machdep.c revision 1.139 1 /* $NetBSD: machdep.c,v 1.139 1998/08/04 22:40:17 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.139 1998/08/04 22:40:17 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #ifdef REAL_CLISTS
95 #include <sys/clist.h>
96 #endif
97 #include <sys/callout.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/mman.h>
101 #include <sys/msgbuf.h>
102 #include <sys/ioctl.h>
103 #include <sys/tty.h>
104 #include <sys/user.h>
105 #include <sys/exec.h>
106 #include <sys/exec_ecoff.h>
107 #include <vm/vm.h>
108 #include <sys/sysctl.h>
109 #include <sys/core.h>
110 #include <sys/kcore.h>
111 #include <machine/kcore.h>
112 #ifdef SYSVMSG
113 #include <sys/msg.h>
114 #endif
115 #ifdef SYSVSEM
116 #include <sys/sem.h>
117 #endif
118 #ifdef SYSVSHM
119 #include <sys/shm.h>
120 #endif
121
122 #include <sys/mount.h>
123 #include <sys/syscallargs.h>
124
125 #include <vm/vm_kern.h>
126
127 #if defined(UVM)
128 #include <uvm/uvm_extern.h>
129 #endif
130
131 #include <dev/cons.h>
132
133 #include <machine/autoconf.h>
134 #include <machine/cpu.h>
135 #include <machine/reg.h>
136 #include <machine/rpb.h>
137 #include <machine/prom.h>
138 #include <machine/conf.h>
139
140 #include <net/netisr.h>
141 #include <net/if.h>
142
143 #ifdef INET
144 #include <net/route.h>
145 #include <netinet/in.h>
146 #include <netinet/ip_var.h>
147 #include "arp.h"
148 #if NARP > 0
149 #include <netinet/if_inarp.h>
150 #endif
151 #endif
152 #ifdef NS
153 #include <netns/ns_var.h>
154 #endif
155 #ifdef ISO
156 #include <netiso/iso.h>
157 #include <netiso/clnp.h>
158 #endif
159 #ifdef CCITT
160 #include <netccitt/x25.h>
161 #include <netccitt/pk.h>
162 #include <netccitt/pk_extern.h>
163 #endif
164 #ifdef NATM
165 #include <netnatm/natm.h>
166 #endif
167 #ifdef NETATALK
168 #include <netatalk/at_extern.h>
169 #endif
170 #include "ppp.h"
171 #if NPPP > 0
172 #include <net/ppp_defs.h>
173 #include <net/if_ppp.h>
174 #endif
175
176 #ifdef DDB
177 #include <machine/db_machdep.h>
178 #include <ddb/db_access.h>
179 #include <ddb/db_sym.h>
180 #include <ddb/db_extern.h>
181 #include <ddb/db_interface.h>
182 #endif
183
184 #if defined(UVM)
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188 #else
189 vm_map_t buffer_map;
190 #endif
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 int nswbuf = 0;
196 #ifdef NBUF
197 int nbuf = NBUF;
198 #else
199 int nbuf = 0;
200 #endif
201 #ifdef BUFPAGES
202 int bufpages = BUFPAGES;
203 #else
204 int bufpages = 0;
205 #endif
206 caddr_t msgbufaddr;
207
208 int maxmem; /* max memory per process */
209
210 int totalphysmem; /* total amount of physical memory in system */
211 int physmem; /* physical memory used by NetBSD + some rsvd */
212 int resvmem; /* amount of memory reserved for PROM */
213 int unusedmem; /* amount of memory for OS that we don't use */
214 int unknownmem; /* amount of memory with an unknown use */
215
216 int cputype; /* system type, from the RPB */
217
218 /*
219 * XXX We need an address to which we can assign things so that they
220 * won't be optimized away because we didn't use the value.
221 */
222 u_int32_t no_optimize;
223
224 /* the following is used externally (sysctl_hw) */
225 char machine[] = MACHINE; /* from <machine/param.h> */
226 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 char cpu_model[128];
228
229 struct user *proc0paddr;
230
231 /* Number of machine cycles per microsecond */
232 u_int64_t cycles_per_usec;
233
234 /* number of cpus in the box. really! */
235 int ncpus;
236
237 /* machine check info array, valloc()'ed in allocsys() */
238
239 static struct mchkinfo startup_info,
240 *mchkinfo_all_cpus;
241
242 struct bootinfo_kernel bootinfo;
243
244 /* For built-in TCDS */
245 #if defined(DEC_3000_300) || defined(DEC_3000_500)
246 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
247 #endif
248
249 struct platform platform;
250
251 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
252 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
253 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
254
255 #ifdef DDB
256 /* start and end of kernel symbol table */
257 void *ksym_start, *ksym_end;
258 #endif
259
260 /* for cpu_sysctl() */
261 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
262 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
263 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
264
265 /*
266 * XXX This should be dynamically sized, but we have the chicken-egg problem!
267 * XXX it should also be larger than it is, because not all of the mddt
268 * XXX clusters end up being used for VM.
269 */
270 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
271 int mem_cluster_cnt;
272
273 caddr_t allocsys __P((caddr_t));
274 int cpu_dump __P((void));
275 int cpu_dumpsize __P((void));
276 u_long cpu_dump_mempagecnt __P((void));
277 void dumpsys __P((void));
278 void identifycpu __P((void));
279 void netintr __P((void));
280 void printregs __P((struct reg *));
281
282 void
283 alpha_init(pfn, ptb, bim, bip, biv)
284 u_long pfn; /* first free PFN number */
285 u_long ptb; /* PFN of current level 1 page table */
286 u_long bim; /* bootinfo magic */
287 u_long bip; /* bootinfo pointer */
288 u_long biv; /* bootinfo version */
289 {
290 extern char kernel_text[], _end[];
291 struct mddt *mddtp;
292 struct mddt_cluster *memc;
293 int i, mddtweird;
294 struct vm_physseg *vps;
295 vm_offset_t kernstart, kernend;
296 vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
297 vm_size_t size;
298 char *p;
299 caddr_t v;
300 char *bootinfo_msg;
301
302 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
303
304 /*
305 * Turn off interrupts (not mchecks) and floating point.
306 * Make sure the instruction and data streams are consistent.
307 */
308 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
309 alpha_pal_wrfen(0);
310 ALPHA_TBIA();
311 alpha_pal_imb();
312
313 /*
314 * Get critical system information (if possible, from the
315 * information provided by the boot program).
316 */
317 bootinfo_msg = NULL;
318 if (bim == BOOTINFO_MAGIC) {
319 if (biv == 0) { /* backward compat */
320 biv = *(u_long *)bip;
321 bip += 8;
322 }
323 switch (biv) {
324 case 1: {
325 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
326
327 bootinfo.ssym = v1p->ssym;
328 bootinfo.esym = v1p->esym;
329 /* hwrpb may not be provided by boot block in v1 */
330 if (v1p->hwrpb != NULL) {
331 bootinfo.hwrpb_phys =
332 ((struct rpb *)v1p->hwrpb)->rpb_phys;
333 bootinfo.hwrpb_size = v1p->hwrpbsize;
334 } else {
335 bootinfo.hwrpb_phys =
336 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
337 bootinfo.hwrpb_size =
338 ((struct rpb *)HWRPB_ADDR)->rpb_size;
339 }
340 bcopy(v1p->boot_flags, bootinfo.boot_flags,
341 min(sizeof v1p->boot_flags,
342 sizeof bootinfo.boot_flags));
343 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
344 min(sizeof v1p->booted_kernel,
345 sizeof bootinfo.booted_kernel));
346 /* booted dev not provided in bootinfo */
347 init_prom_interface((struct rpb *)
348 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
349 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
350 sizeof bootinfo.booted_dev);
351 break;
352 }
353 default:
354 bootinfo_msg = "unknown bootinfo version";
355 goto nobootinfo;
356 }
357 } else {
358 bootinfo_msg = "boot program did not pass bootinfo";
359 nobootinfo:
360 bootinfo.ssym = (u_long)_end;
361 bootinfo.esym = (u_long)_end;
362 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
363 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
364 init_prom_interface((struct rpb *)HWRPB_ADDR);
365 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
366 sizeof bootinfo.boot_flags);
367 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
368 sizeof bootinfo.booted_kernel);
369 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
370 sizeof bootinfo.booted_dev);
371 }
372
373 /*
374 * Initialize the kernel's mapping of the RPB. It's needed for
375 * lots of things.
376 */
377 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
378
379 #if defined(DEC_3000_300) || defined(DEC_3000_500)
380 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
381 hwrpb->rpb_type == ST_DEC_3000_500) {
382 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
383 sizeof(dec_3000_scsiid));
384 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
385 sizeof(dec_3000_scsifast));
386 }
387 #endif
388
389 /*
390 * Remember how many cycles there are per microsecond,
391 * so that we can use delay(). Round up, for safety.
392 */
393 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
394
395 /*
396 * Initalize the (temporary) bootstrap console interface, so
397 * we can use printf until the VM system starts being setup.
398 * The real console is initialized before then.
399 */
400 init_bootstrap_console();
401
402 /* OUTPUT NOW ALLOWED */
403
404 /* delayed from above */
405 if (bootinfo_msg)
406 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
407 bootinfo_msg, bim, bip, biv);
408
409 /*
410 * Point interrupt/exception vectors to our own.
411 */
412 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
413 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
414 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
415 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
416 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
417 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
418
419 /*
420 * Clear pending machine checks and error reports, and enable
421 * system- and processor-correctable error reporting.
422 */
423 alpha_pal_wrmces(alpha_pal_rdmces() &
424 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
425
426 /*
427 * Find out what hardware we're on, and do basic initialization.
428 */
429 cputype = hwrpb->rpb_type;
430 if (cputype >= ncpuinit) {
431 platform_not_supported();
432 /* NOTREACHED */
433 }
434 (*cpuinit[cputype].init)();
435 strcpy(cpu_model, platform.model);
436
437 /*
438 * Initalize the real console, so the the bootstrap console is
439 * no longer necessary.
440 */
441 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
442 if (!pmap_uses_prom_console())
443 #endif
444 (*platform.cons_init)();
445
446 #ifdef DIAGNOSTIC
447 /* Paranoid sanity checking */
448
449 /* We should always be running on the the primary. */
450 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
451
452 /*
453 * On single-CPU systypes, the primary should always be CPU 0,
454 * except on Alpha 8200 systems where the CPU id is related
455 * to the VID, which is related to the Turbo Laser node id.
456 */
457 if (cputype != ST_DEC_21000)
458 assert(hwrpb->rpb_primary_cpu_id == 0);
459 #endif
460
461 /* NO MORE FIRMWARE ACCESS ALLOWED */
462 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
463 /*
464 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
465 * XXX pmap_uses_prom_console() evaluates to non-zero.)
466 */
467 #endif
468
469 /*
470 * find out this system's page size
471 */
472 PAGE_SIZE = hwrpb->rpb_page_size;
473 if (PAGE_SIZE != 8192)
474 panic("page size %d != 8192?!", PAGE_SIZE);
475
476 /*
477 * Initialize PAGE_SIZE-dependent variables.
478 */
479 #if defined(UVM)
480 uvm_setpagesize();
481 #else
482 vm_set_page_size();
483 #endif
484
485 /*
486 * Find the beginning and end of the kernel (and leave a
487 * bit of space before the beginning for the bootstrap
488 * stack).
489 */
490 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
491 #ifdef DDB
492 ksym_start = (void *)bootinfo.ssym;
493 ksym_end = (void *)bootinfo.esym;
494 kernend = (vm_offset_t)round_page(ksym_end);
495 #else
496 kernend = (vm_offset_t)round_page(_end);
497 #endif
498
499 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
500 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
501
502 /*
503 * Find out how much memory is available, by looking at
504 * the memory cluster descriptors. This also tries to do
505 * its best to detect things things that have never been seen
506 * before...
507 */
508 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
509
510 /* MDDT SANITY CHECKING */
511 mddtweird = 0;
512 if (mddtp->mddt_cluster_cnt < 2) {
513 mddtweird = 1;
514 printf("WARNING: weird number of mem clusters: %d\n",
515 mddtp->mddt_cluster_cnt);
516 }
517
518 #if 0
519 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
520 #endif
521
522 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
523 memc = &mddtp->mddt_clusters[i];
524 #if 0
525 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
526 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
527 #endif
528 totalphysmem += memc->mddt_pg_cnt;
529 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
530 mem_clusters[mem_cluster_cnt].start =
531 ptoa(memc->mddt_pfn);
532 mem_clusters[mem_cluster_cnt].size =
533 ptoa(memc->mddt_pg_cnt);
534 if (memc->mddt_usage & MDDT_mbz ||
535 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
536 memc->mddt_usage & MDDT_PALCODE)
537 mem_clusters[mem_cluster_cnt].size |=
538 PROT_READ;
539 else
540 mem_clusters[mem_cluster_cnt].size |=
541 PROT_READ | PROT_WRITE | PROT_EXEC;
542 mem_cluster_cnt++;
543 }
544
545 if (memc->mddt_usage & MDDT_mbz) {
546 mddtweird = 1;
547 printf("WARNING: mem cluster %d has weird "
548 "usage 0x%lx\n", i, memc->mddt_usage);
549 unknownmem += memc->mddt_pg_cnt;
550 continue;
551 }
552 if (memc->mddt_usage & MDDT_NONVOLATILE) {
553 /* XXX should handle these... */
554 printf("WARNING: skipping non-volatile mem "
555 "cluster %d\n", i);
556 unusedmem += memc->mddt_pg_cnt;
557 continue;
558 }
559 if (memc->mddt_usage & MDDT_PALCODE) {
560 resvmem += memc->mddt_pg_cnt;
561 continue;
562 }
563
564 /*
565 * We have a memory cluster available for system
566 * software use. We must determine if this cluster
567 * holds the kernel.
568 */
569 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
570 /*
571 * XXX If the kernel uses the PROM console, we only use the
572 * XXX memory after the kernel in the first system segment,
573 * XXX to avoid clobbering prom mapping, data, etc.
574 */
575 if (!pmap_uses_prom_console() || physmem == 0) {
576 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
577 physmem += memc->mddt_pg_cnt;
578 pfn0 = memc->mddt_pfn;
579 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
580 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
581 /*
582 * Must compute the location of the kernel
583 * within the segment.
584 */
585 #if 0
586 printf("Cluster %d contains kernel\n", i);
587 #endif
588 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
589 if (!pmap_uses_prom_console()) {
590 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
591 if (pfn0 < kernstartpfn) {
592 /*
593 * There is a chunk before the kernel.
594 */
595 #if 0
596 printf("Loading chunk before kernel: "
597 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
598 #endif
599 #if defined(UVM)
600 uvm_page_physload(pfn0, kernstartpfn,
601 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
602 #else
603 vm_page_physload(pfn0, kernstartpfn,
604 pfn0, kernstartpfn);
605 #endif
606 }
607 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
608 }
609 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
610 if (kernendpfn < pfn1) {
611 /*
612 * There is a chunk after the kernel.
613 */
614 #if 0
615 printf("Loading chunk after kernel: "
616 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
617 #endif
618 #if defined(UVM)
619 uvm_page_physload(kernendpfn, pfn1,
620 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
621 #else
622 vm_page_physload(kernendpfn, pfn1,
623 kernendpfn, pfn1);
624 #endif
625 }
626 } else {
627 /*
628 * Just load this cluster as one chunk.
629 */
630 #if 0
631 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
632 pfn0, pfn1);
633 #endif
634 #if defined(UVM)
635 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
636 VM_FREELIST_DEFAULT);
637 #else
638 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
639 #endif
640 }
641 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
642 }
643 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
644 }
645
646 /*
647 * Dump out the MDDT if it looks odd...
648 */
649 if (mddtweird) {
650 printf("\n");
651 printf("complete memory cluster information:\n");
652 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
653 printf("mddt %d:\n", i);
654 printf("\tpfn %lx\n",
655 mddtp->mddt_clusters[i].mddt_pfn);
656 printf("\tcnt %lx\n",
657 mddtp->mddt_clusters[i].mddt_pg_cnt);
658 printf("\ttest %lx\n",
659 mddtp->mddt_clusters[i].mddt_pg_test);
660 printf("\tbva %lx\n",
661 mddtp->mddt_clusters[i].mddt_v_bitaddr);
662 printf("\tbpa %lx\n",
663 mddtp->mddt_clusters[i].mddt_p_bitaddr);
664 printf("\tbcksum %lx\n",
665 mddtp->mddt_clusters[i].mddt_bit_cksum);
666 printf("\tusage %lx\n",
667 mddtp->mddt_clusters[i].mddt_usage);
668 }
669 printf("\n");
670 }
671
672 if (totalphysmem == 0)
673 panic("can't happen: system seems to have no memory!");
674
675 #ifdef LIMITMEM
676 /*
677 * XXX Kludge so we can run on machines with memory larger
678 * XXX than 1G until all device drivers are converted to
679 * XXX use bus_dma. (Relies on the fact that vm_physmem
680 * XXX sorted in order of increasing addresses.)
681 */
682 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
683
684 printf("******** LIMITING MEMORY TO %dMB **********\n",
685 LIMITMEM);
686
687 do {
688 u_long ovf;
689
690 vps = &vm_physmem[vm_nphysseg - 1];
691
692 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
693 /*
694 * If the start is too high, just drop
695 * the whole segment.
696 *
697 * XXX can start != avail_start in this
698 * XXX case? wouldn't that mean that
699 * XXX some memory was stolen above the
700 * XXX limit? What to do?
701 */
702 ovf = vps->end - vps->start;
703 vm_nphysseg--;
704 } else {
705 /*
706 * If the start is OK, calculate how much
707 * to drop and drop it.
708 */
709 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
710 vps->end -= ovf;
711 vps->avail_end -= ovf;
712 }
713 physmem -= ovf;
714 unusedmem += ovf;
715 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
716 }
717 #endif /* LIMITMEM */
718
719 maxmem = physmem;
720
721 #if 0
722 printf("totalphysmem = %d\n", totalphysmem);
723 printf("physmem = %d\n", physmem);
724 printf("resvmem = %d\n", resvmem);
725 printf("unusedmem = %d\n", unusedmem);
726 printf("unknownmem = %d\n", unknownmem);
727 #endif
728
729 /*
730 * Adjust some parameters if the amount of physmem
731 * available would cause us to croak. This is completely
732 * eyeballed and isn't meant to be the final answer.
733 * vm_phys_size is probably the only one to really worry
734 * about.
735 *
736 * It's for booting a GENERIC kernel on a large memory platform.
737 */
738 if (physmem >= atop(128 * 1024 * 1024)) {
739 vm_mbuf_size <<= 1;
740 vm_kmem_size <<= 3;
741 vm_phys_size <<= 2;
742 }
743
744 /*
745 * Initialize error message buffer (at end of core).
746 */
747 {
748 size_t sz = round_page(MSGBUFSIZE);
749
750 vps = &vm_physmem[vm_nphysseg - 1];
751
752 /* shrink so that it'll fit in the last segment */
753 if ((vps->avail_end - vps->avail_start) < atop(sz))
754 sz = ptoa(vps->avail_end - vps->avail_start);
755
756 vps->end -= atop(sz);
757 vps->avail_end -= atop(sz);
758 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
759 initmsgbuf(msgbufaddr, sz);
760
761 /* Remove the last segment if it now has no pages. */
762 if (vps->start == vps->end)
763 vm_nphysseg--;
764
765 /* warn if the message buffer had to be shrunk */
766 if (sz != round_page(MSGBUFSIZE))
767 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
768 round_page(MSGBUFSIZE), sz);
769
770 }
771
772 /*
773 * Init mapping for u page(s) for proc 0
774 */
775 proc0.p_addr = proc0paddr =
776 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
777
778 /*
779 * Allocate space for system data structures. These data structures
780 * are allocated here instead of cpu_startup() because physical
781 * memory is directly addressable. We don't have to map these into
782 * virtual address space.
783 */
784 size = (vm_size_t)allocsys(0);
785 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
786 if ((allocsys(v) - v) != size)
787 panic("alpha_init: table size inconsistency");
788
789 /*
790 * Initialize the virtual memory system, and set the
791 * page table base register in proc 0's PCB.
792 */
793 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
794 hwrpb->rpb_max_asn);
795
796 /*
797 * Initialize the rest of proc 0's PCB, and cache its physical
798 * address.
799 */
800 proc0.p_md.md_pcbpaddr =
801 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
802
803 /*
804 * Set the kernel sp, reserving space for an (empty) trapframe,
805 * and make proc0's trapframe pointer point to it for sanity.
806 */
807 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
808 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
809 proc0.p_md.md_tf =
810 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
811
812 /*
813 * Look at arguments passed to us and compute boothowto.
814 */
815
816 boothowto = RB_SINGLE;
817 #ifdef KADB
818 boothowto |= RB_KDB;
819 #endif
820 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
821 /*
822 * Note that we'd really like to differentiate case here,
823 * but the Alpha AXP Architecture Reference Manual
824 * says that we shouldn't.
825 */
826 switch (*p) {
827 case 'a': /* autoboot */
828 case 'A':
829 boothowto &= ~RB_SINGLE;
830 break;
831
832 #ifdef DEBUG
833 case 'c': /* crash dump immediately after autoconfig */
834 case 'C':
835 boothowto |= RB_DUMP;
836 break;
837 #endif
838
839 #if defined(KGDB) || defined(DDB)
840 case 'd': /* break into the kernel debugger ASAP */
841 case 'D':
842 boothowto |= RB_KDB;
843 break;
844 #endif
845
846 case 'h': /* always halt, never reboot */
847 case 'H':
848 boothowto |= RB_HALT;
849 break;
850
851 #if 0
852 case 'm': /* mini root present in memory */
853 case 'M':
854 boothowto |= RB_MINIROOT;
855 break;
856 #endif
857
858 case 'n': /* askname */
859 case 'N':
860 boothowto |= RB_ASKNAME;
861 break;
862
863 case 's': /* single-user (default, supported for sanity) */
864 case 'S':
865 boothowto |= RB_SINGLE;
866 break;
867
868 case '-':
869 /*
870 * Just ignore this. It's not required, but it's
871 * common for it to be passed regardless.
872 */
873 break;
874
875 default:
876 printf("Unrecognized boot flag '%c'.\n", *p);
877 break;
878 }
879 }
880
881
882 /*
883 * Figure out the number of cpus in the box, from RPB fields.
884 * Really. We mean it.
885 */
886 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
887 struct pcs *pcsp;
888
889 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
890 (i * hwrpb->rpb_pcs_size));
891 if ((pcsp->pcs_flags & PCS_PP) != 0)
892 ncpus++;
893 }
894
895 /*
896 * Initialize debuggers, and break into them if appropriate.
897 */
898 #ifdef DDB
899 db_machine_init();
900 ddb_init(ksym_start, ksym_end);
901 if (boothowto & RB_KDB)
902 Debugger();
903 #endif
904 #ifdef KGDB
905 if (boothowto & RB_KDB)
906 kgdb_connect(0);
907 #endif
908 /*
909 * Figure out our clock frequency, from RPB fields.
910 */
911 hz = hwrpb->rpb_intr_freq >> 12;
912 if (!(60 <= hz && hz <= 10240)) {
913 hz = 1024;
914 #ifdef DIAGNOSTIC
915 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
916 hwrpb->rpb_intr_freq, hz);
917 #endif
918 }
919 }
920
921 /*
922 * Allocate space for system data structures. We are given
923 * a starting virtual address and we return a final virtual
924 * address; along the way we set each data structure pointer.
925 *
926 * We call allocsys() with 0 to find out how much space we want,
927 * allocate that much and fill it with zeroes, and the call
928 * allocsys() again with the correct base virtual address.
929 */
930 caddr_t
931 allocsys(v)
932 caddr_t v;
933 {
934
935 #define valloc(name, type, num) \
936 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
937
938 #ifdef REAL_CLISTS
939 valloc(cfree, struct cblock, nclist);
940 #endif
941 valloc(callout, struct callout, ncallout);
942 #ifdef SYSVSHM
943 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
944 #endif
945 #ifdef SYSVSEM
946 valloc(sema, struct semid_ds, seminfo.semmni);
947 valloc(sem, struct sem, seminfo.semmns);
948 /* This is pretty disgusting! */
949 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
950 #endif
951 #ifdef SYSVMSG
952 valloc(msgpool, char, msginfo.msgmax);
953 valloc(msgmaps, struct msgmap, msginfo.msgseg);
954 valloc(msghdrs, struct msg, msginfo.msgtql);
955 valloc(msqids, struct msqid_ds, msginfo.msgmni);
956 #endif
957
958 /*
959 * Determine how many buffers to allocate.
960 * We allocate 10% of memory for buffer space. Insure a
961 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
962 * headers as file i/o buffers.
963 */
964 if (bufpages == 0)
965 bufpages = (physmem * 10) / (CLSIZE * 100);
966 if (nbuf == 0) {
967 nbuf = bufpages;
968 if (nbuf < 16)
969 nbuf = 16;
970 }
971 if (nswbuf == 0) {
972 nswbuf = (nbuf / 2) &~ 1; /* force even */
973 if (nswbuf > 256)
974 nswbuf = 256; /* sanity */
975 }
976 #if !defined(UVM)
977 valloc(swbuf, struct buf, nswbuf);
978 #endif
979 valloc(buf, struct buf, nbuf);
980
981 /*
982 * There appears to be a correlation between the number
983 * of processor slots defined in the HWRPB and the whami
984 * value that can be returned.
985 */
986 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
987
988 return (v);
989 #undef valloc
990 }
991
992 void
993 consinit()
994 {
995
996 /*
997 * Everything related to console initialization is done
998 * in alpha_init().
999 */
1000 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1001 printf("consinit: %susing prom console\n",
1002 pmap_uses_prom_console() ? "" : "not ");
1003 #endif
1004 }
1005
1006 #include "pckbc.h"
1007 #include "pckbd.h"
1008 #if (NPCKBC > 0) && (NPCKBD == 0)
1009
1010 #include <machine/bus.h>
1011 #include <dev/isa/pckbcvar.h>
1012
1013 /*
1014 * This is called by the pbkbc driver if no pckbd is configured.
1015 * On the i386, it is used to glue in the old, deprecated console
1016 * code. On the Alpha, it does nothing.
1017 */
1018 int
1019 pckbc_machdep_cnattach(kbctag, kbcslot)
1020 pckbc_tag_t kbctag;
1021 pckbc_slot_t kbcslot;
1022 {
1023
1024 return (ENXIO);
1025 }
1026 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1027
1028 void
1029 cpu_startup()
1030 {
1031 register unsigned i;
1032 int base, residual;
1033 vm_offset_t minaddr, maxaddr;
1034 vm_size_t size;
1035 #if defined(DEBUG)
1036 extern int pmapdebug;
1037 int opmapdebug = pmapdebug;
1038
1039 pmapdebug = 0;
1040 #endif
1041
1042 /*
1043 * Good {morning,afternoon,evening,night}.
1044 */
1045 printf(version);
1046 identifycpu();
1047 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1048 ((vm_offset_t) totalphysmem << (vm_offset_t) PAGE_SHIFT),
1049 ptoa(resvmem), ptoa(physmem));
1050 if (unusedmem)
1051 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1052 if (unknownmem)
1053 printf("WARNING: %d bytes of memory with unknown purpose\n",
1054 ctob(unknownmem));
1055
1056 /*
1057 * Allocate virtual address space for file I/O buffers.
1058 * Note they are different than the array of headers, 'buf',
1059 * and usually occupy more virtual memory than physical.
1060 */
1061 size = MAXBSIZE * nbuf;
1062 #if defined(UVM)
1063 if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1064 NULL, UVM_UNKNOWN_OFFSET,
1065 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1066 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1067 panic("startup: cannot allocate VM for buffers");
1068 #else
1069 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1070 &maxaddr, size, TRUE);
1071 minaddr = (vm_offset_t)buffers;
1072 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1073 &minaddr, size, FALSE) != KERN_SUCCESS)
1074 panic("startup: cannot allocate buffers");
1075 #endif /* UVM */
1076 base = bufpages / nbuf;
1077 residual = bufpages % nbuf;
1078 for (i = 0; i < nbuf; i++) {
1079 #if defined(UVM)
1080 vm_size_t curbufsize;
1081 vm_offset_t curbuf;
1082 struct vm_page *pg;
1083
1084 /*
1085 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1086 * that MAXBSIZE space, we allocate and map (base+1) pages
1087 * for the first "residual" buffers, and then we allocate
1088 * "base" pages for the rest.
1089 */
1090 curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1091 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1092
1093 while (curbufsize) {
1094 pg = uvm_pagealloc(NULL, 0, NULL);
1095 if (pg == NULL)
1096 panic("cpu_startup: not enough memory for "
1097 "buffer cache");
1098 #if defined(PMAP_NEW)
1099 pmap_kenter_pgs(curbuf, &pg, 1);
1100 #else
1101 pmap_enter(kernel_map->pmap, curbuf,
1102 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1103 #endif
1104 curbuf += PAGE_SIZE;
1105 curbufsize -= PAGE_SIZE;
1106 }
1107 #else /* ! UVM */
1108 vm_size_t curbufsize;
1109 vm_offset_t curbuf;
1110
1111 /*
1112 * First <residual> buffers get (base+1) physical pages
1113 * allocated for them. The rest get (base) physical pages.
1114 *
1115 * The rest of each buffer occupies virtual space,
1116 * but has no physical memory allocated for it.
1117 */
1118 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1119 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1120 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1121 vm_map_simplify(buffer_map, curbuf);
1122 #endif /* UVM */
1123 }
1124 /*
1125 * Allocate a submap for exec arguments. This map effectively
1126 * limits the number of processes exec'ing at any time.
1127 */
1128 #if defined(UVM)
1129 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1130 16 * NCARGS, TRUE, FALSE, NULL);
1131 #else
1132 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1133 16 * NCARGS, TRUE);
1134 #endif
1135
1136 /*
1137 * Allocate a submap for physio
1138 */
1139 #if defined(UVM)
1140 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1141 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1142 #else
1143 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1144 VM_PHYS_SIZE, TRUE);
1145 #endif
1146
1147 /*
1148 * Finally, allocate mbuf cluster submap.
1149 */
1150 #if defined(UVM)
1151 mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1152 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1153 #else
1154 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1155 VM_MBUF_SIZE, FALSE);
1156 #endif
1157 /*
1158 * Initialize callouts
1159 */
1160 callfree = callout;
1161 for (i = 1; i < ncallout; i++)
1162 callout[i-1].c_next = &callout[i];
1163 callout[i-1].c_next = NULL;
1164
1165 #if defined(DEBUG)
1166 pmapdebug = opmapdebug;
1167 #endif
1168 #if defined(UVM)
1169 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1170 #else
1171 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1172 #endif
1173 #if 0
1174 {
1175 extern u_long pmap_pages_stolen;
1176 printf("stolen memory for VM structures = %ld bytes\n",
1177 pmap_pages_stolen * PAGE_SIZE);
1178 }
1179 #endif
1180 printf("using %ld buffers containing %ld bytes of memory\n",
1181 (long)nbuf, (long)(bufpages * CLBYTES));
1182
1183 /*
1184 * Set up buffers, so they can be used to read disk labels.
1185 */
1186 bufinit();
1187
1188 /*
1189 * Configure the system.
1190 */
1191 configure();
1192
1193 /*
1194 * Note that bootstrapping is finished, and set the HWRPB up
1195 * to do restarts.
1196 */
1197 hwrpb_restart_setup();
1198 }
1199
1200 /*
1201 * Retrieve the platform name from the DSR.
1202 */
1203 const char *
1204 alpha_dsr_sysname()
1205 {
1206 struct dsrdb *dsr;
1207 const char *sysname;
1208
1209 /*
1210 * DSR does not exist on early HWRPB versions.
1211 */
1212 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1213 return (NULL);
1214
1215 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1216 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1217 sizeof(u_int64_t)));
1218 return (sysname);
1219 }
1220
1221 /*
1222 * Lookup the system specified system variation in the provided table,
1223 * returning the model string on match.
1224 */
1225 const char *
1226 alpha_variation_name(variation, avtp)
1227 u_int64_t variation;
1228 const struct alpha_variation_table *avtp;
1229 {
1230 int i;
1231
1232 for (i = 0; avtp[i].avt_model != NULL; i++)
1233 if (avtp[i].avt_variation == variation)
1234 return (avtp[i].avt_model);
1235 return (NULL);
1236 }
1237
1238 /*
1239 * Generate a default platform name based for unknown system variations.
1240 */
1241 const char *
1242 alpha_unknown_sysname()
1243 {
1244 static char s[128]; /* safe size */
1245
1246 sprintf(s, "%s family, unknown model variation 0x%lx",
1247 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1248 return ((const char *)s);
1249 }
1250
1251 void
1252 identifycpu()
1253 {
1254
1255 /*
1256 * print out CPU identification information.
1257 */
1258 printf("%s, %ldMHz\n", cpu_model,
1259 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1260 printf("%ld byte page size, %d processor%s.\n",
1261 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1262 #if 0
1263 /* this isn't defined for any systems that we run on? */
1264 printf("serial number 0x%lx 0x%lx\n",
1265 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1266
1267 /* and these aren't particularly useful! */
1268 printf("variation: 0x%lx, revision 0x%lx\n",
1269 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1270 #endif
1271 }
1272
1273 int waittime = -1;
1274 struct pcb dumppcb;
1275
1276 void
1277 cpu_reboot(howto, bootstr)
1278 int howto;
1279 char *bootstr;
1280 {
1281 extern int cold;
1282
1283 /* If system is cold, just halt. */
1284 if (cold) {
1285 howto |= RB_HALT;
1286 goto haltsys;
1287 }
1288
1289 /* If "always halt" was specified as a boot flag, obey. */
1290 if ((boothowto & RB_HALT) != 0)
1291 howto |= RB_HALT;
1292
1293 boothowto = howto;
1294 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1295 waittime = 0;
1296 vfs_shutdown();
1297 /*
1298 * If we've been adjusting the clock, the todr
1299 * will be out of synch; adjust it now.
1300 */
1301 resettodr();
1302 }
1303
1304 /* Disable interrupts. */
1305 splhigh();
1306
1307 /* If rebooting and a dump is requested do it. */
1308 #if 0
1309 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1310 #else
1311 if (howto & RB_DUMP)
1312 #endif
1313 dumpsys();
1314
1315 haltsys:
1316
1317 /* run any shutdown hooks */
1318 doshutdownhooks();
1319
1320 #ifdef BOOTKEY
1321 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1322 cnpollc(1); /* for proper keyboard command handling */
1323 cngetc();
1324 cnpollc(0);
1325 printf("\n");
1326 #endif
1327
1328 /* Finally, powerdown/halt/reboot the system. */
1329 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1330 platform.powerdown != NULL) {
1331 (*platform.powerdown)();
1332 printf("WARNING: powerdown failed!\n");
1333 }
1334 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1335 prom_halt(howto & RB_HALT);
1336 /*NOTREACHED*/
1337 }
1338
1339 /*
1340 * These variables are needed by /sbin/savecore
1341 */
1342 u_long dumpmag = 0x8fca0101; /* magic number */
1343 int dumpsize = 0; /* pages */
1344 long dumplo = 0; /* blocks */
1345
1346 /*
1347 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1348 */
1349 int
1350 cpu_dumpsize()
1351 {
1352 int size;
1353
1354 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1355 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1356 if (roundup(size, dbtob(1)) != dbtob(1))
1357 return -1;
1358
1359 return (1);
1360 }
1361
1362 /*
1363 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1364 */
1365 u_long
1366 cpu_dump_mempagecnt()
1367 {
1368 u_long i, n;
1369
1370 n = 0;
1371 for (i = 0; i < mem_cluster_cnt; i++)
1372 n += atop(mem_clusters[i].size);
1373 return (n);
1374 }
1375
1376 /*
1377 * cpu_dump: dump machine-dependent kernel core dump headers.
1378 */
1379 int
1380 cpu_dump()
1381 {
1382 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1383 char buf[dbtob(1)];
1384 kcore_seg_t *segp;
1385 cpu_kcore_hdr_t *cpuhdrp;
1386 phys_ram_seg_t *memsegp;
1387 int i;
1388
1389 dump = bdevsw[major(dumpdev)].d_dump;
1390
1391 bzero(buf, sizeof buf);
1392 segp = (kcore_seg_t *)buf;
1393 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1394 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1395 ALIGN(sizeof(*cpuhdrp))];
1396
1397 /*
1398 * Generate a segment header.
1399 */
1400 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1401 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1402
1403 /*
1404 * Add the machine-dependent header info.
1405 */
1406 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1407 cpuhdrp->page_size = PAGE_SIZE;
1408 cpuhdrp->nmemsegs = mem_cluster_cnt;
1409
1410 /*
1411 * Fill in the memory segment descriptors.
1412 */
1413 for (i = 0; i < mem_cluster_cnt; i++) {
1414 memsegp[i].start = mem_clusters[i].start;
1415 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1416 }
1417
1418 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1419 }
1420
1421 /*
1422 * This is called by main to set dumplo and dumpsize.
1423 * Dumps always skip the first CLBYTES of disk space
1424 * in case there might be a disk label stored there.
1425 * If there is extra space, put dump at the end to
1426 * reduce the chance that swapping trashes it.
1427 */
1428 void
1429 cpu_dumpconf()
1430 {
1431 int nblks, dumpblks; /* size of dump area */
1432 int maj;
1433
1434 if (dumpdev == NODEV)
1435 goto bad;
1436 maj = major(dumpdev);
1437 if (maj < 0 || maj >= nblkdev)
1438 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1439 if (bdevsw[maj].d_psize == NULL)
1440 goto bad;
1441 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1442 if (nblks <= ctod(1))
1443 goto bad;
1444
1445 dumpblks = cpu_dumpsize();
1446 if (dumpblks < 0)
1447 goto bad;
1448 dumpblks += ctod(cpu_dump_mempagecnt());
1449
1450 /* If dump won't fit (incl. room for possible label), punt. */
1451 if (dumpblks > (nblks - ctod(1)))
1452 goto bad;
1453
1454 /* Put dump at end of partition */
1455 dumplo = nblks - dumpblks;
1456
1457 /* dumpsize is in page units, and doesn't include headers. */
1458 dumpsize = cpu_dump_mempagecnt();
1459 return;
1460
1461 bad:
1462 dumpsize = 0;
1463 return;
1464 }
1465
1466 /*
1467 * Dump the kernel's image to the swap partition.
1468 */
1469 #define BYTES_PER_DUMP NBPG
1470
1471 void
1472 dumpsys()
1473 {
1474 u_long totalbytesleft, bytes, i, n, memcl;
1475 u_long maddr;
1476 int psize;
1477 daddr_t blkno;
1478 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1479 int error;
1480
1481 /* Save registers. */
1482 savectx(&dumppcb);
1483
1484 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1485 if (dumpdev == NODEV)
1486 return;
1487
1488 /*
1489 * For dumps during autoconfiguration,
1490 * if dump device has already configured...
1491 */
1492 if (dumpsize == 0)
1493 cpu_dumpconf();
1494 if (dumplo <= 0) {
1495 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1496 minor(dumpdev));
1497 return;
1498 }
1499 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1500 minor(dumpdev), dumplo);
1501
1502 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1503 printf("dump ");
1504 if (psize == -1) {
1505 printf("area unavailable\n");
1506 return;
1507 }
1508
1509 /* XXX should purge all outstanding keystrokes. */
1510
1511 if ((error = cpu_dump()) != 0)
1512 goto err;
1513
1514 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1515 blkno = dumplo + cpu_dumpsize();
1516 dump = bdevsw[major(dumpdev)].d_dump;
1517 error = 0;
1518
1519 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1520 maddr = mem_clusters[memcl].start;
1521 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1522
1523 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1524
1525 /* Print out how many MBs we to go. */
1526 if ((totalbytesleft % (1024*1024)) == 0)
1527 printf("%d ", totalbytesleft / (1024 * 1024));
1528
1529 /* Limit size for next transfer. */
1530 n = bytes - i;
1531 if (n > BYTES_PER_DUMP)
1532 n = BYTES_PER_DUMP;
1533
1534 error = (*dump)(dumpdev, blkno,
1535 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1536 if (error)
1537 goto err;
1538 maddr += n;
1539 blkno += btodb(n); /* XXX? */
1540
1541 /* XXX should look for keystrokes, to cancel. */
1542 }
1543 }
1544
1545 err:
1546 switch (error) {
1547
1548 case ENXIO:
1549 printf("device bad\n");
1550 break;
1551
1552 case EFAULT:
1553 printf("device not ready\n");
1554 break;
1555
1556 case EINVAL:
1557 printf("area improper\n");
1558 break;
1559
1560 case EIO:
1561 printf("i/o error\n");
1562 break;
1563
1564 case EINTR:
1565 printf("aborted from console\n");
1566 break;
1567
1568 case 0:
1569 printf("succeeded\n");
1570 break;
1571
1572 default:
1573 printf("error %d\n", error);
1574 break;
1575 }
1576 printf("\n\n");
1577 delay(1000);
1578 }
1579
1580 void
1581 frametoreg(framep, regp)
1582 struct trapframe *framep;
1583 struct reg *regp;
1584 {
1585
1586 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1587 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1588 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1589 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1590 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1591 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1592 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1593 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1594 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1595 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1596 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1597 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1598 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1599 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1600 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1601 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1602 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1603 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1604 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1605 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1606 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1607 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1608 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1609 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1610 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1611 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1612 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1613 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1614 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1615 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1616 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1617 regp->r_regs[R_ZERO] = 0;
1618 }
1619
1620 void
1621 regtoframe(regp, framep)
1622 struct reg *regp;
1623 struct trapframe *framep;
1624 {
1625
1626 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1627 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1628 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1629 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1630 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1631 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1632 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1633 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1634 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1635 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1636 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1637 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1638 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1639 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1640 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1641 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1642 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1643 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1644 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1645 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1646 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1647 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1648 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1649 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1650 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1651 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1652 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1653 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1654 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1655 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1656 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1657 /* ??? = regp->r_regs[R_ZERO]; */
1658 }
1659
1660 void
1661 printregs(regp)
1662 struct reg *regp;
1663 {
1664 int i;
1665
1666 for (i = 0; i < 32; i++)
1667 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1668 i & 1 ? "\n" : "\t");
1669 }
1670
1671 void
1672 regdump(framep)
1673 struct trapframe *framep;
1674 {
1675 struct reg reg;
1676
1677 frametoreg(framep, ®);
1678 reg.r_regs[R_SP] = alpha_pal_rdusp();
1679
1680 printf("REGISTERS:\n");
1681 printregs(®);
1682 }
1683
1684 #ifdef DEBUG
1685 int sigdebug = 0;
1686 int sigpid = 0;
1687 #define SDB_FOLLOW 0x01
1688 #define SDB_KSTACK 0x02
1689 #endif
1690
1691 /*
1692 * Send an interrupt to process.
1693 */
1694 void
1695 sendsig(catcher, sig, mask, code)
1696 sig_t catcher;
1697 int sig, mask;
1698 u_long code;
1699 {
1700 struct proc *p = curproc;
1701 struct sigcontext *scp, ksc;
1702 struct trapframe *frame;
1703 struct sigacts *psp = p->p_sigacts;
1704 int oonstack, fsize, rndfsize;
1705 extern char sigcode[], esigcode[];
1706 extern struct proc *fpcurproc;
1707
1708 frame = p->p_md.md_tf;
1709 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1710 fsize = sizeof ksc;
1711 rndfsize = ((fsize + 15) / 16) * 16;
1712 /*
1713 * Allocate and validate space for the signal handler
1714 * context. Note that if the stack is in P0 space, the
1715 * call to grow() is a nop, and the useracc() check
1716 * will fail if the process has not already allocated
1717 * the space with a `brk'.
1718 */
1719 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1720 (psp->ps_sigonstack & sigmask(sig))) {
1721 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1722 psp->ps_sigstk.ss_size - rndfsize);
1723 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1724 } else
1725 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1726 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1727 #if defined(UVM)
1728 (void)uvm_grow(p, (u_long)scp);
1729 #else
1730 (void)grow(p, (u_long)scp);
1731 #endif
1732 #ifdef DEBUG
1733 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1734 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1735 sig, &oonstack, scp);
1736 #endif
1737 #if defined(UVM)
1738 if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1739 #else
1740 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1741 #endif
1742 #ifdef DEBUG
1743 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1744 printf("sendsig(%d): useracc failed on sig %d\n",
1745 p->p_pid, sig);
1746 #endif
1747 /*
1748 * Process has trashed its stack; give it an illegal
1749 * instruction to halt it in its tracks.
1750 */
1751 SIGACTION(p, SIGILL) = SIG_DFL;
1752 sig = sigmask(SIGILL);
1753 p->p_sigignore &= ~sig;
1754 p->p_sigcatch &= ~sig;
1755 p->p_sigmask &= ~sig;
1756 psignal(p, SIGILL);
1757 return;
1758 #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1759 }
1760 #else
1761 }
1762 #endif
1763
1764 /*
1765 * Build the signal context to be used by sigreturn.
1766 */
1767 ksc.sc_onstack = oonstack;
1768 ksc.sc_mask = mask;
1769 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1770 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1771
1772 /* copy the registers. */
1773 frametoreg(frame, (struct reg *)ksc.sc_regs);
1774 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1775 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1776
1777 /* save the floating-point state, if necessary, then copy it. */
1778 if (p == fpcurproc) {
1779 alpha_pal_wrfen(1);
1780 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1781 alpha_pal_wrfen(0);
1782 fpcurproc = NULL;
1783 }
1784 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1785 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1786 sizeof(struct fpreg));
1787 ksc.sc_fp_control = 0; /* XXX ? */
1788 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1789 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1790
1791
1792 #ifdef COMPAT_OSF1
1793 /*
1794 * XXX Create an OSF/1-style sigcontext and associated goo.
1795 */
1796 #endif
1797
1798 /*
1799 * copy the frame out to userland.
1800 */
1801 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1802 #ifdef DEBUG
1803 if (sigdebug & SDB_FOLLOW)
1804 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1805 scp, code);
1806 #endif
1807
1808 /*
1809 * Set up the registers to return to sigcode.
1810 */
1811 frame->tf_regs[FRAME_PC] =
1812 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1813 frame->tf_regs[FRAME_A0] = sig;
1814 frame->tf_regs[FRAME_A1] = code;
1815 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1816 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1817 alpha_pal_wrusp((unsigned long)scp);
1818
1819 #ifdef DEBUG
1820 if (sigdebug & SDB_FOLLOW)
1821 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1822 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1823 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1824 printf("sendsig(%d): sig %d returns\n",
1825 p->p_pid, sig);
1826 #endif
1827 }
1828
1829 /*
1830 * System call to cleanup state after a signal
1831 * has been taken. Reset signal mask and
1832 * stack state from context left by sendsig (above).
1833 * Return to previous pc and psl as specified by
1834 * context left by sendsig. Check carefully to
1835 * make sure that the user has not modified the
1836 * psl to gain improper priviledges or to cause
1837 * a machine fault.
1838 */
1839 /* ARGSUSED */
1840 int
1841 sys_sigreturn(p, v, retval)
1842 struct proc *p;
1843 void *v;
1844 register_t *retval;
1845 {
1846 struct sys_sigreturn_args /* {
1847 syscallarg(struct sigcontext *) sigcntxp;
1848 } */ *uap = v;
1849 struct sigcontext *scp, ksc;
1850 extern struct proc *fpcurproc;
1851
1852 scp = SCARG(uap, sigcntxp);
1853 #ifdef DEBUG
1854 if (sigdebug & SDB_FOLLOW)
1855 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1856 #endif
1857
1858 if (ALIGN(scp) != (u_int64_t)scp)
1859 return (EINVAL);
1860
1861 /*
1862 * Test and fetch the context structure.
1863 * We grab it all at once for speed.
1864 */
1865 #if defined(UVM)
1866 if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1867 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1868 return (EINVAL);
1869 #else
1870 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1871 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1872 return (EINVAL);
1873 #endif
1874
1875 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1876 return (EINVAL);
1877 /*
1878 * Restore the user-supplied information
1879 */
1880 if (ksc.sc_onstack)
1881 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1882 else
1883 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1884 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1885
1886 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1887 p->p_md.md_tf->tf_regs[FRAME_PS] =
1888 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1889
1890 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1891 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1892
1893 /* XXX ksc.sc_ownedfp ? */
1894 if (p == fpcurproc)
1895 fpcurproc = NULL;
1896 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1897 sizeof(struct fpreg));
1898 /* XXX ksc.sc_fp_control ? */
1899
1900 #ifdef DEBUG
1901 if (sigdebug & SDB_FOLLOW)
1902 printf("sigreturn(%d): returns\n", p->p_pid);
1903 #endif
1904 return (EJUSTRETURN);
1905 }
1906
1907 /*
1908 * machine dependent system variables.
1909 */
1910 int
1911 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1912 int *name;
1913 u_int namelen;
1914 void *oldp;
1915 size_t *oldlenp;
1916 void *newp;
1917 size_t newlen;
1918 struct proc *p;
1919 {
1920 dev_t consdev;
1921
1922 /* all sysctl names at this level are terminal */
1923 if (namelen != 1)
1924 return (ENOTDIR); /* overloaded */
1925
1926 switch (name[0]) {
1927 case CPU_CONSDEV:
1928 if (cn_tab != NULL)
1929 consdev = cn_tab->cn_dev;
1930 else
1931 consdev = NODEV;
1932 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1933 sizeof consdev));
1934
1935 case CPU_ROOT_DEVICE:
1936 return (sysctl_rdstring(oldp, oldlenp, newp,
1937 root_device->dv_xname));
1938
1939 case CPU_UNALIGNED_PRINT:
1940 return (sysctl_int(oldp, oldlenp, newp, newlen,
1941 &alpha_unaligned_print));
1942
1943 case CPU_UNALIGNED_FIX:
1944 return (sysctl_int(oldp, oldlenp, newp, newlen,
1945 &alpha_unaligned_fix));
1946
1947 case CPU_UNALIGNED_SIGBUS:
1948 return (sysctl_int(oldp, oldlenp, newp, newlen,
1949 &alpha_unaligned_sigbus));
1950
1951 case CPU_BOOTED_KERNEL:
1952 return (sysctl_rdstring(oldp, oldlenp, newp,
1953 bootinfo.booted_kernel));
1954
1955 default:
1956 return (EOPNOTSUPP);
1957 }
1958 /* NOTREACHED */
1959 }
1960
1961 /*
1962 * Set registers on exec.
1963 */
1964 void
1965 setregs(p, pack, stack)
1966 register struct proc *p;
1967 struct exec_package *pack;
1968 u_long stack;
1969 {
1970 struct trapframe *tfp = p->p_md.md_tf;
1971 extern struct proc *fpcurproc;
1972 #ifdef DEBUG
1973 int i;
1974 #endif
1975
1976 #ifdef DEBUG
1977 /*
1978 * Crash and dump, if the user requested it.
1979 */
1980 if (boothowto & RB_DUMP)
1981 panic("crash requested by boot flags");
1982 #endif
1983
1984 #ifdef DEBUG
1985 for (i = 0; i < FRAME_SIZE; i++)
1986 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1987 #else
1988 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1989 #endif
1990 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1991 #define FP_RN 2 /* XXX */
1992 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1993 alpha_pal_wrusp(stack);
1994 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1995 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1996
1997 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1998 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1999 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2000 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2001 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2002
2003 p->p_md.md_flags &= ~MDP_FPUSED;
2004 if (fpcurproc == p)
2005 fpcurproc = NULL;
2006 }
2007
2008 void
2009 netintr()
2010 {
2011 int n, s;
2012
2013 s = splhigh();
2014 n = netisr;
2015 netisr = 0;
2016 splx(s);
2017
2018 #define DONETISR(bit, fn) \
2019 do { \
2020 if (n & (1 << (bit))) \
2021 fn; \
2022 } while (0)
2023
2024 #ifdef INET
2025 #if NARP > 0
2026 DONETISR(NETISR_ARP, arpintr());
2027 #endif
2028 DONETISR(NETISR_IP, ipintr());
2029 #endif
2030 #ifdef NETATALK
2031 DONETISR(NETISR_ATALK, atintr());
2032 #endif
2033 #ifdef NS
2034 DONETISR(NETISR_NS, nsintr());
2035 #endif
2036 #ifdef ISO
2037 DONETISR(NETISR_ISO, clnlintr());
2038 #endif
2039 #ifdef CCITT
2040 DONETISR(NETISR_CCITT, ccittintr());
2041 #endif
2042 #ifdef NATM
2043 DONETISR(NETISR_NATM, natmintr());
2044 #endif
2045 #if NPPP > 1
2046 DONETISR(NETISR_PPP, pppintr());
2047 #endif
2048
2049 #undef DONETISR
2050 }
2051
2052 void
2053 do_sir()
2054 {
2055 u_int64_t n;
2056
2057 do {
2058 (void)splhigh();
2059 n = ssir;
2060 ssir = 0;
2061 splsoft(); /* don't recurse through spl0() */
2062
2063 #if defined(UVM)
2064 #define COUNT_SOFT uvmexp.softs++
2065 #else
2066 #define COUNT_SOFT cnt.v_soft++
2067 #endif
2068
2069 #define DO_SIR(bit, fn) \
2070 do { \
2071 if (n & (bit)) { \
2072 COUNT_SOFT; \
2073 fn; \
2074 } \
2075 } while (0)
2076
2077 DO_SIR(SIR_NET, netintr());
2078 DO_SIR(SIR_CLOCK, softclock());
2079
2080 #undef COUNT_SOFT
2081 #undef DO_SIR
2082 } while (ssir != 0);
2083 }
2084
2085 int
2086 spl0()
2087 {
2088
2089 if (ssir)
2090 do_sir(); /* it lowers the IPL itself */
2091
2092 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2093 }
2094
2095 /*
2096 * The following primitives manipulate the run queues. _whichqs tells which
2097 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2098 * into queues, Remrunqueue removes them from queues. The running process is
2099 * on no queue, other processes are on a queue related to p->p_priority,
2100 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2101 * available queues.
2102 */
2103 /*
2104 * setrunqueue(p)
2105 * proc *p;
2106 *
2107 * Call should be made at splclock(), and p->p_stat should be SRUN.
2108 */
2109
2110 void
2111 setrunqueue(p)
2112 struct proc *p;
2113 {
2114 int bit;
2115
2116 /* firewall: p->p_back must be NULL */
2117 if (p->p_back != NULL)
2118 panic("setrunqueue");
2119
2120 bit = p->p_priority >> 2;
2121 whichqs |= (1 << bit);
2122 p->p_forw = (struct proc *)&qs[bit];
2123 p->p_back = qs[bit].ph_rlink;
2124 p->p_back->p_forw = p;
2125 qs[bit].ph_rlink = p;
2126 }
2127
2128 /*
2129 * remrunqueue(p)
2130 *
2131 * Call should be made at splclock().
2132 */
2133 void
2134 remrunqueue(p)
2135 struct proc *p;
2136 {
2137 int bit;
2138
2139 bit = p->p_priority >> 2;
2140 if ((whichqs & (1 << bit)) == 0)
2141 panic("remrunqueue");
2142
2143 p->p_back->p_forw = p->p_forw;
2144 p->p_forw->p_back = p->p_back;
2145 p->p_back = NULL; /* for firewall checking. */
2146
2147 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2148 whichqs &= ~(1 << bit);
2149 }
2150
2151 /*
2152 * Return the best possible estimate of the time in the timeval
2153 * to which tvp points. Unfortunately, we can't read the hardware registers.
2154 * We guarantee that the time will be greater than the value obtained by a
2155 * previous call.
2156 */
2157 void
2158 microtime(tvp)
2159 register struct timeval *tvp;
2160 {
2161 int s = splclock();
2162 static struct timeval lasttime;
2163
2164 *tvp = time;
2165 #ifdef notdef
2166 tvp->tv_usec += clkread();
2167 while (tvp->tv_usec > 1000000) {
2168 tvp->tv_sec++;
2169 tvp->tv_usec -= 1000000;
2170 }
2171 #endif
2172 if (tvp->tv_sec == lasttime.tv_sec &&
2173 tvp->tv_usec <= lasttime.tv_usec &&
2174 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2175 tvp->tv_sec++;
2176 tvp->tv_usec -= 1000000;
2177 }
2178 lasttime = *tvp;
2179 splx(s);
2180 }
2181
2182 /*
2183 * Wait "n" microseconds.
2184 */
2185 void
2186 delay(n)
2187 unsigned long n;
2188 {
2189 long N = cycles_per_usec * (n);
2190
2191 while (N > 0) /* XXX */
2192 N -= 3; /* XXX */
2193 }
2194
2195 #if defined(COMPAT_OSF1) || 1 /* XXX */
2196 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2197 u_long));
2198
2199 void
2200 cpu_exec_ecoff_setregs(p, epp, stack)
2201 struct proc *p;
2202 struct exec_package *epp;
2203 u_long stack;
2204 {
2205 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2206
2207 setregs(p, epp, stack);
2208 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2209 }
2210
2211 /*
2212 * cpu_exec_ecoff_hook():
2213 * cpu-dependent ECOFF format hook for execve().
2214 *
2215 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2216 *
2217 */
2218 int
2219 cpu_exec_ecoff_hook(p, epp)
2220 struct proc *p;
2221 struct exec_package *epp;
2222 {
2223 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2224 extern struct emul emul_netbsd;
2225 #ifdef COMPAT_OSF1
2226 extern struct emul emul_osf1;
2227 #endif
2228
2229 switch (execp->f.f_magic) {
2230 #ifdef COMPAT_OSF1
2231 case ECOFF_MAGIC_ALPHA:
2232 epp->ep_emul = &emul_osf1;
2233 break;
2234 #endif
2235
2236 case ECOFF_MAGIC_NETBSD_ALPHA:
2237 epp->ep_emul = &emul_netbsd;
2238 break;
2239
2240 default:
2241 return ENOEXEC;
2242 }
2243 return 0;
2244 }
2245 #endif
2246
2247 int
2248 alpha_pa_access(pa)
2249 u_long pa;
2250 {
2251 int i;
2252
2253 for (i = 0; i < mem_cluster_cnt; i++) {
2254 if (pa < mem_clusters[i].start)
2255 continue;
2256 if ((pa - mem_clusters[i].start) >=
2257 (mem_clusters[i].size & ~PAGE_MASK))
2258 continue;
2259 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2260 }
2261 return (PROT_NONE);
2262 }
2263
2264 /* XXX XXX BEGIN XXX XXX */
2265 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2266 /* XXX */
2267 vm_offset_t /* XXX */
2268 alpha_XXX_dmamap(v) /* XXX */
2269 vm_offset_t v; /* XXX */
2270 { /* XXX */
2271 /* XXX */
2272 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2273 } /* XXX */
2274 /* XXX XXX END XXX XXX */
2275
2276 struct mchkinfo *
2277 cpu_mchkinfo()
2278 {
2279 if (mchkinfo_all_cpus == NULL)
2280 return &startup_info;
2281 return mchkinfo_all_cpus + alpha_pal_whami();
2282 }
2283