return (v);
980 #undef valloc
981 }
982
983 void
984 consinit()
985 {
986
987 /*
988 * Everything related to console initialization is done
989 * in alpha_init().
990 */
991 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
992 printf("consinit: %susing prom console\n",
993 pmap_uses_prom_console() ? "" : "not ");
994 #endif
995 }
996
997 #include "pckbc.h"
998 #include "pckbd.h"
999 #if (NPCKBC > 0) && (NPCKBD == 0)
1000
1001 #include <machine/bus.h>
1002 #include <dev/isa/pckbcvar.h>
1003
1004 /*
1005 * This is called by the pbkbc driver if no pckbd is configured.
1006 * On the i386, it is used to glue in the old, deprecated console
1007 * code. On the Alpha, it does nothing.
1008 */
1009 int
1010 pckbc_machdep_cnattach(kbctag, kbcslot)
1011 pckbc_tag_t kbctag;
1012 pckbc_slot_t kbcslot;
1013 {
1014
1015 return (ENXIO);
1016 }
1017 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1018
1019 void
1020 cpu_startup()
1021 {
1022 register unsigned i;
1023 int base, residual;
1024 vm_offset_t minaddr, maxaddr;
1025 vm_size_t size;
1026 #if defined(DEBUG)
1027 extern int pmapdebug;
1028 int opmapdebug = pmapdebug;
1029
1030 pmapdebug = 0;
1031 #endif
1032
1033 /*
1034 * Good {morning,afternoon,evening,night}.
1035 */
1036 printf(version);
1037 identifycpu();
1038 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1039 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1040 if (unusedmem)
1041 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1042 if (unknownmem)
1043 printf("WARNING: %d bytes of memory with unknown purpose\n",
1044 ctob(unknownmem));
1045
1046 /*
1047 * Allocate virtual address space for file I/O buffers.
1048 * Note they are different than the array of headers, 'buf',
1049 * and usually occupy more virtual memory than physical.
1050 */
1051 size = MAXBSIZE * nbuf;
1052 #if defined(UVM)
1053 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1054 NULL, UVM_UNKNOWN_OFFSET,
1055 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1056 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1057 panic("startup: cannot allocate VM for buffers");
1058 #else
1059 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1060 &maxaddr, size, TRUE);
1061 minaddr = (vm_offset_t)buffers;
1062 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1063 &minaddr, size, FALSE) != KERN_SUCCESS)
1064 panic("startup: cannot allocate buffers");
1065 #endif /* UVM */
1066 base = bufpages / nbuf;
1067 residual = bufpages % nbuf;
1068 for (i = 0; i < nbuf; i++) {
1069 #if defined(UVM)
1070 vm_size_t curbufsize;
1071 vm_offset_t curbuf;
1072 struct vm_page *pg;
1073
1074 /*
1075 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1076 * that MAXBSIZE space, we allocate and map (base+1) pages
1077 * for the first "residual" buffers, and then we allocate
1078 * "base" pages for the rest.
1079 */
1080 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1081 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1082
1083 while (curbufsize) {
1084 pg = uvm_pagealloc(NULL, 0, NULL);
1085 if (pg == NULL)
1086 panic("cpu_startup: not enough memory for "
1087 "buffer cache");
1088 #if defined(PMAP_NEW)
1089 pmap_kenter_pgs(curbuf, &pg, 1);
1090 #else
1091 pmap_enter(kernel_map->pmap, curbuf,
1092 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1093 #endif
1094 curbuf += PAGE_SIZE;
1095 curbufsize -= PAGE_SIZE;
1096 }
1097 #else /* ! UVM */
1098 vm_size_t curbufsize;
1099 vm_offset_t curbuf;
1100
1101 /*
1102 * First <residual> buffers get (base+1) physical pages
1103 * allocated for them. The rest get (base) physical pages.
1104 *
1105 * The rest of each buffer occupies virtual space,
1106 * but has no physical memory allocated for it.
1107 */
1108 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1109 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1110 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1111 vm_map_simplify(buffer_map, curbuf);
1112 #endif /* UVM */
1113 }
1114 /*
1115 * Allocate a submap for exec arguments. This map effectively
1116 * limits the number of processes exec'ing at any time.
1117 */
1118 #if defined(UVM)
1119 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1120 16 * NCARGS, TRUE, FALSE, NULL);
1121 #else
1122 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1123 16 * NCARGS, TRUE);
1124 #endif
1125
1126 /*
1127 * Allocate a submap for physio
1128 */
1129 #if defined(UVM)
1130 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1131 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1132 #else
1133 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1134 VM_PHYS_SIZE, TRUE);
1135 #endif
1136
1137 /*
1138 * Finally, allocate mbuf cluster submap.
1139 */
1140 #if defined(UVM)
1141 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1142 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1143 #else
1144 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1145 VM_MBUF_SIZE, FALSE);
1146 #endif
1147 /*
1148 * Initialize callouts
1149 */
1150 callfree = callout;
1151 for (i = 1; i < ncallout; i++)
1152 callout[i-1].c_next = &callout[i];
1153 callout[i-1].c_next = NULL;
1154
1155 #if defined(DEBUG)
1156 pmapdebug = opmapdebug;
1157 #endif
1158 #if defined(UVM)
1159 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1160 #else
1161 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1162 #endif
1163 printf("using %ld buffers containing %ld bytes of memory\n",
1164 (long)nbuf, (long)(bufpages * CLBYTES));
1165
1166 /*
1167 * Set up buffers, so they can be used to read disk labels.
1168 */
1169 bufinit();
1170
1171 /*
1172 * Configure the system.
1173 */
1174 configure();
1175
1176 /*
1177 * Note that bootstrapping is finished, and set the HWRPB up
1178 * to do restarts.
1179 */
1180 hwrpb_restart_setup();
1181 }
1182
1183 /*
1184 * Retrieve the platform name from the DSR.
1185 */
1186 const char *
1187 alpha_dsr_sysname()
1188 {
1189 struct dsrdb *dsr;
1190 const char *sysname;
1191
1192 /*
1193 * DSR does not exist on early HWRPB versions.
1194 */
1195 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1196 return (NULL);
1197
1198 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1199 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1200 sizeof(u_int64_t)));
1201 return (sysname);
1202 }
1203
1204 /*
1205 * Lookup the system specified system variation in the provided table,
1206 * returning the model string on match.
1207 */
1208 const char *
1209 alpha_variation_name(variation, avtp)
1210 u_int64_t variation;
1211 const struct alpha_variation_table *avtp;
1212 {
1213 int i;
1214
1215 for (i = 0; avtp[i].avt_model != NULL; i++)
1216 if (avtp[i].avt_variation == variation)
1217 return (avtp[i].avt_model);
1218 return (NULL);
1219 }
1220
1221 /*
1222 * Generate a default platform name based for unknown system variations.
1223 */
1224 const char *
1225 alpha_unknown_sysname()
1226 {
1227 static char s[128]; /* safe size */
1228
1229 sprintf(s, "%s family, unknown model variation 0x%lx",
1230 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1231 return ((const char *)s);
1232 }
1233
1234 void
1235 identifycpu()
1236 {
1237
1238 /*
1239 * print out CPU identification information.
1240 */
1241 printf("%s, %ldMHz\n", cpu_model,
1242 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1243 printf("%ld byte page size, %d processor%s.\n",
1244 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1245 #if 0
1246 /* this isn't defined for any systems that we run on? */
1247 printf("serial number 0x%lx 0x%lx\n",
1248 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1249
1250 /* and these aren't particularly useful! */
1251 printf("variation: 0x%lx, revision 0x%lx\n",
1252 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1253 #endif
1254 }
1255
1256 int waittime = -1;
1257 struct pcb dumppcb;
1258
1259 void
1260 cpu_reboot(howto, bootstr)
1261 int howto;
1262 char *bootstr;
1263 {
1264 extern int cold;
1265
1266 /* If system is cold, just halt. */
1267 if (cold) {
1268 howto |= RB_HALT;
1269 goto haltsys;
1270 }
1271
1272 /* If "always halt" was specified as a boot flag, obey. */
1273 if ((boothowto & RB_HALT) != 0)
1274 howto |= RB_HALT;
1275
1276 boothowto = howto;
1277 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1278 waittime = 0;
1279 vfs_shutdown();
1280 /*
1281 * If we've been adjusting the clock, the todr
1282 * will be out of synch; adjust it now.
1283 */
1284 resettodr();
1285 }
1286
1287 /* Disable interrupts. */
1288 splhigh();
1289
1290 /* If rebooting and a dump is requested do it. */
1291 #if 0
1292 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1293 #else
1294 if (howto & RB_DUMP)
1295 #endif
1296 dumpsys();
1297
1298 haltsys:
1299
1300 /* run any shutdown hooks */
1301 doshutdownhooks();
1302
1303 #ifdef BOOTKEY
1304 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1305 cnpollc(1); /* for proper keyboard command handling */
1306 cngetc();
1307 cnpollc(0);
1308 printf("\n");
1309 #endif
1310
1311 /* Finally, powerdown/halt/reboot the system. */
1312 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1313 platform.powerdown != NULL) {
1314 (*platform.powerdown)();
1315 printf("WARNING: powerdown failed!\n");
1316 }
1317 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1318 prom_halt(howto & RB_HALT);
1319 /*NOTREACHED*/
1320 }
1321
1322 /*
1323 * These variables are needed by /sbin/savecore
1324 */
1325 u_long dumpmag = 0x8fca0101; /* magic number */
1326 int dumpsize = 0; /* pages */
1327 long dumplo = 0; /* blocks */
1328
1329 /*
1330 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1331 */
1332 int
1333 cpu_dumpsize()
1334 {
1335 int size;
1336
1337 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1338 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1339 if (roundup(size, dbtob(1)) != dbtob(1))
1340 return -1;
1341
1342 return (1);
1343 }
1344
1345 /*
1346 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1347 */
1348 u_long
1349 cpu_dump_mempagecnt()
1350 {
1351 u_long i, n;
1352
1353 n = 0;
1354 for (i = 0; i < mem_cluster_cnt; i++)
1355 n += atop(mem_clusters[i].size);
1356 return (n);
1357 }
1358
1359 /*
1360 * cpu_dump: dump machine-dependent kernel core dump headers.
1361 */
1362 int
1363 cpu_dump()
1364 {
1365 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1366 char buf[dbtob(1)];
1367 kcore_seg_t *segp;
1368 cpu_kcore_hdr_t *cpuhdrp;
1369 phys_ram_seg_t *memsegp;
1370 int i;
1371
1372 dump = bdevsw[major(dumpdev)].d_dump;
1373
1374 bzero(buf, sizeof buf);
1375 segp = (kcore_seg_t *)buf;
1376 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1377 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1378 ALIGN(sizeof(*cpuhdrp))];
1379
1380 /*
1381 * Generate a segment header.
1382 */
1383 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1384 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1385
1386 /*
1387 * Add the machine-dependent header info.
1388 */
1389 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1390 cpuhdrp->page_size = PAGE_SIZE;
1391 cpuhdrp->nmemsegs = mem_cluster_cnt;
1392
1393 /*
1394 * Fill in the memory segment descriptors.
1395 */
1396 for (i = 0; i < mem_cluster_cnt; i++) {
1397 memsegp[i].start = mem_clusters[i].start;
1398 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1399 }
1400
1401 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1402 }
1403
1404 /*
1405 * This is called by main to set dumplo and dumpsize.
1406 * Dumps always skip the first CLBYTES of disk space
1407 * in case there might be a disk label stored there.
1408 * If there is extra space, put dump at the end to
1409 * reduce the chance that swapping trashes it.
1410 */
1411 void
1412 cpu_dumpconf()
1413 {
1414 int nblks, dumpblks; /* size of dump area */
1415 int maj;
1416
1417 if (dumpdev == NODEV)
1418 goto bad;
1419 maj = major(dumpdev);
1420 if (maj < 0 || maj >= nblkdev)
1421 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1422 if (bdevsw[maj].d_psize == NULL)
1423 goto bad;
1424 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1425 if (nblks <= ctod(1))
1426 goto bad;
1427
1428 dumpblks = cpu_dumpsize();
1429 if (dumpblks < 0)
1430 goto bad;
1431 dumpblks += ctod(cpu_dump_mempagecnt());
1432
1433 /* If dump won't fit (incl. room for possible label), punt. */
1434 if (dumpblks > (nblks - ctod(1)))
1435 goto bad;
1436
1437 /* Put dump at end of partition */
1438 dumplo = nblks - dumpblks;
1439
1440 /* dumpsize is in page units, and doesn't include headers. */
1441 dumpsize = cpu_dump_mempagecnt();
1442 return;
1443
1444 bad:
1445 dumpsize = 0;
1446 return;
1447 }
1448
1449 /*
1450 * Dump the kernel's image to the swap partition.
1451 */
1452 #define BYTES_PER_DUMP NBPG
1453
1454 void
1455 dumpsys()
1456 {
1457 u_long totalbytesleft, bytes, i, n, memcl;
1458 u_long maddr;
1459 int psize;
1460 daddr_t blkno;
1461 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1462 int error;
1463
1464 /* Save registers. */
1465 savectx(&dumppcb);
1466
1467 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1468 if (dumpdev == NODEV)
1469 return;
1470
1471 /*
1472 * For dumps during autoconfiguration,
1473 * if dump device has already configured...
1474 */
1475 if (dumpsize == 0)
1476 cpu_dumpconf();
1477 if (dumplo <= 0) {
1478 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1479 minor(dumpdev));
1480 return;
1481 }
1482 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1483 minor(dumpdev), dumplo);
1484
1485 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1486 printf("dump ");
1487 if (psize == -1) {
1488 printf("area unavailable\n");
1489 return;
1490 }
1491
1492 /* XXX should purge all outstanding keystrokes. */
1493
1494 if ((error = cpu_dump()) != 0)
1495 goto err;
1496
1497 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1498 blkno = dumplo + cpu_dumpsize();
1499 dump = bdevsw[major(dumpdev)].d_dump;
1500 error = 0;
1501
1502 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1503 maddr = mem_clusters[memcl].start;
1504 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1505
1506 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1507
1508 /* Print out how many MBs we to go. */
1509 if ((totalbytesleft % (1024*1024)) == 0)
1510 printf("%d ", totalbytesleft / (1024 * 1024));
1511
1512 /* Limit size for next transfer. */
1513 n = bytes - i;
1514 if (n > BYTES_PER_DUMP)
1515 n = BYTES_PER_DUMP;
1516
1517 error = (*dump)(dumpdev, blkno,
1518 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1519 if (error)
1520 goto err;
1521 maddr += n;
1522 blkno += btodb(n); /* XXX? */
1523
1524 /* XXX should look for keystrokes, to cancel. */
1525 }
1526 }
1527
1528 err:
1529 switch (error) {
1530
1531 case ENXIO:
1532 printf("device bad\n");
1533 break;
1534
1535 case EFAULT:
1536 printf("device not ready\n");
1537 break;
1538
1539 case EINVAL:
1540 printf("area improper\n");
1541 break;
1542
1543 case EIO:
1544 printf("i/o error\n");
1545 break;
1546
1547 case EINTR:
1548 printf("aborted from console\n");
1549 break;
1550
1551 case 0:
1552 printf("succeeded\n");
1553 break;
1554
1555 default:
1556 printf("error %d\n", error);
1557 break;
1558 }
1559 printf("\n\n");
1560 delay(1000);
1561 }
1562
1563 void
1564 frametoreg(framep, regp)
1565 struct trapframe *framep;
1566 struct reg *regp;
1567 {
1568
1569 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1570 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1571 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1572 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1573 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1574 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1575 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1576 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1577 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1578 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1579 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1580 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1581 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1582 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1583 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1584 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1585 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1586 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1587 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1588 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1589 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1590 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1591 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1592 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1593 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1594 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1595 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1596 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1597 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1598 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1599 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1600 regp->r_regs[R_ZERO] = 0;
1601 }
1602
1603 void
1604 regtoframe(regp, framep)
1605 struct reg *regp;
1606 struct trapframe *framep;
1607 {
1608
1609 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1610 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1611 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1612 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1613 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1614 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1615 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1616 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1617 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1618 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1619 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1620 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1621 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1622 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1623 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1624 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1625 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1626 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1627 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1628 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1629 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1630 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1631 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1632 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1633 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1634 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1635 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1636 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1637 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1638 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1639 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1640 /* ??? = regp->r_regs[R_ZERO]; */
1641 }
1642
1643 void
1644 printregs(regp)
1645 struct reg *regp;
1646 {
1647 int i;
1648
1649 for (i = 0; i < 32; i++)
1650 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1651 i & 1 ? "\n" : "\t");
1652 }
1653
1654 void
1655 regdump(framep)
1656 struct trapframe *framep;
1657 {
1658 struct reg reg;
1659
1660 frametoreg(framep, ®);
1661 reg.r_regs[R_SP] = alpha_pal_rdusp();
1662
1663 printf("REGISTERS:\n");
1664 printregs(®);
1665 }
1666
1667 #ifdef DEBUG
1668 int sigdebug = 0;
1669 int sigpid = 0;
1670 #define SDB_FOLLOW 0x01
1671 #define SDB_KSTACK 0x02
1672 #endif
1673
1674 /*
1675 * Send an interrupt to process.
1676 */
1677 void
1678 sendsig(catcher, sig, mask, code)
1679 sig_t catcher;
1680 int sig, mask;
1681 u_long code;
1682 {
1683 struct proc *p = curproc;
1684 struct sigcontext *scp, ksc;
1685 struct trapframe *frame;
1686 struct sigacts *psp = p->p_sigacts;
1687 int oonstack, fsize, rndfsize;
1688 extern char sigcode[], esigcode[];
1689 extern struct proc *fpcurproc;
1690
1691 frame = p->p_md.md_tf;
1692 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1693 fsize = sizeof ksc;
1694 rndfsize = ((fsize + 15) / 16) * 16;
1695 /*
1696 * Allocate and validate space for the signal handler
1697 * context. Note that if the stack is in P0 space, the
1698 * call to grow() is a nop, and the useracc() check
1699 * will fail if the process has not already allocated
1700 * the space with a `brk'.
1701 */
1702 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1703 (psp->ps_sigonstack & sigmask(sig))) {
1704 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1705 psp->ps_sigstk.ss_size - rndfsize);
1706 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1707 } else
1708 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1709 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1710 #if defined(UVM)
1711 (void)uvm_grow(p, (u_long)scp);
1712 #else
1713 (void)grow(p, (u_long)scp);
1714 #endif
1715 #ifdef DEBUG
1716 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1717 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1718 sig, &oonstack, scp);
1719 #endif
1720 #if defined(UVM)
1721 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1722 #else
1723 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1724 #endif
1725 #ifdef DEBUG
1726 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1727 printf("sendsig(%d): useracc failed on sig %d\n",
1728 p->p_pid, sig);
1729 #endif
1730 /*
1731 * Process has trashed its stack; give it an illegal
1732 * instruction to halt it in its tracks.
1733 */
1734 SIGACTION(p, SIGILL) = SIG_DFL;
1735 sig = sigmask(SIGILL);
1736 p->p_sigignore &= ~sig;
1737 p->p_sigcatch &= ~sig;
1738 p->p_sigmask &= ~sig;
1739 psignal(p, SIGILL);
1740 return;
1741 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1742 }
1743 #else
1744 }
1745 #endif
1746
1747 /*
1748 * Build the signal context to be used by sigreturn.
1749 */
1750 ksc.sc_onstack = oonstack;
1751 ksc.sc_mask = mask;
1752 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1753 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1754
1755 /* copy the registers. */
1756 frametoreg(frame, (struct reg *)ksc.sc_regs);
1757 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1758 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1759
1760 /* save the floating-point state, if necessary, then copy it. */
1761 if (p == fpcurproc) {
1762 alpha_pal_wrfen(1);
1763 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1764 alpha_pal_wrfen(0);
1765 fpcurproc = NULL;
1766 }
1767 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1768 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1769 sizeof(struct fpreg));
1770 ksc.sc_fp_control = 0; /* XXX ? */
1771 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1772 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1773
1774
1775 #ifdef COMPAT_OSF1
1776 /*
1777 * XXX Create an OSF/1-style sigcontext and associated goo.
1778 */
1779 #endif
1780
1781 /*
1782 * copy the frame out to userland.
1783 */
1784 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1785 #ifdef DEBUG
1786 if (sigdebug & SDB_FOLLOW)
1787 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1788 scp, code);
1789 #endif
1790
1791 /*
1792 * Set up the registers to return to sigcode.
1793 */
1794 frame->tf_regs[FRAME_PC] =
1795 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1796 frame->tf_regs[FRAME_A0] = sig;
1797 frame->tf_regs[FRAME_A1] = code;
1798 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1799 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1800 alpha_pal_wrusp((unsigned long)scp);
1801
1802 #ifdef DEBUG
1803 if (sigdebug & SDB_FOLLOW)
1804 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1805 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1806 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1807 printf("sendsig(%d): sig %d returns\n",
1808 p->p_pid, sig);
1809 #endif
1810 }
1811
1812 /*
1813 * System call to cleanup state after a signal
1814 * has been taken. Reset signal mask and
1815 * stack state from context left by sendsig (above).
1816 * Return to previous pc and psl as specified by
1817 * context left by sendsig. Check carefully to
1818 * make sure that the user has not modified the
1819 * psl to gain improper priviledges or to cause
1820 * a machine fault.
1821 */
1822 /* ARGSUSED */
1823 int
1824 sys_sigreturn(p, v, retval)
1825 struct proc *p;
1826 void *v;
1827 register_t *retval;
1828 {
1829 struct sys_sigreturn_args /* {
1830 syscallarg(struct sigcontext *) sigcntxp;
1831 } */ *uap = v;
1832 struct sigcontext *scp, ksc;
1833 extern struct proc *fpcurproc;
1834
1835 scp = SCARG(uap, sigcntxp);
1836 #ifdef DEBUG
1837 if (sigdebug & SDB_FOLLOW)
1838 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1839 #endif
1840
1841 if (ALIGN(scp) != (u_int64_t)scp)
1842 return (EINVAL);
1843
1844 /*
1845 * Test and fetch the context structure.
1846 * We grab it all at once for speed.
1847 */
1848 #if defined(UVM)
1849 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1850 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1851 return (EINVAL);
1852 #else
1853 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1854 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1855 return (EINVAL);
1856 #endif
1857
1858 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1859 return (EINVAL);
1860 /*
1861 * Restore the user-supplied information
1862 */
1863 if (ksc.sc_onstack)
1864 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1865 else
1866 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1867 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1868
1869 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1870 p->p_md.md_tf->tf_regs[FRAME_PS] =
1871 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1872
1873 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1874 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1875
1876 /* XXX ksc.sc_ownedfp ? */
1877 if (p == fpcurproc)
1878 fpcurproc = NULL;
1879 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1880 sizeof(struct fpreg));
1881 /* XXX ksc.sc_fp_control ? */
1882
1883 #ifdef DEBUG
1884 if (sigdebug & SDB_FOLLOW)
1885 printf("sigreturn(%d): returns\n", p->p_pid);
1886 #endif
1887 return (EJUSTRETURN);
1888 }
1889
1890 /*
1891 * machine dependent system variables.
1892 */
1893 int
1894 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1895 int *name;
1896 u_int namelen;
1897 void *oldp;
1898 size_t *oldlenp;
1899 void *newp;
1900 size_t newlen;
1901 struct proc *p;
1902 {
1903 dev_t consdev;
1904
1905 /* all sysctl names at this level are terminal */
1906 if (namelen != 1)
1907 return (ENOTDIR); /* overloaded */
1908
1909 switch (name[0]) {
1910 case CPU_CONSDEV:
1911 if (cn_tab != NULL)
1912 consdev = cn_tab->cn_dev;
1913 else
1914 consdev = NODEV;
1915 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1916 sizeof consdev));
1917
1918 case CPU_ROOT_DEVICE:
1919 return (sysctl_rdstring(oldp, oldlenp, newp,
1920 root_device->dv_xname));
1921
1922 case CPU_UNALIGNED_PRINT:
1923 return (sysctl_int(oldp, oldlenp, newp, newlen,
1924 &alpha_unaligned_print));
1925
1926 case CPU_UNALIGNED_FIX:
1927 return (sysctl_int(oldp, oldlenp, newp, newlen,
1928 &alpha_unaligned_fix));
1929
1930 case CPU_UNALIGNED_SIGBUS:
1931 return (sysctl_int(oldp, oldlenp, newp, newlen,
1932 &alpha_unaligned_sigbus));
1933
1934 case CPU_BOOTED_KERNEL:
1935 return (sysctl_rdstring(oldp, oldlenp, newp,
1936 bootinfo.booted_kernel));
1937
1938 default:
1939 return (EOPNOTSUPP);
1940 }
1941 /* NOTREACHED */
1942 }
1943
1944 /*
1945 * Set registers on exec.
1946 */
1947 void
1948 setregs(p, pack, stack)
1949 register struct proc *p;
1950 struct exec_package *pack;
1951 u_long stack;
1952 {
1953 struct trapframe *tfp = p->p_md.md_tf;
1954 extern struct proc *fpcurproc;
1955 #ifdef DEBUG
1956 int i;
1957 #endif
1958
1959 #ifdef DEBUG
1960 /*
1961 * Crash and dump, if the user requested it.
1962 */
1963 if (boothowto & RB_DUMP)
1964 panic("crash requested by boot flags");
1965 #endif
1966
1967 #ifdef DEBUG
1968 for (i = 0; i < FRAME_SIZE; i++)
1969 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1970 #else
1971 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1972 #endif
1973 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1974 #define FP_RN 2 /* XXX */
1975 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1976 alpha_pal_wrusp(stack);
1977 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1978 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1979
1980 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1981 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1982 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1983 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1984 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1985
1986 p->p_md.md_flags &= ~MDP_FPUSED;
1987 if (fpcurproc == p)
1988 fpcurproc = NULL;
1989 }
1990
1991 void
1992 netintr()
1993 {
1994 int n, s;
1995
1996 s = splhigh();
1997 n = netisr;
1998 netisr = 0;
1999 splx(s);
2000
2001 #define DONETISR(bit, fn) \
2002 do { \
2003 if (n & (1 << (bit))) \
2004 fn; \
2005 } while (0)
2006
2007 #ifdef INET
2008 #if NARP > 0
2009 DONETISR(NETISR_ARP, arpintr());
2010 #endif
2011 DONETISR(NETISR_IP, ipintr());
2012 #endif
2013 #ifdef NETATALK
2014 DONETISR(NETISR_ATALK, atintr());
2015 #endif
2016 #ifdef NS
2017 DONETISR(NETISR_NS, nsintr());
2018 #endif
2019 #ifdef ISO
2020 DONETISR(NETISR_ISO, clnlintr());
2021 #endif
2022 #ifdef CCITT
2023 DONETISR(NETISR_CCITT, ccittintr());
2024 #endif
2025 #ifdef NATM
2026 DONETISR(NETISR_NATM, natmintr());
2027 #endif
2028 #if NPPP > 1
2029 DONETISR(NETISR_PPP, pppintr());
2030 #endif
2031
2032 #undef DONETISR
2033 }
2034
2035 void
2036 do_sir()
2037 {
2038 u_int64_t n;
2039
2040 do {
2041 (void)splhigh();
2042 n = ssir;
2043 ssir = 0;
2044 splsoft(); /* don't recurse through spl0() */
2045
2046 #if defined(UVM)
2047 #define COUNT_SOFT uvmexp.softs++
2048 #else
2049 #define COUNT_SOFT cnt.v_soft++
2050 #endif
2051
2052 #define DO_SIR(bit, fn) \
2053 do { \
2054 if (n & (bit)) { \
2055 COUNT_SOFT; \
2056 fn; \
2057 } \
2058 } while (0)
2059
2060 DO_SIR(SIR_NET, netintr());
2061 DO_SIR(SIR_CLOCK, softclock());
2062
2063 #undef COUNT_SOFT
2064 #undef DO_SIR
2065 } while (ssir != 0);
2066 }
2067
2068 int
2069 spl0()
2070 {
2071
2072 if (ssir)
2073 do_sir(); /* it lowers the IPL itself */
2074
2075 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2076 }
2077
2078 /*
2079 * The following primitives manipulate the run queues. _whichqs tells which
2080 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2081 * into queues, Remrunqueue removes them from queues. The running process is
2082 * on no queue, other processes are on a queue related to p->p_priority,
2083 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2084 * available queues.
2085 */
2086 /*
2087 * setrunqueue(p)
2088 * proc *p;
2089 *
2090 * Call should be made at splclock(), and p->p_stat should be SRUN.
2091 */
2092
2093 void
2094 setrunqueue(p)
2095 struct proc *p;
2096 {
2097 int bit;
2098
2099 /* firewall: p->p_back must be NULL */
2100 if (p->p_back != NULL)
2101 panic("setrunqueue");
2102
2103 bit = p->p_priority >> 2;
2104 whichqs |= (1 << bit);
2105 p->p_forw = (struct proc *)&qs[bit];
2106 p->p_back = qs[bit].ph_rlink;
2107 p->p_back->p_forw = p;
2108 qs[bit].ph_rlink = p;
2109 }
2110
2111 /*
2112 * remrunqueue(p)
2113 *
2114 * Call should be made at splclock().
2115 */
2116 void
2117 remrunqueue(p)
2118 struct proc *p;
2119 {
2120 int bit;
2121
2122 bit = p->p_priority >> 2;
2123 if ((whichqs & (1 << bit)) == 0)
2124 panic("remrunqueue");
2125
2126 p->p_back->p_forw = p->p_forw;
2127 p->p_forw->p_back = p->p_back;
2128 p->p_back = NULL; /* for firewall checking. */
2129
2130 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2131 whichqs &= ~(1 << bit);
2132 }
2133
2134 /*
2135 * Return the best possible estimate of the time in the timeval
2136 * to which tvp points. Unfortunately, we can't read the hardware registers.
2137 * We guarantee that the time will be greater than the value obtained by a
2138 * previous call.
2139 */
2140 void
2141 microtime(tvp)
2142 register struct timeval *tvp;
2143 {
2144 int s = splclock();
2145 static struct timeval lasttime;
2146
2147 *tvp = time;
2148 #ifdef notdef
2149 tvp->tv_usec += clkread();
2150 while (tvp->tv_usec > 1000000) {
2151 tvp->tv_sec++;
2152 tvp->tv_usec -= 1000000;
2153 }
2154 #endif
2155 if (tvp->tv_sec == lasttime.tv_sec &&
2156 tvp->tv_usec <= lasttime.tv_usec &&
2157 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2158 tvp->tv_sec++;
2159 tvp->tv_usec -= 1000000;
2160 }
2161 lasttime = *tvp;
2162 splx(s);
2163 }
2164
2165 /*
2166 * Wait "n" microseconds.
2167 */
2168 void
2169 delay(n)
2170 unsigned long n;
2171 {
2172 long N = cycles_per_usec * (n);
2173
2174 while (N > 0) /* XXX */
2175 N -= 3; /* XXX */
2176 }
2177
2178 #if defined(COMPAT_OSF1) || 1 /* XXX */
2179 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2180 u_long));
2181
2182 void
2183 cpu_exec_ecoff_setregs(p, epp, stack)
2184 struct proc *p;
2185 struct exec_package *epp;
2186 u_long stack;
2187 {
2188 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2189
2190 setregs(p, epp, stack);
2191 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2192 }
2193
2194 /*
2195 * cpu_exec_ecoff_hook():
2196 * cpu-dependent ECOFF format hook for execve().
2197 *
2198 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2199 *
2200 */
2201 int
2202 cpu_exec_ecoff_hook(p, epp)
2203 struct proc *p;
2204 struct exec_package *epp;
2205 {
2206 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2207 extern struct emul emul_netbsd;
2208 #ifdef COMPAT_OSF1
2209 extern struct emul emul_osf1;
2210 #endif
2211
2212 switch (execp->f.f_magic) {
2213 #ifdef COMPAT_OSF1
2214 case ECOFF_MAGIC_ALPHA:
2215 epp->ep_emul = &emul_osf1;
2216 break;
2217 #endif
2218
2219 case ECOFF_MAGIC_NETBSD_ALPHA:
2220 epp->ep_emul = &emul_netbsd;
2221 break;
2222
2223 default:
2224 return ENOEXEC;
2225 }
2226 return 0;
2227 }
2228 #endif
2229
2230 int
2231 alpha_pa_access(pa)
2232 u_long pa;
2233 {
2234 int i;
2235
2236 for (i = 0; i < mem_cluster_cnt; i++) {
2237 if (pa < mem_clusters[i].start)
2238 continue;
2239 if ((pa - mem_clusters[i].start) >=
2240 (mem_clusters[i].size & ~PAGE_MASK))
2241 continue;
2242 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2243 }
2244 return (PROT_NONE);
2245 }
2246
2247 /* XXX XXX BEGIN XXX XXX */
2248 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2249 /* XXX */
2250 vm_offset_t /* XXX */
2251 alpha_XXX_dmamap(v) /* XXX */
2252 vm_offset_t v; /* XXX */
2253 { /* XXX */
2254 /* XXX */
2255 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2256 } /* XXX */
2257 /* XXX XXX END XXX XXX */
2258