machdep.c revision 1.136 1 /* $NetBSD: machdep.c,v 1.136 1998/07/08 16:28:26 mjacob Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.136 1998/07/08 16:28:26 mjacob Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #ifdef REAL_CLISTS
95 #include <sys/clist.h>
96 #endif
97 #include <sys/callout.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/mman.h>
101 #include <sys/msgbuf.h>
102 #include <sys/ioctl.h>
103 #include <sys/tty.h>
104 #include <sys/user.h>
105 #include <sys/exec.h>
106 #include <sys/exec_ecoff.h>
107 #include <vm/vm.h>
108 #include <sys/sysctl.h>
109 #include <sys/core.h>
110 #include <sys/kcore.h>
111 #include <machine/kcore.h>
112 #ifdef SYSVMSG
113 #include <sys/msg.h>
114 #endif
115 #ifdef SYSVSEM
116 #include <sys/sem.h>
117 #endif
118 #ifdef SYSVSHM
119 #include <sys/shm.h>
120 #endif
121
122 #include <sys/mount.h>
123 #include <sys/syscallargs.h>
124
125 #include <vm/vm_kern.h>
126
127 #if defined(UVM)
128 #include <uvm/uvm_extern.h>
129 #endif
130
131 #include <dev/cons.h>
132
133 #include <machine/autoconf.h>
134 #include <machine/cpu.h>
135 #include <machine/reg.h>
136 #include <machine/rpb.h>
137 #include <machine/prom.h>
138 #include <machine/conf.h>
139
140 #include <net/netisr.h>
141 #include <net/if.h>
142
143 #ifdef INET
144 #include <net/route.h>
145 #include <netinet/in.h>
146 #include <netinet/ip_var.h>
147 #include "arp.h"
148 #if NARP > 0
149 #include <netinet/if_inarp.h>
150 #endif
151 #endif
152 #ifdef NS
153 #include <netns/ns_var.h>
154 #endif
155 #ifdef ISO
156 #include <netiso/iso.h>
157 #include <netiso/clnp.h>
158 #endif
159 #ifdef CCITT
160 #include <netccitt/x25.h>
161 #include <netccitt/pk.h>
162 #include <netccitt/pk_extern.h>
163 #endif
164 #ifdef NATM
165 #include <netnatm/natm.h>
166 #endif
167 #ifdef NETATALK
168 #include <netatalk/at_extern.h>
169 #endif
170 #include "ppp.h"
171 #if NPPP > 0
172 #include <net/ppp_defs.h>
173 #include <net/if_ppp.h>
174 #endif
175
176 #ifdef DDB
177 #include <machine/db_machdep.h>
178 #include <ddb/db_access.h>
179 #include <ddb/db_sym.h>
180 #include <ddb/db_extern.h>
181 #include <ddb/db_interface.h>
182 #endif
183
184 #if defined(UVM)
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188 #else
189 vm_map_t buffer_map;
190 #endif
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 int nswbuf = 0;
196 #ifdef NBUF
197 int nbuf = NBUF;
198 #else
199 int nbuf = 0;
200 #endif
201 #ifdef BUFPAGES
202 int bufpages = BUFPAGES;
203 #else
204 int bufpages = 0;
205 #endif
206 caddr_t msgbufaddr;
207
208 int maxmem; /* max memory per process */
209
210 int totalphysmem; /* total amount of physical memory in system */
211 int physmem; /* physical memory used by NetBSD + some rsvd */
212 int resvmem; /* amount of memory reserved for PROM */
213 int unusedmem; /* amount of memory for OS that we don't use */
214 int unknownmem; /* amount of memory with an unknown use */
215
216 int cputype; /* system type, from the RPB */
217
218 /*
219 * XXX We need an address to which we can assign things so that they
220 * won't be optimized away because we didn't use the value.
221 */
222 u_int32_t no_optimize;
223
224 /* the following is used externally (sysctl_hw) */
225 char machine[] = MACHINE; /* from <machine/param.h> */
226 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 char cpu_model[128];
228
229 struct user *proc0paddr;
230
231 /* Number of machine cycles per microsecond */
232 u_int64_t cycles_per_usec;
233
234 /* number of cpus in the box. really! */
235 int ncpus;
236
237 /* machine check info array, fleshed out in allocsys */
238 struct mchkinfo *mchkinfo;
239
240 struct bootinfo_kernel bootinfo;
241
242 /* For built-in TCDS */
243 #if defined(DEC_3000_300) || defined(DEC_3000_500)
244 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
245 #endif
246
247 struct platform platform;
248
249 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
250 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
251 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
252
253 #ifdef DDB
254 /* start and end of kernel symbol table */
255 void *ksym_start, *ksym_end;
256 #endif
257
258 /* for cpu_sysctl() */
259 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
260 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
261 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
262
263 /*
264 * XXX This should be dynamically sized, but we have the chicken-egg problem!
265 * XXX it should also be larger than it is, because not all of the mddt
266 * XXX clusters end up being used for VM.
267 */
268 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
269 int mem_cluster_cnt;
270
271 caddr_t allocsys __P((caddr_t));
272 int cpu_dump __P((void));
273 int cpu_dumpsize __P((void));
274 u_long cpu_dump_mempagecnt __P((void));
275 void dumpsys __P((void));
276 void identifycpu __P((void));
277 void netintr __P((void));
278 void printregs __P((struct reg *));
279
280 void
281 alpha_init(pfn, ptb, bim, bip, biv)
282 u_long pfn; /* first free PFN number */
283 u_long ptb; /* PFN of current level 1 page table */
284 u_long bim; /* bootinfo magic */
285 u_long bip; /* bootinfo pointer */
286 u_long biv; /* bootinfo version */
287 {
288 extern char kernel_text[], _end[];
289 struct mddt *mddtp;
290 struct mddt_cluster *memc;
291 int i, mddtweird;
292 struct vm_physseg *vps;
293 vm_offset_t kernstart, kernend;
294 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
295 vm_size_t size;
296 char *p;
297 caddr_t v;
298 char *bootinfo_msg;
299
300 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
301
302 /*
303 * Turn off interrupts (not mchecks) and floating point.
304 * Make sure the instruction and data streams are consistent.
305 */
306 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
307 alpha_pal_wrfen(0);
308 ALPHA_TBIA();
309 alpha_pal_imb();
310
311 /*
312 * Get critical system information (if possible, from the
313 * information provided by the boot program).
314 */
315 bootinfo_msg = NULL;
316 if (bim == BOOTINFO_MAGIC) {
317 if (biv == 0) { /* backward compat */
318 biv = *(u_long *)bip;
319 bip += 8;
320 }
321 switch (biv) {
322 case 1: {
323 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
324
325 bootinfo.ssym = v1p->ssym;
326 bootinfo.esym = v1p->esym;
327 /* hwrpb may not be provided by boot block in v1 */
328 if (v1p->hwrpb != NULL) {
329 bootinfo.hwrpb_phys =
330 ((struct rpb *)v1p->hwrpb)->rpb_phys;
331 bootinfo.hwrpb_size = v1p->hwrpbsize;
332 } else {
333 bootinfo.hwrpb_phys =
334 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
335 bootinfo.hwrpb_size =
336 ((struct rpb *)HWRPB_ADDR)->rpb_size;
337 }
338 bcopy(v1p->boot_flags, bootinfo.boot_flags,
339 min(sizeof v1p->boot_flags,
340 sizeof bootinfo.boot_flags));
341 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
342 min(sizeof v1p->booted_kernel,
343 sizeof bootinfo.booted_kernel));
344 /* booted dev not provided in bootinfo */
345 init_prom_interface((struct rpb *)
346 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
347 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
348 sizeof bootinfo.booted_dev);
349 break;
350 }
351 default:
352 bootinfo_msg = "unknown bootinfo version";
353 goto nobootinfo;
354 }
355 } else {
356 bootinfo_msg = "boot program did not pass bootinfo";
357 nobootinfo:
358 bootinfo.ssym = (u_long)_end;
359 bootinfo.esym = (u_long)_end;
360 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
361 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
362 init_prom_interface((struct rpb *)HWRPB_ADDR);
363 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
364 sizeof bootinfo.boot_flags);
365 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
366 sizeof bootinfo.booted_kernel);
367 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
368 sizeof bootinfo.booted_dev);
369 }
370
371 /*
372 * Initialize the kernel's mapping of the RPB. It's needed for
373 * lots of things.
374 */
375 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
376
377 #if defined(DEC_3000_300) || defined(DEC_3000_500)
378 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
379 hwrpb->rpb_type == ST_DEC_3000_500) {
380 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
381 sizeof(dec_3000_scsiid));
382 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
383 sizeof(dec_3000_scsifast));
384 }
385 #endif
386
387 /*
388 * Remember how many cycles there are per microsecond,
389 * so that we can use delay(). Round up, for safety.
390 */
391 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
392
393 /*
394 * Initalize the (temporary) bootstrap console interface, so
395 * we can use printf until the VM system starts being setup.
396 * The real console is initialized before then.
397 */
398 init_bootstrap_console();
399
400 /* OUTPUT NOW ALLOWED */
401
402 /* delayed from above */
403 if (bootinfo_msg)
404 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
405 bootinfo_msg, bim, bip, biv);
406
407 /*
408 * Point interrupt/exception vectors to our own.
409 */
410 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
411 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
412 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
413 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
414 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
415 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
416
417 /*
418 * Clear pending machine checks and error reports, and enable
419 * system- and processor-correctable error reporting.
420 */
421 alpha_pal_wrmces(alpha_pal_rdmces() &
422 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
423
424 /*
425 * Find out what hardware we're on, and do basic initialization.
426 */
427 cputype = hwrpb->rpb_type;
428 if (cputype >= ncpuinit) {
429 platform_not_supported();
430 /* NOTREACHED */
431 }
432 (*cpuinit[cputype].init)();
433 strcpy(cpu_model, platform.model);
434
435 /*
436 * Initalize the real console, so the the bootstrap console is
437 * no longer necessary.
438 */
439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
440 if (!pmap_uses_prom_console())
441 #endif
442 (*platform.cons_init)();
443
444 #ifdef DIAGNOSTIC
445 /* Paranoid sanity checking */
446
447 /* We should always be running on the the primary. */
448 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
449
450 /*
451 * On single-CPU systypes, the primary should always be CPU 0,
452 * except on Alpha 8200 systems where the CPU id is related
453 * to the VID, which is related to the Turbo Laser node id.
454 */
455 if (cputype != ST_DEC_21000)
456 assert(hwrpb->rpb_primary_cpu_id == 0);
457 #endif
458
459 /* NO MORE FIRMWARE ACCESS ALLOWED */
460 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
461 /*
462 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
463 * XXX pmap_uses_prom_console() evaluates to non-zero.)
464 */
465 #endif
466
467 /*
468 * find out this system's page size
469 */
470 PAGE_SIZE = hwrpb->rpb_page_size;
471 if (PAGE_SIZE != 8192)
472 panic("page size %d != 8192?!", PAGE_SIZE);
473
474 /*
475 * Initialize PAGE_SIZE-dependent variables.
476 */
477 #if defined(UVM)
478 uvm_setpagesize();
479 #else
480 vm_set_page_size();
481 #endif
482
483 /*
484 * Find the beginning and end of the kernel (and leave a
485 * bit of space before the beginning for the bootstrap
486 * stack).
487 */
488 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
489 #ifdef DDB
490 ksym_start = (void *)bootinfo.ssym;
491 ksym_end = (void *)bootinfo.esym;
492 kernend = (vm_offset_t)round_page(ksym_end);
493 #else
494 kernend = (vm_offset_t)round_page(_end);
495 #endif
496
497 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
498 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
499
500 /*
501 * Find out how much memory is available, by looking at
502 * the memory cluster descriptors. This also tries to do
503 * its best to detect things things that have never been seen
504 * before...
505 */
506 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
507
508 /* MDDT SANITY CHECKING */
509 mddtweird = 0;
510 if (mddtp->mddt_cluster_cnt < 2) {
511 mddtweird = 1;
512 printf("WARNING: weird number of mem clusters: %d\n",
513 mddtp->mddt_cluster_cnt);
514 }
515
516 #if 0
517 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
518 #endif
519
520 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
521 memc = &mddtp->mddt_clusters[i];
522 #if 0
523 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
524 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
525 #endif
526 totalphysmem += memc->mddt_pg_cnt;
527 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
528 mem_clusters[mem_cluster_cnt].start =
529 ptoa(memc->mddt_pfn);
530 mem_clusters[mem_cluster_cnt].size =
531 ptoa(memc->mddt_pg_cnt);
532 if (memc->mddt_usage & MDDT_mbz ||
533 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
534 memc->mddt_usage & MDDT_PALCODE)
535 mem_clusters[mem_cluster_cnt].size |=
536 PROT_READ;
537 else
538 mem_clusters[mem_cluster_cnt].size |=
539 PROT_READ | PROT_WRITE | PROT_EXEC;
540 mem_cluster_cnt++;
541 }
542
543 if (memc->mddt_usage & MDDT_mbz) {
544 mddtweird = 1;
545 printf("WARNING: mem cluster %d has weird "
546 "usage 0x%lx\n", i, memc->mddt_usage);
547 unknownmem += memc->mddt_pg_cnt;
548 continue;
549 }
550 if (memc->mddt_usage & MDDT_NONVOLATILE) {
551 /* XXX should handle these... */
552 printf("WARNING: skipping non-volatile mem "
553 "cluster %d\n", i);
554 unusedmem += memc->mddt_pg_cnt;
555 continue;
556 }
557 if (memc->mddt_usage & MDDT_PALCODE) {
558 resvmem += memc->mddt_pg_cnt;
559 continue;
560 }
561
562 /*
563 * We have a memory cluster available for system
564 * software use. We must determine if this cluster
565 * holds the kernel.
566 */
567 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
568 /*
569 * XXX If the kernel uses the PROM console, we only use the
570 * XXX memory after the kernel in the first system segment,
571 * XXX to avoid clobbering prom mapping, data, etc.
572 */
573 if (!pmap_uses_prom_console() || physmem == 0) {
574 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
575 physmem += memc->mddt_pg_cnt;
576 pfn0 = memc->mddt_pfn;
577 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
578 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
579 /*
580 * Must compute the location of the kernel
581 * within the segment.
582 */
583 #if 0
584 printf("Cluster %d contains kernel\n", i);
585 #endif
586 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
587 if (!pmap_uses_prom_console()) {
588 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
589 if (pfn0 < kernstartpfn) {
590 /*
591 * There is a chunk before the kernel.
592 */
593 #if 0
594 printf("Loading chunk before kernel: "
595 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
596 #endif
597 #if defined(UVM)
598 uvm_page_physload(pfn0, kernstartpfn,
599 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
600 #else
601 vm_page_physload(pfn0, kernstartpfn,
602 pfn0, kernstartpfn);
603 #endif
604 }
605 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
606 }
607 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
608 if (kernendpfn < pfn1) {
609 /*
610 * There is a chunk after the kernel.
611 */
612 #if 0
613 printf("Loading chunk after kernel: "
614 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
615 #endif
616 #if defined(UVM)
617 uvm_page_physload(kernendpfn, pfn1,
618 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
619 #else
620 vm_page_physload(kernendpfn, pfn1,
621 kernendpfn, pfn1);
622 #endif
623 }
624 } else {
625 /*
626 * Just load this cluster as one chunk.
627 */
628 #if 0
629 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
630 pfn0, pfn1);
631 #endif
632 #if defined(UVM)
633 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
634 VM_FREELIST_DEFAULT);
635 #else
636 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
637 #endif
638 }
639 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
640 }
641 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
642 }
643
644 /*
645 * Dump out the MDDT if it looks odd...
646 */
647 if (mddtweird) {
648 printf("\n");
649 printf("complete memory cluster information:\n");
650 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
651 printf("mddt %d:\n", i);
652 printf("\tpfn %lx\n",
653 mddtp->mddt_clusters[i].mddt_pfn);
654 printf("\tcnt %lx\n",
655 mddtp->mddt_clusters[i].mddt_pg_cnt);
656 printf("\ttest %lx\n",
657 mddtp->mddt_clusters[i].mddt_pg_test);
658 printf("\tbva %lx\n",
659 mddtp->mddt_clusters[i].mddt_v_bitaddr);
660 printf("\tbpa %lx\n",
661 mddtp->mddt_clusters[i].mddt_p_bitaddr);
662 printf("\tbcksum %lx\n",
663 mddtp->mddt_clusters[i].mddt_bit_cksum);
664 printf("\tusage %lx\n",
665 mddtp->mddt_clusters[i].mddt_usage);
666 }
667 printf("\n");
668 }
669
670 if (totalphysmem == 0)
671 panic("can't happen: system seems to have no memory!");
672
673 #ifdef LIMITMEM
674 /*
675 * XXX Kludge so we can run on machines with memory larger
676 * XXX than 1G until all device drivers are converted to
677 * XXX use bus_dma. (Relies on the fact that vm_physmem
678 * XXX sorted in order of increasing addresses.)
679 */
680 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
681
682 printf("******** LIMITING MEMORY TO %dMB **********\n",
683 LIMITMEM);
684
685 do {
686 u_long ovf;
687
688 vps = &vm_physmem[vm_nphysseg - 1];
689
690 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
691 /*
692 * If the start is too high, just drop
693 * the whole segment.
694 *
695 * XXX can start != avail_start in this
696 * XXX case? wouldn't that mean that
697 * XXX some memory was stolen above the
698 * XXX limit? What to do?
699 */
700 ovf = vps->end - vps->start;
701 vm_nphysseg--;
702 } else {
703 /*
704 * If the start is OK, calculate how much
705 * to drop and drop it.
706 */
707 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
708 vps->end -= ovf;
709 vps->avail_end -= ovf;
710 }
711 physmem -= ovf;
712 unusedmem += ovf;
713 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
714 }
715 #endif /* LIMITMEM */
716
717 maxmem = physmem;
718
719 #if 0
720 printf("totalphysmem = %d\n", totalphysmem);
721 printf("physmem = %d\n", physmem);
722 printf("resvmem = %d\n", resvmem);
723 printf("unusedmem = %d\n", unusedmem);
724 printf("unknownmem = %d\n", unknownmem);
725 #endif
726
727 /*
728 * Adjust some parameters if the amount of physmem
729 * available would cause us to croak. This is completely
730 * eyeballed and isn't meant to be the final answer.
731 * vm_phys_size is probably the only one to really worry
732 * about.
733 *
734 * It's for booting a GENERIC kernel on a large memory platform.
735 */
736 if (physmem >= atop(128 * 1024 * 1024)) {
737 vm_mbuf_size <<= 1;
738 vm_kmem_size <<= 3;
739 vm_phys_size <<= 2;
740 }
741
742 /*
743 * Initialize error message buffer (at end of core).
744 */
745 {
746 size_t sz = round_page(MSGBUFSIZE);
747
748 vps = &vm_physmem[vm_nphysseg - 1];
749
750 /* shrink so that it'll fit in the last segment */
751 if ((vps->avail_end - vps->avail_start) < atop(sz))
752 sz = ptoa(vps->avail_end - vps->avail_start);
753
754 vps->end -= atop(sz);
755 vps->avail_end -= atop(sz);
756 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
757 initmsgbuf(msgbufaddr, sz);
758
759 /* Remove the last segment if it now has no pages. */
760 if (vps->start == vps->end)
761 vm_nphysseg--;
762
763 /* warn if the message buffer had to be shrunk */
764 if (sz != round_page(MSGBUFSIZE))
765 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
766 round_page(MSGBUFSIZE), sz);
767
768 }
769
770 /*
771 * Init mapping for u page(s) for proc 0
772 */
773 proc0.p_addr = proc0paddr =
774 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
775
776 /*
777 * Allocate space for system data structures. These data structures
778 * are allocated here instead of cpu_startup() because physical
779 * memory is directly addressable. We don't have to map these into
780 * virtual address space.
781 */
782 size = (vm_size_t)allocsys(0);
783 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
784 if ((allocsys(v) - v) != size)
785 panic("alpha_init: table size inconsistency");
786
787 /*
788 * Initialize the virtual memory system, and set the
789 * page table base register in proc 0's PCB.
790 */
791 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
792 hwrpb->rpb_max_asn);
793
794 /*
795 * Initialize the rest of proc 0's PCB, and cache its physical
796 * address.
797 */
798 proc0.p_md.md_pcbpaddr =
799 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
800
801 /*
802 * Set the kernel sp, reserving space for an (empty) trapframe,
803 * and make proc0's trapframe pointer point to it for sanity.
804 */
805 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
806 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
807 proc0.p_md.md_tf =
808 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
809
810 /*
811 * Look at arguments passed to us and compute boothowto.
812 */
813
814 boothowto = RB_SINGLE;
815 #ifdef KADB
816 boothowto |= RB_KDB;
817 #endif
818 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
819 /*
820 * Note that we'd really like to differentiate case here,
821 * but the Alpha AXP Architecture Reference Manual
822 * says that we shouldn't.
823 */
824 switch (*p) {
825 case 'a': /* autoboot */
826 case 'A':
827 boothowto &= ~RB_SINGLE;
828 break;
829
830 #ifdef DEBUG
831 case 'c': /* crash dump immediately after autoconfig */
832 case 'C':
833 boothowto |= RB_DUMP;
834 break;
835 #endif
836
837 #if defined(KGDB) || defined(DDB)
838 case 'd': /* break into the kernel debugger ASAP */
839 case 'D':
840 boothowto |= RB_KDB;
841 break;
842 #endif
843
844 case 'h': /* always halt, never reboot */
845 case 'H':
846 boothowto |= RB_HALT;
847 break;
848
849 #if 0
850 case 'm': /* mini root present in memory */
851 case 'M':
852 boothowto |= RB_MINIROOT;
853 break;
854 #endif
855
856 case 'n': /* askname */
857 case 'N':
858 boothowto |= RB_ASKNAME;
859 break;
860
861 case 's': /* single-user (default, supported for sanity) */
862 case 'S':
863 boothowto |= RB_SINGLE;
864 break;
865
866 case '-':
867 /*
868 * Just ignore this. It's not required, but it's
869 * common for it to be passed regardless.
870 */
871 break;
872
873 default:
874 printf("Unrecognized boot flag '%c'.\n", *p);
875 break;
876 }
877 }
878
879
880 /*
881 * Figure out the number of cpus in the box, from RPB fields.
882 * Really. We mean it.
883 */
884 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
885 struct pcs *pcsp;
886
887 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
888 (i * hwrpb->rpb_pcs_size));
889 if ((pcsp->pcs_flags & PCS_PP) != 0)
890 ncpus++;
891 }
892
893 /*
894 * Initialize debuggers, and break into them if appropriate.
895 */
896 #ifdef DDB
897 db_machine_init();
898 ddb_init(ksym_start, ksym_end);
899 if (boothowto & RB_KDB)
900 Debugger();
901 #endif
902 #ifdef KGDB
903 if (boothowto & RB_KDB)
904 kgdb_connect(0);
905 #endif
906 /*
907 * Figure out our clock frequency, from RPB fields.
908 */
909 hz = hwrpb->rpb_intr_freq >> 12;
910 if (!(60 <= hz && hz <= 10240)) {
911 hz = 1024;
912 #ifdef DIAGNOSTIC
913 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
914 hwrpb->rpb_intr_freq, hz);
915 #endif
916 }
917 }
918
919 /*
920 * Allocate space for system data structures. We are given
921 * a starting virtual address and we return a final virtual
922 * address; along the way we set each data structure pointer.
923 *
924 * We call allocsys() with 0 to find out how much space we want,
925 * allocate that much and fill it with zeroes, and the call
926 * allocsys() again with the correct base virtual address.
927 */
928 caddr_t
929 allocsys(v)
930 caddr_t v;
931 {
932
933 #define valloc(name, type, num) \
934 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
935
936 #ifdef REAL_CLISTS
937 valloc(cfree, struct cblock, nclist);
938 #endif
939 valloc(callout, struct callout, ncallout);
940 #ifdef SYSVSHM
941 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
942 #endif
943 #ifdef SYSVSEM
944 valloc(sema, struct semid_ds, seminfo.semmni);
945 valloc(sem, struct sem, seminfo.semmns);
946 /* This is pretty disgusting! */
947 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
948 #endif
949 #ifdef SYSVMSG
950 valloc(msgpool, char, msginfo.msgmax);
951 valloc(msgmaps, struct msgmap, msginfo.msgseg);
952 valloc(msghdrs, struct msg, msginfo.msgtql);
953 valloc(msqids, struct msqid_ds, msginfo.msgmni);
954 #endif
955
956 /*
957 * Determine how many buffers to allocate.
958 * We allocate 10% of memory for buffer space. Insure a
959 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
960 * headers as file i/o buffers.
961 */
962 if (bufpages == 0)
963 bufpages = (physmem * 10) / (CLSIZE * 100);
964 if (nbuf == 0) {
965 nbuf = bufpages;
966 if (nbuf < 16)
967 nbuf = 16;
968 }
969 if (nswbuf == 0) {
970 nswbuf = (nbuf / 2) &~ 1; /* force even */
971 if (nswbuf > 256)
972 nswbuf = 256; /* sanity */
973 }
974 #if !defined(UVM)
975 valloc(swbuf, struct buf, nswbuf);
976 #endif
977 valloc(buf, struct buf, nbuf);
978
979 /*
980 * There appears to be a correlation between the number
981 * of processor slots defined in the HWRPB and the whami
982 * value that can be returned.
983 */
984 valloc(mchkinfo, struct mchkinfo, hwrpb->rpb_pcs_cnt);
985
986 return (v);
987 #undef valloc
988 }
989
990 void
991 consinit()
992 {
993
994 /*
995 * Everything related to console initialization is done
996 * in alpha_init().
997 */
998 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
999 printf("consinit: %susing prom console\n",
1000 pmap_uses_prom_console() ? "" : "not ");
1001 #endif
1002 }
1003
1004 #include "pckbc.h"
1005 #include "pckbd.h"
1006 #if (NPCKBC > 0) && (NPCKBD == 0)
1007
1008 #include <machine/bus.h>
1009 #include <dev/isa/pckbcvar.h>
1010
1011 /*
1012 * This is called by the pbkbc driver if no pckbd is configured.
1013 * On the i386, it is used to glue in the old, deprecated console
1014 * code. On the Alpha, it does nothing.
1015 */
1016 int
1017 pckbc_machdep_cnattach(kbctag, kbcslot)
1018 pckbc_tag_t kbctag;
1019 pckbc_slot_t kbcslot;
1020 {
1021
1022 return (ENXIO);
1023 }
1024 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1025
1026 void
1027 cpu_startup()
1028 {
1029 register unsigned i;
1030 int base, residual;
1031 vm_offset_t minaddr, maxaddr;
1032 vm_size_t size;
1033 #if defined(DEBUG)
1034 extern int pmapdebug;
1035 int opmapdebug = pmapdebug;
1036
1037 pmapdebug = 0;
1038 #endif
1039
1040 /*
1041 * Good {morning,afternoon,evening,night}.
1042 */
1043 printf(version);
1044 identifycpu();
1045 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1046 ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1047 if (unusedmem)
1048 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1049 if (unknownmem)
1050 printf("WARNING: %d bytes of memory with unknown purpose\n",
1051 ctob(unknownmem));
1052
1053 /*
1054 * Allocate virtual address space for file I/O buffers.
1055 * Note they are different than the array of headers, 'buf',
1056 * and usually occupy more virtual memory than physical.
1057 */
1058 size = MAXBSIZE * nbuf;
1059 #if defined(UVM)
1060 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1061 NULL, UVM_UNKNOWN_OFFSET,
1062 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1063 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1064 panic("startup: cannot allocate VM for buffers");
1065 #else
1066 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1067 &maxaddr, size, TRUE);
1068 minaddr = (vm_offset_t)buffers;
1069 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1070 &minaddr, size, FALSE) != KERN_SUCCESS)
1071 panic("startup: cannot allocate buffers");
1072 #endif /* UVM */
1073 base = bufpages / nbuf;
1074 residual = bufpages % nbuf;
1075 for (i = 0; i < nbuf; i++) {
1076 #if defined(UVM)
1077 vm_size_t curbufsize;
1078 vm_offset_t curbuf;
1079 struct vm_page *pg;
1080
1081 /*
1082 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1083 * that MAXBSIZE space, we allocate and map (base+1) pages
1084 * for the first "residual" buffers, and then we allocate
1085 * "base" pages for the rest.
1086 */
1087 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1088 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1089
1090 while (curbufsize) {
1091 pg = uvm_pagealloc(NULL, 0, NULL);
1092 if (pg == NULL)
1093 panic("cpu_startup: not enough memory for "
1094 "buffer cache");
1095 #if defined(PMAP_NEW)
1096 pmap_kenter_pgs(curbuf, &pg, 1);
1097 #else
1098 pmap_enter(kernel_map->pmap, curbuf,
1099 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1100 #endif
1101 curbuf += PAGE_SIZE;
1102 curbufsize -= PAGE_SIZE;
1103 }
1104 #else /* ! UVM */
1105 vm_size_t curbufsize;
1106 vm_offset_t curbuf;
1107
1108 /*
1109 * First <residual> buffers get (base+1) physical pages
1110 * allocated for them. The rest get (base) physical pages.
1111 *
1112 * The rest of each buffer occupies virtual space,
1113 * but has no physical memory allocated for it.
1114 */
1115 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1116 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1117 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1118 vm_map_simplify(buffer_map, curbuf);
1119 #endif /* UVM */
1120 }
1121 /*
1122 * Allocate a submap for exec arguments. This map effectively
1123 * limits the number of processes exec'ing at any time.
1124 */
1125 #if defined(UVM)
1126 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1127 16 * NCARGS, TRUE, FALSE, NULL);
1128 #else
1129 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1130 16 * NCARGS, TRUE);
1131 #endif
1132
1133 /*
1134 * Allocate a submap for physio
1135 */
1136 #if defined(UVM)
1137 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1138 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1139 #else
1140 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1141 VM_PHYS_SIZE, TRUE);
1142 #endif
1143
1144 /*
1145 * Finally, allocate mbuf cluster submap.
1146 */
1147 #if defined(UVM)
1148 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1149 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1150 #else
1151 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1152 VM_MBUF_SIZE, FALSE);
1153 #endif
1154 /*
1155 * Initialize callouts
1156 */
1157 callfree = callout;
1158 for (i = 1; i < ncallout; i++)
1159 callout[i-1].c_next = &callout[i];
1160 callout[i-1].c_next = NULL;
1161
1162 #if defined(DEBUG)
1163 pmapdebug = opmapdebug;
1164 #endif
1165 #if defined(UVM)
1166 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1167 #else
1168 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1169 #endif
1170 printf("using %ld buffers containing %ld bytes of memory\n",
1171 (long)nbuf, (long)(bufpages * CLBYTES));
1172
1173 /*
1174 * Set up buffers, so they can be used to read disk labels.
1175 */
1176 bufinit();
1177
1178 /*
1179 * Configure the system.
1180 */
1181 configure();
1182
1183 /*
1184 * Note that bootstrapping is finished, and set the HWRPB up
1185 * to do restarts.
1186 */
1187 hwrpb_restart_setup();
1188 }
1189
1190 /*
1191 * Retrieve the platform name from the DSR.
1192 */
1193 const char *
1194 alpha_dsr_sysname()
1195 {
1196 struct dsrdb *dsr;
1197 const char *sysname;
1198
1199 /*
1200 * DSR does not exist on early HWRPB versions.
1201 */
1202 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1203 return (NULL);
1204
1205 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1206 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1207 sizeof(u_int64_t)));
1208 return (sysname);
1209 }
1210
1211 /*
1212 * Lookup the system specified system variation in the provided table,
1213 * returning the model string on match.
1214 */
1215 const char *
1216 alpha_variation_name(variation, avtp)
1217 u_int64_t variation;
1218 const struct alpha_variation_table *avtp;
1219 {
1220 int i;
1221
1222 for (i = 0; avtp[i].avt_model != NULL; i++)
1223 if (avtp[i].avt_variation == variation)
1224 return (avtp[i].avt_model);
1225 return (NULL);
1226 }
1227
1228 /*
1229 * Generate a default platform name based for unknown system variations.
1230 */
1231 const char *
1232 alpha_unknown_sysname()
1233 {
1234 static char s[128]; /* safe size */
1235
1236 sprintf(s, "%s family, unknown model variation 0x%lx",
1237 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1238 return ((const char *)s);
1239 }
1240
1241 void
1242 identifycpu()
1243 {
1244
1245 /*
1246 * print out CPU identification information.
1247 */
1248 printf("%s, %ldMHz\n", cpu_model,
1249 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1250 printf("%ld byte page size, %d processor%s.\n",
1251 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1252 #if 0
1253 /* this isn't defined for any systems that we run on? */
1254 printf("serial number 0x%lx 0x%lx\n",
1255 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1256
1257 /* and these aren't particularly useful! */
1258 printf("variation: 0x%lx, revision 0x%lx\n",
1259 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1260 #endif
1261 }
1262
1263 int waittime = -1;
1264 struct pcb dumppcb;
1265
1266 void
1267 cpu_reboot(howto, bootstr)
1268 int howto;
1269 char *bootstr;
1270 {
1271 extern int cold;
1272
1273 /* If system is cold, just halt. */
1274 if (cold) {
1275 howto |= RB_HALT;
1276 goto haltsys;
1277 }
1278
1279 /* If "always halt" was specified as a boot flag, obey. */
1280 if ((boothowto & RB_HALT) != 0)
1281 howto |= RB_HALT;
1282
1283 boothowto = howto;
1284 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1285 waittime = 0;
1286 vfs_shutdown();
1287 /*
1288 * If we've been adjusting the clock, the todr
1289 * will be out of synch; adjust it now.
1290 */
1291 resettodr();
1292 }
1293
1294 /* Disable interrupts. */
1295 splhigh();
1296
1297 /* If rebooting and a dump is requested do it. */
1298 #if 0
1299 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1300 #else
1301 if (howto & RB_DUMP)
1302 #endif
1303 dumpsys();
1304
1305 haltsys:
1306
1307 /* run any shutdown hooks */
1308 doshutdownhooks();
1309
1310 #ifdef BOOTKEY
1311 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1312 cnpollc(1); /* for proper keyboard command handling */
1313 cngetc();
1314 cnpollc(0);
1315 printf("\n");
1316 #endif
1317
1318 /* Finally, powerdown/halt/reboot the system. */
1319 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1320 platform.powerdown != NULL) {
1321 (*platform.powerdown)();
1322 printf("WARNING: powerdown failed!\n");
1323 }
1324 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1325 prom_halt(howto & RB_HALT);
1326 /*NOTREACHED*/
1327 }
1328
1329 /*
1330 * These variables are needed by /sbin/savecore
1331 */
1332 u_long dumpmag = 0x8fca0101; /* magic number */
1333 int dumpsize = 0; /* pages */
1334 long dumplo = 0; /* blocks */
1335
1336 /*
1337 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1338 */
1339 int
1340 cpu_dumpsize()
1341 {
1342 int size;
1343
1344 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1345 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1346 if (roundup(size, dbtob(1)) != dbtob(1))
1347 return -1;
1348
1349 return (1);
1350 }
1351
1352 /*
1353 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1354 */
1355 u_long
1356 cpu_dump_mempagecnt()
1357 {
1358 u_long i, n;
1359
1360 n = 0;
1361 for (i = 0; i < mem_cluster_cnt; i++)
1362 n += atop(mem_clusters[i].size);
1363 return (n);
1364 }
1365
1366 /*
1367 * cpu_dump: dump machine-dependent kernel core dump headers.
1368 */
1369 int
1370 cpu_dump()
1371 {
1372 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1373 char buf[dbtob(1)];
1374 kcore_seg_t *segp;
1375 cpu_kcore_hdr_t *cpuhdrp;
1376 phys_ram_seg_t *memsegp;
1377 int i;
1378
1379 dump = bdevsw[major(dumpdev)].d_dump;
1380
1381 bzero(buf, sizeof buf);
1382 segp = (kcore_seg_t *)buf;
1383 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1384 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1385 ALIGN(sizeof(*cpuhdrp))];
1386
1387 /*
1388 * Generate a segment header.
1389 */
1390 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1391 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1392
1393 /*
1394 * Add the machine-dependent header info.
1395 */
1396 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1397 cpuhdrp->page_size = PAGE_SIZE;
1398 cpuhdrp->nmemsegs = mem_cluster_cnt;
1399
1400 /*
1401 * Fill in the memory segment descriptors.
1402 */
1403 for (i = 0; i < mem_cluster_cnt; i++) {
1404 memsegp[i].start = mem_clusters[i].start;
1405 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1406 }
1407
1408 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1409 }
1410
1411 /*
1412 * This is called by main to set dumplo and dumpsize.
1413 * Dumps always skip the first CLBYTES of disk space
1414 * in case there might be a disk label stored there.
1415 * If there is extra space, put dump at the end to
1416 * reduce the chance that swapping trashes it.
1417 */
1418 void
1419 cpu_dumpconf()
1420 {
1421 int nblks, dumpblks; /* size of dump area */
1422 int maj;
1423
1424 if (dumpdev == NODEV)
1425 goto bad;
1426 maj = major(dumpdev);
1427 if (maj < 0 || maj >= nblkdev)
1428 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1429 if (bdevsw[maj].d_psize == NULL)
1430 goto bad;
1431 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1432 if (nblks <= ctod(1))
1433 goto bad;
1434
1435 dumpblks = cpu_dumpsize();
1436 if (dumpblks < 0)
1437 goto bad;
1438 dumpblks += ctod(cpu_dump_mempagecnt());
1439
1440 /* If dump won't fit (incl. room for possible label), punt. */
1441 if (dumpblks > (nblks - ctod(1)))
1442 goto bad;
1443
1444 /* Put dump at end of partition */
1445 dumplo = nblks - dumpblks;
1446
1447 /* dumpsize is in page units, and doesn't include headers. */
1448 dumpsize = cpu_dump_mempagecnt();
1449 return;
1450
1451 bad:
1452 dumpsize = 0;
1453 return;
1454 }
1455
1456 /*
1457 * Dump the kernel's image to the swap partition.
1458 */
1459 #define BYTES_PER_DUMP NBPG
1460
1461 void
1462 dumpsys()
1463 {
1464 u_long totalbytesleft, bytes, i, n, memcl;
1465 u_long maddr;
1466 int psize;
1467 daddr_t blkno;
1468 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1469 int error;
1470
1471 /* Save registers. */
1472 savectx(&dumppcb);
1473
1474 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1475 if (dumpdev == NODEV)
1476 return;
1477
1478 /*
1479 * For dumps during autoconfiguration,
1480 * if dump device has already configured...
1481 */
1482 if (dumpsize == 0)
1483 cpu_dumpconf();
1484 if (dumplo <= 0) {
1485 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1486 minor(dumpdev));
1487 return;
1488 }
1489 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1490 minor(dumpdev), dumplo);
1491
1492 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1493 printf("dump ");
1494 if (psize == -1) {
1495 printf("area unavailable\n");
1496 return;
1497 }
1498
1499 /* XXX should purge all outstanding keystrokes. */
1500
1501 if ((error = cpu_dump()) != 0)
1502 goto err;
1503
1504 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1505 blkno = dumplo + cpu_dumpsize();
1506 dump = bdevsw[major(dumpdev)].d_dump;
1507 error = 0;
1508
1509 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1510 maddr = mem_clusters[memcl].start;
1511 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1512
1513 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1514
1515 /* Print out how many MBs we to go. */
1516 if ((totalbytesleft % (1024*1024)) == 0)
1517 printf("%d ", totalbytesleft / (1024 * 1024));
1518
1519 /* Limit size for next transfer. */
1520 n = bytes - i;
1521 if (n > BYTES_PER_DUMP)
1522 n = BYTES_PER_DUMP;
1523
1524 error = (*dump)(dumpdev, blkno,
1525 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1526 if (error)
1527 goto err;
1528 maddr += n;
1529 blkno += btodb(n); /* XXX? */
1530
1531 /* XXX should look for keystrokes, to cancel. */
1532 }
1533 }
1534
1535 err:
1536 switch (error) {
1537
1538 case ENXIO:
1539 printf("device bad\n");
1540 break;
1541
1542 case EFAULT:
1543 printf("device not ready\n");
1544 break;
1545
1546 case EINVAL:
1547 printf("area improper\n");
1548 break;
1549
1550 case EIO:
1551 printf("i/o error\n");
1552 break;
1553
1554 case EINTR:
1555 printf("aborted from console\n");
1556 break;
1557
1558 case 0:
1559 printf("succeeded\n");
1560 break;
1561
1562 default:
1563 printf("error %d\n", error);
1564 break;
1565 }
1566 printf("\n\n");
1567 delay(1000);
1568 }
1569
1570 void
1571 frametoreg(framep, regp)
1572 struct trapframe *framep;
1573 struct reg *regp;
1574 {
1575
1576 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1577 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1578 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1579 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1580 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1581 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1582 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1583 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1584 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1585 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1586 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1587 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1588 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1589 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1590 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1591 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1592 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1593 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1594 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1595 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1596 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1597 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1598 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1599 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1600 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1601 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1602 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1603 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1604 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1605 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1606 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1607 regp->r_regs[R_ZERO] = 0;
1608 }
1609
1610 void
1611 regtoframe(regp, framep)
1612 struct reg *regp;
1613 struct trapframe *framep;
1614 {
1615
1616 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1617 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1618 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1619 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1620 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1621 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1622 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1623 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1624 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1625 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1626 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1627 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1628 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1629 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1630 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1631 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1632 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1633 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1634 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1635 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1636 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1637 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1638 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1639 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1640 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1641 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1642 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1643 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1644 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1645 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1646 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1647 /* ??? = regp->r_regs[R_ZERO]; */
1648 }
1649
1650 void
1651 printregs(regp)
1652 struct reg *regp;
1653 {
1654 int i;
1655
1656 for (i = 0; i < 32; i++)
1657 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1658 i & 1 ? "\n" : "\t");
1659 }
1660
1661 void
1662 regdump(framep)
1663 struct trapframe *framep;
1664 {
1665 struct reg reg;
1666
1667 frametoreg(framep, ®);
1668 reg.r_regs[R_SP] = alpha_pal_rdusp();
1669
1670 printf("REGISTERS:\n");
1671 printregs(®);
1672 }
1673
1674 #ifdef DEBUG
1675 int sigdebug = 0;
1676 int sigpid = 0;
1677 #define SDB_FOLLOW 0x01
1678 #define SDB_KSTACK 0x02
1679 #endif
1680
1681 /*
1682 * Send an interrupt to process.
1683 */
1684 void
1685 sendsig(catcher, sig, mask, code)
1686 sig_t catcher;
1687 int sig, mask;
1688 u_long code;
1689 {
1690 struct proc *p = curproc;
1691 struct sigcontext *scp, ksc;
1692 struct trapframe *frame;
1693 struct sigacts *psp = p->p_sigacts;
1694 int oonstack, fsize, rndfsize;
1695 extern char sigcode[], esigcode[];
1696 extern struct proc *fpcurproc;
1697
1698 frame = p->p_md.md_tf;
1699 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1700 fsize = sizeof ksc;
1701 rndfsize = ((fsize + 15) / 16) * 16;
1702 /*
1703 * Allocate and validate space for the signal handler
1704 * context. Note that if the stack is in P0 space, the
1705 * call to grow() is a nop, and the useracc() check
1706 * will fail if the process has not already allocated
1707 * the space with a `brk'.
1708 */
1709 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1710 (psp->ps_sigonstack & sigmask(sig))) {
1711 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1712 psp->ps_sigstk.ss_size - rndfsize);
1713 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1714 } else
1715 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1716 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1717 #if defined(UVM)
1718 (void)uvm_grow(p, (u_long)scp);
1719 #else
1720 (void)grow(p, (u_long)scp);
1721 #endif
1722 #ifdef DEBUG
1723 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1724 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1725 sig, &oonstack, scp);
1726 #endif
1727 #if defined(UVM)
1728 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1729 #else
1730 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1731 #endif
1732 #ifdef DEBUG
1733 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1734 printf("sendsig(%d): useracc failed on sig %d\n",
1735 p->p_pid, sig);
1736 #endif
1737 /*
1738 * Process has trashed its stack; give it an illegal
1739 * instruction to halt it in its tracks.
1740 */
1741 SIGACTION(p, SIGILL) = SIG_DFL;
1742 sig = sigmask(SIGILL);
1743 p->p_sigignore &= ~sig;
1744 p->p_sigcatch &= ~sig;
1745 p->p_sigmask &= ~sig;
1746 psignal(p, SIGILL);
1747 return;
1748 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1749 }
1750 #else
1751 }
1752 #endif
1753
1754 /*
1755 * Build the signal context to be used by sigreturn.
1756 */
1757 ksc.sc_onstack = oonstack;
1758 ksc.sc_mask = mask;
1759 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1760 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1761
1762 /* copy the registers. */
1763 frametoreg(frame, (struct reg *)ksc.sc_regs);
1764 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1765 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1766
1767 /* save the floating-point state, if necessary, then copy it. */
1768 if (p == fpcurproc) {
1769 alpha_pal_wrfen(1);
1770 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1771 alpha_pal_wrfen(0);
1772 fpcurproc = NULL;
1773 }
1774 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1775 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1776 sizeof(struct fpreg));
1777 ksc.sc_fp_control = 0; /* XXX ? */
1778 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1779 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1780
1781
1782 #ifdef COMPAT_OSF1
1783 /*
1784 * XXX Create an OSF/1-style sigcontext and associated goo.
1785 */
1786 #endif
1787
1788 /*
1789 * copy the frame out to userland.
1790 */
1791 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1792 #ifdef DEBUG
1793 if (sigdebug & SDB_FOLLOW)
1794 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1795 scp, code);
1796 #endif
1797
1798 /*
1799 * Set up the registers to return to sigcode.
1800 */
1801 frame->tf_regs[FRAME_PC] =
1802 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1803 frame->tf_regs[FRAME_A0] = sig;
1804 frame->tf_regs[FRAME_A1] = code;
1805 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1806 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1807 alpha_pal_wrusp((unsigned long)scp);
1808
1809 #ifdef DEBUG
1810 if (sigdebug & SDB_FOLLOW)
1811 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1812 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1813 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1814 printf("sendsig(%d): sig %d returns\n",
1815 p->p_pid, sig);
1816 #endif
1817 }
1818
1819 /*
1820 * System call to cleanup state after a signal
1821 * has been taken. Reset signal mask and
1822 * stack state from context left by sendsig (above).
1823 * Return to previous pc and psl as specified by
1824 * context left by sendsig. Check carefully to
1825 * make sure that the user has not modified the
1826 * psl to gain improper priviledges or to cause
1827 * a machine fault.
1828 */
1829 /* ARGSUSED */
1830 int
1831 sys_sigreturn(p, v, retval)
1832 struct proc *p;
1833 void *v;
1834 register_t *retval;
1835 {
1836 struct sys_sigreturn_args /* {
1837 syscallarg(struct sigcontext *) sigcntxp;
1838 } */ *uap = v;
1839 struct sigcontext *scp, ksc;
1840 extern struct proc *fpcurproc;
1841
1842 scp = SCARG(uap, sigcntxp);
1843 #ifdef DEBUG
1844 if (sigdebug & SDB_FOLLOW)
1845 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1846 #endif
1847
1848 if (ALIGN(scp) != (u_int64_t)scp)
1849 return (EINVAL);
1850
1851 /*
1852 * Test and fetch the context structure.
1853 * We grab it all at once for speed.
1854 */
1855 #if defined(UVM)
1856 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1857 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1858 return (EINVAL);
1859 #else
1860 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1861 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1862 return (EINVAL);
1863 #endif
1864
1865 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1866 return (EINVAL);
1867 /*
1868 * Restore the user-supplied information
1869 */
1870 if (ksc.sc_onstack)
1871 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1872 else
1873 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1874 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1875
1876 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1877 p->p_md.md_tf->tf_regs[FRAME_PS] =
1878 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1879
1880 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1881 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1882
1883 /* XXX ksc.sc_ownedfp ? */
1884 if (p == fpcurproc)
1885 fpcurproc = NULL;
1886 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1887 sizeof(struct fpreg));
1888 /* XXX ksc.sc_fp_control ? */
1889
1890 #ifdef DEBUG
1891 if (sigdebug & SDB_FOLLOW)
1892 printf("sigreturn(%d): returns\n", p->p_pid);
1893 #endif
1894 return (EJUSTRETURN);
1895 }
1896
1897 /*
1898 * machine dependent system variables.
1899 */
1900 int
1901 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1902 int *name;
1903 u_int namelen;
1904 void *oldp;
1905 size_t *oldlenp;
1906 void *newp;
1907 size_t newlen;
1908 struct proc *p;
1909 {
1910 dev_t consdev;
1911
1912 /* all sysctl names at this level are terminal */
1913 if (namelen != 1)
1914 return (ENOTDIR); /* overloaded */
1915
1916 switch (name[0]) {
1917 case CPU_CONSDEV:
1918 if (cn_tab != NULL)
1919 consdev = cn_tab->cn_dev;
1920 else
1921 consdev = NODEV;
1922 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1923 sizeof consdev));
1924
1925 case CPU_ROOT_DEVICE:
1926 return (sysctl_rdstring(oldp, oldlenp, newp,
1927 root_device->dv_xname));
1928
1929 case CPU_UNALIGNED_PRINT:
1930 return (sysctl_int(oldp, oldlenp, newp, newlen,
1931 &alpha_unaligned_print));
1932
1933 case CPU_UNALIGNED_FIX:
1934 return (sysctl_int(oldp, oldlenp, newp, newlen,
1935 &alpha_unaligned_fix));
1936
1937 case CPU_UNALIGNED_SIGBUS:
1938 return (sysctl_int(oldp, oldlenp, newp, newlen,
1939 &alpha_unaligned_sigbus));
1940
1941 case CPU_BOOTED_KERNEL:
1942 return (sysctl_rdstring(oldp, oldlenp, newp,
1943 bootinfo.booted_kernel));
1944
1945 default:
1946 return (EOPNOTSUPP);
1947 }
1948 /* NOTREACHED */
1949 }
1950
1951 /*
1952 * Set registers on exec.
1953 */
1954 void
1955 setregs(p, pack, stack)
1956 register struct proc *p;
1957 struct exec_package *pack;
1958 u_long stack;
1959 {
1960 struct trapframe *tfp = p->p_md.md_tf;
1961 extern struct proc *fpcurproc;
1962 #ifdef DEBUG
1963 int i;
1964 #endif
1965
1966 #ifdef DEBUG
1967 /*
1968 * Crash and dump, if the user requested it.
1969 */
1970 if (boothowto & RB_DUMP)
1971 panic("crash requested by boot flags");
1972 #endif
1973
1974 #ifdef DEBUG
1975 for (i = 0; i < FRAME_SIZE; i++)
1976 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1977 #else
1978 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1979 #endif
1980 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1981 #define FP_RN 2 /* XXX */
1982 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1983 alpha_pal_wrusp(stack);
1984 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1985 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1986
1987 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1988 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1989 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1990 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1991 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1992
1993 p->p_md.md_flags &= ~MDP_FPUSED;
1994 if (fpcurproc == p)
1995 fpcurproc = NULL;
1996 }
1997
1998 void
1999 netintr()
2000 {
2001 int n, s;
2002
2003 s = splhigh();
2004 n = netisr;
2005 netisr = 0;
2006 splx(s);
2007
2008 #define DONETISR(bit, fn) \
2009 do { \
2010 if (n & (1 << (bit))) \
2011 fn; \
2012 } while (0)
2013
2014 #ifdef INET
2015 #if NARP > 0
2016 DONETISR(NETISR_ARP, arpintr());
2017 #endif
2018 DONETISR(NETISR_IP, ipintr());
2019 #endif
2020 #ifdef NETATALK
2021 DONETISR(NETISR_ATALK, atintr());
2022 #endif
2023 #ifdef NS
2024 DONETISR(NETISR_NS, nsintr());
2025 #endif
2026 #ifdef ISO
2027 DONETISR(NETISR_ISO, clnlintr());
2028 #endif
2029 #ifdef CCITT
2030 DONETISR(NETISR_CCITT, ccittintr());
2031 #endif
2032 #ifdef NATM
2033 DONETISR(NETISR_NATM, natmintr());
2034 #endif
2035 #if NPPP > 1
2036 DONETISR(NETISR_PPP, pppintr());
2037 #endif
2038
2039 #undef DONETISR
2040 }
2041
2042 void
2043 do_sir()
2044 {
2045 u_int64_t n;
2046
2047 do {
2048 (void)splhigh();
2049 n = ssir;
2050 ssir = 0;
2051 splsoft(); /* don't recurse through spl0() */
2052
2053 #if defined(UVM)
2054 #define COUNT_SOFT uvmexp.softs++
2055 #else
2056 #define COUNT_SOFT cnt.v_soft++
2057 #endif
2058
2059 #define DO_SIR(bit, fn) \
2060 do { \
2061 if (n & (bit)) { \
2062 COUNT_SOFT; \
2063 fn; \
2064 } \
2065 } while (0)
2066
2067 DO_SIR(SIR_NET, netintr());
2068 DO_SIR(SIR_CLOCK, softclock());
2069
2070 #undef COUNT_SOFT
2071 #undef DO_SIR
2072 } while (ssir != 0);
2073 }
2074
2075 int
2076 spl0()
2077 {
2078
2079 if (ssir)
2080 do_sir(); /* it lowers the IPL itself */
2081
2082 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2083 }
2084
2085 /*
2086 * The following primitives manipulate the run queues. _whichqs tells which
2087 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2088 * into queues, Remrunqueue removes them from queues. The running process is
2089 * on no queue, other processes are on a queue related to p->p_priority,
2090 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2091 * available queues.
2092 */
2093 /*
2094 * setrunqueue(p)
2095 * proc *p;
2096 *
2097 * Call should be made at splclock(), and p->p_stat should be SRUN.
2098 */
2099
2100 void
2101 setrunqueue(p)
2102 struct proc *p;
2103 {
2104 int bit;
2105
2106 /* firewall: p->p_back must be NULL */
2107 if (p->p_back != NULL)
2108 panic("setrunqueue");
2109
2110 bit = p->p_priority >> 2;
2111 whichqs |= (1 << bit);
2112 p->p_forw = (struct proc *)&qs[bit];
2113 p->p_back = qs[bit].ph_rlink;
2114 p->p_back->p_forw = p;
2115 qs[bit].ph_rlink = p;
2116 }
2117
2118 /*
2119 * remrunqueue(p)
2120 *
2121 * Call should be made at splclock().
2122 */
2123 void
2124 remrunqueue(p)
2125 struct proc *p;
2126 {
2127 int bit;
2128
2129 bit = p->p_priority >> 2;
2130 if ((whichqs & (1 << bit)) == 0)
2131 panic("remrunqueue");
2132
2133 p->p_back->p_forw = p->p_forw;
2134 p->p_forw->p_back = p->p_back;
2135 p->p_back = NULL; /* for firewall checking. */
2136
2137 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2138 whichqs &= ~(1 << bit);
2139 }
2140
2141 /*
2142 * Return the best possible estimate of the time in the timeval
2143 * to which tvp points. Unfortunately, we can't read the hardware registers.
2144 * We guarantee that the time will be greater than the value obtained by a
2145 * previous call.
2146 */
2147 void
2148 microtime(tvp)
2149 register struct timeval *tvp;
2150 {
2151 int s = splclock();
2152 static struct timeval lasttime;
2153
2154 *tvp = time;
2155 #ifdef notdef
2156 tvp->tv_usec += clkread();
2157 while (tvp->tv_usec > 1000000) {
2158 tvp->tv_sec++;
2159 tvp->tv_usec -= 1000000;
2160 }
2161 #endif
2162 if (tvp->tv_sec == lasttime.tv_sec &&
2163 tvp->tv_usec <= lasttime.tv_usec &&
2164 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2165 tvp->tv_sec++;
2166 tvp->tv_usec -= 1000000;
2167 }
2168 lasttime = *tvp;
2169 splx(s);
2170 }
2171
2172 /*
2173 * Wait "n" microseconds.
2174 */
2175 void
2176 delay(n)
2177 unsigned long n;
2178 {
2179 long N = cycles_per_usec * (n);
2180
2181 while (N > 0) /* XXX */
2182 N -= 3; /* XXX */
2183 }
2184
2185 #if defined(COMPAT_OSF1) || 1 /* XXX */
2186 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2187 u_long));
2188
2189 void
2190 cpu_exec_ecoff_setregs(p, epp, stack)
2191 struct proc *p;
2192 struct exec_package *epp;
2193 u_long stack;
2194 {
2195 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2196
2197 setregs(p, epp, stack);
2198 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2199 }
2200
2201 /*
2202 * cpu_exec_ecoff_hook():
2203 * cpu-dependent ECOFF format hook for execve().
2204 *
2205 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2206 *
2207 */
2208 int
2209 cpu_exec_ecoff_hook(p, epp)
2210 struct proc *p;
2211 struct exec_package *epp;
2212 {
2213 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2214 extern struct emul emul_netbsd;
2215 #ifdef COMPAT_OSF1
2216 extern struct emul emul_osf1;
2217 #endif
2218
2219 switch (execp->f.f_magic) {
2220 #ifdef COMPAT_OSF1
2221 case ECOFF_MAGIC_ALPHA:
2222 epp->ep_emul = &emul_osf1;
2223 break;
2224 #endif
2225
2226 case ECOFF_MAGIC_NETBSD_ALPHA:
2227 epp->ep_emul = &emul_netbsd;
2228 break;
2229
2230 default:
2231 return ENOEXEC;
2232 }
2233 return 0;
2234 }
2235 #endif
2236
2237 int
2238 alpha_pa_access(pa)
2239 u_long pa;
2240 {
2241 int i;
2242
2243 for (i = 0; i < mem_cluster_cnt; i++) {
2244 if (pa < mem_clusters[i].start)
2245 continue;
2246 if ((pa - mem_clusters[i].start) >=
2247 (mem_clusters[i].size & ~PAGE_MASK))
2248 continue;
2249 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2250 }
2251 return (PROT_NONE);
2252 }
2253
2254 /* XXX XXX BEGIN XXX XXX */
2255 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2256 /* XXX */
2257 vm_offset_t /* XXX */
2258 alpha_XXX_dmamap(v) /* XXX */
2259 vm_offset_t v; /* XXX */
2260 { /* XXX */
2261 /* XXX */
2262 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2263 } /* XXX */
2264 /* XXX XXX END XXX XXX */
2265