machdep.c revision 1.141 1 /* $NetBSD: machdep.c,v 1.141 1998/09/13 01:51:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_uvm.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_inet.h"
75 #include "opt_atalk.h"
76 #include "opt_ccitt.h"
77 #include "opt_iso.h"
78 #include "opt_ns.h"
79 #include "opt_natm.h"
80
81 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
82
83 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.141 1998/09/13 01:51:29 thorpej Exp $");
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/signalvar.h>
88 #include <sys/kernel.h>
89 #include <sys/map.h>
90 #include <sys/proc.h>
91 #include <sys/buf.h>
92 #include <sys/reboot.h>
93 #include <sys/device.h>
94 #include <sys/file.h>
95 #ifdef REAL_CLISTS
96 #include <sys/clist.h>
97 #endif
98 #include <sys/callout.h>
99 #include <sys/malloc.h>
100 #include <sys/mbuf.h>
101 #include <sys/mman.h>
102 #include <sys/msgbuf.h>
103 #include <sys/ioctl.h>
104 #include <sys/tty.h>
105 #include <sys/user.h>
106 #include <sys/exec.h>
107 #include <sys/exec_ecoff.h>
108 #include <vm/vm.h>
109 #include <sys/sysctl.h>
110 #include <sys/core.h>
111 #include <sys/kcore.h>
112 #include <machine/kcore.h>
113 #ifdef SYSVMSG
114 #include <sys/msg.h>
115 #endif
116 #ifdef SYSVSEM
117 #include <sys/sem.h>
118 #endif
119 #ifdef SYSVSHM
120 #include <sys/shm.h>
121 #endif
122
123 #include <sys/mount.h>
124 #include <sys/syscallargs.h>
125
126 #include <vm/vm_kern.h>
127
128 #if defined(UVM)
129 #include <uvm/uvm_extern.h>
130 #endif
131
132 #include <dev/cons.h>
133
134 #include <machine/autoconf.h>
135 #include <machine/cpu.h>
136 #include <machine/reg.h>
137 #include <machine/rpb.h>
138 #include <machine/prom.h>
139 #include <machine/conf.h>
140
141 #include <net/netisr.h>
142 #include <net/if.h>
143
144 #ifdef INET
145 #include <net/route.h>
146 #include <netinet/in.h>
147 #include <netinet/ip_var.h>
148 #include "arp.h"
149 #if NARP > 0
150 #include <netinet/if_inarp.h>
151 #endif
152 #endif
153 #ifdef NS
154 #include <netns/ns_var.h>
155 #endif
156 #ifdef ISO
157 #include <netiso/iso.h>
158 #include <netiso/clnp.h>
159 #endif
160 #ifdef CCITT
161 #include <netccitt/x25.h>
162 #include <netccitt/pk.h>
163 #include <netccitt/pk_extern.h>
164 #endif
165 #ifdef NATM
166 #include <netnatm/natm.h>
167 #endif
168 #ifdef NETATALK
169 #include <netatalk/at_extern.h>
170 #endif
171 #include "ppp.h"
172 #if NPPP > 0
173 #include <net/ppp_defs.h>
174 #include <net/if_ppp.h>
175 #endif
176
177 #ifdef DDB
178 #include <machine/db_machdep.h>
179 #include <ddb/db_access.h>
180 #include <ddb/db_sym.h>
181 #include <ddb/db_extern.h>
182 #include <ddb/db_interface.h>
183 #endif
184
185 #if defined(UVM)
186 vm_map_t exec_map = NULL;
187 vm_map_t mb_map = NULL;
188 vm_map_t phys_map = NULL;
189 #else
190 vm_map_t buffer_map;
191 #endif
192
193 /*
194 * Declare these as initialized data so we can patch them.
195 */
196 int nswbuf = 0;
197 #ifdef NBUF
198 int nbuf = NBUF;
199 #else
200 int nbuf = 0;
201 #endif
202 #ifdef BUFPAGES
203 int bufpages = BUFPAGES;
204 #else
205 int bufpages = 0;
206 #endif
207 caddr_t msgbufaddr;
208
209 int maxmem; /* max memory per process */
210
211 int totalphysmem; /* total amount of physical memory in system */
212 int physmem; /* physical memory used by NetBSD + some rsvd */
213 int resvmem; /* amount of memory reserved for PROM */
214 int unusedmem; /* amount of memory for OS that we don't use */
215 int unknownmem; /* amount of memory with an unknown use */
216
217 int cputype; /* system type, from the RPB */
218
219 /*
220 * XXX We need an address to which we can assign things so that they
221 * won't be optimized away because we didn't use the value.
222 */
223 u_int32_t no_optimize;
224
225 /* the following is used externally (sysctl_hw) */
226 char machine[] = MACHINE; /* from <machine/param.h> */
227 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
228 char cpu_model[128];
229
230 struct user *proc0paddr;
231
232 /* Number of machine cycles per microsecond */
233 u_int64_t cycles_per_usec;
234
235 /* number of cpus in the box. really! */
236 int ncpus;
237
238 /* machine check info array, valloc()'ed in allocsys() */
239
240 static struct mchkinfo startup_info,
241 *mchkinfo_all_cpus;
242
243 struct bootinfo_kernel bootinfo;
244
245 /* For built-in TCDS */
246 #if defined(DEC_3000_300) || defined(DEC_3000_500)
247 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
248 #endif
249
250 struct platform platform;
251
252 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
253 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
254 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
255
256 #ifdef DDB
257 /* start and end of kernel symbol table */
258 void *ksym_start, *ksym_end;
259 #endif
260
261 /* for cpu_sysctl() */
262 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
263 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
264 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
265
266 /*
267 * XXX This should be dynamically sized, but we have the chicken-egg problem!
268 * XXX it should also be larger than it is, because not all of the mddt
269 * XXX clusters end up being used for VM.
270 */
271 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
272 int mem_cluster_cnt;
273
274 caddr_t allocsys __P((caddr_t));
275 int cpu_dump __P((void));
276 int cpu_dumpsize __P((void));
277 u_long cpu_dump_mempagecnt __P((void));
278 void dumpsys __P((void));
279 void identifycpu __P((void));
280 void netintr __P((void));
281 void printregs __P((struct reg *));
282
283 void
284 alpha_init(pfn, ptb, bim, bip, biv)
285 u_long pfn; /* first free PFN number */
286 u_long ptb; /* PFN of current level 1 page table */
287 u_long bim; /* bootinfo magic */
288 u_long bip; /* bootinfo pointer */
289 u_long biv; /* bootinfo version */
290 {
291 extern char kernel_text[], _end[];
292 struct mddt *mddtp;
293 struct mddt_cluster *memc;
294 int i, mddtweird;
295 struct vm_physseg *vps;
296 vaddr_t kernstart, kernend;
297 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
298 vsize_t size;
299 char *p;
300 caddr_t v;
301 char *bootinfo_msg;
302
303 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
304
305 /*
306 * Turn off interrupts (not mchecks) and floating point.
307 * Make sure the instruction and data streams are consistent.
308 */
309 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
310 alpha_pal_wrfen(0);
311 ALPHA_TBIA();
312 alpha_pal_imb();
313
314 /*
315 * Get critical system information (if possible, from the
316 * information provided by the boot program).
317 */
318 bootinfo_msg = NULL;
319 if (bim == BOOTINFO_MAGIC) {
320 if (biv == 0) { /* backward compat */
321 biv = *(u_long *)bip;
322 bip += 8;
323 }
324 switch (biv) {
325 case 1: {
326 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
327
328 bootinfo.ssym = v1p->ssym;
329 bootinfo.esym = v1p->esym;
330 /* hwrpb may not be provided by boot block in v1 */
331 if (v1p->hwrpb != NULL) {
332 bootinfo.hwrpb_phys =
333 ((struct rpb *)v1p->hwrpb)->rpb_phys;
334 bootinfo.hwrpb_size = v1p->hwrpbsize;
335 } else {
336 bootinfo.hwrpb_phys =
337 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
338 bootinfo.hwrpb_size =
339 ((struct rpb *)HWRPB_ADDR)->rpb_size;
340 }
341 bcopy(v1p->boot_flags, bootinfo.boot_flags,
342 min(sizeof v1p->boot_flags,
343 sizeof bootinfo.boot_flags));
344 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
345 min(sizeof v1p->booted_kernel,
346 sizeof bootinfo.booted_kernel));
347 /* booted dev not provided in bootinfo */
348 init_prom_interface((struct rpb *)
349 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
350 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
351 sizeof bootinfo.booted_dev);
352 break;
353 }
354 default:
355 bootinfo_msg = "unknown bootinfo version";
356 goto nobootinfo;
357 }
358 } else {
359 bootinfo_msg = "boot program did not pass bootinfo";
360 nobootinfo:
361 bootinfo.ssym = (u_long)_end;
362 bootinfo.esym = (u_long)_end;
363 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
364 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
365 init_prom_interface((struct rpb *)HWRPB_ADDR);
366 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
367 sizeof bootinfo.boot_flags);
368 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
369 sizeof bootinfo.booted_kernel);
370 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
371 sizeof bootinfo.booted_dev);
372 }
373
374 /*
375 * Initialize the kernel's mapping of the RPB. It's needed for
376 * lots of things.
377 */
378 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
379
380 #if defined(DEC_3000_300) || defined(DEC_3000_500)
381 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
382 hwrpb->rpb_type == ST_DEC_3000_500) {
383 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
384 sizeof(dec_3000_scsiid));
385 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
386 sizeof(dec_3000_scsifast));
387 }
388 #endif
389
390 /*
391 * Remember how many cycles there are per microsecond,
392 * so that we can use delay(). Round up, for safety.
393 */
394 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
395
396 /*
397 * Initalize the (temporary) bootstrap console interface, so
398 * we can use printf until the VM system starts being setup.
399 * The real console is initialized before then.
400 */
401 init_bootstrap_console();
402
403 /* OUTPUT NOW ALLOWED */
404
405 /* delayed from above */
406 if (bootinfo_msg)
407 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
408 bootinfo_msg, bim, bip, biv);
409
410 /*
411 * Point interrupt/exception vectors to our own.
412 */
413 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
414 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
415 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
416 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
417 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
418 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
419
420 /*
421 * Clear pending machine checks and error reports, and enable
422 * system- and processor-correctable error reporting.
423 */
424 alpha_pal_wrmces(alpha_pal_rdmces() &
425 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
426
427 /*
428 * Find out what hardware we're on, and do basic initialization.
429 */
430 cputype = hwrpb->rpb_type;
431 if (cputype >= ncpuinit) {
432 platform_not_supported();
433 /* NOTREACHED */
434 }
435 (*cpuinit[cputype].init)();
436 strcpy(cpu_model, platform.model);
437
438 /*
439 * Initalize the real console, so the the bootstrap console is
440 * no longer necessary.
441 */
442 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
443 if (!pmap_uses_prom_console())
444 #endif
445 (*platform.cons_init)();
446
447 #ifdef DIAGNOSTIC
448 /* Paranoid sanity checking */
449
450 /* We should always be running on the the primary. */
451 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
452
453 /*
454 * On single-CPU systypes, the primary should always be CPU 0,
455 * except on Alpha 8200 systems where the CPU id is related
456 * to the VID, which is related to the Turbo Laser node id.
457 */
458 if (cputype != ST_DEC_21000)
459 assert(hwrpb->rpb_primary_cpu_id == 0);
460 #endif
461
462 /* NO MORE FIRMWARE ACCESS ALLOWED */
463 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
464 /*
465 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
466 * XXX pmap_uses_prom_console() evaluates to non-zero.)
467 */
468 #endif
469
470 /*
471 * find out this system's page size
472 */
473 PAGE_SIZE = hwrpb->rpb_page_size;
474 if (PAGE_SIZE != 8192)
475 panic("page size %d != 8192?!", PAGE_SIZE);
476
477 /*
478 * Initialize PAGE_SIZE-dependent variables.
479 */
480 #if defined(UVM)
481 uvm_setpagesize();
482 #else
483 vm_set_page_size();
484 #endif
485
486 /*
487 * Find the beginning and end of the kernel (and leave a
488 * bit of space before the beginning for the bootstrap
489 * stack).
490 */
491 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
492 #ifdef DDB
493 ksym_start = (void *)bootinfo.ssym;
494 ksym_end = (void *)bootinfo.esym;
495 kernend = (vaddr_t)round_page(ksym_end);
496 #else
497 kernend = (vaddr_t)round_page(_end);
498 #endif
499
500 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
501 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
502
503 /*
504 * Find out how much memory is available, by looking at
505 * the memory cluster descriptors. This also tries to do
506 * its best to detect things things that have never been seen
507 * before...
508 */
509 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
510
511 /* MDDT SANITY CHECKING */
512 mddtweird = 0;
513 if (mddtp->mddt_cluster_cnt < 2) {
514 mddtweird = 1;
515 printf("WARNING: weird number of mem clusters: %d\n",
516 mddtp->mddt_cluster_cnt);
517 }
518
519 #if 0
520 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
521 #endif
522
523 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
524 memc = &mddtp->mddt_clusters[i];
525 #if 0
526 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
527 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
528 #endif
529 totalphysmem += memc->mddt_pg_cnt;
530 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
531 mem_clusters[mem_cluster_cnt].start =
532 ptoa(memc->mddt_pfn);
533 mem_clusters[mem_cluster_cnt].size =
534 ptoa(memc->mddt_pg_cnt);
535 if (memc->mddt_usage & MDDT_mbz ||
536 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
537 memc->mddt_usage & MDDT_PALCODE)
538 mem_clusters[mem_cluster_cnt].size |=
539 PROT_READ;
540 else
541 mem_clusters[mem_cluster_cnt].size |=
542 PROT_READ | PROT_WRITE | PROT_EXEC;
543 mem_cluster_cnt++;
544 }
545
546 if (memc->mddt_usage & MDDT_mbz) {
547 mddtweird = 1;
548 printf("WARNING: mem cluster %d has weird "
549 "usage 0x%lx\n", i, memc->mddt_usage);
550 unknownmem += memc->mddt_pg_cnt;
551 continue;
552 }
553 if (memc->mddt_usage & MDDT_NONVOLATILE) {
554 /* XXX should handle these... */
555 printf("WARNING: skipping non-volatile mem "
556 "cluster %d\n", i);
557 unusedmem += memc->mddt_pg_cnt;
558 continue;
559 }
560 if (memc->mddt_usage & MDDT_PALCODE) {
561 resvmem += memc->mddt_pg_cnt;
562 continue;
563 }
564
565 /*
566 * We have a memory cluster available for system
567 * software use. We must determine if this cluster
568 * holds the kernel.
569 */
570 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
571 /*
572 * XXX If the kernel uses the PROM console, we only use the
573 * XXX memory after the kernel in the first system segment,
574 * XXX to avoid clobbering prom mapping, data, etc.
575 */
576 if (!pmap_uses_prom_console() || physmem == 0) {
577 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
578 physmem += memc->mddt_pg_cnt;
579 pfn0 = memc->mddt_pfn;
580 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
581 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
582 /*
583 * Must compute the location of the kernel
584 * within the segment.
585 */
586 #if 0
587 printf("Cluster %d contains kernel\n", i);
588 #endif
589 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
590 if (!pmap_uses_prom_console()) {
591 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
592 if (pfn0 < kernstartpfn) {
593 /*
594 * There is a chunk before the kernel.
595 */
596 #if 0
597 printf("Loading chunk before kernel: "
598 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
599 #endif
600 #if defined(UVM)
601 uvm_page_physload(pfn0, kernstartpfn,
602 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
603 #else
604 vm_page_physload(pfn0, kernstartpfn,
605 pfn0, kernstartpfn);
606 #endif
607 }
608 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
609 }
610 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
611 if (kernendpfn < pfn1) {
612 /*
613 * There is a chunk after the kernel.
614 */
615 #if 0
616 printf("Loading chunk after kernel: "
617 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
618 #endif
619 #if defined(UVM)
620 uvm_page_physload(kernendpfn, pfn1,
621 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
622 #else
623 vm_page_physload(kernendpfn, pfn1,
624 kernendpfn, pfn1);
625 #endif
626 }
627 } else {
628 /*
629 * Just load this cluster as one chunk.
630 */
631 #if 0
632 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
633 pfn0, pfn1);
634 #endif
635 #if defined(UVM)
636 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
637 VM_FREELIST_DEFAULT);
638 #else
639 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
640 #endif
641 }
642 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
643 }
644 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
645 }
646
647 /*
648 * Dump out the MDDT if it looks odd...
649 */
650 if (mddtweird) {
651 printf("\n");
652 printf("complete memory cluster information:\n");
653 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
654 printf("mddt %d:\n", i);
655 printf("\tpfn %lx\n",
656 mddtp->mddt_clusters[i].mddt_pfn);
657 printf("\tcnt %lx\n",
658 mddtp->mddt_clusters[i].mddt_pg_cnt);
659 printf("\ttest %lx\n",
660 mddtp->mddt_clusters[i].mddt_pg_test);
661 printf("\tbva %lx\n",
662 mddtp->mddt_clusters[i].mddt_v_bitaddr);
663 printf("\tbpa %lx\n",
664 mddtp->mddt_clusters[i].mddt_p_bitaddr);
665 printf("\tbcksum %lx\n",
666 mddtp->mddt_clusters[i].mddt_bit_cksum);
667 printf("\tusage %lx\n",
668 mddtp->mddt_clusters[i].mddt_usage);
669 }
670 printf("\n");
671 }
672
673 if (totalphysmem == 0)
674 panic("can't happen: system seems to have no memory!");
675
676 #ifdef LIMITMEM
677 /*
678 * XXX Kludge so we can run on machines with memory larger
679 * XXX than 1G until all device drivers are converted to
680 * XXX use bus_dma. (Relies on the fact that vm_physmem
681 * XXX sorted in order of increasing addresses.)
682 */
683 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
684
685 printf("******** LIMITING MEMORY TO %dMB **********\n",
686 LIMITMEM);
687
688 do {
689 u_long ovf;
690
691 vps = &vm_physmem[vm_nphysseg - 1];
692
693 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
694 /*
695 * If the start is too high, just drop
696 * the whole segment.
697 *
698 * XXX can start != avail_start in this
699 * XXX case? wouldn't that mean that
700 * XXX some memory was stolen above the
701 * XXX limit? What to do?
702 */
703 ovf = vps->end - vps->start;
704 vm_nphysseg--;
705 } else {
706 /*
707 * If the start is OK, calculate how much
708 * to drop and drop it.
709 */
710 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
711 vps->end -= ovf;
712 vps->avail_end -= ovf;
713 }
714 physmem -= ovf;
715 unusedmem += ovf;
716 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
717 }
718 #endif /* LIMITMEM */
719
720 maxmem = physmem;
721
722 #if 0
723 printf("totalphysmem = %d\n", totalphysmem);
724 printf("physmem = %d\n", physmem);
725 printf("resvmem = %d\n", resvmem);
726 printf("unusedmem = %d\n", unusedmem);
727 printf("unknownmem = %d\n", unknownmem);
728 #endif
729
730 /*
731 * Adjust some parameters if the amount of physmem
732 * available would cause us to croak. This is completely
733 * eyeballed and isn't meant to be the final answer.
734 * vm_phys_size is probably the only one to really worry
735 * about.
736 *
737 * It's for booting a GENERIC kernel on a large memory platform.
738 */
739 if (physmem >= atop(128 * 1024 * 1024)) {
740 vm_mbuf_size <<= 1;
741 vm_kmem_size <<= 3;
742 vm_phys_size <<= 2;
743 }
744
745 /*
746 * Initialize error message buffer (at end of core).
747 */
748 {
749 size_t sz = round_page(MSGBUFSIZE);
750
751 vps = &vm_physmem[vm_nphysseg - 1];
752
753 /* shrink so that it'll fit in the last segment */
754 if ((vps->avail_end - vps->avail_start) < atop(sz))
755 sz = ptoa(vps->avail_end - vps->avail_start);
756
757 vps->end -= atop(sz);
758 vps->avail_end -= atop(sz);
759 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
760 initmsgbuf(msgbufaddr, sz);
761
762 /* Remove the last segment if it now has no pages. */
763 if (vps->start == vps->end)
764 vm_nphysseg--;
765
766 /* warn if the message buffer had to be shrunk */
767 if (sz != round_page(MSGBUFSIZE))
768 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
769 round_page(MSGBUFSIZE), sz);
770
771 }
772
773 /*
774 * Init mapping for u page(s) for proc 0
775 */
776 proc0.p_addr = proc0paddr =
777 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
778
779 /*
780 * Allocate space for system data structures. These data structures
781 * are allocated here instead of cpu_startup() because physical
782 * memory is directly addressable. We don't have to map these into
783 * virtual address space.
784 */
785 size = (vsize_t)allocsys(0);
786 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
787 if ((allocsys(v) - v) != size)
788 panic("alpha_init: table size inconsistency");
789
790 /*
791 * Initialize the virtual memory system, and set the
792 * page table base register in proc 0's PCB.
793 */
794 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
795 hwrpb->rpb_max_asn);
796
797 /*
798 * Initialize the rest of proc 0's PCB, and cache its physical
799 * address.
800 */
801 proc0.p_md.md_pcbpaddr =
802 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
803
804 /*
805 * Set the kernel sp, reserving space for an (empty) trapframe,
806 * and make proc0's trapframe pointer point to it for sanity.
807 */
808 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
809 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
810 proc0.p_md.md_tf =
811 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
812
813 /*
814 * Look at arguments passed to us and compute boothowto.
815 */
816
817 boothowto = RB_SINGLE;
818 #ifdef KADB
819 boothowto |= RB_KDB;
820 #endif
821 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
822 /*
823 * Note that we'd really like to differentiate case here,
824 * but the Alpha AXP Architecture Reference Manual
825 * says that we shouldn't.
826 */
827 switch (*p) {
828 case 'a': /* autoboot */
829 case 'A':
830 boothowto &= ~RB_SINGLE;
831 break;
832
833 #ifdef DEBUG
834 case 'c': /* crash dump immediately after autoconfig */
835 case 'C':
836 boothowto |= RB_DUMP;
837 break;
838 #endif
839
840 #if defined(KGDB) || defined(DDB)
841 case 'd': /* break into the kernel debugger ASAP */
842 case 'D':
843 boothowto |= RB_KDB;
844 break;
845 #endif
846
847 case 'h': /* always halt, never reboot */
848 case 'H':
849 boothowto |= RB_HALT;
850 break;
851
852 #if 0
853 case 'm': /* mini root present in memory */
854 case 'M':
855 boothowto |= RB_MINIROOT;
856 break;
857 #endif
858
859 case 'n': /* askname */
860 case 'N':
861 boothowto |= RB_ASKNAME;
862 break;
863
864 case 's': /* single-user (default, supported for sanity) */
865 case 'S':
866 boothowto |= RB_SINGLE;
867 break;
868
869 case '-':
870 /*
871 * Just ignore this. It's not required, but it's
872 * common for it to be passed regardless.
873 */
874 break;
875
876 default:
877 printf("Unrecognized boot flag '%c'.\n", *p);
878 break;
879 }
880 }
881
882
883 /*
884 * Figure out the number of cpus in the box, from RPB fields.
885 * Really. We mean it.
886 */
887 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
888 struct pcs *pcsp;
889
890 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
891 (i * hwrpb->rpb_pcs_size));
892 if ((pcsp->pcs_flags & PCS_PP) != 0)
893 ncpus++;
894 }
895
896 /*
897 * Initialize debuggers, and break into them if appropriate.
898 */
899 #ifdef DDB
900 db_machine_init();
901 ddb_init(ksym_start, ksym_end);
902 if (boothowto & RB_KDB)
903 Debugger();
904 #endif
905 #ifdef KGDB
906 if (boothowto & RB_KDB)
907 kgdb_connect(0);
908 #endif
909 /*
910 * Figure out our clock frequency, from RPB fields.
911 */
912 hz = hwrpb->rpb_intr_freq >> 12;
913 if (!(60 <= hz && hz <= 10240)) {
914 hz = 1024;
915 #ifdef DIAGNOSTIC
916 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
917 hwrpb->rpb_intr_freq, hz);
918 #endif
919 }
920 }
921
922 /*
923 * Allocate space for system data structures. We are given
924 * a starting virtual address and we return a final virtual
925 * address; along the way we set each data structure pointer.
926 *
927 * We call allocsys() with 0 to find out how much space we want,
928 * allocate that much and fill it with zeroes, and the call
929 * allocsys() again with the correct base virtual address.
930 */
931 caddr_t
932 allocsys(v)
933 caddr_t v;
934 {
935
936 #define valloc(name, type, num) \
937 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
938
939 #ifdef REAL_CLISTS
940 valloc(cfree, struct cblock, nclist);
941 #endif
942 valloc(callout, struct callout, ncallout);
943 #ifdef SYSVSHM
944 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
945 #endif
946 #ifdef SYSVSEM
947 valloc(sema, struct semid_ds, seminfo.semmni);
948 valloc(sem, struct sem, seminfo.semmns);
949 /* This is pretty disgusting! */
950 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
951 #endif
952 #ifdef SYSVMSG
953 valloc(msgpool, char, msginfo.msgmax);
954 valloc(msgmaps, struct msgmap, msginfo.msgseg);
955 valloc(msghdrs, struct msg, msginfo.msgtql);
956 valloc(msqids, struct msqid_ds, msginfo.msgmni);
957 #endif
958
959 /*
960 * Determine how many buffers to allocate.
961 * We allocate 10% of memory for buffer space. Insure a
962 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
963 * headers as file i/o buffers.
964 */
965 if (bufpages == 0)
966 bufpages = (physmem * 10) / (CLSIZE * 100);
967 if (nbuf == 0) {
968 nbuf = bufpages;
969 if (nbuf < 16)
970 nbuf = 16;
971 }
972 if (nswbuf == 0) {
973 nswbuf = (nbuf / 2) &~ 1; /* force even */
974 if (nswbuf > 256)
975 nswbuf = 256; /* sanity */
976 }
977 #if !defined(UVM)
978 valloc(swbuf, struct buf, nswbuf);
979 #endif
980 valloc(buf, struct buf, nbuf);
981
982 /*
983 * There appears to be a correlation between the number
984 * of processor slots defined in the HWRPB and the whami
985 * value that can be returned.
986 */
987 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
988
989 return (v);
990 #undef valloc
991 }
992
993 void
994 consinit()
995 {
996
997 /*
998 * Everything related to console initialization is done
999 * in alpha_init().
1000 */
1001 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1002 printf("consinit: %susing prom console\n",
1003 pmap_uses_prom_console() ? "" : "not ");
1004 #endif
1005 }
1006
1007 #include "pckbc.h"
1008 #include "pckbd.h"
1009 #if (NPCKBC > 0) && (NPCKBD == 0)
1010
1011 #include <machine/bus.h>
1012 #include <dev/isa/pckbcvar.h>
1013
1014 /*
1015 * This is called by the pbkbc driver if no pckbd is configured.
1016 * On the i386, it is used to glue in the old, deprecated console
1017 * code. On the Alpha, it does nothing.
1018 */
1019 int
1020 pckbc_machdep_cnattach(kbctag, kbcslot)
1021 pckbc_tag_t kbctag;
1022 pckbc_slot_t kbcslot;
1023 {
1024
1025 return (ENXIO);
1026 }
1027 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1028
1029 void
1030 cpu_startup()
1031 {
1032 register unsigned i;
1033 int base, residual;
1034 vaddr_t minaddr, maxaddr;
1035 vsize_t size;
1036 #if defined(DEBUG)
1037 extern int pmapdebug;
1038 int opmapdebug = pmapdebug;
1039
1040 pmapdebug = 0;
1041 #endif
1042
1043 /*
1044 * Good {morning,afternoon,evening,night}.
1045 */
1046 printf(version);
1047 identifycpu();
1048 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1049 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1050 ptoa(resvmem), ptoa(physmem));
1051 if (unusedmem)
1052 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1053 if (unknownmem)
1054 printf("WARNING: %d bytes of memory with unknown purpose\n",
1055 ctob(unknownmem));
1056
1057 /*
1058 * Allocate virtual address space for file I/O buffers.
1059 * Note they are different than the array of headers, 'buf',
1060 * and usually occupy more virtual memory than physical.
1061 */
1062 size = MAXBSIZE * nbuf;
1063 #if defined(UVM)
1064 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1065 NULL, UVM_UNKNOWN_OFFSET,
1066 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1067 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1068 panic("startup: cannot allocate VM for buffers");
1069 #else
1070 buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1071 &maxaddr, size, TRUE);
1072 minaddr = (vaddr_t)buffers;
1073 if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1074 &minaddr, size, FALSE) != KERN_SUCCESS)
1075 panic("startup: cannot allocate buffers");
1076 #endif /* UVM */
1077 base = bufpages / nbuf;
1078 residual = bufpages % nbuf;
1079 for (i = 0; i < nbuf; i++) {
1080 #if defined(UVM)
1081 vsize_t curbufsize;
1082 vaddr_t curbuf;
1083 struct vm_page *pg;
1084
1085 /*
1086 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1087 * that MAXBSIZE space, we allocate and map (base+1) pages
1088 * for the first "residual" buffers, and then we allocate
1089 * "base" pages for the rest.
1090 */
1091 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1092 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1093
1094 while (curbufsize) {
1095 pg = uvm_pagealloc(NULL, 0, NULL);
1096 if (pg == NULL)
1097 panic("cpu_startup: not enough memory for "
1098 "buffer cache");
1099 #if defined(PMAP_NEW)
1100 pmap_kenter_pgs(curbuf, &pg, 1);
1101 #else
1102 pmap_enter(kernel_map->pmap, curbuf,
1103 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1104 #endif
1105 curbuf += PAGE_SIZE;
1106 curbufsize -= PAGE_SIZE;
1107 }
1108 #else /* ! UVM */
1109 vsize_t curbufsize;
1110 vaddr_t curbuf;
1111
1112 /*
1113 * First <residual> buffers get (base+1) physical pages
1114 * allocated for them. The rest get (base) physical pages.
1115 *
1116 * The rest of each buffer occupies virtual space,
1117 * but has no physical memory allocated for it.
1118 */
1119 curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1120 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1121 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1122 vm_map_simplify(buffer_map, curbuf);
1123 #endif /* UVM */
1124 }
1125 /*
1126 * Allocate a submap for exec arguments. This map effectively
1127 * limits the number of processes exec'ing at any time.
1128 */
1129 #if defined(UVM)
1130 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1131 16 * NCARGS, TRUE, FALSE, NULL);
1132 #else
1133 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1134 16 * NCARGS, TRUE);
1135 #endif
1136
1137 /*
1138 * Allocate a submap for physio
1139 */
1140 #if defined(UVM)
1141 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1142 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1143 #else
1144 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1145 VM_PHYS_SIZE, TRUE);
1146 #endif
1147
1148 /*
1149 * Finally, allocate mbuf cluster submap.
1150 */
1151 #if defined(UVM)
1152 mb_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1153 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1154 #else
1155 mb_map = kmem_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1156 VM_MBUF_SIZE, FALSE);
1157 #endif
1158 /*
1159 * Initialize callouts
1160 */
1161 callfree = callout;
1162 for (i = 1; i < ncallout; i++)
1163 callout[i-1].c_next = &callout[i];
1164 callout[i-1].c_next = NULL;
1165
1166 #if defined(DEBUG)
1167 pmapdebug = opmapdebug;
1168 #endif
1169 #if defined(UVM)
1170 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1171 #else
1172 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1173 #endif
1174 #if 0
1175 {
1176 extern u_long pmap_pages_stolen;
1177 printf("stolen memory for VM structures = %ld bytes\n",
1178 pmap_pages_stolen * PAGE_SIZE);
1179 }
1180 #endif
1181 printf("using %ld buffers containing %ld bytes of memory\n",
1182 (long)nbuf, (long)(bufpages * CLBYTES));
1183
1184 /*
1185 * Set up buffers, so they can be used to read disk labels.
1186 */
1187 bufinit();
1188
1189 /*
1190 * Configure the system.
1191 */
1192 configure();
1193
1194 /*
1195 * Note that bootstrapping is finished, and set the HWRPB up
1196 * to do restarts.
1197 */
1198 hwrpb_restart_setup();
1199 }
1200
1201 /*
1202 * Retrieve the platform name from the DSR.
1203 */
1204 const char *
1205 alpha_dsr_sysname()
1206 {
1207 struct dsrdb *dsr;
1208 const char *sysname;
1209
1210 /*
1211 * DSR does not exist on early HWRPB versions.
1212 */
1213 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1214 return (NULL);
1215
1216 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1217 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1218 sizeof(u_int64_t)));
1219 return (sysname);
1220 }
1221
1222 /*
1223 * Lookup the system specified system variation in the provided table,
1224 * returning the model string on match.
1225 */
1226 const char *
1227 alpha_variation_name(variation, avtp)
1228 u_int64_t variation;
1229 const struct alpha_variation_table *avtp;
1230 {
1231 int i;
1232
1233 for (i = 0; avtp[i].avt_model != NULL; i++)
1234 if (avtp[i].avt_variation == variation)
1235 return (avtp[i].avt_model);
1236 return (NULL);
1237 }
1238
1239 /*
1240 * Generate a default platform name based for unknown system variations.
1241 */
1242 const char *
1243 alpha_unknown_sysname()
1244 {
1245 static char s[128]; /* safe size */
1246
1247 sprintf(s, "%s family, unknown model variation 0x%lx",
1248 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1249 return ((const char *)s);
1250 }
1251
1252 void
1253 identifycpu()
1254 {
1255
1256 /*
1257 * print out CPU identification information.
1258 */
1259 printf("%s, %ldMHz\n", cpu_model,
1260 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1261 printf("%ld byte page size, %d processor%s.\n",
1262 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1263 #if 0
1264 /* this isn't defined for any systems that we run on? */
1265 printf("serial number 0x%lx 0x%lx\n",
1266 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1267
1268 /* and these aren't particularly useful! */
1269 printf("variation: 0x%lx, revision 0x%lx\n",
1270 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1271 #endif
1272 }
1273
1274 int waittime = -1;
1275 struct pcb dumppcb;
1276
1277 void
1278 cpu_reboot(howto, bootstr)
1279 int howto;
1280 char *bootstr;
1281 {
1282 extern int cold;
1283
1284 /* If system is cold, just halt. */
1285 if (cold) {
1286 howto |= RB_HALT;
1287 goto haltsys;
1288 }
1289
1290 /* If "always halt" was specified as a boot flag, obey. */
1291 if ((boothowto & RB_HALT) != 0)
1292 howto |= RB_HALT;
1293
1294 boothowto = howto;
1295 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1296 waittime = 0;
1297 vfs_shutdown();
1298 /*
1299 * If we've been adjusting the clock, the todr
1300 * will be out of synch; adjust it now.
1301 */
1302 resettodr();
1303 }
1304
1305 /* Disable interrupts. */
1306 splhigh();
1307
1308 /* If rebooting and a dump is requested do it. */
1309 #if 0
1310 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1311 #else
1312 if (howto & RB_DUMP)
1313 #endif
1314 dumpsys();
1315
1316 haltsys:
1317
1318 /* run any shutdown hooks */
1319 doshutdownhooks();
1320
1321 #ifdef BOOTKEY
1322 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1323 cnpollc(1); /* for proper keyboard command handling */
1324 cngetc();
1325 cnpollc(0);
1326 printf("\n");
1327 #endif
1328
1329 /* Finally, powerdown/halt/reboot the system. */
1330 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1331 platform.powerdown != NULL) {
1332 (*platform.powerdown)();
1333 printf("WARNING: powerdown failed!\n");
1334 }
1335 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1336 prom_halt(howto & RB_HALT);
1337 /*NOTREACHED*/
1338 }
1339
1340 /*
1341 * These variables are needed by /sbin/savecore
1342 */
1343 u_long dumpmag = 0x8fca0101; /* magic number */
1344 int dumpsize = 0; /* pages */
1345 long dumplo = 0; /* blocks */
1346
1347 /*
1348 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1349 */
1350 int
1351 cpu_dumpsize()
1352 {
1353 int size;
1354
1355 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1356 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1357 if (roundup(size, dbtob(1)) != dbtob(1))
1358 return -1;
1359
1360 return (1);
1361 }
1362
1363 /*
1364 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1365 */
1366 u_long
1367 cpu_dump_mempagecnt()
1368 {
1369 u_long i, n;
1370
1371 n = 0;
1372 for (i = 0; i < mem_cluster_cnt; i++)
1373 n += atop(mem_clusters[i].size);
1374 return (n);
1375 }
1376
1377 /*
1378 * cpu_dump: dump machine-dependent kernel core dump headers.
1379 */
1380 int
1381 cpu_dump()
1382 {
1383 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1384 char buf[dbtob(1)];
1385 kcore_seg_t *segp;
1386 cpu_kcore_hdr_t *cpuhdrp;
1387 phys_ram_seg_t *memsegp;
1388 int i;
1389
1390 dump = bdevsw[major(dumpdev)].d_dump;
1391
1392 bzero(buf, sizeof buf);
1393 segp = (kcore_seg_t *)buf;
1394 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1395 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1396 ALIGN(sizeof(*cpuhdrp))];
1397
1398 /*
1399 * Generate a segment header.
1400 */
1401 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1402 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1403
1404 /*
1405 * Add the machine-dependent header info.
1406 */
1407 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1408 cpuhdrp->page_size = PAGE_SIZE;
1409 cpuhdrp->nmemsegs = mem_cluster_cnt;
1410
1411 /*
1412 * Fill in the memory segment descriptors.
1413 */
1414 for (i = 0; i < mem_cluster_cnt; i++) {
1415 memsegp[i].start = mem_clusters[i].start;
1416 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1417 }
1418
1419 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1420 }
1421
1422 /*
1423 * This is called by main to set dumplo and dumpsize.
1424 * Dumps always skip the first CLBYTES of disk space
1425 * in case there might be a disk label stored there.
1426 * If there is extra space, put dump at the end to
1427 * reduce the chance that swapping trashes it.
1428 */
1429 void
1430 cpu_dumpconf()
1431 {
1432 int nblks, dumpblks; /* size of dump area */
1433 int maj;
1434
1435 if (dumpdev == NODEV)
1436 goto bad;
1437 maj = major(dumpdev);
1438 if (maj < 0 || maj >= nblkdev)
1439 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1440 if (bdevsw[maj].d_psize == NULL)
1441 goto bad;
1442 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1443 if (nblks <= ctod(1))
1444 goto bad;
1445
1446 dumpblks = cpu_dumpsize();
1447 if (dumpblks < 0)
1448 goto bad;
1449 dumpblks += ctod(cpu_dump_mempagecnt());
1450
1451 /* If dump won't fit (incl. room for possible label), punt. */
1452 if (dumpblks > (nblks - ctod(1)))
1453 goto bad;
1454
1455 /* Put dump at end of partition */
1456 dumplo = nblks - dumpblks;
1457
1458 /* dumpsize is in page units, and doesn't include headers. */
1459 dumpsize = cpu_dump_mempagecnt();
1460 return;
1461
1462 bad:
1463 dumpsize = 0;
1464 return;
1465 }
1466
1467 /*
1468 * Dump the kernel's image to the swap partition.
1469 */
1470 #define BYTES_PER_DUMP NBPG
1471
1472 void
1473 dumpsys()
1474 {
1475 u_long totalbytesleft, bytes, i, n, memcl;
1476 u_long maddr;
1477 int psize;
1478 daddr_t blkno;
1479 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1480 int error;
1481
1482 /* Save registers. */
1483 savectx(&dumppcb);
1484
1485 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1486 if (dumpdev == NODEV)
1487 return;
1488
1489 /*
1490 * For dumps during autoconfiguration,
1491 * if dump device has already configured...
1492 */
1493 if (dumpsize == 0)
1494 cpu_dumpconf();
1495 if (dumplo <= 0) {
1496 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1497 minor(dumpdev));
1498 return;
1499 }
1500 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1501 minor(dumpdev), dumplo);
1502
1503 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1504 printf("dump ");
1505 if (psize == -1) {
1506 printf("area unavailable\n");
1507 return;
1508 }
1509
1510 /* XXX should purge all outstanding keystrokes. */
1511
1512 if ((error = cpu_dump()) != 0)
1513 goto err;
1514
1515 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1516 blkno = dumplo + cpu_dumpsize();
1517 dump = bdevsw[major(dumpdev)].d_dump;
1518 error = 0;
1519
1520 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1521 maddr = mem_clusters[memcl].start;
1522 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1523
1524 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1525
1526 /* Print out how many MBs we to go. */
1527 if ((totalbytesleft % (1024*1024)) == 0)
1528 printf("%d ", totalbytesleft / (1024 * 1024));
1529
1530 /* Limit size for next transfer. */
1531 n = bytes - i;
1532 if (n > BYTES_PER_DUMP)
1533 n = BYTES_PER_DUMP;
1534
1535 error = (*dump)(dumpdev, blkno,
1536 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1537 if (error)
1538 goto err;
1539 maddr += n;
1540 blkno += btodb(n); /* XXX? */
1541
1542 /* XXX should look for keystrokes, to cancel. */
1543 }
1544 }
1545
1546 err:
1547 switch (error) {
1548
1549 case ENXIO:
1550 printf("device bad\n");
1551 break;
1552
1553 case EFAULT:
1554 printf("device not ready\n");
1555 break;
1556
1557 case EINVAL:
1558 printf("area improper\n");
1559 break;
1560
1561 case EIO:
1562 printf("i/o error\n");
1563 break;
1564
1565 case EINTR:
1566 printf("aborted from console\n");
1567 break;
1568
1569 case 0:
1570 printf("succeeded\n");
1571 break;
1572
1573 default:
1574 printf("error %d\n", error);
1575 break;
1576 }
1577 printf("\n\n");
1578 delay(1000);
1579 }
1580
1581 void
1582 frametoreg(framep, regp)
1583 struct trapframe *framep;
1584 struct reg *regp;
1585 {
1586
1587 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1588 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1589 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1590 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1591 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1592 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1593 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1594 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1595 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1596 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1597 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1598 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1599 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1600 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1601 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1602 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1603 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1604 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1605 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1606 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1607 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1608 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1609 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1610 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1611 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1612 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1613 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1614 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1615 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1616 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1617 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1618 regp->r_regs[R_ZERO] = 0;
1619 }
1620
1621 void
1622 regtoframe(regp, framep)
1623 struct reg *regp;
1624 struct trapframe *framep;
1625 {
1626
1627 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1628 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1629 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1630 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1631 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1632 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1633 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1634 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1635 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1636 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1637 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1638 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1639 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1640 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1641 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1642 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1643 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1644 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1645 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1646 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1647 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1648 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1649 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1650 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1651 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1652 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1653 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1654 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1655 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1656 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1657 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1658 /* ??? = regp->r_regs[R_ZERO]; */
1659 }
1660
1661 void
1662 printregs(regp)
1663 struct reg *regp;
1664 {
1665 int i;
1666
1667 for (i = 0; i < 32; i++)
1668 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1669 i & 1 ? "\n" : "\t");
1670 }
1671
1672 void
1673 regdump(framep)
1674 struct trapframe *framep;
1675 {
1676 struct reg reg;
1677
1678 frametoreg(framep, ®);
1679 reg.r_regs[R_SP] = alpha_pal_rdusp();
1680
1681 printf("REGISTERS:\n");
1682 printregs(®);
1683 }
1684
1685 #ifdef DEBUG
1686 int sigdebug = 0;
1687 int sigpid = 0;
1688 #define SDB_FOLLOW 0x01
1689 #define SDB_KSTACK 0x02
1690 #endif
1691
1692 /*
1693 * Send an interrupt to process.
1694 */
1695 void
1696 sendsig(catcher, sig, mask, code)
1697 sig_t catcher;
1698 int sig;
1699 sigset_t *mask;
1700 u_long code;
1701 {
1702 struct proc *p = curproc;
1703 struct sigcontext *scp, ksc;
1704 struct trapframe *frame;
1705 struct sigacts *psp = p->p_sigacts;
1706 int onstack, fsize, rndfsize;
1707 extern char sigcode[], esigcode[];
1708 extern struct proc *fpcurproc;
1709
1710 frame = p->p_md.md_tf;
1711
1712 /* Do we need to jump onto the signal stack? */
1713 onstack =
1714 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1715 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1716
1717 /* Allocate space for the signal handler context. */
1718 fsize = sizeof(ksc);
1719 rndfsize = ((fsize + 15) / 16) * 16;
1720
1721 if (onstack)
1722 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1723 psp->ps_sigstk.ss_size - rndfsize);
1724 else
1725 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1726
1727 #ifdef DEBUG
1728 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1729 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1730 sig, &onstack, scp);
1731 #endif
1732
1733 /* Build stack frame for signal trampoline. */
1734 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1735 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1736
1737 /* Save register context. */
1738 frametoreg(frame, (struct reg *)ksc.sc_regs);
1739 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1740 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1741
1742 /* save the floating-point state, if necessary, then copy it. */
1743 if (p == fpcurproc) {
1744 alpha_pal_wrfen(1);
1745 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1746 alpha_pal_wrfen(0);
1747 fpcurproc = NULL;
1748 }
1749 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1750 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1751 sizeof(struct fpreg));
1752 ksc.sc_fp_control = 0; /* XXX ? */
1753 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1754 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1755
1756 /* Save signal stack. */
1757 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1758
1759 /* Save signal mask. */
1760 ksc.sc_mask = *mask;
1761
1762 #ifdef COMPAT_13
1763 /*
1764 * XXX We always have to save an old style signal mask because
1765 * XXX we might be delivering a signal to a process which will
1766 * XXX escape from the signal in a non-standard way and invoke
1767 * XXX sigreturn() directly.
1768 */
1769 {
1770 /* Note: it's a long in the stack frame. */
1771 sigset13_t mask13;
1772
1773 native_sigset_to_sigset13(mask, &mask13);
1774 ksc.__sc_mask13 = mask13;
1775 }
1776 #endif
1777
1778 #ifdef COMPAT_OSF1
1779 /*
1780 * XXX Create an OSF/1-style sigcontext and associated goo.
1781 */
1782 #endif
1783
1784 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1785 /*
1786 * Process has trashed its stack; give it an illegal
1787 * instruction to halt it in its tracks.
1788 */
1789 #ifdef DEBUG
1790 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1791 printf("sendsig(%d): copyout failed on sig %d\n",
1792 p->p_pid, sig);
1793 #endif
1794 sigexit(p, SIGILL);
1795 /* NOTREACHED */
1796 }
1797 #ifdef DEBUG
1798 if (sigdebug & SDB_FOLLOW)
1799 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1800 scp, code);
1801 #endif
1802
1803 /* Set up the registers to return to sigcode. */
1804 frame->tf_regs[FRAME_PC] =
1805 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1806 frame->tf_regs[FRAME_A0] = sig;
1807 frame->tf_regs[FRAME_A1] = code;
1808 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1809 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1810 alpha_pal_wrusp((unsigned long)scp);
1811
1812 #ifdef DEBUG
1813 if (sigdebug & SDB_FOLLOW)
1814 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1815 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1816 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1817 printf("sendsig(%d): sig %d returns\n",
1818 p->p_pid, sig);
1819 #endif
1820 }
1821
1822 /*
1823 * System call to cleanup state after a signal
1824 * has been taken. Reset signal mask and
1825 * stack state from context left by sendsig (above).
1826 * Return to previous pc and psl as specified by
1827 * context left by sendsig. Check carefully to
1828 * make sure that the user has not modified the
1829 * psl to gain improper priviledges or to cause
1830 * a machine fault.
1831 */
1832 /* ARGSUSED */
1833 int
1834 sys___sigreturn14(p, v, retval)
1835 struct proc *p;
1836 void *v;
1837 register_t *retval;
1838 {
1839 struct sys___sigreturn14_args /* {
1840 syscallarg(struct sigcontext *) sigcntxp;
1841 } */ *uap = v;
1842 struct sigcontext *scp, ksc;
1843 extern struct proc *fpcurproc;
1844
1845 /*
1846 * The trampoline code hands us the context.
1847 * It is unsafe to keep track of it ourselves, in the event that a
1848 * program jumps out of a signal handler.
1849 */
1850 scp = SCARG(uap, sigcntxp);
1851 #ifdef DEBUG
1852 if (sigdebug & SDB_FOLLOW)
1853 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1854 #endif
1855 if (ALIGN(scp) != (u_int64_t)scp)
1856 return (EINVAL);
1857
1858 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1859 return (EFAULT);
1860
1861 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1862 return (EINVAL);
1863
1864 /* Restore register context. */
1865 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1866 p->p_md.md_tf->tf_regs[FRAME_PS] =
1867 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1868
1869 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1870 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1871
1872 /* XXX ksc.sc_ownedfp ? */
1873 if (p == fpcurproc)
1874 fpcurproc = NULL;
1875 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1876 sizeof(struct fpreg));
1877 /* XXX ksc.sc_fp_control ? */
1878
1879 /* Restore signal stack. */
1880 if (ksc.sc_onstack & SS_ONSTACK)
1881 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1882 else
1883 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1884
1885 /* Restore signal mask. */
1886 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1887
1888 #ifdef DEBUG
1889 if (sigdebug & SDB_FOLLOW)
1890 printf("sigreturn(%d): returns\n", p->p_pid);
1891 #endif
1892 return (EJUSTRETURN);
1893 }
1894
1895 /*
1896 * machine dependent system variables.
1897 */
1898 int
1899 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1900 int *name;
1901 u_int namelen;
1902 void *oldp;
1903 size_t *oldlenp;
1904 void *newp;
1905 size_t newlen;
1906 struct proc *p;
1907 {
1908 dev_t consdev;
1909
1910 /* all sysctl names at this level are terminal */
1911 if (namelen != 1)
1912 return (ENOTDIR); /* overloaded */
1913
1914 switch (name[0]) {
1915 case CPU_CONSDEV:
1916 if (cn_tab != NULL)
1917 consdev = cn_tab->cn_dev;
1918 else
1919 consdev = NODEV;
1920 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1921 sizeof consdev));
1922
1923 case CPU_ROOT_DEVICE:
1924 return (sysctl_rdstring(oldp, oldlenp, newp,
1925 root_device->dv_xname));
1926
1927 case CPU_UNALIGNED_PRINT:
1928 return (sysctl_int(oldp, oldlenp, newp, newlen,
1929 &alpha_unaligned_print));
1930
1931 case CPU_UNALIGNED_FIX:
1932 return (sysctl_int(oldp, oldlenp, newp, newlen,
1933 &alpha_unaligned_fix));
1934
1935 case CPU_UNALIGNED_SIGBUS:
1936 return (sysctl_int(oldp, oldlenp, newp, newlen,
1937 &alpha_unaligned_sigbus));
1938
1939 case CPU_BOOTED_KERNEL:
1940 return (sysctl_rdstring(oldp, oldlenp, newp,
1941 bootinfo.booted_kernel));
1942
1943 default:
1944 return (EOPNOTSUPP);
1945 }
1946 /* NOTREACHED */
1947 }
1948
1949 /*
1950 * Set registers on exec.
1951 */
1952 void
1953 setregs(p, pack, stack)
1954 register struct proc *p;
1955 struct exec_package *pack;
1956 u_long stack;
1957 {
1958 struct trapframe *tfp = p->p_md.md_tf;
1959 extern struct proc *fpcurproc;
1960 #ifdef DEBUG
1961 int i;
1962 #endif
1963
1964 #ifdef DEBUG
1965 /*
1966 * Crash and dump, if the user requested it.
1967 */
1968 if (boothowto & RB_DUMP)
1969 panic("crash requested by boot flags");
1970 #endif
1971
1972 #ifdef DEBUG
1973 for (i = 0; i < FRAME_SIZE; i++)
1974 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1975 #else
1976 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1977 #endif
1978 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1979 #define FP_RN 2 /* XXX */
1980 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1981 alpha_pal_wrusp(stack);
1982 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1983 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1984
1985 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1986 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1987 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1988 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1989 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1990
1991 p->p_md.md_flags &= ~MDP_FPUSED;
1992 if (fpcurproc == p)
1993 fpcurproc = NULL;
1994 }
1995
1996 void
1997 netintr()
1998 {
1999 int n, s;
2000
2001 s = splhigh();
2002 n = netisr;
2003 netisr = 0;
2004 splx(s);
2005
2006 #define DONETISR(bit, fn) \
2007 do { \
2008 if (n & (1 << (bit))) \
2009 fn; \
2010 } while (0)
2011
2012 #ifdef INET
2013 #if NARP > 0
2014 DONETISR(NETISR_ARP, arpintr());
2015 #endif
2016 DONETISR(NETISR_IP, ipintr());
2017 #endif
2018 #ifdef NETATALK
2019 DONETISR(NETISR_ATALK, atintr());
2020 #endif
2021 #ifdef NS
2022 DONETISR(NETISR_NS, nsintr());
2023 #endif
2024 #ifdef ISO
2025 DONETISR(NETISR_ISO, clnlintr());
2026 #endif
2027 #ifdef CCITT
2028 DONETISR(NETISR_CCITT, ccittintr());
2029 #endif
2030 #ifdef NATM
2031 DONETISR(NETISR_NATM, natmintr());
2032 #endif
2033 #if NPPP > 1
2034 DONETISR(NETISR_PPP, pppintr());
2035 #endif
2036
2037 #undef DONETISR
2038 }
2039
2040 void
2041 do_sir()
2042 {
2043 u_int64_t n;
2044
2045 do {
2046 (void)splhigh();
2047 n = ssir;
2048 ssir = 0;
2049 splsoft(); /* don't recurse through spl0() */
2050
2051 #if defined(UVM)
2052 #define COUNT_SOFT uvmexp.softs++
2053 #else
2054 #define COUNT_SOFT cnt.v_soft++
2055 #endif
2056
2057 #define DO_SIR(bit, fn) \
2058 do { \
2059 if (n & (bit)) { \
2060 COUNT_SOFT; \
2061 fn; \
2062 } \
2063 } while (0)
2064
2065 DO_SIR(SIR_NET, netintr());
2066 DO_SIR(SIR_CLOCK, softclock());
2067
2068 #undef COUNT_SOFT
2069 #undef DO_SIR
2070 } while (ssir != 0);
2071 }
2072
2073 int
2074 spl0()
2075 {
2076
2077 if (ssir)
2078 do_sir(); /* it lowers the IPL itself */
2079
2080 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2081 }
2082
2083 /*
2084 * The following primitives manipulate the run queues. _whichqs tells which
2085 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2086 * into queues, Remrunqueue removes them from queues. The running process is
2087 * on no queue, other processes are on a queue related to p->p_priority,
2088 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2089 * available queues.
2090 */
2091 /*
2092 * setrunqueue(p)
2093 * proc *p;
2094 *
2095 * Call should be made at splclock(), and p->p_stat should be SRUN.
2096 */
2097
2098 void
2099 setrunqueue(p)
2100 struct proc *p;
2101 {
2102 int bit;
2103
2104 /* firewall: p->p_back must be NULL */
2105 if (p->p_back != NULL)
2106 panic("setrunqueue");
2107
2108 bit = p->p_priority >> 2;
2109 whichqs |= (1 << bit);
2110 p->p_forw = (struct proc *)&qs[bit];
2111 p->p_back = qs[bit].ph_rlink;
2112 p->p_back->p_forw = p;
2113 qs[bit].ph_rlink = p;
2114 }
2115
2116 /*
2117 * remrunqueue(p)
2118 *
2119 * Call should be made at splclock().
2120 */
2121 void
2122 remrunqueue(p)
2123 struct proc *p;
2124 {
2125 int bit;
2126
2127 bit = p->p_priority >> 2;
2128 if ((whichqs & (1 << bit)) == 0)
2129 panic("remrunqueue");
2130
2131 p->p_back->p_forw = p->p_forw;
2132 p->p_forw->p_back = p->p_back;
2133 p->p_back = NULL; /* for firewall checking. */
2134
2135 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2136 whichqs &= ~(1 << bit);
2137 }
2138
2139 /*
2140 * Return the best possible estimate of the time in the timeval
2141 * to which tvp points. Unfortunately, we can't read the hardware registers.
2142 * We guarantee that the time will be greater than the value obtained by a
2143 * previous call.
2144 */
2145 void
2146 microtime(tvp)
2147 register struct timeval *tvp;
2148 {
2149 int s = splclock();
2150 static struct timeval lasttime;
2151
2152 *tvp = time;
2153 #ifdef notdef
2154 tvp->tv_usec += clkread();
2155 while (tvp->tv_usec > 1000000) {
2156 tvp->tv_sec++;
2157 tvp->tv_usec -= 1000000;
2158 }
2159 #endif
2160 if (tvp->tv_sec == lasttime.tv_sec &&
2161 tvp->tv_usec <= lasttime.tv_usec &&
2162 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2163 tvp->tv_sec++;
2164 tvp->tv_usec -= 1000000;
2165 }
2166 lasttime = *tvp;
2167 splx(s);
2168 }
2169
2170 /*
2171 * Wait "n" microseconds.
2172 */
2173 void
2174 delay(n)
2175 unsigned long n;
2176 {
2177 long N = cycles_per_usec * (n);
2178
2179 while (N > 0) /* XXX */
2180 N -= 3; /* XXX */
2181 }
2182
2183 #if defined(COMPAT_OSF1) || 1 /* XXX */
2184 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2185 u_long));
2186
2187 void
2188 cpu_exec_ecoff_setregs(p, epp, stack)
2189 struct proc *p;
2190 struct exec_package *epp;
2191 u_long stack;
2192 {
2193 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2194
2195 setregs(p, epp, stack);
2196 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2197 }
2198
2199 /*
2200 * cpu_exec_ecoff_hook():
2201 * cpu-dependent ECOFF format hook for execve().
2202 *
2203 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2204 *
2205 */
2206 int
2207 cpu_exec_ecoff_hook(p, epp)
2208 struct proc *p;
2209 struct exec_package *epp;
2210 {
2211 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2212 extern struct emul emul_netbsd;
2213 #ifdef COMPAT_OSF1
2214 extern struct emul emul_osf1;
2215 #endif
2216
2217 switch (execp->f.f_magic) {
2218 #ifdef COMPAT_OSF1
2219 case ECOFF_MAGIC_ALPHA:
2220 epp->ep_emul = &emul_osf1;
2221 break;
2222 #endif
2223
2224 case ECOFF_MAGIC_NETBSD_ALPHA:
2225 epp->ep_emul = &emul_netbsd;
2226 break;
2227
2228 default:
2229 return ENOEXEC;
2230 }
2231 return 0;
2232 }
2233 #endif
2234
2235 int
2236 alpha_pa_access(pa)
2237 u_long pa;
2238 {
2239 int i;
2240
2241 for (i = 0; i < mem_cluster_cnt; i++) {
2242 if (pa < mem_clusters[i].start)
2243 continue;
2244 if ((pa - mem_clusters[i].start) >=
2245 (mem_clusters[i].size & ~PAGE_MASK))
2246 continue;
2247 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2248 }
2249 return (PROT_NONE);
2250 }
2251
2252 /* XXX XXX BEGIN XXX XXX */
2253 paddr_t alpha_XXX_dmamap_or; /* XXX */
2254 /* XXX */
2255 paddr_t /* XXX */
2256 alpha_XXX_dmamap(v) /* XXX */
2257 vaddr_t v; /* XXX */
2258 { /* XXX */
2259 /* XXX */
2260 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2261 } /* XXX */
2262 /* XXX XXX END XXX XXX */
2263
2264 struct mchkinfo *
2265 cpu_mchkinfo()
2266 {
2267 if (mchkinfo_all_cpus == NULL)
2268 return &startup_info;
2269 return mchkinfo_all_cpus + alpha_pal_whami();
2270 }
2271