machdep.c revision 1.135 1 /* $NetBSD: machdep.c,v 1.135 1998/07/08 04:35:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.135 1998/07/08 04:35:23 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #ifdef REAL_CLISTS
95 #include <sys/clist.h>
96 #endif
97 #include <sys/callout.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/mman.h>
101 #include <sys/msgbuf.h>
102 #include <sys/ioctl.h>
103 #include <sys/tty.h>
104 #include <sys/user.h>
105 #include <sys/exec.h>
106 #include <sys/exec_ecoff.h>
107 #include <vm/vm.h>
108 #include <sys/sysctl.h>
109 #include <sys/core.h>
110 #include <sys/kcore.h>
111 #include <machine/kcore.h>
112 #ifdef SYSVMSG
113 #include <sys/msg.h>
114 #endif
115 #ifdef SYSVSEM
116 #include <sys/sem.h>
117 #endif
118 #ifdef SYSVSHM
119 #include <sys/shm.h>
120 #endif
121
122 #include <sys/mount.h>
123 #include <sys/syscallargs.h>
124
125 #include <vm/vm_kern.h>
126
127 #if defined(UVM)
128 #include <uvm/uvm_extern.h>
129 #endif
130
131 #include <dev/cons.h>
132
133 #include <machine/autoconf.h>
134 #include <machine/cpu.h>
135 #include <machine/reg.h>
136 #include <machine/rpb.h>
137 #include <machine/prom.h>
138 #include <machine/conf.h>
139
140 #include <net/netisr.h>
141 #include <net/if.h>
142
143 #ifdef INET
144 #include <net/route.h>
145 #include <netinet/in.h>
146 #include <netinet/ip_var.h>
147 #include "arp.h"
148 #if NARP > 0
149 #include <netinet/if_inarp.h>
150 #endif
151 #endif
152 #ifdef NS
153 #include <netns/ns_var.h>
154 #endif
155 #ifdef ISO
156 #include <netiso/iso.h>
157 #include <netiso/clnp.h>
158 #endif
159 #ifdef CCITT
160 #include <netccitt/x25.h>
161 #include <netccitt/pk.h>
162 #include <netccitt/pk_extern.h>
163 #endif
164 #ifdef NATM
165 #include <netnatm/natm.h>
166 #endif
167 #ifdef NETATALK
168 #include <netatalk/at_extern.h>
169 #endif
170 #include "ppp.h"
171 #if NPPP > 0
172 #include <net/ppp_defs.h>
173 #include <net/if_ppp.h>
174 #endif
175
176 #ifdef DDB
177 #include <machine/db_machdep.h>
178 #include <ddb/db_access.h>
179 #include <ddb/db_sym.h>
180 #include <ddb/db_extern.h>
181 #include <ddb/db_interface.h>
182 #endif
183
184 #if defined(UVM)
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188 #else
189 vm_map_t buffer_map;
190 #endif
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 int nswbuf = 0;
196 #ifdef NBUF
197 int nbuf = NBUF;
198 #else
199 int nbuf = 0;
200 #endif
201 #ifdef BUFPAGES
202 int bufpages = BUFPAGES;
203 #else
204 int bufpages = 0;
205 #endif
206 caddr_t msgbufaddr;
207
208 int maxmem; /* max memory per process */
209
210 int totalphysmem; /* total amount of physical memory in system */
211 int physmem; /* physical memory used by NetBSD + some rsvd */
212 int resvmem; /* amount of memory reserved for PROM */
213 int unusedmem; /* amount of memory for OS that we don't use */
214 int unknownmem; /* amount of memory with an unknown use */
215
216 int cputype; /* system type, from the RPB */
217
218 /*
219 * XXX We need an address to which we can assign things so that they
220 * won't be optimized away because we didn't use the value.
221 */
222 u_int32_t no_optimize;
223
224 /* the following is used externally (sysctl_hw) */
225 char machine[] = MACHINE; /* from <machine/param.h> */
226 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 char cpu_model[128];
228
229 struct user *proc0paddr;
230
231 /* Number of machine cycles per microsecond */
232 u_int64_t cycles_per_usec;
233
234 /* number of cpus in the box. really! */
235 int ncpus;
236
237 /* machine check info array, fleshed out in allocsys */
238 struct mchkinfo *mchkinfo;
239
240 struct bootinfo_kernel bootinfo;
241
242 /* For built-in TCDS */
243 #if defined(DEC_3000_300) || defined(DEC_3000_500)
244 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
245 #endif
246
247 struct platform platform;
248
249 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
250 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
251 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
252
253 #ifdef DDB
254 /* start and end of kernel symbol table */
255 void *ksym_start, *ksym_end;
256 #endif
257
258 /* for cpu_sysctl() */
259 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
260 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
261 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
262
263 /*
264 * XXX This should be dynamically sized, but we have the chicken-egg problem!
265 * XXX it should also be larger than it is, because not all of the mddt
266 * XXX clusters end up being used for VM.
267 */
268 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
269 int mem_cluster_cnt;
270
271 caddr_t allocsys __P((caddr_t));
272 int cpu_dump __P((void));
273 int cpu_dumpsize __P((void));
274 u_long cpu_dump_mempagecnt __P((void));
275 void dumpsys __P((void));
276 void identifycpu __P((void));
277 void netintr __P((void));
278 void printregs __P((struct reg *));
279
280 void
281 alpha_init(pfn, ptb, bim, bip, biv)
282 u_long pfn; /* first free PFN number */
283 u_long ptb; /* PFN of current level 1 page table */
284 u_long bim; /* bootinfo magic */
285 u_long bip; /* bootinfo pointer */
286 u_long biv; /* bootinfo version */
287 {
288 extern char kernel_text[], _end[];
289 struct mddt *mddtp;
290 struct mddt_cluster *memc;
291 int i, mddtweird;
292 struct vm_physseg *vps;
293 vm_offset_t kernstart, kernend;
294 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
295 vm_size_t size;
296 char *p;
297 caddr_t v;
298 char *bootinfo_msg;
299
300 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
301
302 /*
303 * Turn off interrupts (not mchecks) and floating point.
304 * Make sure the instruction and data streams are consistent.
305 */
306 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
307 alpha_pal_wrfen(0);
308 ALPHA_TBIA();
309 alpha_pal_imb();
310
311 /*
312 * Get critical system information (if possible, from the
313 * information provided by the boot program).
314 */
315 bootinfo_msg = NULL;
316 if (bim == BOOTINFO_MAGIC) {
317 if (biv == 0) { /* backward compat */
318 biv = *(u_long *)bip;
319 bip += 8;
320 }
321 switch (biv) {
322 case 1: {
323 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
324
325 bootinfo.ssym = v1p->ssym;
326 bootinfo.esym = v1p->esym;
327 /* hwrpb may not be provided by boot block in v1 */
328 if (v1p->hwrpb != NULL) {
329 bootinfo.hwrpb_phys =
330 ((struct rpb *)v1p->hwrpb)->rpb_phys;
331 bootinfo.hwrpb_size = v1p->hwrpbsize;
332 } else {
333 bootinfo.hwrpb_phys =
334 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
335 bootinfo.hwrpb_size =
336 ((struct rpb *)HWRPB_ADDR)->rpb_size;
337 }
338 bcopy(v1p->boot_flags, bootinfo.boot_flags,
339 min(sizeof v1p->boot_flags,
340 sizeof bootinfo.boot_flags));
341 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
342 min(sizeof v1p->booted_kernel,
343 sizeof bootinfo.booted_kernel));
344 /* booted dev not provided in bootinfo */
345 init_prom_interface((struct rpb *)
346 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
347 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
348 sizeof bootinfo.booted_dev);
349 break;
350 }
351 default:
352 bootinfo_msg = "unknown bootinfo version";
353 goto nobootinfo;
354 }
355 } else {
356 bootinfo_msg = "boot program did not pass bootinfo";
357 nobootinfo:
358 bootinfo.ssym = (u_long)_end;
359 bootinfo.esym = (u_long)_end;
360 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
361 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
362 init_prom_interface((struct rpb *)HWRPB_ADDR);
363 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
364 sizeof bootinfo.boot_flags);
365 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
366 sizeof bootinfo.booted_kernel);
367 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
368 sizeof bootinfo.booted_dev);
369 }
370
371 /*
372 * Initialize the kernel's mapping of the RPB. It's needed for
373 * lots of things.
374 */
375 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
376
377 #if defined(DEC_3000_300) || defined(DEC_3000_500)
378 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
379 hwrpb->rpb_type == ST_DEC_3000_500) {
380 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
381 sizeof(dec_3000_scsiid));
382 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
383 sizeof(dec_3000_scsifast));
384 }
385 #endif
386
387 /*
388 * Remember how many cycles there are per microsecond,
389 * so that we can use delay(). Round up, for safety.
390 */
391 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
392
393 /*
394 * Initalize the (temporary) bootstrap console interface, so
395 * we can use printf until the VM system starts being setup.
396 * The real console is initialized before then.
397 */
398 init_bootstrap_console();
399
400 /* OUTPUT NOW ALLOWED */
401
402 /* delayed from above */
403 if (bootinfo_msg)
404 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
405 bootinfo_msg, bim, bip, biv);
406
407 /*
408 * Point interrupt/exception vectors to our own.
409 */
410 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
411 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
412 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
413 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
414 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
415 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
416
417 /*
418 * Clear pending machine checks and error reports, and enable
419 * system- and processor-correctable error reporting.
420 */
421 alpha_pal_wrmces(alpha_pal_rdmces() &
422 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
423
424 /*
425 * Find out what hardware we're on, and do basic initialization.
426 */
427 cputype = hwrpb->rpb_type;
428 if (cputype >= ncpuinit) {
429 platform_not_supported();
430 /* NOTREACHED */
431 }
432 (*cpuinit[cputype].init)();
433 strcpy(cpu_model, platform.model);
434
435 /*
436 * Initalize the real console, so the the bootstrap console is
437 * no longer necessary.
438 */
439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
440 if (!pmap_uses_prom_console())
441 #endif
442 (*platform.cons_init)();
443
444 #ifdef DIAGNOSTIC
445 /* Paranoid sanity checking */
446
447 /* We should always be running on the the primary. */
448 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
449
450 /*
451 * On single-CPU systypes, the primary should always be CPU 0,
452 * except on Alpha 8200 systems where the CPU id is related
453 * to the VID, which is related to the Turbo Laser node id.
454 */
455 if (cputype != ST_DEC_21000)
456 assert(hwrpb->rpb_primary_cpu_id == 0);
457 #endif
458
459 /* NO MORE FIRMWARE ACCESS ALLOWED */
460 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
461 /*
462 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
463 * XXX pmap_uses_prom_console() evaluates to non-zero.)
464 */
465 #endif
466
467 /*
468 * find out this system's page size
469 */
470 PAGE_SIZE = hwrpb->rpb_page_size;
471 if (PAGE_SIZE != 8192)
472 panic("page size %d != 8192?!", PAGE_SIZE);
473
474 /*
475 * Initialize PAGE_SIZE-dependent variables.
476 */
477 #if defined(UVM)
478 uvm_setpagesize();
479 #else
480 vm_set_page_size();
481 #endif
482
483 /*
484 * Find the beginning and end of the kernel (and leave a
485 * bit of space before the beginning for the bootstrap
486 * stack).
487 */
488 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
489 #ifdef DDB
490 ksym_start = (void *)bootinfo.ssym;
491 ksym_end = (void *)bootinfo.esym;
492 kernend = (vm_offset_t)round_page(ksym_end);
493 #else
494 kernend = (vm_offset_t)round_page(_end);
495 #endif
496
497 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
498 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
499
500 /*
501 * Find out how much memory is available, by looking at
502 * the memory cluster descriptors. This also tries to do
503 * its best to detect things things that have never been seen
504 * before...
505 */
506 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
507
508 /* MDDT SANITY CHECKING */
509 mddtweird = 0;
510 if (mddtp->mddt_cluster_cnt < 2) {
511 mddtweird = 1;
512 printf("WARNING: weird number of mem clusters: %d\n",
513 mddtp->mddt_cluster_cnt);
514 }
515
516 #if 0
517 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
518 #endif
519
520 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
521 memc = &mddtp->mddt_clusters[i];
522 #if 0
523 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
524 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
525 #endif
526 totalphysmem += memc->mddt_pg_cnt;
527 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
528 mem_clusters[mem_cluster_cnt].start =
529 ptoa(memc->mddt_pfn);
530 mem_clusters[mem_cluster_cnt].size =
531 ptoa(memc->mddt_pg_cnt);
532 if (memc->mddt_usage & MDDT_mbz ||
533 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
534 memc->mddt_usage & MDDT_PALCODE)
535 mem_clusters[mem_cluster_cnt].size |=
536 PROT_READ;
537 else
538 mem_clusters[mem_cluster_cnt].size |=
539 PROT_READ | PROT_WRITE | PROT_EXEC;
540 mem_cluster_cnt++;
541 }
542
543 if (memc->mddt_usage & MDDT_mbz) {
544 mddtweird = 1;
545 printf("WARNING: mem cluster %d has weird "
546 "usage 0x%lx\n", i, memc->mddt_usage);
547 unknownmem += memc->mddt_pg_cnt;
548 continue;
549 }
550 if (memc->mddt_usage & MDDT_NONVOLATILE) {
551 /* XXX should handle these... */
552 printf("WARNING: skipping non-volatile mem "
553 "cluster %d\n", i);
554 unusedmem += memc->mddt_pg_cnt;
555 continue;
556 }
557 if (memc->mddt_usage & MDDT_PALCODE) {
558 resvmem += memc->mddt_pg_cnt;
559 continue;
560 }
561
562 /*
563 * We have a memory cluster available for system
564 * software use. We must determine if this cluster
565 * holds the kernel.
566 */
567 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
568 /*
569 * XXX If the kernel uses the PROM console, we only use the
570 * XXX memory after the kernel in the first system segment,
571 * XXX to avoid clobbering prom mapping, data, etc.
572 */
573 if (!pmap_uses_prom_console() || physmem == 0) {
574 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
575 physmem += memc->mddt_pg_cnt;
576 pfn0 = memc->mddt_pfn;
577 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
578 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
579 /*
580 * Must compute the location of the kernel
581 * within the segment.
582 */
583 #if 0
584 printf("Cluster %d contains kernel\n", i);
585 #endif
586 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
587 if (!pmap_uses_prom_console()) {
588 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
589 if (pfn0 < kernstartpfn) {
590 /*
591 * There is a chunk before the kernel.
592 */
593 #if 0
594 printf("Loading chunk before kernel: "
595 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
596 #endif
597 #if defined(UVM)
598 uvm_page_physload(pfn0, kernstartpfn,
599 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
600 #else
601 vm_page_physload(pfn0, kernstartpfn,
602 pfn0, kernstartpfn);
603 #endif
604 }
605 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
606 }
607 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
608 if (kernendpfn < pfn1) {
609 /*
610 * There is a chunk after the kernel.
611 */
612 #if 0
613 printf("Loading chunk after kernel: "
614 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
615 #endif
616 #if defined(UVM)
617 uvm_page_physload(kernendpfn, pfn1,
618 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
619 #else
620 vm_page_physload(kernendpfn, pfn1,
621 kernendpfn, pfn1);
622 #endif
623 }
624 } else {
625 /*
626 * Just load this cluster as one chunk.
627 */
628 #if 0
629 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
630 pfn0, pfn1);
631 #endif
632 #if defined(UVM)
633 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
634 VM_FREELIST_DEFAULT);
635 #else
636 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
637 #endif
638 }
639 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
640 }
641 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
642 }
643
644 /*
645 * Dump out the MDDT if it looks odd...
646 */
647 if (mddtweird) {
648 printf("\n");
649 printf("complete memory cluster information:\n");
650 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
651 printf("mddt %d:\n", i);
652 printf("\tpfn %lx\n",
653 mddtp->mddt_clusters[i].mddt_pfn);
654 printf("\tcnt %lx\n",
655 mddtp->mddt_clusters[i].mddt_pg_cnt);
656 printf("\ttest %lx\n",
657 mddtp->mddt_clusters[i].mddt_pg_test);
658 printf("\tbva %lx\n",
659 mddtp->mddt_clusters[i].mddt_v_bitaddr);
660 printf("\tbpa %lx\n",
661 mddtp->mddt_clusters[i].mddt_p_bitaddr);
662 printf("\tbcksum %lx\n",
663 mddtp->mddt_clusters[i].mddt_bit_cksum);
664 printf("\tusage %lx\n",
665 mddtp->mddt_clusters[i].mddt_usage);
666 }
667 printf("\n");
668 }
669
670 if (totalphysmem == 0)
671 panic("can't happen: system seems to have no memory!");
672
673 #ifdef LIMITMEM
674 /*
675 * XXX Kludge so we can run on machines with memory larger
676 * XXX than 1G until all device drivers are converted to
677 * XXX use bus_dma. (Relies on the fact that vm_physmem
678 * XXX sorted in order of increasing addresses.)
679 */
680 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
681
682 printf("******** LIMITING MEMORY TO %dMB **********\n",
683 LIMITMEM);
684
685 do {
686 u_long ovf;
687
688 vps = &vm_physmem[vm_nphysseg - 1];
689
690 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
691 /*
692 * If the start is too high, just drop
693 * the whole segment.
694 *
695 * XXX can start != avail_start in this
696 * XXX case? wouldn't that mean that
697 * XXX some memory was stolen above the
698 * XXX limit? What to do?
699 */
700 ovf = vps->end - vps->start;
701 vm_nphysseg--;
702 } else {
703 /*
704 * If the start is OK, calculate how much
705 * to drop and drop it.
706 */
707 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
708 vps->end -= ovf;
709 vps->avail_end -= ovf;
710 }
711 physmem -= ovf;
712 unusedmem += ovf;
713 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
714 }
715 #endif /* LIMITMEM */
716
717 maxmem = physmem;
718
719 #if 0
720 printf("totalphysmem = %d\n", totalphysmem);
721 printf("physmem = %d\n", physmem);
722 printf("resvmem = %d\n", resvmem);
723 printf("unusedmem = %d\n", unusedmem);
724 printf("unknownmem = %d\n", unknownmem);
725 #endif
726
727 /*
728 * Adjust some parameters if the amount of physmem
729 * available would cause us to croak. This is completely
730 * eyeballed and isn't meant to be the final answer.
731 * vm_phys_size is probably the only one to really worry
732 * about.
733 *
734 * It's for booting a GENERIC kernel on a large memory platform.
735 */
736 if (physmem >= atop(128 * 1024 * 1024)) {
737 vm_mbuf_size <<= 1;
738 vm_kmem_size <<= 3;
739 vm_phys_size <<= 2;
740 }
741
742 /*
743 * Initialize error message buffer (at end of core).
744 */
745 {
746 size_t sz = round_page(MSGBUFSIZE);
747
748 vps = &vm_physmem[vm_nphysseg - 1];
749
750 /* shrink so that it'll fit in the last segment */
751 if ((vps->avail_end - vps->avail_start) < atop(sz))
752 sz = ptoa(vps->avail_end - vps->avail_start);
753
754 vps->end -= atop(sz);
755 vps->avail_end -= atop(sz);
756 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
757 initmsgbuf(msgbufaddr, sz);
758
759 /* Remove the last segment if it now has no pages. */
760 if (vps->start == vps->end)
761 vm_nphysseg--;
762
763 /* warn if the message buffer had to be shrunk */
764 if (sz != round_page(MSGBUFSIZE))
765 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
766 round_page(MSGBUFSIZE), sz);
767
768 }
769
770 /*
771 * Init mapping for u page(s) for proc 0
772 */
773 proc0.p_addr = proc0paddr =
774 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
775
776 /*
777 * Figure out the number of cpus in the box, from RPB fields.
778 * Really. We mean it.
779 *
780 * Do it here because we need to know this in allocsys.
781 */
782 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
783 struct pcs *pcsp;
784
785 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
786 (i * hwrpb->rpb_pcs_size));
787 if ((pcsp->pcs_flags & PCS_PP) != 0)
788 ncpus++;
789 }
790
791 /*
792 * Allocate space for system data structures. These data structures
793 * are allocated here instead of cpu_startup() because physical
794 * memory is directly addressable. We don't have to map these into
795 * virtual address space.
796 */
797 size = (vm_size_t)allocsys(0);
798 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
799 if ((allocsys(v) - v) != size)
800 panic("alpha_init: table size inconsistency");
801
802 /*
803 * Initialize the virtual memory system, and set the
804 * page table base register in proc 0's PCB.
805 */
806 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
807 hwrpb->rpb_max_asn);
808
809 /*
810 * Initialize the rest of proc 0's PCB, and cache its physical
811 * address.
812 */
813 proc0.p_md.md_pcbpaddr =
814 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
815
816 /*
817 * Set the kernel sp, reserving space for an (empty) trapframe,
818 * and make proc0's trapframe pointer point to it for sanity.
819 */
820 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
821 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
822 proc0.p_md.md_tf =
823 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
824
825 /*
826 * Look at arguments passed to us and compute boothowto.
827 */
828
829 boothowto = RB_SINGLE;
830 #ifdef KADB
831 boothowto |= RB_KDB;
832 #endif
833 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
834 /*
835 * Note that we'd really like to differentiate case here,
836 * but the Alpha AXP Architecture Reference Manual
837 * says that we shouldn't.
838 */
839 switch (*p) {
840 case 'a': /* autoboot */
841 case 'A':
842 boothowto &= ~RB_SINGLE;
843 break;
844
845 #ifdef DEBUG
846 case 'c': /* crash dump immediately after autoconfig */
847 case 'C':
848 boothowto |= RB_DUMP;
849 break;
850 #endif
851
852 #if defined(KGDB) || defined(DDB)
853 case 'd': /* break into the kernel debugger ASAP */
854 case 'D':
855 boothowto |= RB_KDB;
856 break;
857 #endif
858
859 case 'h': /* always halt, never reboot */
860 case 'H':
861 boothowto |= RB_HALT;
862 break;
863
864 #if 0
865 case 'm': /* mini root present in memory */
866 case 'M':
867 boothowto |= RB_MINIROOT;
868 break;
869 #endif
870
871 case 'n': /* askname */
872 case 'N':
873 boothowto |= RB_ASKNAME;
874 break;
875
876 case 's': /* single-user (default, supported for sanity) */
877 case 'S':
878 boothowto |= RB_SINGLE;
879 break;
880
881 case '-':
882 /*
883 * Just ignore this. It's not required, but it's
884 * common for it to be passed regardless.
885 */
886 break;
887
888 default:
889 printf("Unrecognized boot flag '%c'.\n", *p);
890 break;
891 }
892 }
893
894 /*
895 * Initialize debuggers, and break into them if appropriate.
896 */
897 #ifdef DDB
898 db_machine_init();
899 ddb_init(ksym_start, ksym_end);
900 if (boothowto & RB_KDB)
901 Debugger();
902 #endif
903 #ifdef KGDB
904 if (boothowto & RB_KDB)
905 kgdb_connect(0);
906 #endif
907 /*
908 * Figure out our clock frequency, from RPB fields.
909 */
910 hz = hwrpb->rpb_intr_freq >> 12;
911 if (!(60 <= hz && hz <= 10240)) {
912 hz = 1024;
913 #ifdef DIAGNOSTIC
914 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
915 hwrpb->rpb_intr_freq, hz);
916 #endif
917 }
918 }
919
920 /*
921 * Allocate space for system data structures. We are given
922 * a starting virtual address and we return a final virtual
923 * address; along the way we set each data structure pointer.
924 *
925 * We call allocsys() with 0 to find out how much space we want,
926 * allocate that much and fill it with zeroes, and the call
927 * allocsys() again with the correct base virtual address.
928 */
929 caddr_t
930 allocsys(v)
931 caddr_t v;
932 {
933
934 #define valloc(name, type, num) \
935 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
936
937 #ifdef REAL_CLISTS
938 valloc(cfree, struct cblock, nclist);
939 #endif
940 valloc(callout, struct callout, ncallout);
941 #ifdef SYSVSHM
942 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
943 #endif
944 #ifdef SYSVSEM
945 valloc(sema, struct semid_ds, seminfo.semmni);
946 valloc(sem, struct sem, seminfo.semmns);
947 /* This is pretty disgusting! */
948 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
949 #endif
950 #ifdef SYSVMSG
951 valloc(msgpool, char, msginfo.msgmax);
952 valloc(msgmaps, struct msgmap, msginfo.msgseg);
953 valloc(msghdrs, struct msg, msginfo.msgtql);
954 valloc(msqids, struct msqid_ds, msginfo.msgmni);
955 #endif
956
957 /*
958 * Determine how many buffers to allocate.
959 * We allocate 10% of memory for buffer space. Insure a
960 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
961 * headers as file i/o buffers.
962 */
963 if (bufpages == 0)
964 bufpages = (physmem * 10) / (CLSIZE * 100);
965 if (nbuf == 0) {
966 nbuf = bufpages;
967 if (nbuf < 16)
968 nbuf = 16;
969 }
970 if (nswbuf == 0) {
971 nswbuf = (nbuf / 2) &~ 1; /* force even */
972 if (nswbuf > 256)
973 nswbuf = 256; /* sanity */
974 }
975 #if !defined(UVM)
976 valloc(swbuf, struct buf, nswbuf);
977 #endif
978 valloc(buf, struct buf, nbuf);
979 valloc(mchkinfo, struct mchkinfo, ncpus);
980 return (v);
981 #undef valloc
982 }
983
984 void
985 consinit()
986 {
987
988 /*
989 * Everything related to console initialization is done
990 * in alpha_init().
991 */
992 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
993 printf("consinit: %susing prom console\n",
994 pmap_uses_prom_console() ? "" : "not ");
995 #endif
996 }
997
998 #include "pckbc.h"
999 #include "pckbd.h"
1000 #if (NPCKBC > 0) && (NPCKBD == 0)
1001
1002 #include <machine/bus.h>
1003 #include <dev/isa/pckbcvar.h>
1004
1005 /*
1006 * This is called by the pbkbc driver if no pckbd is configured.
1007 * On the i386, it is used to glue in the old, deprecated console
1008 * code. On the Alpha, it does nothing.
1009 */
1010 int
1011 pckbc_machdep_cnattach(kbctag, kbcslot)
1012 pckbc_tag_t kbctag;
1013 pckbc_slot_t kbcslot;
1014 {
1015
1016 return (ENXIO);
1017 }
1018 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1019
1020 void
1021 cpu_startup()
1022 {
1023 register unsigned i;
1024 int base, residual;
1025 vm_offset_t minaddr, maxaddr;
1026 vm_size_t size;
1027 #if defined(DEBUG)
1028 extern int pmapdebug;
1029 int opmapdebug = pmapdebug;
1030
1031 pmapdebug = 0;
1032 #endif
1033
1034 /*
1035 * Good {morning,afternoon,evening,night}.
1036 */
1037 printf(version);
1038 identifycpu();
1039 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1040 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1041 if (unusedmem)
1042 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1043 if (unknownmem)
1044 printf("WARNING: %d bytes of memory with unknown purpose\n",
1045 ctob(unknownmem));
1046
1047 /*
1048 * Allocate virtual address space for file I/O buffers.
1049 * Note they are different than the array of headers, 'buf',
1050 * and usually occupy more virtual memory than physical.
1051 */
1052 size = MAXBSIZE * nbuf;
1053 #if defined(UVM)
1054 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1055 NULL, UVM_UNKNOWN_OFFSET,
1056 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1057 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1058 panic("startup: cannot allocate VM for buffers");
1059 #else
1060 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1061 &maxaddr, size, TRUE);
1062 minaddr = (vm_offset_t)buffers;
1063 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1064 &minaddr, size, FALSE) != KERN_SUCCESS)
1065 panic("startup: cannot allocate buffers");
1066 #endif /* UVM */
1067 base = bufpages / nbuf;
1068 residual = bufpages % nbuf;
1069 for (i = 0; i < nbuf; i++) {
1070 #if defined(UVM)
1071 vm_size_t curbufsize;
1072 vm_offset_t curbuf;
1073 struct vm_page *pg;
1074
1075 /*
1076 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1077 * that MAXBSIZE space, we allocate and map (base+1) pages
1078 * for the first "residual" buffers, and then we allocate
1079 * "base" pages for the rest.
1080 */
1081 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1082 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1083
1084 while (curbufsize) {
1085 pg = uvm_pagealloc(NULL, 0, NULL);
1086 if (pg == NULL)
1087 panic("cpu_startup: not enough memory for "
1088 "buffer cache");
1089 #if defined(PMAP_NEW)
1090 pmap_kenter_pgs(curbuf, &pg, 1);
1091 #else
1092 pmap_enter(kernel_map->pmap, curbuf,
1093 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1094 #endif
1095 curbuf += PAGE_SIZE;
1096 curbufsize -= PAGE_SIZE;
1097 }
1098 #else /* ! UVM */
1099 vm_size_t curbufsize;
1100 vm_offset_t curbuf;
1101
1102 /*
1103 * First <residual> buffers get (base+1) physical pages
1104 * allocated for them. The rest get (base) physical pages.
1105 *
1106 * The rest of each buffer occupies virtual space,
1107 * but has no physical memory allocated for it.
1108 */
1109 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1110 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1111 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1112 vm_map_simplify(buffer_map, curbuf);
1113 #endif /* UVM */
1114 }
1115 /*
1116 * Allocate a submap for exec arguments. This map effectively
1117 * limits the number of processes exec'ing at any time.
1118 */
1119 #if defined(UVM)
1120 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1121 16 * NCARGS, TRUE, FALSE, NULL);
1122 #else
1123 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1124 16 * NCARGS, TRUE);
1125 #endif
1126
1127 /*
1128 * Allocate a submap for physio
1129 */
1130 #if defined(UVM)
1131 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1132 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1133 #else
1134 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1135 VM_PHYS_SIZE, TRUE);
1136 #endif
1137
1138 /*
1139 * Finally, allocate mbuf cluster submap.
1140 */
1141 #if defined(UVM)
1142 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1143 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1144 #else
1145 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1146 VM_MBUF_SIZE, FALSE);
1147 #endif
1148 /*
1149 * Initialize callouts
1150 */
1151 callfree = callout;
1152 for (i = 1; i < ncallout; i++)
1153 callout[i-1].c_next = &callout[i];
1154 callout[i-1].c_next = NULL;
1155
1156 #if defined(DEBUG)
1157 pmapdebug = opmapdebug;
1158 #endif
1159 #if defined(UVM)
1160 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1161 #else
1162 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1163 #endif
1164 printf("using %ld buffers containing %ld bytes of memory\n",
1165 (long)nbuf, (long)(bufpages * CLBYTES));
1166
1167 /*
1168 * Set up buffers, so they can be used to read disk labels.
1169 */
1170 bufinit();
1171
1172 /*
1173 * Configure the system.
1174 */
1175 configure();
1176
1177 /*
1178 * Note that bootstrapping is finished, and set the HWRPB up
1179 * to do restarts.
1180 */
1181 hwrpb_restart_setup();
1182 }
1183
1184 /*
1185 * Retrieve the platform name from the DSR.
1186 */
1187 const char *
1188 alpha_dsr_sysname()
1189 {
1190 struct dsrdb *dsr;
1191 const char *sysname;
1192
1193 /*
1194 * DSR does not exist on early HWRPB versions.
1195 */
1196 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1197 return (NULL);
1198
1199 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1200 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1201 sizeof(u_int64_t)));
1202 return (sysname);
1203 }
1204
1205 /*
1206 * Lookup the system specified system variation in the provided table,
1207 * returning the model string on match.
1208 */
1209 const char *
1210 alpha_variation_name(variation, avtp)
1211 u_int64_t variation;
1212 const struct alpha_variation_table *avtp;
1213 {
1214 int i;
1215
1216 for (i = 0; avtp[i].avt_model != NULL; i++)
1217 if (avtp[i].avt_variation == variation)
1218 return (avtp[i].avt_model);
1219 return (NULL);
1220 }
1221
1222 /*
1223 * Generate a default platform name based for unknown system variations.
1224 */
1225 const char *
1226 alpha_unknown_sysname()
1227 {
1228 static char s[128]; /* safe size */
1229
1230 sprintf(s, "%s family, unknown model variation 0x%lx",
1231 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1232 return ((const char *)s);
1233 }
1234
1235 void
1236 identifycpu()
1237 {
1238
1239 /*
1240 * print out CPU identification information.
1241 */
1242 printf("%s, %ldMHz\n", cpu_model,
1243 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1244 printf("%ld byte page size, %d processor%s.\n",
1245 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1246 #if 0
1247 /* this isn't defined for any systems that we run on? */
1248 printf("serial number 0x%lx 0x%lx\n",
1249 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1250
1251 /* and these aren't particularly useful! */
1252 printf("variation: 0x%lx, revision 0x%lx\n",
1253 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1254 #endif
1255 }
1256
1257 int waittime = -1;
1258 struct pcb dumppcb;
1259
1260 void
1261 cpu_reboot(howto, bootstr)
1262 int howto;
1263 char *bootstr;
1264 {
1265 extern int cold;
1266
1267 /* If system is cold, just halt. */
1268 if (cold) {
1269 howto |= RB_HALT;
1270 goto haltsys;
1271 }
1272
1273 /* If "always halt" was specified as a boot flag, obey. */
1274 if ((boothowto & RB_HALT) != 0)
1275 howto |= RB_HALT;
1276
1277 boothowto = howto;
1278 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1279 waittime = 0;
1280 vfs_shutdown();
1281 /*
1282 * If we've been adjusting the clock, the todr
1283 * will be out of synch; adjust it now.
1284 */
1285 resettodr();
1286 }
1287
1288 /* Disable interrupts. */
1289 splhigh();
1290
1291 /* If rebooting and a dump is requested do it. */
1292 #if 0
1293 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1294 #else
1295 if (howto & RB_DUMP)
1296 #endif
1297 dumpsys();
1298
1299 haltsys:
1300
1301 /* run any shutdown hooks */
1302 doshutdownhooks();
1303
1304 #ifdef BOOTKEY
1305 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1306 cnpollc(1); /* for proper keyboard command handling */
1307 cngetc();
1308 cnpollc(0);
1309 printf("\n");
1310 #endif
1311
1312 /* Finally, powerdown/halt/reboot the system. */
1313 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1314 platform.powerdown != NULL) {
1315 (*platform.powerdown)();
1316 printf("WARNING: powerdown failed!\n");
1317 }
1318 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1319 prom_halt(howto & RB_HALT);
1320 /*NOTREACHED*/
1321 }
1322
1323 /*
1324 * These variables are needed by /sbin/savecore
1325 */
1326 u_long dumpmag = 0x8fca0101; /* magic number */
1327 int dumpsize = 0; /* pages */
1328 long dumplo = 0; /* blocks */
1329
1330 /*
1331 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1332 */
1333 int
1334 cpu_dumpsize()
1335 {
1336 int size;
1337
1338 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1339 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1340 if (roundup(size, dbtob(1)) != dbtob(1))
1341 return -1;
1342
1343 return (1);
1344 }
1345
1346 /*
1347 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1348 */
1349 u_long
1350 cpu_dump_mempagecnt()
1351 {
1352 u_long i, n;
1353
1354 n = 0;
1355 for (i = 0; i < mem_cluster_cnt; i++)
1356 n += atop(mem_clusters[i].size);
1357 return (n);
1358 }
1359
1360 /*
1361 * cpu_dump: dump machine-dependent kernel core dump headers.
1362 */
1363 int
1364 cpu_dump()
1365 {
1366 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1367 char buf[dbtob(1)];
1368 kcore_seg_t *segp;
1369 cpu_kcore_hdr_t *cpuhdrp;
1370 phys_ram_seg_t *memsegp;
1371 int i;
1372
1373 dump = bdevsw[major(dumpdev)].d_dump;
1374
1375 bzero(buf, sizeof buf);
1376 segp = (kcore_seg_t *)buf;
1377 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1378 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1379 ALIGN(sizeof(*cpuhdrp))];
1380
1381 /*
1382 * Generate a segment header.
1383 */
1384 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1385 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1386
1387 /*
1388 * Add the machine-dependent header info.
1389 */
1390 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1391 cpuhdrp->page_size = PAGE_SIZE;
1392 cpuhdrp->nmemsegs = mem_cluster_cnt;
1393
1394 /*
1395 * Fill in the memory segment descriptors.
1396 */
1397 for (i = 0; i < mem_cluster_cnt; i++) {
1398 memsegp[i].start = mem_clusters[i].start;
1399 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1400 }
1401
1402 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1403 }
1404
1405 /*
1406 * This is called by main to set dumplo and dumpsize.
1407 * Dumps always skip the first CLBYTES of disk space
1408 * in case there might be a disk label stored there.
1409 * If there is extra space, put dump at the end to
1410 * reduce the chance that swapping trashes it.
1411 */
1412 void
1413 cpu_dumpconf()
1414 {
1415 int nblks, dumpblks; /* size of dump area */
1416 int maj;
1417
1418 if (dumpdev == NODEV)
1419 goto bad;
1420 maj = major(dumpdev);
1421 if (maj < 0 || maj >= nblkdev)
1422 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1423 if (bdevsw[maj].d_psize == NULL)
1424 goto bad;
1425 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1426 if (nblks <= ctod(1))
1427 goto bad;
1428
1429 dumpblks = cpu_dumpsize();
1430 if (dumpblks < 0)
1431 goto bad;
1432 dumpblks += ctod(cpu_dump_mempagecnt());
1433
1434 /* If dump won't fit (incl. room for possible label), punt. */
1435 if (dumpblks > (nblks - ctod(1)))
1436 goto bad;
1437
1438 /* Put dump at end of partition */
1439 dumplo = nblks - dumpblks;
1440
1441 /* dumpsize is in page units, and doesn't include headers. */
1442 dumpsize = cpu_dump_mempagecnt();
1443 return;
1444
1445 bad:
1446 dumpsize = 0;
1447 return;
1448 }
1449
1450 /*
1451 * Dump the kernel's image to the swap partition.
1452 */
1453 #define BYTES_PER_DUMP NBPG
1454
1455 void
1456 dumpsys()
1457 {
1458 u_long totalbytesleft, bytes, i, n, memcl;
1459 u_long maddr;
1460 int psize;
1461 daddr_t blkno;
1462 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1463 int error;
1464
1465 /* Save registers. */
1466 savectx(&dumppcb);
1467
1468 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1469 if (dumpdev == NODEV)
1470 return;
1471
1472 /*
1473 * For dumps during autoconfiguration,
1474 * if dump device has already configured...
1475 */
1476 if (dumpsize == 0)
1477 cpu_dumpconf();
1478 if (dumplo <= 0) {
1479 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1480 minor(dumpdev));
1481 return;
1482 }
1483 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1484 minor(dumpdev), dumplo);
1485
1486 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1487 printf("dump ");
1488 if (psize == -1) {
1489 printf("area unavailable\n");
1490 return;
1491 }
1492
1493 /* XXX should purge all outstanding keystrokes. */
1494
1495 if ((error = cpu_dump()) != 0)
1496 goto err;
1497
1498 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1499 blkno = dumplo + cpu_dumpsize();
1500 dump = bdevsw[major(dumpdev)].d_dump;
1501 error = 0;
1502
1503 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1504 maddr = mem_clusters[memcl].start;
1505 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1506
1507 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1508
1509 /* Print out how many MBs we to go. */
1510 if ((totalbytesleft % (1024*1024)) == 0)
1511 printf("%d ", totalbytesleft / (1024 * 1024));
1512
1513 /* Limit size for next transfer. */
1514 n = bytes - i;
1515 if (n > BYTES_PER_DUMP)
1516 n = BYTES_PER_DUMP;
1517
1518 error = (*dump)(dumpdev, blkno,
1519 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1520 if (error)
1521 goto err;
1522 maddr += n;
1523 blkno += btodb(n); /* XXX? */
1524
1525 /* XXX should look for keystrokes, to cancel. */
1526 }
1527 }
1528
1529 err:
1530 switch (error) {
1531
1532 case ENXIO:
1533 printf("device bad\n");
1534 break;
1535
1536 case EFAULT:
1537 printf("device not ready\n");
1538 break;
1539
1540 case EINVAL:
1541 printf("area improper\n");
1542 break;
1543
1544 case EIO:
1545 printf("i/o error\n");
1546 break;
1547
1548 case EINTR:
1549 printf("aborted from console\n");
1550 break;
1551
1552 case 0:
1553 printf("succeeded\n");
1554 break;
1555
1556 default:
1557 printf("error %d\n", error);
1558 break;
1559 }
1560 printf("\n\n");
1561 delay(1000);
1562 }
1563
1564 void
1565 frametoreg(framep, regp)
1566 struct trapframe *framep;
1567 struct reg *regp;
1568 {
1569
1570 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1571 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1572 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1573 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1574 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1575 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1576 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1577 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1578 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1579 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1580 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1581 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1582 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1583 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1584 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1585 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1586 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1587 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1588 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1589 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1590 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1591 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1592 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1593 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1594 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1595 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1596 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1597 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1598 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1599 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1600 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1601 regp->r_regs[R_ZERO] = 0;
1602 }
1603
1604 void
1605 regtoframe(regp, framep)
1606 struct reg *regp;
1607 struct trapframe *framep;
1608 {
1609
1610 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1611 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1612 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1613 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1614 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1615 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1616 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1617 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1618 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1619 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1620 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1621 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1622 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1623 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1624 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1625 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1626 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1627 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1628 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1629 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1630 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1631 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1632 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1633 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1634 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1635 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1636 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1637 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1638 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1639 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1640 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1641 /* ??? = regp->r_regs[R_ZERO]; */
1642 }
1643
1644 void
1645 printregs(regp)
1646 struct reg *regp;
1647 {
1648 int i;
1649
1650 for (i = 0; i < 32; i++)
1651 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1652 i & 1 ? "\n" : "\t");
1653 }
1654
1655 void
1656 regdump(framep)
1657 struct trapframe *framep;
1658 {
1659 struct reg reg;
1660
1661 frametoreg(framep, ®);
1662 reg.r_regs[R_SP] = alpha_pal_rdusp();
1663
1664 printf("REGISTERS:\n");
1665 printregs(®);
1666 }
1667
1668 #ifdef DEBUG
1669 int sigdebug = 0;
1670 int sigpid = 0;
1671 #define SDB_FOLLOW 0x01
1672 #define SDB_KSTACK 0x02
1673 #endif
1674
1675 /*
1676 * Send an interrupt to process.
1677 */
1678 void
1679 sendsig(catcher, sig, mask, code)
1680 sig_t catcher;
1681 int sig, mask;
1682 u_long code;
1683 {
1684 struct proc *p = curproc;
1685 struct sigcontext *scp, ksc;
1686 struct trapframe *frame;
1687 struct sigacts *psp = p->p_sigacts;
1688 int oonstack, fsize, rndfsize;
1689 extern char sigcode[], esigcode[];
1690 extern struct proc *fpcurproc;
1691
1692 frame = p->p_md.md_tf;
1693 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1694 fsize = sizeof ksc;
1695 rndfsize = ((fsize + 15) / 16) * 16;
1696 /*
1697 * Allocate and validate space for the signal handler
1698 * context. Note that if the stack is in P0 space, the
1699 * call to grow() is a nop, and the useracc() check
1700 * will fail if the process has not already allocated
1701 * the space with a `brk'.
1702 */
1703 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1704 (psp->ps_sigonstack & sigmask(sig))) {
1705 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1706 psp->ps_sigstk.ss_size - rndfsize);
1707 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1708 } else
1709 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1710 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1711 #if defined(UVM)
1712 (void)uvm_grow(p, (u_long)scp);
1713 #else
1714 (void)grow(p, (u_long)scp);
1715 #endif
1716 #ifdef DEBUG
1717 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1718 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1719 sig, &oonstack, scp);
1720 #endif
1721 #if defined(UVM)
1722 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1723 #else
1724 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1725 #endif
1726 #ifdef DEBUG
1727 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1728 printf("sendsig(%d): useracc failed on sig %d\n",
1729 p->p_pid, sig);
1730 #endif
1731 /*
1732 * Process has trashed its stack; give it an illegal
1733 * instruction to halt it in its tracks.
1734 */
1735 SIGACTION(p, SIGILL) = SIG_DFL;
1736 sig = sigmask(SIGILL);
1737 p->p_sigignore &= ~sig;
1738 p->p_sigcatch &= ~sig;
1739 p->p_sigmask &= ~sig;
1740 psignal(p, SIGILL);
1741 return;
1742 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1743 }
1744 #else
1745 }
1746 #endif
1747
1748 /*
1749 * Build the signal context to be used by sigreturn.
1750 */
1751 ksc.sc_onstack = oonstack;
1752 ksc.sc_mask = mask;
1753 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1754 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1755
1756 /* copy the registers. */
1757 frametoreg(frame, (struct reg *)ksc.sc_regs);
1758 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1759 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1760
1761 /* save the floating-point state, if necessary, then copy it. */
1762 if (p == fpcurproc) {
1763 alpha_pal_wrfen(1);
1764 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1765 alpha_pal_wrfen(0);
1766 fpcurproc = NULL;
1767 }
1768 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1769 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1770 sizeof(struct fpreg));
1771 ksc.sc_fp_control = 0; /* XXX ? */
1772 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1773 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1774
1775
1776 #ifdef COMPAT_OSF1
1777 /*
1778 * XXX Create an OSF/1-style sigcontext and associated goo.
1779 */
1780 #endif
1781
1782 /*
1783 * copy the frame out to userland.
1784 */
1785 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1786 #ifdef DEBUG
1787 if (sigdebug & SDB_FOLLOW)
1788 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1789 scp, code);
1790 #endif
1791
1792 /*
1793 * Set up the registers to return to sigcode.
1794 */
1795 frame->tf_regs[FRAME_PC] =
1796 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1797 frame->tf_regs[FRAME_A0] = sig;
1798 frame->tf_regs[FRAME_A1] = code;
1799 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1800 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1801 alpha_pal_wrusp((unsigned long)scp);
1802
1803 #ifdef DEBUG
1804 if (sigdebug & SDB_FOLLOW)
1805 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1806 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1807 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1808 printf("sendsig(%d): sig %d returns\n",
1809 p->p_pid, sig);
1810 #endif
1811 }
1812
1813 /*
1814 * System call to cleanup state after a signal
1815 * has been taken. Reset signal mask and
1816 * stack state from context left by sendsig (above).
1817 * Return to previous pc and psl as specified by
1818 * context left by sendsig. Check carefully to
1819 * make sure that the user has not modified the
1820 * psl to gain improper priviledges or to cause
1821 * a machine fault.
1822 */
1823 /* ARGSUSED */
1824 int
1825 sys_sigreturn(p, v, retval)
1826 struct proc *p;
1827 void *v;
1828 register_t *retval;
1829 {
1830 struct sys_sigreturn_args /* {
1831 syscallarg(struct sigcontext *) sigcntxp;
1832 } */ *uap = v;
1833 struct sigcontext *scp, ksc;
1834 extern struct proc *fpcurproc;
1835
1836 scp = SCARG(uap, sigcntxp);
1837 #ifdef DEBUG
1838 if (sigdebug & SDB_FOLLOW)
1839 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1840 #endif
1841
1842 if (ALIGN(scp) != (u_int64_t)scp)
1843 return (EINVAL);
1844
1845 /*
1846 * Test and fetch the context structure.
1847 * We grab it all at once for speed.
1848 */
1849 #if defined(UVM)
1850 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1851 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1852 return (EINVAL);
1853 #else
1854 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1855 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1856 return (EINVAL);
1857 #endif
1858
1859 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1860 return (EINVAL);
1861 /*
1862 * Restore the user-supplied information
1863 */
1864 if (ksc.sc_onstack)
1865 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1866 else
1867 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1868 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1869
1870 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1871 p->p_md.md_tf->tf_regs[FRAME_PS] =
1872 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1873
1874 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1875 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1876
1877 /* XXX ksc.sc_ownedfp ? */
1878 if (p == fpcurproc)
1879 fpcurproc = NULL;
1880 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1881 sizeof(struct fpreg));
1882 /* XXX ksc.sc_fp_control ? */
1883
1884 #ifdef DEBUG
1885 if (sigdebug & SDB_FOLLOW)
1886 printf("sigreturn(%d): returns\n", p->p_pid);
1887 #endif
1888 return (EJUSTRETURN);
1889 }
1890
1891 /*
1892 * machine dependent system variables.
1893 */
1894 int
1895 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1896 int *name;
1897 u_int namelen;
1898 void *oldp;
1899 size_t *oldlenp;
1900 void *newp;
1901 size_t newlen;
1902 struct proc *p;
1903 {
1904 dev_t consdev;
1905
1906 /* all sysctl names at this level are terminal */
1907 if (namelen != 1)
1908 return (ENOTDIR); /* overloaded */
1909
1910 switch (name[0]) {
1911 case CPU_CONSDEV:
1912 if (cn_tab != NULL)
1913 consdev = cn_tab->cn_dev;
1914 else
1915 consdev = NODEV;
1916 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1917 sizeof consdev));
1918
1919 case CPU_ROOT_DEVICE:
1920 return (sysctl_rdstring(oldp, oldlenp, newp,
1921 root_device->dv_xname));
1922
1923 case CPU_UNALIGNED_PRINT:
1924 return (sysctl_int(oldp, oldlenp, newp, newlen,
1925 &alpha_unaligned_print));
1926
1927 case CPU_UNALIGNED_FIX:
1928 return (sysctl_int(oldp, oldlenp, newp, newlen,
1929 &alpha_unaligned_fix));
1930
1931 case CPU_UNALIGNED_SIGBUS:
1932 return (sysctl_int(oldp, oldlenp, newp, newlen,
1933 &alpha_unaligned_sigbus));
1934
1935 case CPU_BOOTED_KERNEL:
1936 return (sysctl_rdstring(oldp, oldlenp, newp,
1937 bootinfo.booted_kernel));
1938
1939 default:
1940 return (EOPNOTSUPP);
1941 }
1942 /* NOTREACHED */
1943 }
1944
1945 /*
1946 * Set registers on exec.
1947 */
1948 void
1949 setregs(p, pack, stack)
1950 register struct proc *p;
1951 struct exec_package *pack;
1952 u_long stack;
1953 {
1954 struct trapframe *tfp = p->p_md.md_tf;
1955 extern struct proc *fpcurproc;
1956 #ifdef DEBUG
1957 int i;
1958 #endif
1959
1960 #ifdef DEBUG
1961 /*
1962 * Crash and dump, if the user requested it.
1963 */
1964 if (boothowto & RB_DUMP)
1965 panic("crash requested by boot flags");
1966 #endif
1967
1968 #ifdef DEBUG
1969 for (i = 0; i < FRAME_SIZE; i++)
1970 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1971 #else
1972 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1973 #endif
1974 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1975 #define FP_RN 2 /* XXX */
1976 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1977 alpha_pal_wrusp(stack);
1978 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1979 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1980
1981 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1982 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1983 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1984 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1985 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1986
1987 p->p_md.md_flags &= ~MDP_FPUSED;
1988 if (fpcurproc == p)
1989 fpcurproc = NULL;
1990 }
1991
1992 void
1993 netintr()
1994 {
1995 int n, s;
1996
1997 s = splhigh();
1998 n = netisr;
1999 netisr = 0;
2000 splx(s);
2001
2002 #define DONETISR(bit, fn) \
2003 do { \
2004 if (n & (1 << (bit))) \
2005 fn; \
2006 } while (0)
2007
2008 #ifdef INET
2009 #if NARP > 0
2010 DONETISR(NETISR_ARP, arpintr());
2011 #endif
2012 DONETISR(NETISR_IP, ipintr());
2013 #endif
2014 #ifdef NETATALK
2015 DONETISR(NETISR_ATALK, atintr());
2016 #endif
2017 #ifdef NS
2018 DONETISR(NETISR_NS, nsintr());
2019 #endif
2020 #ifdef ISO
2021 DONETISR(NETISR_ISO, clnlintr());
2022 #endif
2023 #ifdef CCITT
2024 DONETISR(NETISR_CCITT, ccittintr());
2025 #endif
2026 #ifdef NATM
2027 DONETISR(NETISR_NATM, natmintr());
2028 #endif
2029 #if NPPP > 1
2030 DONETISR(NETISR_PPP, pppintr());
2031 #endif
2032
2033 #undef DONETISR
2034 }
2035
2036 void
2037 do_sir()
2038 {
2039 u_int64_t n;
2040
2041 do {
2042 (void)splhigh();
2043 n = ssir;
2044 ssir = 0;
2045 splsoft(); /* don't recurse through spl0() */
2046
2047 #if defined(UVM)
2048 #define COUNT_SOFT uvmexp.softs++
2049 #else
2050 #define COUNT_SOFT cnt.v_soft++
2051 #endif
2052
2053 #define DO_SIR(bit, fn) \
2054 do { \
2055 if (n & (bit)) { \
2056 COUNT_SOFT; \
2057 fn; \
2058 } \
2059 } while (0)
2060
2061 DO_SIR(SIR_NET, netintr());
2062 DO_SIR(SIR_CLOCK, softclock());
2063
2064 #undef COUNT_SOFT
2065 #undef DO_SIR
2066 } while (ssir != 0);
2067 }
2068
2069 int
2070 spl0()
2071 {
2072
2073 if (ssir)
2074 do_sir(); /* it lowers the IPL itself */
2075
2076 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2077 }
2078
2079 /*
2080 * The following primitives manipulate the run queues. _whichqs tells which
2081 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2082 * into queues, Remrunqueue removes them from queues. The running process is
2083 * on no queue, other processes are on a queue related to p->p_priority,
2084 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2085 * available queues.
2086 */
2087 /*
2088 * setrunqueue(p)
2089 * proc *p;
2090 *
2091 * Call should be made at splclock(), and p->p_stat should be SRUN.
2092 */
2093
2094 void
2095 setrunqueue(p)
2096 struct proc *p;
2097 {
2098 int bit;
2099
2100 /* firewall: p->p_back must be NULL */
2101 if (p->p_back != NULL)
2102 panic("setrunqueue");
2103
2104 bit = p->p_priority >> 2;
2105 whichqs |= (1 << bit);
2106 p->p_forw = (struct proc *)&qs[bit];
2107 p->p_back = qs[bit].ph_rlink;
2108 p->p_back->p_forw = p;
2109 qs[bit].ph_rlink = p;
2110 }
2111
2112 /*
2113 * remrunqueue(p)
2114 *
2115 * Call should be made at splclock().
2116 */
2117 void
2118 remrunqueue(p)
2119 struct proc *p;
2120 {
2121 int bit;
2122
2123 bit = p->p_priority >> 2;
2124 if ((whichqs & (1 << bit)) == 0)
2125 panic("remrunqueue");
2126
2127 p->p_back->p_forw = p->p_forw;
2128 p->p_forw->p_back = p->p_back;
2129 p->p_back = NULL; /* for firewall checking. */
2130
2131 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2132 whichqs &= ~(1 << bit);
2133 }
2134
2135 /*
2136 * Return the best possible estimate of the time in the timeval
2137 * to which tvp points. Unfortunately, we can't read the hardware registers.
2138 * We guarantee that the time will be greater than the value obtained by a
2139 * previous call.
2140 */
2141 void
2142 microtime(tvp)
2143 register struct timeval *tvp;
2144 {
2145 int s = splclock();
2146 static struct timeval lasttime;
2147
2148 *tvp = time;
2149 #ifdef notdef
2150 tvp->tv_usec += clkread();
2151 while (tvp->tv_usec > 1000000) {
2152 tvp->tv_sec++;
2153 tvp->tv_usec -= 1000000;
2154 }
2155 #endif
2156 if (tvp->tv_sec == lasttime.tv_sec &&
2157 tvp->tv_usec <= lasttime.tv_usec &&
2158 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2159 tvp->tv_sec++;
2160 tvp->tv_usec -= 1000000;
2161 }
2162 lasttime = *tvp;
2163 splx(s);
2164 }
2165
2166 /*
2167 * Wait "n" microseconds.
2168 */
2169 void
2170 delay(n)
2171 unsigned long n;
2172 {
2173 long N = cycles_per_usec * (n);
2174
2175 while (N > 0) /* XXX */
2176 N -= 3; /* XXX */
2177 }
2178
2179 #if defined(COMPAT_OSF1) || 1 /* XXX */
2180 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2181 u_long));
2182
2183 void
2184 cpu_exec_ecoff_setregs(p, epp, stack)
2185 struct proc *p;
2186 struct exec_package *epp;
2187 u_long stack;
2188 {
2189 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2190
2191 setregs(p, epp, stack);
2192 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2193 }
2194
2195 /*
2196 * cpu_exec_ecoff_hook():
2197 * cpu-dependent ECOFF format hook for execve().
2198 *
2199 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2200 *
2201 */
2202 int
2203 cpu_exec_ecoff_hook(p, epp)
2204 struct proc *p;
2205 struct exec_package *epp;
2206 {
2207 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2208 extern struct emul emul_netbsd;
2209 #ifdef COMPAT_OSF1
2210 extern struct emul emul_osf1;
2211 #endif
2212
2213 switch (execp->f.f_magic) {
2214 #ifdef COMPAT_OSF1
2215 case ECOFF_MAGIC_ALPHA:
2216 epp->ep_emul = &emul_osf1;
2217 break;
2218 #endif
2219
2220 case ECOFF_MAGIC_NETBSD_ALPHA:
2221 epp->ep_emul = &emul_netbsd;
2222 break;
2223
2224 default:
2225 return ENOEXEC;
2226 }
2227 return 0;
2228 }
2229 #endif
2230
2231 int
2232 alpha_pa_access(pa)
2233 u_long pa;
2234 {
2235 int i;
2236
2237 for (i = 0; i < mem_cluster_cnt; i++) {
2238 if (pa < mem_clusters[i].start)
2239 continue;
2240 if ((pa - mem_clusters[i].start) >=
2241 (mem_clusters[i].size & ~PAGE_MASK))
2242 continue;
2243 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2244 }
2245 return (PROT_NONE);
2246 }
2247
2248 /* XXX XXX BEGIN XXX XXX */
2249 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2250 /* XXX */
2251 vm_offset_t /* XXX */
2252 alpha_XXX_dmamap(v) /* XXX */
2253 vm_offset_t v; /* XXX */
2254 { /* XXX */
2255 /* XXX */
2256 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2257 } /* XXX */
2258 /* XXX XXX END XXX XXX */
2259