machdep.c revision 1.137 1 /* $NetBSD: machdep.c,v 1.137 1998/07/09 00:46:17 mjacob Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.137 1998/07/09 00:46:17 mjacob Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #ifdef REAL_CLISTS
95 #include <sys/clist.h>
96 #endif
97 #include <sys/callout.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/mman.h>
101 #include <sys/msgbuf.h>
102 #include <sys/ioctl.h>
103 #include <sys/tty.h>
104 #include <sys/user.h>
105 #include <sys/exec.h>
106 #include <sys/exec_ecoff.h>
107 #include <vm/vm.h>
108 #include <sys/sysctl.h>
109 #include <sys/core.h>
110 #include <sys/kcore.h>
111 #include <machine/kcore.h>
112 #ifdef SYSVMSG
113 #include <sys/msg.h>
114 #endif
115 #ifdef SYSVSEM
116 #include <sys/sem.h>
117 #endif
118 #ifdef SYSVSHM
119 #include <sys/shm.h>
120 #endif
121
122 #include <sys/mount.h>
123 #include <sys/syscallargs.h>
124
125 #include <vm/vm_kern.h>
126
127 #if defined(UVM)
128 #include <uvm/uvm_extern.h>
129 #endif
130
131 #include <dev/cons.h>
132
133 #include <machine/autoconf.h>
134 #include <machine/cpu.h>
135 #include <machine/reg.h>
136 #include <machine/rpb.h>
137 #include <machine/prom.h>
138 #include <machine/conf.h>
139
140 #include <net/netisr.h>
141 #include <net/if.h>
142
143 #ifdef INET
144 #include <net/route.h>
145 #include <netinet/in.h>
146 #include <netinet/ip_var.h>
147 #include "arp.h"
148 #if NARP > 0
149 #include <netinet/if_inarp.h>
150 #endif
151 #endif
152 #ifdef NS
153 #include <netns/ns_var.h>
154 #endif
155 #ifdef ISO
156 #include <netiso/iso.h>
157 #include <netiso/clnp.h>
158 #endif
159 #ifdef CCITT
160 #include <netccitt/x25.h>
161 #include <netccitt/pk.h>
162 #include <netccitt/pk_extern.h>
163 #endif
164 #ifdef NATM
165 #include <netnatm/natm.h>
166 #endif
167 #ifdef NETATALK
168 #include <netatalk/at_extern.h>
169 #endif
170 #include "ppp.h"
171 #if NPPP > 0
172 #include <net/ppp_defs.h>
173 #include <net/if_ppp.h>
174 #endif
175
176 #ifdef DDB
177 #include <machine/db_machdep.h>
178 #include <ddb/db_access.h>
179 #include <ddb/db_sym.h>
180 #include <ddb/db_extern.h>
181 #include <ddb/db_interface.h>
182 #endif
183
184 #if defined(UVM)
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188 #else
189 vm_map_t buffer_map;
190 #endif
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 int nswbuf = 0;
196 #ifdef NBUF
197 int nbuf = NBUF;
198 #else
199 int nbuf = 0;
200 #endif
201 #ifdef BUFPAGES
202 int bufpages = BUFPAGES;
203 #else
204 int bufpages = 0;
205 #endif
206 caddr_t msgbufaddr;
207
208 int maxmem; /* max memory per process */
209
210 int totalphysmem; /* total amount of physical memory in system */
211 int physmem; /* physical memory used by NetBSD + some rsvd */
212 int resvmem; /* amount of memory reserved for PROM */
213 int unusedmem; /* amount of memory for OS that we don't use */
214 int unknownmem; /* amount of memory with an unknown use */
215
216 int cputype; /* system type, from the RPB */
217
218 /*
219 * XXX We need an address to which we can assign things so that they
220 * won't be optimized away because we didn't use the value.
221 */
222 u_int32_t no_optimize;
223
224 /* the following is used externally (sysctl_hw) */
225 char machine[] = MACHINE; /* from <machine/param.h> */
226 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 char cpu_model[128];
228
229 struct user *proc0paddr;
230
231 /* Number of machine cycles per microsecond */
232 u_int64_t cycles_per_usec;
233
234 /* number of cpus in the box. really! */
235 int ncpus;
236
237 /* machine check info array, fleshed out in allocsys */
238 struct mchkinfo *mchkinfo;
239
240 struct bootinfo_kernel bootinfo;
241
242 /* For built-in TCDS */
243 #if defined(DEC_3000_300) || defined(DEC_3000_500)
244 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
245 #endif
246
247 struct platform platform;
248
249 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
250 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
251 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
252
253 #ifdef DDB
254 /* start and end of kernel symbol table */
255 void *ksym_start, *ksym_end;
256 #endif
257
258 /* for cpu_sysctl() */
259 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
260 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
261 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
262
263 /*
264 * XXX This should be dynamically sized, but we have the chicken-egg problem!
265 * XXX it should also be larger than it is, because not all of the mddt
266 * XXX clusters end up being used for VM.
267 */
268 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
269 int mem_cluster_cnt;
270
271 caddr_t allocsys __P((caddr_t));
272 int cpu_dump __P((void));
273 int cpu_dumpsize __P((void));
274 u_long cpu_dump_mempagecnt __P((void));
275 void dumpsys __P((void));
276 void identifycpu __P((void));
277 void netintr __P((void));
278 void printregs __P((struct reg *));
279
280 void
281 alpha_init(pfn, ptb, bim, bip, biv)
282 u_long pfn; /* first free PFN number */
283 u_long ptb; /* PFN of current level 1 page table */
284 u_long bim; /* bootinfo magic */
285 u_long bip; /* bootinfo pointer */
286 u_long biv; /* bootinfo version */
287 {
288 extern char kernel_text[], _end[];
289 struct mddt *mddtp;
290 struct mddt_cluster *memc;
291 int i, mddtweird;
292 struct vm_physseg *vps;
293 vm_offset_t kernstart, kernend;
294 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
295 vm_size_t size;
296 char *p;
297 caddr_t v;
298 char *bootinfo_msg;
299
300 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
301
302 /*
303 * Turn off interrupts (not mchecks) and floating point.
304 * Make sure the instruction and data streams are consistent.
305 */
306 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
307 alpha_pal_wrfen(0);
308 ALPHA_TBIA();
309 alpha_pal_imb();
310
311 /*
312 * Get critical system information (if possible, from the
313 * information provided by the boot program).
314 */
315 bootinfo_msg = NULL;
316 if (bim == BOOTINFO_MAGIC) {
317 if (biv == 0) { /* backward compat */
318 biv = *(u_long *)bip;
319 bip += 8;
320 }
321 switch (biv) {
322 case 1: {
323 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
324
325 bootinfo.ssym = v1p->ssym;
326 bootinfo.esym = v1p->esym;
327 /* hwrpb may not be provided by boot block in v1 */
328 if (v1p->hwrpb != NULL) {
329 bootinfo.hwrpb_phys =
330 ((struct rpb *)v1p->hwrpb)->rpb_phys;
331 bootinfo.hwrpb_size = v1p->hwrpbsize;
332 } else {
333 bootinfo.hwrpb_phys =
334 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
335 bootinfo.hwrpb_size =
336 ((struct rpb *)HWRPB_ADDR)->rpb_size;
337 }
338 bcopy(v1p->boot_flags, bootinfo.boot_flags,
339 min(sizeof v1p->boot_flags,
340 sizeof bootinfo.boot_flags));
341 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
342 min(sizeof v1p->booted_kernel,
343 sizeof bootinfo.booted_kernel));
344 /* booted dev not provided in bootinfo */
345 init_prom_interface((struct rpb *)
346 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
347 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
348 sizeof bootinfo.booted_dev);
349 break;
350 }
351 default:
352 bootinfo_msg = "unknown bootinfo version";
353 goto nobootinfo;
354 }
355 } else {
356 bootinfo_msg = "boot program did not pass bootinfo";
357 nobootinfo:
358 bootinfo.ssym = (u_long)_end;
359 bootinfo.esym = (u_long)_end;
360 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
361 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
362 init_prom_interface((struct rpb *)HWRPB_ADDR);
363 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
364 sizeof bootinfo.boot_flags);
365 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
366 sizeof bootinfo.booted_kernel);
367 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
368 sizeof bootinfo.booted_dev);
369 }
370
371 /*
372 * Initialize the kernel's mapping of the RPB. It's needed for
373 * lots of things.
374 */
375 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
376
377 #if defined(DEC_3000_300) || defined(DEC_3000_500)
378 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
379 hwrpb->rpb_type == ST_DEC_3000_500) {
380 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
381 sizeof(dec_3000_scsiid));
382 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
383 sizeof(dec_3000_scsifast));
384 }
385 #endif
386
387 /*
388 * Remember how many cycles there are per microsecond,
389 * so that we can use delay(). Round up, for safety.
390 */
391 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
392
393 /*
394 * Initalize the (temporary) bootstrap console interface, so
395 * we can use printf until the VM system starts being setup.
396 * The real console is initialized before then.
397 */
398 init_bootstrap_console();
399
400 /* OUTPUT NOW ALLOWED */
401
402 /* delayed from above */
403 if (bootinfo_msg)
404 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
405 bootinfo_msg, bim, bip, biv);
406
407 /*
408 * Point interrupt/exception vectors to our own.
409 */
410 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
411 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
412 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
413 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
414 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
415 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
416
417 /*
418 * Clear pending machine checks and error reports, and enable
419 * system- and processor-correctable error reporting.
420 */
421 alpha_pal_wrmces(alpha_pal_rdmces() &
422 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
423
424 /*
425 * Find out what hardware we're on, and do basic initialization.
426 */
427 cputype = hwrpb->rpb_type;
428 if (cputype >= ncpuinit) {
429 platform_not_supported();
430 /* NOTREACHED */
431 }
432 (*cpuinit[cputype].init)();
433 strcpy(cpu_model, platform.model);
434
435 /*
436 * Initalize the real console, so the the bootstrap console is
437 * no longer necessary.
438 */
439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
440 if (!pmap_uses_prom_console())
441 #endif
442 (*platform.cons_init)();
443
444 #ifdef DIAGNOSTIC
445 /* Paranoid sanity checking */
446
447 /* We should always be running on the the primary. */
448 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
449
450 /*
451 * On single-CPU systypes, the primary should always be CPU 0,
452 * except on Alpha 8200 systems where the CPU id is related
453 * to the VID, which is related to the Turbo Laser node id.
454 */
455 if (cputype != ST_DEC_21000)
456 assert(hwrpb->rpb_primary_cpu_id == 0);
457 #endif
458
459 /* NO MORE FIRMWARE ACCESS ALLOWED */
460 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
461 /*
462 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
463 * XXX pmap_uses_prom_console() evaluates to non-zero.)
464 */
465 #endif
466
467 /*
468 * find out this system's page size
469 */
470 PAGE_SIZE = hwrpb->rpb_page_size;
471 if (PAGE_SIZE != 8192)
472 panic("page size %d != 8192?!", PAGE_SIZE);
473
474 /*
475 * Initialize PAGE_SIZE-dependent variables.
476 */
477 #if defined(UVM)
478 uvm_setpagesize();
479 #else
480 vm_set_page_size();
481 #endif
482
483 /*
484 * Find the beginning and end of the kernel (and leave a
485 * bit of space before the beginning for the bootstrap
486 * stack).
487 */
488 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
489 #ifdef DDB
490 ksym_start = (void *)bootinfo.ssym;
491 ksym_end = (void *)bootinfo.esym;
492 kernend = (vm_offset_t)round_page(ksym_end);
493 #else
494 kernend = (vm_offset_t)round_page(_end);
495 #endif
496
497 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
498 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
499
500 /*
501 * Find out how much memory is available, by looking at
502 * the memory cluster descriptors. This also tries to do
503 * its best to detect things things that have never been seen
504 * before...
505 */
506 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
507
508 /* MDDT SANITY CHECKING */
509 mddtweird = 0;
510 if (mddtp->mddt_cluster_cnt < 2) {
511 mddtweird = 1;
512 printf("WARNING: weird number of mem clusters: %d\n",
513 mddtp->mddt_cluster_cnt);
514 }
515
516 #if 0
517 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
518 #endif
519
520 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
521 memc = &mddtp->mddt_clusters[i];
522 #if 0
523 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
524 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
525 #endif
526 totalphysmem += memc->mddt_pg_cnt;
527 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
528 mem_clusters[mem_cluster_cnt].start =
529 ptoa(memc->mddt_pfn);
530 mem_clusters[mem_cluster_cnt].size =
531 ptoa(memc->mddt_pg_cnt);
532 if (memc->mddt_usage & MDDT_mbz ||
533 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
534 memc->mddt_usage & MDDT_PALCODE)
535 mem_clusters[mem_cluster_cnt].size |=
536 PROT_READ;
537 else
538 mem_clusters[mem_cluster_cnt].size |=
539 PROT_READ | PROT_WRITE | PROT_EXEC;
540 mem_cluster_cnt++;
541 }
542
543 if (memc->mddt_usage & MDDT_mbz) {
544 mddtweird = 1;
545 printf("WARNING: mem cluster %d has weird "
546 "usage 0x%lx\n", i, memc->mddt_usage);
547 unknownmem += memc->mddt_pg_cnt;
548 continue;
549 }
550 if (memc->mddt_usage & MDDT_NONVOLATILE) {
551 /* XXX should handle these... */
552 printf("WARNING: skipping non-volatile mem "
553 "cluster %d\n", i);
554 unusedmem += memc->mddt_pg_cnt;
555 continue;
556 }
557 if (memc->mddt_usage & MDDT_PALCODE) {
558 resvmem += memc->mddt_pg_cnt;
559 continue;
560 }
561
562 /*
563 * We have a memory cluster available for system
564 * software use. We must determine if this cluster
565 * holds the kernel.
566 */
567 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
568 /*
569 * XXX If the kernel uses the PROM console, we only use the
570 * XXX memory after the kernel in the first system segment,
571 * XXX to avoid clobbering prom mapping, data, etc.
572 */
573 if (!pmap_uses_prom_console() || physmem == 0) {
574 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
575 physmem += memc->mddt_pg_cnt;
576 pfn0 = memc->mddt_pfn;
577 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
578 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
579 /*
580 * Must compute the location of the kernel
581 * within the segment.
582 */
583 #if 0
584 printf("Cluster %d contains kernel\n", i);
585 #endif
586 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
587 if (!pmap_uses_prom_console()) {
588 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
589 if (pfn0 < kernstartpfn) {
590 /*
591 * There is a chunk before the kernel.
592 */
593 #if 0
594 printf("Loading chunk before kernel: "
595 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
596 #endif
597 #if defined(UVM)
598 uvm_page_physload(pfn0, kernstartpfn,
599 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
600 #else
601 vm_page_physload(pfn0, kernstartpfn,
602 pfn0, kernstartpfn);
603 #endif
604 }
605 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
606 }
607 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
608 if (kernendpfn < pfn1) {
609 /*
610 * There is a chunk after the kernel.
611 */
612 #if 0
613 printf("Loading chunk after kernel: "
614 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
615 #endif
616 #if defined(UVM)
617 uvm_page_physload(kernendpfn, pfn1,
618 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
619 #else
620 vm_page_physload(kernendpfn, pfn1,
621 kernendpfn, pfn1);
622 #endif
623 }
624 } else {
625 /*
626 * Just load this cluster as one chunk.
627 */
628 #if 0
629 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
630 pfn0, pfn1);
631 #endif
632 #if defined(UVM)
633 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
634 VM_FREELIST_DEFAULT);
635 #else
636 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
637 #endif
638 }
639 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
640 }
641 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
642 }
643
644 /*
645 * Dump out the MDDT if it looks odd...
646 */
647 if (mddtweird) {
648 printf("\n");
649 printf("complete memory cluster information:\n");
650 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
651 printf("mddt %d:\n", i);
652 printf("\tpfn %lx\n",
653 mddtp->mddt_clusters[i].mddt_pfn);
654 printf("\tcnt %lx\n",
655 mddtp->mddt_clusters[i].mddt_pg_cnt);
656 printf("\ttest %lx\n",
657 mddtp->mddt_clusters[i].mddt_pg_test);
658 printf("\tbva %lx\n",
659 mddtp->mddt_clusters[i].mddt_v_bitaddr);
660 printf("\tbpa %lx\n",
661 mddtp->mddt_clusters[i].mddt_p_bitaddr);
662 printf("\tbcksum %lx\n",
663 mddtp->mddt_clusters[i].mddt_bit_cksum);
664 printf("\tusage %lx\n",
665 mddtp->mddt_clusters[i].mddt_usage);
666 }
667 printf("\n");
668 }
669
670 if (totalphysmem == 0)
671 panic("can't happen: system seems to have no memory!");
672
673 #ifdef LIMITMEM
674 /*
675 * XXX Kludge so we can run on machines with memory larger
676 * XXX than 1G until all device drivers are converted to
677 * XXX use bus_dma. (Relies on the fact that vm_physmem
678 * XXX sorted in order of increasing addresses.)
679 */
680 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
681
682 printf("******** LIMITING MEMORY TO %dMB **********\n",
683 LIMITMEM);
684
685 do {
686 u_long ovf;
687
688 vps = &vm_physmem[vm_nphysseg - 1];
689
690 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
691 /*
692 * If the start is too high, just drop
693 * the whole segment.
694 *
695 * XXX can start != avail_start in this
696 * XXX case? wouldn't that mean that
697 * XXX some memory was stolen above the
698 * XXX limit? What to do?
699 */
700 ovf = vps->end - vps->start;
701 vm_nphysseg--;
702 } else {
703 /*
704 * If the start is OK, calculate how much
705 * to drop and drop it.
706 */
707 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
708 vps->end -= ovf;
709 vps->avail_end -= ovf;
710 }
711 physmem -= ovf;
712 unusedmem += ovf;
713 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
714 }
715 #endif /* LIMITMEM */
716
717 maxmem = physmem;
718
719 #if 0
720 printf("totalphysmem = %d\n", totalphysmem);
721 printf("physmem = %d\n", physmem);
722 printf("resvmem = %d\n", resvmem);
723 printf("unusedmem = %d\n", unusedmem);
724 printf("unknownmem = %d\n", unknownmem);
725 #endif
726
727 /*
728 * Adjust some parameters if the amount of physmem
729 * available would cause us to croak. This is completely
730 * eyeballed and isn't meant to be the final answer.
731 * vm_phys_size is probably the only one to really worry
732 * about.
733 *
734 * It's for booting a GENERIC kernel on a large memory platform.
735 */
736 if (physmem >= atop(128 * 1024 * 1024)) {
737 vm_mbuf_size <<= 1;
738 vm_kmem_size <<= 3;
739 vm_phys_size <<= 2;
740 }
741
742 /*
743 * Initialize error message buffer (at end of core).
744 */
745 {
746 size_t sz = round_page(MSGBUFSIZE);
747
748 vps = &vm_physmem[vm_nphysseg - 1];
749
750 /* shrink so that it'll fit in the last segment */
751 if ((vps->avail_end - vps->avail_start) < atop(sz))
752 sz = ptoa(vps->avail_end - vps->avail_start);
753
754 vps->end -= atop(sz);
755 vps->avail_end -= atop(sz);
756 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
757 initmsgbuf(msgbufaddr, sz);
758
759 /* Remove the last segment if it now has no pages. */
760 if (vps->start == vps->end)
761 vm_nphysseg--;
762
763 /* warn if the message buffer had to be shrunk */
764 if (sz != round_page(MSGBUFSIZE))
765 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
766 round_page(MSGBUFSIZE), sz);
767
768 }
769
770 /*
771 * Init mapping for u page(s) for proc 0
772 */
773 proc0.p_addr = proc0paddr =
774 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
775
776 /*
777 * Allocate space for system data structures. These data structures
778 * are allocated here instead of cpu_startup() because physical
779 * memory is directly addressable. We don't have to map these into
780 * virtual address space.
781 */
782 size = (vm_size_t)allocsys(0);
783 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
784 if ((allocsys(v) - v) != size)
785 panic("alpha_init: table size inconsistency");
786
787 /*
788 * Initialize the virtual memory system, and set the
789 * page table base register in proc 0's PCB.
790 */
791 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
792 hwrpb->rpb_max_asn);
793
794 /*
795 * Initialize the rest of proc 0's PCB, and cache its physical
796 * address.
797 */
798 proc0.p_md.md_pcbpaddr =
799 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
800
801 /*
802 * Set the kernel sp, reserving space for an (empty) trapframe,
803 * and make proc0's trapframe pointer point to it for sanity.
804 */
805 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
806 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
807 proc0.p_md.md_tf =
808 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
809
810 /*
811 * Look at arguments passed to us and compute boothowto.
812 */
813
814 boothowto = RB_SINGLE;
815 #ifdef KADB
816 boothowto |= RB_KDB;
817 #endif
818 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
819 /*
820 * Note that we'd really like to differentiate case here,
821 * but the Alpha AXP Architecture Reference Manual
822 * says that we shouldn't.
823 */
824 switch (*p) {
825 case 'a': /* autoboot */
826 case 'A':
827 boothowto &= ~RB_SINGLE;
828 break;
829
830 #ifdef DEBUG
831 case 'c': /* crash dump immediately after autoconfig */
832 case 'C':
833 boothowto |= RB_DUMP;
834 break;
835 #endif
836
837 #if defined(KGDB) || defined(DDB)
838 case 'd': /* break into the kernel debugger ASAP */
839 case 'D':
840 boothowto |= RB_KDB;
841 break;
842 #endif
843
844 case 'h': /* always halt, never reboot */
845 case 'H':
846 boothowto |= RB_HALT;
847 break;
848
849 #if 0
850 case 'm': /* mini root present in memory */
851 case 'M':
852 boothowto |= RB_MINIROOT;
853 break;
854 #endif
855
856 case 'n': /* askname */
857 case 'N':
858 boothowto |= RB_ASKNAME;
859 break;
860
861 case 's': /* single-user (default, supported for sanity) */
862 case 'S':
863 boothowto |= RB_SINGLE;
864 break;
865
866 case '-':
867 /*
868 * Just ignore this. It's not required, but it's
869 * common for it to be passed regardless.
870 */
871 break;
872
873 default:
874 printf("Unrecognized boot flag '%c'.\n", *p);
875 break;
876 }
877 }
878
879
880 /*
881 * Figure out the number of cpus in the box, from RPB fields.
882 * Really. We mean it.
883 */
884 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
885 struct pcs *pcsp;
886
887 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
888 (i * hwrpb->rpb_pcs_size));
889 if ((pcsp->pcs_flags & PCS_PP) != 0)
890 ncpus++;
891 }
892
893 /*
894 * Initialize debuggers, and break into them if appropriate.
895 */
896 #ifdef DDB
897 db_machine_init();
898 ddb_init(ksym_start, ksym_end);
899 if (boothowto & RB_KDB)
900 Debugger();
901 #endif
902 #ifdef KGDB
903 if (boothowto & RB_KDB)
904 kgdb_connect(0);
905 #endif
906 /*
907 * Figure out our clock frequency, from RPB fields.
908 */
909 hz = hwrpb->rpb_intr_freq >> 12;
910 if (!(60 <= hz && hz <= 10240)) {
911 hz = 1024;
912 #ifdef DIAGNOSTIC
913 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
914 hwrpb->rpb_intr_freq, hz);
915 #endif
916 }
917 }
918
919 /*
920 * Allocate space for system data structures. We are given
921 * a starting virtual address and we return a final virtual
922 * address; along the way we set each data structure pointer.
923 *
924 * We call allocsys() with 0 to find out how much space we want,
925 * allocate that much and fill it with zeroes, and the call
926 * allocsys() again with the correct base virtual address.
927 */
928 caddr_t
929 allocsys(v)
930 caddr_t v;
931 {
932
933 #define valloc(name, type, num) \
934 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
935
936 #ifdef REAL_CLISTS
937 valloc(cfree, struct cblock, nclist);
938 #endif
939 valloc(callout, struct callout, ncallout);
940 #ifdef SYSVSHM
941 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
942 #endif
943 #ifdef SYSVSEM
944 valloc(sema, struct semid_ds, seminfo.semmni);
945 valloc(sem, struct sem, seminfo.semmns);
946 /* This is pretty disgusting! */
947 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
948 #endif
949 #ifdef SYSVMSG
950 valloc(msgpool, char, msginfo.msgmax);
951 valloc(msgmaps, struct msgmap, msginfo.msgseg);
952 valloc(msghdrs, struct msg, msginfo.msgtql);
953 valloc(msqids, struct msqid_ds, msginfo.msgmni);
954 #endif
955
956 /*
957 * Determine how many buffers to allocate.
958 * We allocate 10% of memory for buffer space. Insure a
959 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
960 * headers as file i/o buffers.
961 */
962 if (bufpages == 0)
963 bufpages = (physmem * 10) / (CLSIZE * 100);
964 if (nbuf == 0) {
965 nbuf = bufpages;
966 if (nbuf < 16)
967 nbuf = 16;
968 }
969 if (nswbuf == 0) {
970 nswbuf = (nbuf / 2) &~ 1; /* force even */
971 if (nswbuf > 256)
972 nswbuf = 256; /* sanity */
973 }
974 #if !defined(UVM)
975 valloc(swbuf, struct buf, nswbuf);
976 #endif
977 valloc(buf, struct buf, nbuf);
978
979 /*
980 * There appears to be a correlation between the number
981 * of processor slots defined in the HWRPB and the whami
982 * value that can be returned.
983 */
984 valloc(mchkinfo, struct mchkinfo, hwrpb->rpb_pcs_cnt);
985
986 return (v);
987 #undef valloc
988 }
989
990 void
991 consinit()
992 {
993
994 /*
995 * Everything related to console initialization is done
996 * in alpha_init().
997 */
998 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
999 printf("consinit: %susing prom console\n",
1000 pmap_uses_prom_console() ? "" : "not ");
1001 #endif
1002 }
1003
1004 #include "pckbc.h"
1005 #include "pckbd.h"
1006 #if (NPCKBC > 0) && (NPCKBD == 0)
1007
1008 #include <machine/bus.h>
1009 #include <dev/isa/pckbcvar.h>
1010
1011 /*
1012 * This is called by the pbkbc driver if no pckbd is configured.
1013 * On the i386, it is used to glue in the old, deprecated console
1014 * code. On the Alpha, it does nothing.
1015 */
1016 int
1017 pckbc_machdep_cnattach(kbctag, kbcslot)
1018 pckbc_tag_t kbctag;
1019 pckbc_slot_t kbcslot;
1020 {
1021
1022 return (ENXIO);
1023 }
1024 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1025
1026 void
1027 cpu_startup()
1028 {
1029 register unsigned i;
1030 int base, residual;
1031 vm_offset_t minaddr, maxaddr;
1032 vm_size_t size;
1033 #if defined(DEBUG)
1034 extern int pmapdebug;
1035 int opmapdebug = pmapdebug;
1036
1037 pmapdebug = 0;
1038 #endif
1039
1040 /*
1041 * Good {morning,afternoon,evening,night}.
1042 */
1043 printf(version);
1044 identifycpu();
1045 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1046 ((vm_offset_t) totalphysmem << (vm_offset_t) PAGE_SHIFT),
1047 ptoa(resvmem), ptoa(physmem));
1048 if (unusedmem)
1049 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1050 if (unknownmem)
1051 printf("WARNING: %d bytes of memory with unknown purpose\n",
1052 ctob(unknownmem));
1053
1054 /*
1055 * Allocate virtual address space for file I/O buffers.
1056 * Note they are different than the array of headers, 'buf',
1057 * and usually occupy more virtual memory than physical.
1058 */
1059 size = MAXBSIZE * nbuf;
1060 #if defined(UVM)
1061 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1062 NULL, UVM_UNKNOWN_OFFSET,
1063 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1064 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1065 panic("startup: cannot allocate VM for buffers");
1066 #else
1067 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1068 &maxaddr, size, TRUE);
1069 minaddr = (vm_offset_t)buffers;
1070 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1071 &minaddr, size, FALSE) != KERN_SUCCESS)
1072 panic("startup: cannot allocate buffers");
1073 #endif /* UVM */
1074 base = bufpages / nbuf;
1075 residual = bufpages % nbuf;
1076 for (i = 0; i < nbuf; i++) {
1077 #if defined(UVM)
1078 vm_size_t curbufsize;
1079 vm_offset_t curbuf;
1080 struct vm_page *pg;
1081
1082 /*
1083 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1084 * that MAXBSIZE space, we allocate and map (base+1) pages
1085 * for the first "residual" buffers, and then we allocate
1086 * "base" pages for the rest.
1087 */
1088 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1089 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1090
1091 while (curbufsize) {
1092 pg = uvm_pagealloc(NULL, 0, NULL);
1093 if (pg == NULL)
1094 panic("cpu_startup: not enough memory for "
1095 "buffer cache");
1096 #if defined(PMAP_NEW)
1097 pmap_kenter_pgs(curbuf, &pg, 1);
1098 #else
1099 pmap_enter(kernel_map->pmap, curbuf,
1100 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1101 #endif
1102 curbuf += PAGE_SIZE;
1103 curbufsize -= PAGE_SIZE;
1104 }
1105 #else /* ! UVM */
1106 vm_size_t curbufsize;
1107 vm_offset_t curbuf;
1108
1109 /*
1110 * First <residual> buffers get (base+1) physical pages
1111 * allocated for them. The rest get (base) physical pages.
1112 *
1113 * The rest of each buffer occupies virtual space,
1114 * but has no physical memory allocated for it.
1115 */
1116 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1117 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1118 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1119 vm_map_simplify(buffer_map, curbuf);
1120 #endif /* UVM */
1121 }
1122 /*
1123 * Allocate a submap for exec arguments. This map effectively
1124 * limits the number of processes exec'ing at any time.
1125 */
1126 #if defined(UVM)
1127 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1128 16 * NCARGS, TRUE, FALSE, NULL);
1129 #else
1130 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1131 16 * NCARGS, TRUE);
1132 #endif
1133
1134 /*
1135 * Allocate a submap for physio
1136 */
1137 #if defined(UVM)
1138 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1139 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1140 #else
1141 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1142 VM_PHYS_SIZE, TRUE);
1143 #endif
1144
1145 /*
1146 * Finally, allocate mbuf cluster submap.
1147 */
1148 #if defined(UVM)
1149 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1150 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1151 #else
1152 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1153 VM_MBUF_SIZE, FALSE);
1154 #endif
1155 /*
1156 * Initialize callouts
1157 */
1158 callfree = callout;
1159 for (i = 1; i < ncallout; i++)
1160 callout[i-1].c_next = &callout[i];
1161 callout[i-1].c_next = NULL;
1162
1163 #if defined(DEBUG)
1164 pmapdebug = opmapdebug;
1165 #endif
1166 #if defined(UVM)
1167 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1168 #else
1169 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1170 #endif
1171 printf("using %ld buffers containing %ld bytes of memory\n",
1172 (long)nbuf, (long)(bufpages * CLBYTES));
1173
1174 /*
1175 * Set up buffers, so they can be used to read disk labels.
1176 */
1177 bufinit();
1178
1179 /*
1180 * Configure the system.
1181 */
1182 configure();
1183
1184 /*
1185 * Note that bootstrapping is finished, and set the HWRPB up
1186 * to do restarts.
1187 */
1188 hwrpb_restart_setup();
1189 }
1190
1191 /*
1192 * Retrieve the platform name from the DSR.
1193 */
1194 const char *
1195 alpha_dsr_sysname()
1196 {
1197 struct dsrdb *dsr;
1198 const char *sysname;
1199
1200 /*
1201 * DSR does not exist on early HWRPB versions.
1202 */
1203 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1204 return (NULL);
1205
1206 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1207 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1208 sizeof(u_int64_t)));
1209 return (sysname);
1210 }
1211
1212 /*
1213 * Lookup the system specified system variation in the provided table,
1214 * returning the model string on match.
1215 */
1216 const char *
1217 alpha_variation_name(variation, avtp)
1218 u_int64_t variation;
1219 const struct alpha_variation_table *avtp;
1220 {
1221 int i;
1222
1223 for (i = 0; avtp[i].avt_model != NULL; i++)
1224 if (avtp[i].avt_variation == variation)
1225 return (avtp[i].avt_model);
1226 return (NULL);
1227 }
1228
1229 /*
1230 * Generate a default platform name based for unknown system variations.
1231 */
1232 const char *
1233 alpha_unknown_sysname()
1234 {
1235 static char s[128]; /* safe size */
1236
1237 sprintf(s, "%s family, unknown model variation 0x%lx",
1238 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1239 return ((const char *)s);
1240 }
1241
1242 void
1243 identifycpu()
1244 {
1245
1246 /*
1247 * print out CPU identification information.
1248 */
1249 printf("%s, %ldMHz\n", cpu_model,
1250 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1251 printf("%ld byte page size, %d processor%s.\n",
1252 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1253 #if 0
1254 /* this isn't defined for any systems that we run on? */
1255 printf("serial number 0x%lx 0x%lx\n",
1256 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1257
1258 /* and these aren't particularly useful! */
1259 printf("variation: 0x%lx, revision 0x%lx\n",
1260 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1261 #endif
1262 }
1263
1264 int waittime = -1;
1265 struct pcb dumppcb;
1266
1267 void
1268 cpu_reboot(howto, bootstr)
1269 int howto;
1270 char *bootstr;
1271 {
1272 extern int cold;
1273
1274 /* If system is cold, just halt. */
1275 if (cold) {
1276 howto |= RB_HALT;
1277 goto haltsys;
1278 }
1279
1280 /* If "always halt" was specified as a boot flag, obey. */
1281 if ((boothowto & RB_HALT) != 0)
1282 howto |= RB_HALT;
1283
1284 boothowto = howto;
1285 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1286 waittime = 0;
1287 vfs_shutdown();
1288 /*
1289 * If we've been adjusting the clock, the todr
1290 * will be out of synch; adjust it now.
1291 */
1292 resettodr();
1293 }
1294
1295 /* Disable interrupts. */
1296 splhigh();
1297
1298 /* If rebooting and a dump is requested do it. */
1299 #if 0
1300 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1301 #else
1302 if (howto & RB_DUMP)
1303 #endif
1304 dumpsys();
1305
1306 haltsys:
1307
1308 /* run any shutdown hooks */
1309 doshutdownhooks();
1310
1311 #ifdef BOOTKEY
1312 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1313 cnpollc(1); /* for proper keyboard command handling */
1314 cngetc();
1315 cnpollc(0);
1316 printf("\n");
1317 #endif
1318
1319 /* Finally, powerdown/halt/reboot the system. */
1320 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1321 platform.powerdown != NULL) {
1322 (*platform.powerdown)();
1323 printf("WARNING: powerdown failed!\n");
1324 }
1325 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1326 prom_halt(howto & RB_HALT);
1327 /*NOTREACHED*/
1328 }
1329
1330 /*
1331 * These variables are needed by /sbin/savecore
1332 */
1333 u_long dumpmag = 0x8fca0101; /* magic number */
1334 int dumpsize = 0; /* pages */
1335 long dumplo = 0; /* blocks */
1336
1337 /*
1338 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1339 */
1340 int
1341 cpu_dumpsize()
1342 {
1343 int size;
1344
1345 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1346 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1347 if (roundup(size, dbtob(1)) != dbtob(1))
1348 return -1;
1349
1350 return (1);
1351 }
1352
1353 /*
1354 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1355 */
1356 u_long
1357 cpu_dump_mempagecnt()
1358 {
1359 u_long i, n;
1360
1361 n = 0;
1362 for (i = 0; i < mem_cluster_cnt; i++)
1363 n += atop(mem_clusters[i].size);
1364 return (n);
1365 }
1366
1367 /*
1368 * cpu_dump: dump machine-dependent kernel core dump headers.
1369 */
1370 int
1371 cpu_dump()
1372 {
1373 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1374 char buf[dbtob(1)];
1375 kcore_seg_t *segp;
1376 cpu_kcore_hdr_t *cpuhdrp;
1377 phys_ram_seg_t *memsegp;
1378 int i;
1379
1380 dump = bdevsw[major(dumpdev)].d_dump;
1381
1382 bzero(buf, sizeof buf);
1383 segp = (kcore_seg_t *)buf;
1384 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1385 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1386 ALIGN(sizeof(*cpuhdrp))];
1387
1388 /*
1389 * Generate a segment header.
1390 */
1391 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1392 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1393
1394 /*
1395 * Add the machine-dependent header info.
1396 */
1397 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1398 cpuhdrp->page_size = PAGE_SIZE;
1399 cpuhdrp->nmemsegs = mem_cluster_cnt;
1400
1401 /*
1402 * Fill in the memory segment descriptors.
1403 */
1404 for (i = 0; i < mem_cluster_cnt; i++) {
1405 memsegp[i].start = mem_clusters[i].start;
1406 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1407 }
1408
1409 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1410 }
1411
1412 /*
1413 * This is called by main to set dumplo and dumpsize.
1414 * Dumps always skip the first CLBYTES of disk space
1415 * in case there might be a disk label stored there.
1416 * If there is extra space, put dump at the end to
1417 * reduce the chance that swapping trashes it.
1418 */
1419 void
1420 cpu_dumpconf()
1421 {
1422 int nblks, dumpblks; /* size of dump area */
1423 int maj;
1424
1425 if (dumpdev == NODEV)
1426 goto bad;
1427 maj = major(dumpdev);
1428 if (maj < 0 || maj >= nblkdev)
1429 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1430 if (bdevsw[maj].d_psize == NULL)
1431 goto bad;
1432 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1433 if (nblks <= ctod(1))
1434 goto bad;
1435
1436 dumpblks = cpu_dumpsize();
1437 if (dumpblks < 0)
1438 goto bad;
1439 dumpblks += ctod(cpu_dump_mempagecnt());
1440
1441 /* If dump won't fit (incl. room for possible label), punt. */
1442 if (dumpblks > (nblks - ctod(1)))
1443 goto bad;
1444
1445 /* Put dump at end of partition */
1446 dumplo = nblks - dumpblks;
1447
1448 /* dumpsize is in page units, and doesn't include headers. */
1449 dumpsize = cpu_dump_mempagecnt();
1450 return;
1451
1452 bad:
1453 dumpsize = 0;
1454 return;
1455 }
1456
1457 /*
1458 * Dump the kernel's image to the swap partition.
1459 */
1460 #define BYTES_PER_DUMP NBPG
1461
1462 void
1463 dumpsys()
1464 {
1465 u_long totalbytesleft, bytes, i, n, memcl;
1466 u_long maddr;
1467 int psize;
1468 daddr_t blkno;
1469 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1470 int error;
1471
1472 /* Save registers. */
1473 savectx(&dumppcb);
1474
1475 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1476 if (dumpdev == NODEV)
1477 return;
1478
1479 /*
1480 * For dumps during autoconfiguration,
1481 * if dump device has already configured...
1482 */
1483 if (dumpsize == 0)
1484 cpu_dumpconf();
1485 if (dumplo <= 0) {
1486 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1487 minor(dumpdev));
1488 return;
1489 }
1490 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1491 minor(dumpdev), dumplo);
1492
1493 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1494 printf("dump ");
1495 if (psize == -1) {
1496 printf("area unavailable\n");
1497 return;
1498 }
1499
1500 /* XXX should purge all outstanding keystrokes. */
1501
1502 if ((error = cpu_dump()) != 0)
1503 goto err;
1504
1505 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1506 blkno = dumplo + cpu_dumpsize();
1507 dump = bdevsw[major(dumpdev)].d_dump;
1508 error = 0;
1509
1510 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1511 maddr = mem_clusters[memcl].start;
1512 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1513
1514 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1515
1516 /* Print out how many MBs we to go. */
1517 if ((totalbytesleft % (1024*1024)) == 0)
1518 printf("%d ", totalbytesleft / (1024 * 1024));
1519
1520 /* Limit size for next transfer. */
1521 n = bytes - i;
1522 if (n > BYTES_PER_DUMP)
1523 n = BYTES_PER_DUMP;
1524
1525 error = (*dump)(dumpdev, blkno,
1526 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1527 if (error)
1528 goto err;
1529 maddr += n;
1530 blkno += btodb(n); /* XXX? */
1531
1532 /* XXX should look for keystrokes, to cancel. */
1533 }
1534 }
1535
1536 err:
1537 switch (error) {
1538
1539 case ENXIO:
1540 printf("device bad\n");
1541 break;
1542
1543 case EFAULT:
1544 printf("device not ready\n");
1545 break;
1546
1547 case EINVAL:
1548 printf("area improper\n");
1549 break;
1550
1551 case EIO:
1552 printf("i/o error\n");
1553 break;
1554
1555 case EINTR:
1556 printf("aborted from console\n");
1557 break;
1558
1559 case 0:
1560 printf("succeeded\n");
1561 break;
1562
1563 default:
1564 printf("error %d\n", error);
1565 break;
1566 }
1567 printf("\n\n");
1568 delay(1000);
1569 }
1570
1571 void
1572 frametoreg(framep, regp)
1573 struct trapframe *framep;
1574 struct reg *regp;
1575 {
1576
1577 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1578 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1579 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1580 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1581 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1582 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1583 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1584 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1585 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1586 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1587 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1588 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1589 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1590 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1591 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1592 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1593 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1594 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1595 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1596 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1597 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1598 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1599 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1600 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1601 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1602 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1603 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1604 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1605 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1606 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1607 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1608 regp->r_regs[R_ZERO] = 0;
1609 }
1610
1611 void
1612 regtoframe(regp, framep)
1613 struct reg *regp;
1614 struct trapframe *framep;
1615 {
1616
1617 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1618 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1619 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1620 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1621 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1622 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1623 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1624 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1625 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1626 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1627 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1628 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1629 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1630 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1631 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1632 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1633 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1634 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1635 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1636 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1637 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1638 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1639 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1640 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1641 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1642 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1643 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1644 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1645 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1646 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1647 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1648 /* ??? = regp->r_regs[R_ZERO]; */
1649 }
1650
1651 void
1652 printregs(regp)
1653 struct reg *regp;
1654 {
1655 int i;
1656
1657 for (i = 0; i < 32; i++)
1658 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1659 i & 1 ? "\n" : "\t");
1660 }
1661
1662 void
1663 regdump(framep)
1664 struct trapframe *framep;
1665 {
1666 struct reg reg;
1667
1668 frametoreg(framep, ®);
1669 reg.r_regs[R_SP] = alpha_pal_rdusp();
1670
1671 printf("REGISTERS:\n");
1672 printregs(®);
1673 }
1674
1675 #ifdef DEBUG
1676 int sigdebug = 0;
1677 int sigpid = 0;
1678 #define SDB_FOLLOW 0x01
1679 #define SDB_KSTACK 0x02
1680 #endif
1681
1682 /*
1683 * Send an interrupt to process.
1684 */
1685 void
1686 sendsig(catcher, sig, mask, code)
1687 sig_t catcher;
1688 int sig, mask;
1689 u_long code;
1690 {
1691 struct proc *p = curproc;
1692 struct sigcontext *scp, ksc;
1693 struct trapframe *frame;
1694 struct sigacts *psp = p->p_sigacts;
1695 int oonstack, fsize, rndfsize;
1696 extern char sigcode[], esigcode[];
1697 extern struct proc *fpcurproc;
1698
1699 frame = p->p_md.md_tf;
1700 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1701 fsize = sizeof ksc;
1702 rndfsize = ((fsize + 15) / 16) * 16;
1703 /*
1704 * Allocate and validate space for the signal handler
1705 * context. Note that if the stack is in P0 space, the
1706 * call to grow() is a nop, and the useracc() check
1707 * will fail if the process has not already allocated
1708 * the space with a `brk'.
1709 */
1710 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1711 (psp->ps_sigonstack & sigmask(sig))) {
1712 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1713 psp->ps_sigstk.ss_size - rndfsize);
1714 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1715 } else
1716 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1717 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1718 #if defined(UVM)
1719 (void)uvm_grow(p, (u_long)scp);
1720 #else
1721 (void)grow(p, (u_long)scp);
1722 #endif
1723 #ifdef DEBUG
1724 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1725 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1726 sig, &oonstack, scp);
1727 #endif
1728 #if defined(UVM)
1729 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1730 #else
1731 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1732 #endif
1733 #ifdef DEBUG
1734 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1735 printf("sendsig(%d): useracc failed on sig %d\n",
1736 p->p_pid, sig);
1737 #endif
1738 /*
1739 * Process has trashed its stack; give it an illegal
1740 * instruction to halt it in its tracks.
1741 */
1742 SIGACTION(p, SIGILL) = SIG_DFL;
1743 sig = sigmask(SIGILL);
1744 p->p_sigignore &= ~sig;
1745 p->p_sigcatch &= ~sig;
1746 p->p_sigmask &= ~sig;
1747 psignal(p, SIGILL);
1748 return;
1749 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1750 }
1751 #else
1752 }
1753 #endif
1754
1755 /*
1756 * Build the signal context to be used by sigreturn.
1757 */
1758 ksc.sc_onstack = oonstack;
1759 ksc.sc_mask = mask;
1760 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1761 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1762
1763 /* copy the registers. */
1764 frametoreg(frame, (struct reg *)ksc.sc_regs);
1765 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1766 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1767
1768 /* save the floating-point state, if necessary, then copy it. */
1769 if (p == fpcurproc) {
1770 alpha_pal_wrfen(1);
1771 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1772 alpha_pal_wrfen(0);
1773 fpcurproc = NULL;
1774 }
1775 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1776 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1777 sizeof(struct fpreg));
1778 ksc.sc_fp_control = 0; /* XXX ? */
1779 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1780 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1781
1782
1783 #ifdef COMPAT_OSF1
1784 /*
1785 * XXX Create an OSF/1-style sigcontext and associated goo.
1786 */
1787 #endif
1788
1789 /*
1790 * copy the frame out to userland.
1791 */
1792 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1793 #ifdef DEBUG
1794 if (sigdebug & SDB_FOLLOW)
1795 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1796 scp, code);
1797 #endif
1798
1799 /*
1800 * Set up the registers to return to sigcode.
1801 */
1802 frame->tf_regs[FRAME_PC] =
1803 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1804 frame->tf_regs[FRAME_A0] = sig;
1805 frame->tf_regs[FRAME_A1] = code;
1806 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1807 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1808 alpha_pal_wrusp((unsigned long)scp);
1809
1810 #ifdef DEBUG
1811 if (sigdebug & SDB_FOLLOW)
1812 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1813 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1814 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1815 printf("sendsig(%d): sig %d returns\n",
1816 p->p_pid, sig);
1817 #endif
1818 }
1819
1820 /*
1821 * System call to cleanup state after a signal
1822 * has been taken. Reset signal mask and
1823 * stack state from context left by sendsig (above).
1824 * Return to previous pc and psl as specified by
1825 * context left by sendsig. Check carefully to
1826 * make sure that the user has not modified the
1827 * psl to gain improper priviledges or to cause
1828 * a machine fault.
1829 */
1830 /* ARGSUSED */
1831 int
1832 sys_sigreturn(p, v, retval)
1833 struct proc *p;
1834 void *v;
1835 register_t *retval;
1836 {
1837 struct sys_sigreturn_args /* {
1838 syscallarg(struct sigcontext *) sigcntxp;
1839 } */ *uap = v;
1840 struct sigcontext *scp, ksc;
1841 extern struct proc *fpcurproc;
1842
1843 scp = SCARG(uap, sigcntxp);
1844 #ifdef DEBUG
1845 if (sigdebug & SDB_FOLLOW)
1846 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1847 #endif
1848
1849 if (ALIGN(scp) != (u_int64_t)scp)
1850 return (EINVAL);
1851
1852 /*
1853 * Test and fetch the context structure.
1854 * We grab it all at once for speed.
1855 */
1856 #if defined(UVM)
1857 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1858 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1859 return (EINVAL);
1860 #else
1861 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1862 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1863 return (EINVAL);
1864 #endif
1865
1866 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1867 return (EINVAL);
1868 /*
1869 * Restore the user-supplied information
1870 */
1871 if (ksc.sc_onstack)
1872 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1873 else
1874 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1875 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1876
1877 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1878 p->p_md.md_tf->tf_regs[FRAME_PS] =
1879 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1880
1881 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1882 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1883
1884 /* XXX ksc.sc_ownedfp ? */
1885 if (p == fpcurproc)
1886 fpcurproc = NULL;
1887 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1888 sizeof(struct fpreg));
1889 /* XXX ksc.sc_fp_control ? */
1890
1891 #ifdef DEBUG
1892 if (sigdebug & SDB_FOLLOW)
1893 printf("sigreturn(%d): returns\n", p->p_pid);
1894 #endif
1895 return (EJUSTRETURN);
1896 }
1897
1898 /*
1899 * machine dependent system variables.
1900 */
1901 int
1902 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1903 int *name;
1904 u_int namelen;
1905 void *oldp;
1906 size_t *oldlenp;
1907 void *newp;
1908 size_t newlen;
1909 struct proc *p;
1910 {
1911 dev_t consdev;
1912
1913 /* all sysctl names at this level are terminal */
1914 if (namelen != 1)
1915 return (ENOTDIR); /* overloaded */
1916
1917 switch (name[0]) {
1918 case CPU_CONSDEV:
1919 if (cn_tab != NULL)
1920 consdev = cn_tab->cn_dev;
1921 else
1922 consdev = NODEV;
1923 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1924 sizeof consdev));
1925
1926 case CPU_ROOT_DEVICE:
1927 return (sysctl_rdstring(oldp, oldlenp, newp,
1928 root_device->dv_xname));
1929
1930 case CPU_UNALIGNED_PRINT:
1931 return (sysctl_int(oldp, oldlenp, newp, newlen,
1932 &alpha_unaligned_print));
1933
1934 case CPU_UNALIGNED_FIX:
1935 return (sysctl_int(oldp, oldlenp, newp, newlen,
1936 &alpha_unaligned_fix));
1937
1938 case CPU_UNALIGNED_SIGBUS:
1939 return (sysctl_int(oldp, oldlenp, newp, newlen,
1940 &alpha_unaligned_sigbus));
1941
1942 case CPU_BOOTED_KERNEL:
1943 return (sysctl_rdstring(oldp, oldlenp, newp,
1944 bootinfo.booted_kernel));
1945
1946 default:
1947 return (EOPNOTSUPP);
1948 }
1949 /* NOTREACHED */
1950 }
1951
1952 /*
1953 * Set registers on exec.
1954 */
1955 void
1956 setregs(p, pack, stack)
1957 register struct proc *p;
1958 struct exec_package *pack;
1959 u_long stack;
1960 {
1961 struct trapframe *tfp = p->p_md.md_tf;
1962 extern struct proc *fpcurproc;
1963 #ifdef DEBUG
1964 int i;
1965 #endif
1966
1967 #ifdef DEBUG
1968 /*
1969 * Crash and dump, if the user requested it.
1970 */
1971 if (boothowto & RB_DUMP)
1972 panic("crash requested by boot flags");
1973 #endif
1974
1975 #ifdef DEBUG
1976 for (i = 0; i < FRAME_SIZE; i++)
1977 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1978 #else
1979 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1980 #endif
1981 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1982 #define FP_RN 2 /* XXX */
1983 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1984 alpha_pal_wrusp(stack);
1985 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1986 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1987
1988 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1989 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1990 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1991 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1992 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1993
1994 p->p_md.md_flags &= ~MDP_FPUSED;
1995 if (fpcurproc == p)
1996 fpcurproc = NULL;
1997 }
1998
1999 void
2000 netintr()
2001 {
2002 int n, s;
2003
2004 s = splhigh();
2005 n = netisr;
2006 netisr = 0;
2007 splx(s);
2008
2009 #define DONETISR(bit, fn) \
2010 do { \
2011 if (n & (1 << (bit))) \
2012 fn; \
2013 } while (0)
2014
2015 #ifdef INET
2016 #if NARP > 0
2017 DONETISR(NETISR_ARP, arpintr());
2018 #endif
2019 DONETISR(NETISR_IP, ipintr());
2020 #endif
2021 #ifdef NETATALK
2022 DONETISR(NETISR_ATALK, atintr());
2023 #endif
2024 #ifdef NS
2025 DONETISR(NETISR_NS, nsintr());
2026 #endif
2027 #ifdef ISO
2028 DONETISR(NETISR_ISO, clnlintr());
2029 #endif
2030 #ifdef CCITT
2031 DONETISR(NETISR_CCITT, ccittintr());
2032 #endif
2033 #ifdef NATM
2034 DONETISR(NETISR_NATM, natmintr());
2035 #endif
2036 #if NPPP > 1
2037 DONETISR(NETISR_PPP, pppintr());
2038 #endif
2039
2040 #undef DONETISR
2041 }
2042
2043 void
2044 do_sir()
2045 {
2046 u_int64_t n;
2047
2048 do {
2049 (void)splhigh();
2050 n = ssir;
2051 ssir = 0;
2052 splsoft(); /* don't recurse through spl0() */
2053
2054 #if defined(UVM)
2055 #define COUNT_SOFT uvmexp.softs++
2056 #else
2057 #define COUNT_SOFT cnt.v_soft++
2058 #endif
2059
2060 #define DO_SIR(bit, fn) \
2061 do { \
2062 if (n & (bit)) { \
2063 COUNT_SOFT; \
2064 fn; \
2065 } \
2066 } while (0)
2067
2068 DO_SIR(SIR_NET, netintr());
2069 DO_SIR(SIR_CLOCK, softclock());
2070
2071 #undef COUNT_SOFT
2072 #undef DO_SIR
2073 } while (ssir != 0);
2074 }
2075
2076 int
2077 spl0()
2078 {
2079
2080 if (ssir)
2081 do_sir(); /* it lowers the IPL itself */
2082
2083 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2084 }
2085
2086 /*
2087 * The following primitives manipulate the run queues. _whichqs tells which
2088 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2089 * into queues, Remrunqueue removes them from queues. The running process is
2090 * on no queue, other processes are on a queue related to p->p_priority,
2091 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2092 * available queues.
2093 */
2094 /*
2095 * setrunqueue(p)
2096 * proc *p;
2097 *
2098 * Call should be made at splclock(), and p->p_stat should be SRUN.
2099 */
2100
2101 void
2102 setrunqueue(p)
2103 struct proc *p;
2104 {
2105 int bit;
2106
2107 /* firewall: p->p_back must be NULL */
2108 if (p->p_back != NULL)
2109 panic("setrunqueue");
2110
2111 bit = p->p_priority >> 2;
2112 whichqs |= (1 << bit);
2113 p->p_forw = (struct proc *)&qs[bit];
2114 p->p_back = qs[bit].ph_rlink;
2115 p->p_back->p_forw = p;
2116 qs[bit].ph_rlink = p;
2117 }
2118
2119 /*
2120 * remrunqueue(p)
2121 *
2122 * Call should be made at splclock().
2123 */
2124 void
2125 remrunqueue(p)
2126 struct proc *p;
2127 {
2128 int bit;
2129
2130 bit = p->p_priority >> 2;
2131 if ((whichqs & (1 << bit)) == 0)
2132 panic("remrunqueue");
2133
2134 p->p_back->p_forw = p->p_forw;
2135 p->p_forw->p_back = p->p_back;
2136 p->p_back = NULL; /* for firewall checking. */
2137
2138 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2139 whichqs &= ~(1 << bit);
2140 }
2141
2142 /*
2143 * Return the best possible estimate of the time in the timeval
2144 * to which tvp points. Unfortunately, we can't read the hardware registers.
2145 * We guarantee that the time will be greater than the value obtained by a
2146 * previous call.
2147 */
2148 void
2149 microtime(tvp)
2150 register struct timeval *tvp;
2151 {
2152 int s = splclock();
2153 static struct timeval lasttime;
2154
2155 *tvp = time;
2156 #ifdef notdef
2157 tvp->tv_usec += clkread();
2158 while (tvp->tv_usec > 1000000) {
2159 tvp->tv_sec++;
2160 tvp->tv_usec -= 1000000;
2161 }
2162 #endif
2163 if (tvp->tv_sec == lasttime.tv_sec &&
2164 tvp->tv_usec <= lasttime.tv_usec &&
2165 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2166 tvp->tv_sec++;
2167 tvp->tv_usec -= 1000000;
2168 }
2169 lasttime = *tvp;
2170 splx(s);
2171 }
2172
2173 /*
2174 * Wait "n" microseconds.
2175 */
2176 void
2177 delay(n)
2178 unsigned long n;
2179 {
2180 long N = cycles_per_usec * (n);
2181
2182 while (N > 0) /* XXX */
2183 N -= 3; /* XXX */
2184 }
2185
2186 #if defined(COMPAT_OSF1) || 1 /* XXX */
2187 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2188 u_long));
2189
2190 void
2191 cpu_exec_ecoff_setregs(p, epp, stack)
2192 struct proc *p;
2193 struct exec_package *epp;
2194 u_long stack;
2195 {
2196 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2197
2198 setregs(p, epp, stack);
2199 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2200 }
2201
2202 /*
2203 * cpu_exec_ecoff_hook():
2204 * cpu-dependent ECOFF format hook for execve().
2205 *
2206 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2207 *
2208 */
2209 int
2210 cpu_exec_ecoff_hook(p, epp)
2211 struct proc *p;
2212 struct exec_package *epp;
2213 {
2214 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2215 extern struct emul emul_netbsd;
2216 #ifdef COMPAT_OSF1
2217 extern struct emul emul_osf1;
2218 #endif
2219
2220 switch (execp->f.f_magic) {
2221 #ifdef COMPAT_OSF1
2222 case ECOFF_MAGIC_ALPHA:
2223 epp->ep_emul = &emul_osf1;
2224 break;
2225 #endif
2226
2227 case ECOFF_MAGIC_NETBSD_ALPHA:
2228 epp->ep_emul = &emul_netbsd;
2229 break;
2230
2231 default:
2232 return ENOEXEC;
2233 }
2234 return 0;
2235 }
2236 #endif
2237
2238 int
2239 alpha_pa_access(pa)
2240 u_long pa;
2241 {
2242 int i;
2243
2244 for (i = 0; i < mem_cluster_cnt; i++) {
2245 if (pa < mem_clusters[i].start)
2246 continue;
2247 if ((pa - mem_clusters[i].start) >=
2248 (mem_clusters[i].size & ~PAGE_MASK))
2249 continue;
2250 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2251 }
2252 return (PROT_NONE);
2253 }
2254
2255 /* XXX XXX BEGIN XXX XXX */
2256 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2257 /* XXX */
2258 vm_offset_t /* XXX */
2259 alpha_XXX_dmamap(v) /* XXX */
2260 vm_offset_t v; /* XXX */
2261 { /* XXX */
2262 /* XXX */
2263 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2264 } /* XXX */
2265 /* XXX XXX END XXX XXX */
2266