machdep.c revision 1.153 1 /* $NetBSD: machdep.c,v 1.153 1998/10/19 22:09:13 tron Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_uvm.h"
70 #include "opt_pmap_new.h"
71 #include "opt_dec_3000_300.h"
72 #include "opt_dec_3000_500.h"
73 #include "opt_compat_osf1.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_inet.h"
76 #include "opt_atalk.h"
77 #include "opt_ccitt.h"
78 #include "opt_iso.h"
79 #include "opt_ns.h"
80 #include "opt_natm.h"
81 #include "opt_sysv.h"
82
83 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84
85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.153 1998/10/19 22:09:13 tron Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/signalvar.h>
90 #include <sys/kernel.h>
91 #include <sys/map.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <sys/reboot.h>
95 #include <sys/device.h>
96 #include <sys/file.h>
97 #ifdef REAL_CLISTS
98 #include <sys/clist.h>
99 #endif
100 #include <sys/callout.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/mman.h>
104 #include <sys/msgbuf.h>
105 #include <sys/ioctl.h>
106 #include <sys/tty.h>
107 #include <sys/user.h>
108 #include <sys/exec.h>
109 #include <sys/exec_ecoff.h>
110 #include <vm/vm.h>
111 #include <sys/sysctl.h>
112 #include <sys/core.h>
113 #include <sys/kcore.h>
114 #include <machine/kcore.h>
115 #ifdef SYSVMSG
116 #include <sys/msg.h>
117 #endif
118 #ifdef SYSVSEM
119 #include <sys/sem.h>
120 #endif
121 #ifdef SYSVSHM
122 #include <sys/shm.h>
123 #endif
124
125 #include <sys/mount.h>
126 #include <sys/syscallargs.h>
127
128 #include <vm/vm_kern.h>
129
130 #if defined(UVM)
131 #include <uvm/uvm_extern.h>
132 #endif
133
134 #include <dev/cons.h>
135
136 #include <machine/autoconf.h>
137 #include <machine/cpu.h>
138 #include <machine/reg.h>
139 #include <machine/rpb.h>
140 #include <machine/prom.h>
141 #include <machine/conf.h>
142
143 #include <alpha/alpha/cpuvar.h>
144
145 #include <net/netisr.h>
146 #include <net/if.h>
147
148 #ifdef INET
149 #include <net/route.h>
150 #include <netinet/in.h>
151 #include <netinet/ip_var.h>
152 #include "arp.h"
153 #if NARP > 0
154 #include <netinet/if_inarp.h>
155 #endif
156 #endif
157 #ifdef NS
158 #include <netns/ns_var.h>
159 #endif
160 #ifdef ISO
161 #include <netiso/iso.h>
162 #include <netiso/clnp.h>
163 #endif
164 #ifdef CCITT
165 #include <netccitt/x25.h>
166 #include <netccitt/pk.h>
167 #include <netccitt/pk_extern.h>
168 #endif
169 #ifdef NATM
170 #include <netnatm/natm.h>
171 #endif
172 #ifdef NETATALK
173 #include <netatalk/at_extern.h>
174 #endif
175 #include "ppp.h"
176 #if NPPP > 0
177 #include <net/ppp_defs.h>
178 #include <net/if_ppp.h>
179 #endif
180
181 #ifdef DDB
182 #include <machine/db_machdep.h>
183 #include <ddb/db_access.h>
184 #include <ddb/db_sym.h>
185 #include <ddb/db_extern.h>
186 #include <ddb/db_interface.h>
187 #endif
188
189 #include "com.h"
190 #if NCOM > 0
191 extern void comsoft __P((void));
192 #endif
193
194 #if defined(UVM)
195 vm_map_t exec_map = NULL;
196 vm_map_t mb_map = NULL;
197 vm_map_t phys_map = NULL;
198 #else
199 vm_map_t buffer_map;
200 #endif
201
202 /*
203 * Declare these as initialized data so we can patch them.
204 */
205 int nswbuf = 0;
206 #ifdef NBUF
207 int nbuf = NBUF;
208 #else
209 int nbuf = 0;
210 #endif
211 #ifdef BUFPAGES
212 int bufpages = BUFPAGES;
213 #else
214 int bufpages = 0;
215 #endif
216 caddr_t msgbufaddr;
217
218 int maxmem; /* max memory per process */
219
220 int totalphysmem; /* total amount of physical memory in system */
221 int physmem; /* physical memory used by NetBSD + some rsvd */
222 int resvmem; /* amount of memory reserved for PROM */
223 int unusedmem; /* amount of memory for OS that we don't use */
224 int unknownmem; /* amount of memory with an unknown use */
225
226 int cputype; /* system type, from the RPB */
227
228 /*
229 * XXX We need an address to which we can assign things so that they
230 * won't be optimized away because we didn't use the value.
231 */
232 u_int32_t no_optimize;
233
234 /* the following is used externally (sysctl_hw) */
235 char machine[] = MACHINE; /* from <machine/param.h> */
236 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
237 char cpu_model[128];
238
239 struct user *proc0paddr;
240
241 /* Number of machine cycles per microsecond */
242 u_int64_t cycles_per_usec;
243
244 /* number of cpus in the box. really! */
245 int ncpus;
246
247 /* machine check info array, valloc()'ed in allocsys() */
248
249 static struct mchkinfo startup_info,
250 *mchkinfo_all_cpus;
251
252 struct bootinfo_kernel bootinfo;
253
254 /* For built-in TCDS */
255 #if defined(DEC_3000_300) || defined(DEC_3000_500)
256 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
257 #endif
258
259 struct platform platform;
260
261 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
262 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
263 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
264
265 #ifdef DDB
266 /* start and end of kernel symbol table */
267 void *ksym_start, *ksym_end;
268 #endif
269
270 /* for cpu_sysctl() */
271 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
272 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
273 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
274
275 /*
276 * XXX This should be dynamically sized, but we have the chicken-egg problem!
277 * XXX it should also be larger than it is, because not all of the mddt
278 * XXX clusters end up being used for VM.
279 */
280 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
281 int mem_cluster_cnt;
282
283 caddr_t allocsys __P((caddr_t));
284 int cpu_dump __P((void));
285 int cpu_dumpsize __P((void));
286 u_long cpu_dump_mempagecnt __P((void));
287 void dumpsys __P((void));
288 void identifycpu __P((void));
289 void netintr __P((void));
290 void printregs __P((struct reg *));
291
292 void
293 alpha_init(pfn, ptb, bim, bip, biv)
294 u_long pfn; /* first free PFN number */
295 u_long ptb; /* PFN of current level 1 page table */
296 u_long bim; /* bootinfo magic */
297 u_long bip; /* bootinfo pointer */
298 u_long biv; /* bootinfo version */
299 {
300 extern char kernel_text[], _end[];
301 struct mddt *mddtp;
302 struct mddt_cluster *memc;
303 int i, mddtweird;
304 struct vm_physseg *vps;
305 vaddr_t kernstart, kernend;
306 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
307 vsize_t size;
308 char *p;
309 caddr_t v;
310 char *bootinfo_msg;
311
312 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
313
314 /*
315 * Turn off interrupts (not mchecks) and floating point.
316 * Make sure the instruction and data streams are consistent.
317 */
318 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
319 alpha_pal_wrfen(0);
320 ALPHA_TBIA();
321 alpha_pal_imb();
322
323 /*
324 * Get critical system information (if possible, from the
325 * information provided by the boot program).
326 */
327 bootinfo_msg = NULL;
328 if (bim == BOOTINFO_MAGIC) {
329 if (biv == 0) { /* backward compat */
330 biv = *(u_long *)bip;
331 bip += 8;
332 }
333 switch (biv) {
334 case 1: {
335 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
336
337 bootinfo.ssym = v1p->ssym;
338 bootinfo.esym = v1p->esym;
339 /* hwrpb may not be provided by boot block in v1 */
340 if (v1p->hwrpb != NULL) {
341 bootinfo.hwrpb_phys =
342 ((struct rpb *)v1p->hwrpb)->rpb_phys;
343 bootinfo.hwrpb_size = v1p->hwrpbsize;
344 } else {
345 bootinfo.hwrpb_phys =
346 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
347 bootinfo.hwrpb_size =
348 ((struct rpb *)HWRPB_ADDR)->rpb_size;
349 }
350 bcopy(v1p->boot_flags, bootinfo.boot_flags,
351 min(sizeof v1p->boot_flags,
352 sizeof bootinfo.boot_flags));
353 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
354 min(sizeof v1p->booted_kernel,
355 sizeof bootinfo.booted_kernel));
356 /* booted dev not provided in bootinfo */
357 init_prom_interface((struct rpb *)
358 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
359 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
360 sizeof bootinfo.booted_dev);
361 break;
362 }
363 default:
364 bootinfo_msg = "unknown bootinfo version";
365 goto nobootinfo;
366 }
367 } else {
368 bootinfo_msg = "boot program did not pass bootinfo";
369 nobootinfo:
370 bootinfo.ssym = (u_long)_end;
371 bootinfo.esym = (u_long)_end;
372 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
373 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
374 init_prom_interface((struct rpb *)HWRPB_ADDR);
375 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
376 sizeof bootinfo.boot_flags);
377 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
378 sizeof bootinfo.booted_kernel);
379 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
380 sizeof bootinfo.booted_dev);
381 }
382
383 /*
384 * Initialize the kernel's mapping of the RPB. It's needed for
385 * lots of things.
386 */
387 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
388
389 #if defined(DEC_3000_300) || defined(DEC_3000_500)
390 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
391 hwrpb->rpb_type == ST_DEC_3000_500) {
392 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
393 sizeof(dec_3000_scsiid));
394 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
395 sizeof(dec_3000_scsifast));
396 }
397 #endif
398
399 /*
400 * Remember how many cycles there are per microsecond,
401 * so that we can use delay(). Round up, for safety.
402 */
403 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
404
405 /*
406 * Initalize the (temporary) bootstrap console interface, so
407 * we can use printf until the VM system starts being setup.
408 * The real console is initialized before then.
409 */
410 init_bootstrap_console();
411
412 /* OUTPUT NOW ALLOWED */
413
414 /* delayed from above */
415 if (bootinfo_msg)
416 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
417 bootinfo_msg, bim, bip, biv);
418
419 /* Initialize the trap vectors on the primary processor. */
420 trap_init();
421
422 /*
423 * Find out what hardware we're on, and do basic initialization.
424 */
425 cputype = hwrpb->rpb_type;
426 if (cputype >= ncpuinit) {
427 platform_not_supported();
428 /* NOTREACHED */
429 }
430 (*cpuinit[cputype].init)();
431 strcpy(cpu_model, platform.model);
432
433 /*
434 * Initalize the real console, so the the bootstrap console is
435 * no longer necessary.
436 */
437 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
438 if (!pmap_uses_prom_console())
439 #endif
440 (*platform.cons_init)();
441
442 #ifdef DIAGNOSTIC
443 /* Paranoid sanity checking */
444
445 /* We should always be running on the the primary. */
446 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
447
448 /*
449 * On single-CPU systypes, the primary should always be CPU 0,
450 * except on Alpha 8200 systems where the CPU id is related
451 * to the VID, which is related to the Turbo Laser node id.
452 */
453 if (cputype != ST_DEC_21000)
454 assert(hwrpb->rpb_primary_cpu_id == 0);
455 #endif
456
457 /* NO MORE FIRMWARE ACCESS ALLOWED */
458 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
459 /*
460 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
461 * XXX pmap_uses_prom_console() evaluates to non-zero.)
462 */
463 #endif
464
465 /*
466 * find out this system's page size
467 */
468 PAGE_SIZE = hwrpb->rpb_page_size;
469 if (PAGE_SIZE != 8192)
470 panic("page size %d != 8192?!", PAGE_SIZE);
471
472 /*
473 * Initialize PAGE_SIZE-dependent variables.
474 */
475 #if defined(UVM)
476 uvm_setpagesize();
477 #else
478 vm_set_page_size();
479 #endif
480
481 /*
482 * Find the beginning and end of the kernel (and leave a
483 * bit of space before the beginning for the bootstrap
484 * stack).
485 */
486 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
487 #ifdef DDB
488 ksym_start = (void *)bootinfo.ssym;
489 ksym_end = (void *)bootinfo.esym;
490 kernend = (vaddr_t)round_page(ksym_end);
491 #else
492 kernend = (vaddr_t)round_page(_end);
493 #endif
494
495 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
496 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
497
498 /*
499 * Find out how much memory is available, by looking at
500 * the memory cluster descriptors. This also tries to do
501 * its best to detect things things that have never been seen
502 * before...
503 */
504 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
505
506 /* MDDT SANITY CHECKING */
507 mddtweird = 0;
508 if (mddtp->mddt_cluster_cnt < 2) {
509 mddtweird = 1;
510 printf("WARNING: weird number of mem clusters: %d\n",
511 mddtp->mddt_cluster_cnt);
512 }
513
514 #if 0
515 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
516 #endif
517
518 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
519 memc = &mddtp->mddt_clusters[i];
520 #if 0
521 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
522 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
523 #endif
524 totalphysmem += memc->mddt_pg_cnt;
525 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
526 mem_clusters[mem_cluster_cnt].start =
527 ptoa(memc->mddt_pfn);
528 mem_clusters[mem_cluster_cnt].size =
529 ptoa(memc->mddt_pg_cnt);
530 if (memc->mddt_usage & MDDT_mbz ||
531 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
532 memc->mddt_usage & MDDT_PALCODE)
533 mem_clusters[mem_cluster_cnt].size |=
534 PROT_READ;
535 else
536 mem_clusters[mem_cluster_cnt].size |=
537 PROT_READ | PROT_WRITE | PROT_EXEC;
538 mem_cluster_cnt++;
539 }
540
541 if (memc->mddt_usage & MDDT_mbz) {
542 mddtweird = 1;
543 printf("WARNING: mem cluster %d has weird "
544 "usage 0x%lx\n", i, memc->mddt_usage);
545 unknownmem += memc->mddt_pg_cnt;
546 continue;
547 }
548 if (memc->mddt_usage & MDDT_NONVOLATILE) {
549 /* XXX should handle these... */
550 printf("WARNING: skipping non-volatile mem "
551 "cluster %d\n", i);
552 unusedmem += memc->mddt_pg_cnt;
553 continue;
554 }
555 if (memc->mddt_usage & MDDT_PALCODE) {
556 resvmem += memc->mddt_pg_cnt;
557 continue;
558 }
559
560 /*
561 * We have a memory cluster available for system
562 * software use. We must determine if this cluster
563 * holds the kernel.
564 */
565 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
566 /*
567 * XXX If the kernel uses the PROM console, we only use the
568 * XXX memory after the kernel in the first system segment,
569 * XXX to avoid clobbering prom mapping, data, etc.
570 */
571 if (!pmap_uses_prom_console() || physmem == 0) {
572 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
573 physmem += memc->mddt_pg_cnt;
574 pfn0 = memc->mddt_pfn;
575 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
576 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
577 /*
578 * Must compute the location of the kernel
579 * within the segment.
580 */
581 #if 0
582 printf("Cluster %d contains kernel\n", i);
583 #endif
584 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
585 if (!pmap_uses_prom_console()) {
586 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
587 if (pfn0 < kernstartpfn) {
588 /*
589 * There is a chunk before the kernel.
590 */
591 #if 0
592 printf("Loading chunk before kernel: "
593 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
594 #endif
595 #if defined(UVM)
596 uvm_page_physload(pfn0, kernstartpfn,
597 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
598 #else
599 vm_page_physload(pfn0, kernstartpfn,
600 pfn0, kernstartpfn);
601 #endif
602 }
603 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
604 }
605 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
606 if (kernendpfn < pfn1) {
607 /*
608 * There is a chunk after the kernel.
609 */
610 #if 0
611 printf("Loading chunk after kernel: "
612 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
613 #endif
614 #if defined(UVM)
615 uvm_page_physload(kernendpfn, pfn1,
616 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
617 #else
618 vm_page_physload(kernendpfn, pfn1,
619 kernendpfn, pfn1);
620 #endif
621 }
622 } else {
623 /*
624 * Just load this cluster as one chunk.
625 */
626 #if 0
627 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
628 pfn0, pfn1);
629 #endif
630 #if defined(UVM)
631 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
632 VM_FREELIST_DEFAULT);
633 #else
634 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
635 #endif
636 }
637 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
638 }
639 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
640 }
641
642 /*
643 * Dump out the MDDT if it looks odd...
644 */
645 if (mddtweird) {
646 printf("\n");
647 printf("complete memory cluster information:\n");
648 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
649 printf("mddt %d:\n", i);
650 printf("\tpfn %lx\n",
651 mddtp->mddt_clusters[i].mddt_pfn);
652 printf("\tcnt %lx\n",
653 mddtp->mddt_clusters[i].mddt_pg_cnt);
654 printf("\ttest %lx\n",
655 mddtp->mddt_clusters[i].mddt_pg_test);
656 printf("\tbva %lx\n",
657 mddtp->mddt_clusters[i].mddt_v_bitaddr);
658 printf("\tbpa %lx\n",
659 mddtp->mddt_clusters[i].mddt_p_bitaddr);
660 printf("\tbcksum %lx\n",
661 mddtp->mddt_clusters[i].mddt_bit_cksum);
662 printf("\tusage %lx\n",
663 mddtp->mddt_clusters[i].mddt_usage);
664 }
665 printf("\n");
666 }
667
668 if (totalphysmem == 0)
669 panic("can't happen: system seems to have no memory!");
670
671 #ifdef LIMITMEM
672 /*
673 * XXX Kludge so we can run on machines with memory larger
674 * XXX than 1G until all device drivers are converted to
675 * XXX use bus_dma. (Relies on the fact that vm_physmem
676 * XXX sorted in order of increasing addresses.)
677 */
678 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
679
680 printf("******** LIMITING MEMORY TO %dMB **********\n",
681 LIMITMEM);
682
683 do {
684 u_long ovf;
685
686 vps = &vm_physmem[vm_nphysseg - 1];
687
688 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
689 /*
690 * If the start is too high, just drop
691 * the whole segment.
692 *
693 * XXX can start != avail_start in this
694 * XXX case? wouldn't that mean that
695 * XXX some memory was stolen above the
696 * XXX limit? What to do?
697 */
698 ovf = vps->end - vps->start;
699 vm_nphysseg--;
700 } else {
701 /*
702 * If the start is OK, calculate how much
703 * to drop and drop it.
704 */
705 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
706 vps->end -= ovf;
707 vps->avail_end -= ovf;
708 }
709 physmem -= ovf;
710 unusedmem += ovf;
711 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
712 }
713 #endif /* LIMITMEM */
714
715 maxmem = physmem;
716
717 #if 0
718 printf("totalphysmem = %d\n", totalphysmem);
719 printf("physmem = %d\n", physmem);
720 printf("resvmem = %d\n", resvmem);
721 printf("unusedmem = %d\n", unusedmem);
722 printf("unknownmem = %d\n", unknownmem);
723 #endif
724
725 /*
726 * Adjust some parameters if the amount of physmem
727 * available would cause us to croak. This is completely
728 * eyeballed and isn't meant to be the final answer.
729 * vm_phys_size is probably the only one to really worry
730 * about.
731 *
732 * It's for booting a GENERIC kernel on a large memory platform.
733 */
734 if (physmem >= atop(128 * 1024 * 1024)) {
735 vm_mbuf_size <<= 1;
736 vm_kmem_size <<= 3;
737 vm_phys_size <<= 2;
738 }
739
740 /*
741 * Initialize error message buffer (at end of core).
742 */
743 {
744 size_t sz = round_page(MSGBUFSIZE);
745
746 vps = &vm_physmem[vm_nphysseg - 1];
747
748 /* shrink so that it'll fit in the last segment */
749 if ((vps->avail_end - vps->avail_start) < atop(sz))
750 sz = ptoa(vps->avail_end - vps->avail_start);
751
752 vps->end -= atop(sz);
753 vps->avail_end -= atop(sz);
754 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
755 initmsgbuf(msgbufaddr, sz);
756
757 /* Remove the last segment if it now has no pages. */
758 if (vps->start == vps->end)
759 vm_nphysseg--;
760
761 /* warn if the message buffer had to be shrunk */
762 if (sz != round_page(MSGBUFSIZE))
763 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
764 round_page(MSGBUFSIZE), sz);
765
766 }
767
768 /*
769 * Init mapping for u page(s) for proc 0
770 */
771 proc0.p_addr = proc0paddr =
772 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
773
774 /*
775 * Allocate space for system data structures. These data structures
776 * are allocated here instead of cpu_startup() because physical
777 * memory is directly addressable. We don't have to map these into
778 * virtual address space.
779 */
780 size = (vsize_t)allocsys(0);
781 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
782 if ((allocsys(v) - v) != size)
783 panic("alpha_init: table size inconsistency");
784
785 /*
786 * Initialize the virtual memory system, and set the
787 * page table base register in proc 0's PCB.
788 */
789 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
790 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
791
792 /*
793 * Initialize the rest of proc 0's PCB, and cache its physical
794 * address.
795 */
796 proc0.p_md.md_pcbpaddr =
797 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
798
799 /*
800 * Set the kernel sp, reserving space for an (empty) trapframe,
801 * and make proc0's trapframe pointer point to it for sanity.
802 */
803 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
804 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
805 proc0.p_md.md_tf =
806 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
807
808 /*
809 * Look at arguments passed to us and compute boothowto.
810 */
811
812 boothowto = RB_SINGLE;
813 #ifdef KADB
814 boothowto |= RB_KDB;
815 #endif
816 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
817 /*
818 * Note that we'd really like to differentiate case here,
819 * but the Alpha AXP Architecture Reference Manual
820 * says that we shouldn't.
821 */
822 switch (*p) {
823 case 'a': /* autoboot */
824 case 'A':
825 boothowto &= ~RB_SINGLE;
826 break;
827
828 #ifdef DEBUG
829 case 'c': /* crash dump immediately after autoconfig */
830 case 'C':
831 boothowto |= RB_DUMP;
832 break;
833 #endif
834
835 #if defined(KGDB) || defined(DDB)
836 case 'd': /* break into the kernel debugger ASAP */
837 case 'D':
838 boothowto |= RB_KDB;
839 break;
840 #endif
841
842 case 'h': /* always halt, never reboot */
843 case 'H':
844 boothowto |= RB_HALT;
845 break;
846
847 #if 0
848 case 'm': /* mini root present in memory */
849 case 'M':
850 boothowto |= RB_MINIROOT;
851 break;
852 #endif
853
854 case 'n': /* askname */
855 case 'N':
856 boothowto |= RB_ASKNAME;
857 break;
858
859 case 's': /* single-user (default, supported for sanity) */
860 case 'S':
861 boothowto |= RB_SINGLE;
862 break;
863
864 case '-':
865 /*
866 * Just ignore this. It's not required, but it's
867 * common for it to be passed regardless.
868 */
869 break;
870
871 default:
872 printf("Unrecognized boot flag '%c'.\n", *p);
873 break;
874 }
875 }
876
877
878 /*
879 * Figure out the number of cpus in the box, from RPB fields.
880 * Really. We mean it.
881 */
882 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
883 struct pcs *pcsp;
884
885 pcsp = LOCATE_PCS(hwrpb, i);
886 if ((pcsp->pcs_flags & PCS_PP) != 0)
887 ncpus++;
888 }
889
890 /*
891 * Initialize debuggers, and break into them if appropriate.
892 */
893 #ifdef DDB
894 db_machine_init();
895 ddb_init(ksym_start, ksym_end);
896 if (boothowto & RB_KDB)
897 Debugger();
898 #endif
899 #ifdef KGDB
900 if (boothowto & RB_KDB)
901 kgdb_connect(0);
902 #endif
903 /*
904 * Figure out our clock frequency, from RPB fields.
905 */
906 hz = hwrpb->rpb_intr_freq >> 12;
907 if (!(60 <= hz && hz <= 10240)) {
908 hz = 1024;
909 #ifdef DIAGNOSTIC
910 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
911 hwrpb->rpb_intr_freq, hz);
912 #endif
913 }
914 }
915
916 /*
917 * Allocate space for system data structures. We are given
918 * a starting virtual address and we return a final virtual
919 * address; along the way we set each data structure pointer.
920 *
921 * We call allocsys() with 0 to find out how much space we want,
922 * allocate that much and fill it with zeroes, and the call
923 * allocsys() again with the correct base virtual address.
924 */
925 caddr_t
926 allocsys(v)
927 caddr_t v;
928 {
929
930 #define valloc(name, type, num) \
931 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
932
933 #ifdef REAL_CLISTS
934 valloc(cfree, struct cblock, nclist);
935 #endif
936 valloc(callout, struct callout, ncallout);
937 #ifdef SYSVSHM
938 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
939 #endif
940 #ifdef SYSVSEM
941 valloc(sema, struct semid_ds, seminfo.semmni);
942 valloc(sem, struct sem, seminfo.semmns);
943 /* This is pretty disgusting! */
944 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
945 #endif
946 #ifdef SYSVMSG
947 valloc(msgpool, char, msginfo.msgmax);
948 valloc(msgmaps, struct msgmap, msginfo.msgseg);
949 valloc(msghdrs, struct msg, msginfo.msgtql);
950 valloc(msqids, struct msqid_ds, msginfo.msgmni);
951 #endif
952
953 /*
954 * Determine how many buffers to allocate.
955 * We allocate 10% of memory for buffer space. Insure a
956 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
957 * headers as file i/o buffers.
958 */
959 if (bufpages == 0)
960 bufpages = (physmem * 10) / (CLSIZE * 100);
961 if (nbuf == 0) {
962 nbuf = bufpages;
963 if (nbuf < 16)
964 nbuf = 16;
965 }
966 if (nswbuf == 0) {
967 nswbuf = (nbuf / 2) &~ 1; /* force even */
968 if (nswbuf > 256)
969 nswbuf = 256; /* sanity */
970 }
971 #if !defined(UVM)
972 valloc(swbuf, struct buf, nswbuf);
973 #endif
974 valloc(buf, struct buf, nbuf);
975
976 /*
977 * There appears to be a correlation between the number
978 * of processor slots defined in the HWRPB and the whami
979 * value that can be returned.
980 */
981 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
982
983 return (v);
984 #undef valloc
985 }
986
987 void
988 consinit()
989 {
990
991 /*
992 * Everything related to console initialization is done
993 * in alpha_init().
994 */
995 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
996 printf("consinit: %susing prom console\n",
997 pmap_uses_prom_console() ? "" : "not ");
998 #endif
999 }
1000
1001 #include "pckbc.h"
1002 #include "pckbd.h"
1003 #if (NPCKBC > 0) && (NPCKBD == 0)
1004
1005 #include <machine/bus.h>
1006 #include <dev/isa/pckbcvar.h>
1007
1008 /*
1009 * This is called by the pbkbc driver if no pckbd is configured.
1010 * On the i386, it is used to glue in the old, deprecated console
1011 * code. On the Alpha, it does nothing.
1012 */
1013 int
1014 pckbc_machdep_cnattach(kbctag, kbcslot)
1015 pckbc_tag_t kbctag;
1016 pckbc_slot_t kbcslot;
1017 {
1018
1019 return (ENXIO);
1020 }
1021 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1022
1023 void
1024 cpu_startup()
1025 {
1026 register unsigned i;
1027 int base, residual;
1028 vaddr_t minaddr, maxaddr;
1029 vsize_t size;
1030 #if defined(DEBUG)
1031 extern int pmapdebug;
1032 int opmapdebug = pmapdebug;
1033
1034 pmapdebug = 0;
1035 #endif
1036
1037 /*
1038 * Good {morning,afternoon,evening,night}.
1039 */
1040 printf(version);
1041 identifycpu();
1042 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1043 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1044 ptoa(resvmem), ptoa(physmem));
1045 if (unusedmem)
1046 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1047 if (unknownmem)
1048 printf("WARNING: %d bytes of memory with unknown purpose\n",
1049 ctob(unknownmem));
1050
1051 /*
1052 * Allocate virtual address space for file I/O buffers.
1053 * Note they are different than the array of headers, 'buf',
1054 * and usually occupy more virtual memory than physical.
1055 */
1056 size = MAXBSIZE * nbuf;
1057 #if defined(UVM)
1058 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1059 NULL, UVM_UNKNOWN_OFFSET,
1060 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1061 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1062 panic("startup: cannot allocate VM for buffers");
1063 #else
1064 buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1065 &maxaddr, size, TRUE);
1066 minaddr = (vaddr_t)buffers;
1067 if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1068 &minaddr, size, FALSE) != KERN_SUCCESS)
1069 panic("startup: cannot allocate buffers");
1070 #endif /* UVM */
1071 base = bufpages / nbuf;
1072 residual = bufpages % nbuf;
1073 for (i = 0; i < nbuf; i++) {
1074 #if defined(UVM)
1075 vsize_t curbufsize;
1076 vaddr_t curbuf;
1077 struct vm_page *pg;
1078
1079 /*
1080 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1081 * that MAXBSIZE space, we allocate and map (base+1) pages
1082 * for the first "residual" buffers, and then we allocate
1083 * "base" pages for the rest.
1084 */
1085 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1086 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1087
1088 while (curbufsize) {
1089 pg = uvm_pagealloc(NULL, 0, NULL);
1090 if (pg == NULL)
1091 panic("cpu_startup: not enough memory for "
1092 "buffer cache");
1093 #if defined(PMAP_NEW)
1094 pmap_kenter_pgs(curbuf, &pg, 1);
1095 #else
1096 pmap_enter(kernel_map->pmap, curbuf,
1097 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1098 #endif
1099 curbuf += PAGE_SIZE;
1100 curbufsize -= PAGE_SIZE;
1101 }
1102 #else /* ! UVM */
1103 vsize_t curbufsize;
1104 vaddr_t curbuf;
1105
1106 /*
1107 * First <residual> buffers get (base+1) physical pages
1108 * allocated for them. The rest get (base) physical pages.
1109 *
1110 * The rest of each buffer occupies virtual space,
1111 * but has no physical memory allocated for it.
1112 */
1113 curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1114 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1115 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1116 vm_map_simplify(buffer_map, curbuf);
1117 #endif /* UVM */
1118 }
1119 /*
1120 * Allocate a submap for exec arguments. This map effectively
1121 * limits the number of processes exec'ing at any time.
1122 */
1123 #if defined(UVM)
1124 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1125 16 * NCARGS, TRUE, FALSE, NULL);
1126 #else
1127 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1128 16 * NCARGS, TRUE);
1129 #endif
1130
1131 /*
1132 * Allocate a submap for physio
1133 */
1134 #if defined(UVM)
1135 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1136 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1137 #else
1138 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1139 VM_PHYS_SIZE, TRUE);
1140 #endif
1141
1142 /*
1143 * Finally, allocate mbuf cluster submap.
1144 */
1145 #if defined(UVM)
1146 mb_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1147 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1148 #else
1149 mb_map = kmem_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1150 VM_MBUF_SIZE, FALSE);
1151 #endif
1152 /*
1153 * Initialize callouts
1154 */
1155 callfree = callout;
1156 for (i = 1; i < ncallout; i++)
1157 callout[i-1].c_next = &callout[i];
1158 callout[i-1].c_next = NULL;
1159
1160 #if defined(DEBUG)
1161 pmapdebug = opmapdebug;
1162 #endif
1163 #if defined(UVM)
1164 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1165 #else
1166 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1167 #endif
1168 #if 0
1169 {
1170 extern u_long pmap_pages_stolen;
1171 printf("stolen memory for VM structures = %ld bytes\n",
1172 pmap_pages_stolen * PAGE_SIZE);
1173 }
1174 #endif
1175 printf("using %ld buffers containing %ld bytes of memory\n",
1176 (long)nbuf, (long)(bufpages * CLBYTES));
1177
1178 /*
1179 * Set up buffers, so they can be used to read disk labels.
1180 */
1181 bufinit();
1182
1183 /*
1184 * Set up the HWPCB so that it's safe to configure secondary
1185 * CPUs.
1186 */
1187 hwrpb_primary_init();
1188
1189 /*
1190 * Configure the system.
1191 */
1192 configure();
1193 }
1194
1195 /*
1196 * Retrieve the platform name from the DSR.
1197 */
1198 const char *
1199 alpha_dsr_sysname()
1200 {
1201 struct dsrdb *dsr;
1202 const char *sysname;
1203
1204 /*
1205 * DSR does not exist on early HWRPB versions.
1206 */
1207 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1208 return (NULL);
1209
1210 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1211 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1212 sizeof(u_int64_t)));
1213 return (sysname);
1214 }
1215
1216 /*
1217 * Lookup the system specified system variation in the provided table,
1218 * returning the model string on match.
1219 */
1220 const char *
1221 alpha_variation_name(variation, avtp)
1222 u_int64_t variation;
1223 const struct alpha_variation_table *avtp;
1224 {
1225 int i;
1226
1227 for (i = 0; avtp[i].avt_model != NULL; i++)
1228 if (avtp[i].avt_variation == variation)
1229 return (avtp[i].avt_model);
1230 return (NULL);
1231 }
1232
1233 /*
1234 * Generate a default platform name based for unknown system variations.
1235 */
1236 const char *
1237 alpha_unknown_sysname()
1238 {
1239 static char s[128]; /* safe size */
1240
1241 sprintf(s, "%s family, unknown model variation 0x%lx",
1242 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1243 return ((const char *)s);
1244 }
1245
1246 void
1247 identifycpu()
1248 {
1249
1250 /*
1251 * print out CPU identification information.
1252 */
1253 printf("%s, %ldMHz\n", cpu_model,
1254 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1255 printf("%ld byte page size, %d processor%s.\n",
1256 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1257 #if 0
1258 /* this isn't defined for any systems that we run on? */
1259 printf("serial number 0x%lx 0x%lx\n",
1260 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1261
1262 /* and these aren't particularly useful! */
1263 printf("variation: 0x%lx, revision 0x%lx\n",
1264 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1265 #endif
1266 }
1267
1268 int waittime = -1;
1269 struct pcb dumppcb;
1270
1271 void
1272 cpu_reboot(howto, bootstr)
1273 int howto;
1274 char *bootstr;
1275 {
1276 extern int cold;
1277 #if defined(MULTIPROCESSOR)
1278 #if 0 /* XXX See below. */
1279 u_long cpu_id;
1280 #endif
1281 #endif
1282
1283 #if defined(MULTIPROCESSOR)
1284 /* We must be running on the primary CPU. */
1285 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1286 panic("cpu_reboot: not on primary CPU!");
1287 #endif
1288
1289 /* If system is cold, just halt. */
1290 if (cold) {
1291 howto |= RB_HALT;
1292 goto haltsys;
1293 }
1294
1295 /* If "always halt" was specified as a boot flag, obey. */
1296 if ((boothowto & RB_HALT) != 0)
1297 howto |= RB_HALT;
1298
1299 boothowto = howto;
1300 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1301 waittime = 0;
1302 vfs_shutdown();
1303 /*
1304 * If we've been adjusting the clock, the todr
1305 * will be out of synch; adjust it now.
1306 */
1307 resettodr();
1308 }
1309
1310 /* Disable interrupts. */
1311 splhigh();
1312
1313 /* If rebooting and a dump is requested do it. */
1314 #if 0
1315 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1316 #else
1317 if (howto & RB_DUMP)
1318 #endif
1319 dumpsys();
1320
1321 haltsys:
1322
1323 /* run any shutdown hooks */
1324 doshutdownhooks();
1325
1326 #if defined(MULTIPROCESSOR)
1327 #if 0 /* XXX doesn't work when called from here?! */
1328 /* Kill off any secondary CPUs. */
1329 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1330 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1331 cpus[cpu_id] == NULL)
1332 continue;
1333 cpu_halt_secondary(cpu_id);
1334 }
1335 #endif
1336 #endif
1337
1338 #ifdef BOOTKEY
1339 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1340 cnpollc(1); /* for proper keyboard command handling */
1341 cngetc();
1342 cnpollc(0);
1343 printf("\n");
1344 #endif
1345
1346 /* Finally, powerdown/halt/reboot the system. */
1347 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1348 platform.powerdown != NULL) {
1349 (*platform.powerdown)();
1350 printf("WARNING: powerdown failed!\n");
1351 }
1352 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1353 prom_halt(howto & RB_HALT);
1354 /*NOTREACHED*/
1355 }
1356
1357 /*
1358 * These variables are needed by /sbin/savecore
1359 */
1360 u_long dumpmag = 0x8fca0101; /* magic number */
1361 int dumpsize = 0; /* pages */
1362 long dumplo = 0; /* blocks */
1363
1364 /*
1365 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1366 */
1367 int
1368 cpu_dumpsize()
1369 {
1370 int size;
1371
1372 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1373 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1374 if (roundup(size, dbtob(1)) != dbtob(1))
1375 return -1;
1376
1377 return (1);
1378 }
1379
1380 /*
1381 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1382 */
1383 u_long
1384 cpu_dump_mempagecnt()
1385 {
1386 u_long i, n;
1387
1388 n = 0;
1389 for (i = 0; i < mem_cluster_cnt; i++)
1390 n += atop(mem_clusters[i].size);
1391 return (n);
1392 }
1393
1394 /*
1395 * cpu_dump: dump machine-dependent kernel core dump headers.
1396 */
1397 int
1398 cpu_dump()
1399 {
1400 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1401 char buf[dbtob(1)];
1402 kcore_seg_t *segp;
1403 cpu_kcore_hdr_t *cpuhdrp;
1404 phys_ram_seg_t *memsegp;
1405 int i;
1406
1407 dump = bdevsw[major(dumpdev)].d_dump;
1408
1409 bzero(buf, sizeof buf);
1410 segp = (kcore_seg_t *)buf;
1411 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1412 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1413 ALIGN(sizeof(*cpuhdrp))];
1414
1415 /*
1416 * Generate a segment header.
1417 */
1418 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1419 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1420
1421 /*
1422 * Add the machine-dependent header info.
1423 */
1424 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1425 cpuhdrp->page_size = PAGE_SIZE;
1426 cpuhdrp->nmemsegs = mem_cluster_cnt;
1427
1428 /*
1429 * Fill in the memory segment descriptors.
1430 */
1431 for (i = 0; i < mem_cluster_cnt; i++) {
1432 memsegp[i].start = mem_clusters[i].start;
1433 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1434 }
1435
1436 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1437 }
1438
1439 /*
1440 * This is called by main to set dumplo and dumpsize.
1441 * Dumps always skip the first CLBYTES of disk space
1442 * in case there might be a disk label stored there.
1443 * If there is extra space, put dump at the end to
1444 * reduce the chance that swapping trashes it.
1445 */
1446 void
1447 cpu_dumpconf()
1448 {
1449 int nblks, dumpblks; /* size of dump area */
1450 int maj;
1451
1452 if (dumpdev == NODEV)
1453 goto bad;
1454 maj = major(dumpdev);
1455 if (maj < 0 || maj >= nblkdev)
1456 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1457 if (bdevsw[maj].d_psize == NULL)
1458 goto bad;
1459 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1460 if (nblks <= ctod(1))
1461 goto bad;
1462
1463 dumpblks = cpu_dumpsize();
1464 if (dumpblks < 0)
1465 goto bad;
1466 dumpblks += ctod(cpu_dump_mempagecnt());
1467
1468 /* If dump won't fit (incl. room for possible label), punt. */
1469 if (dumpblks > (nblks - ctod(1)))
1470 goto bad;
1471
1472 /* Put dump at end of partition */
1473 dumplo = nblks - dumpblks;
1474
1475 /* dumpsize is in page units, and doesn't include headers. */
1476 dumpsize = cpu_dump_mempagecnt();
1477 return;
1478
1479 bad:
1480 dumpsize = 0;
1481 return;
1482 }
1483
1484 /*
1485 * Dump the kernel's image to the swap partition.
1486 */
1487 #define BYTES_PER_DUMP NBPG
1488
1489 void
1490 dumpsys()
1491 {
1492 u_long totalbytesleft, bytes, i, n, memcl;
1493 u_long maddr;
1494 int psize;
1495 daddr_t blkno;
1496 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1497 int error;
1498
1499 /* Save registers. */
1500 savectx(&dumppcb);
1501
1502 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1503 if (dumpdev == NODEV)
1504 return;
1505
1506 /*
1507 * For dumps during autoconfiguration,
1508 * if dump device has already configured...
1509 */
1510 if (dumpsize == 0)
1511 cpu_dumpconf();
1512 if (dumplo <= 0) {
1513 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1514 minor(dumpdev));
1515 return;
1516 }
1517 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1518 minor(dumpdev), dumplo);
1519
1520 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1521 printf("dump ");
1522 if (psize == -1) {
1523 printf("area unavailable\n");
1524 return;
1525 }
1526
1527 /* XXX should purge all outstanding keystrokes. */
1528
1529 if ((error = cpu_dump()) != 0)
1530 goto err;
1531
1532 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1533 blkno = dumplo + cpu_dumpsize();
1534 dump = bdevsw[major(dumpdev)].d_dump;
1535 error = 0;
1536
1537 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1538 maddr = mem_clusters[memcl].start;
1539 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1540
1541 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1542
1543 /* Print out how many MBs we to go. */
1544 if ((totalbytesleft % (1024*1024)) == 0)
1545 printf("%d ", totalbytesleft / (1024 * 1024));
1546
1547 /* Limit size for next transfer. */
1548 n = bytes - i;
1549 if (n > BYTES_PER_DUMP)
1550 n = BYTES_PER_DUMP;
1551
1552 error = (*dump)(dumpdev, blkno,
1553 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1554 if (error)
1555 goto err;
1556 maddr += n;
1557 blkno += btodb(n); /* XXX? */
1558
1559 /* XXX should look for keystrokes, to cancel. */
1560 }
1561 }
1562
1563 err:
1564 switch (error) {
1565
1566 case ENXIO:
1567 printf("device bad\n");
1568 break;
1569
1570 case EFAULT:
1571 printf("device not ready\n");
1572 break;
1573
1574 case EINVAL:
1575 printf("area improper\n");
1576 break;
1577
1578 case EIO:
1579 printf("i/o error\n");
1580 break;
1581
1582 case EINTR:
1583 printf("aborted from console\n");
1584 break;
1585
1586 case 0:
1587 printf("succeeded\n");
1588 break;
1589
1590 default:
1591 printf("error %d\n", error);
1592 break;
1593 }
1594 printf("\n\n");
1595 delay(1000);
1596 }
1597
1598 void
1599 frametoreg(framep, regp)
1600 struct trapframe *framep;
1601 struct reg *regp;
1602 {
1603
1604 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1605 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1606 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1607 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1608 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1609 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1610 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1611 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1612 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1613 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1614 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1615 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1616 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1617 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1618 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1619 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1620 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1621 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1622 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1623 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1624 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1625 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1626 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1627 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1628 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1629 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1630 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1631 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1632 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1633 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1634 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1635 regp->r_regs[R_ZERO] = 0;
1636 }
1637
1638 void
1639 regtoframe(regp, framep)
1640 struct reg *regp;
1641 struct trapframe *framep;
1642 {
1643
1644 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1645 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1646 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1647 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1648 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1649 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1650 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1651 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1652 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1653 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1654 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1655 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1656 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1657 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1658 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1659 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1660 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1661 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1662 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1663 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1664 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1665 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1666 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1667 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1668 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1669 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1670 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1671 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1672 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1673 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1674 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1675 /* ??? = regp->r_regs[R_ZERO]; */
1676 }
1677
1678 void
1679 printregs(regp)
1680 struct reg *regp;
1681 {
1682 int i;
1683
1684 for (i = 0; i < 32; i++)
1685 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1686 i & 1 ? "\n" : "\t");
1687 }
1688
1689 void
1690 regdump(framep)
1691 struct trapframe *framep;
1692 {
1693 struct reg reg;
1694
1695 frametoreg(framep, ®);
1696 reg.r_regs[R_SP] = alpha_pal_rdusp();
1697
1698 printf("REGISTERS:\n");
1699 printregs(®);
1700 }
1701
1702 #ifdef DEBUG
1703 int sigdebug = 0;
1704 int sigpid = 0;
1705 #define SDB_FOLLOW 0x01
1706 #define SDB_KSTACK 0x02
1707 #endif
1708
1709 /*
1710 * Send an interrupt to process.
1711 */
1712 void
1713 sendsig(catcher, sig, mask, code)
1714 sig_t catcher;
1715 int sig;
1716 sigset_t *mask;
1717 u_long code;
1718 {
1719 struct proc *p = curproc;
1720 struct sigcontext *scp, ksc;
1721 struct trapframe *frame;
1722 struct sigacts *psp = p->p_sigacts;
1723 int onstack, fsize, rndfsize;
1724 extern struct proc *fpcurproc;
1725
1726 frame = p->p_md.md_tf;
1727
1728 /* Do we need to jump onto the signal stack? */
1729 onstack =
1730 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1731 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1732
1733 /* Allocate space for the signal handler context. */
1734 fsize = sizeof(ksc);
1735 rndfsize = ((fsize + 15) / 16) * 16;
1736
1737 if (onstack)
1738 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1739 psp->ps_sigstk.ss_size);
1740 else
1741 scp = (struct sigcontext *)(alpha_pal_rdusp());
1742 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1743
1744 #ifdef DEBUG
1745 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1746 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1747 sig, &onstack, scp);
1748 #endif
1749
1750 /* Build stack frame for signal trampoline. */
1751 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1752 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1753
1754 /* Save register context. */
1755 frametoreg(frame, (struct reg *)ksc.sc_regs);
1756 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1757 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1758
1759 /* save the floating-point state, if necessary, then copy it. */
1760 if (p == fpcurproc) {
1761 alpha_pal_wrfen(1);
1762 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1763 alpha_pal_wrfen(0);
1764 fpcurproc = NULL;
1765 }
1766 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1767 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1768 sizeof(struct fpreg));
1769 ksc.sc_fp_control = 0; /* XXX ? */
1770 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1771 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1772
1773 /* Save signal stack. */
1774 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1775
1776 /* Save signal mask. */
1777 ksc.sc_mask = *mask;
1778
1779 #ifdef COMPAT_13
1780 /*
1781 * XXX We always have to save an old style signal mask because
1782 * XXX we might be delivering a signal to a process which will
1783 * XXX escape from the signal in a non-standard way and invoke
1784 * XXX sigreturn() directly.
1785 */
1786 {
1787 /* Note: it's a long in the stack frame. */
1788 sigset13_t mask13;
1789
1790 native_sigset_to_sigset13(mask, &mask13);
1791 ksc.__sc_mask13 = mask13;
1792 }
1793 #endif
1794
1795 #ifdef COMPAT_OSF1
1796 /*
1797 * XXX Create an OSF/1-style sigcontext and associated goo.
1798 */
1799 #endif
1800
1801 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1802 /*
1803 * Process has trashed its stack; give it an illegal
1804 * instruction to halt it in its tracks.
1805 */
1806 #ifdef DEBUG
1807 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1808 printf("sendsig(%d): copyout failed on sig %d\n",
1809 p->p_pid, sig);
1810 #endif
1811 sigexit(p, SIGILL);
1812 /* NOTREACHED */
1813 }
1814 #ifdef DEBUG
1815 if (sigdebug & SDB_FOLLOW)
1816 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1817 scp, code);
1818 #endif
1819
1820 /* Set up the registers to return to sigcode. */
1821 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1822 frame->tf_regs[FRAME_A0] = sig;
1823 frame->tf_regs[FRAME_A1] = code;
1824 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1825 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1826 alpha_pal_wrusp((unsigned long)scp);
1827
1828 /* Remember that we're now on the signal stack. */
1829 if (onstack)
1830 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1831
1832 #ifdef DEBUG
1833 if (sigdebug & SDB_FOLLOW)
1834 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1835 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1836 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1837 printf("sendsig(%d): sig %d returns\n",
1838 p->p_pid, sig);
1839 #endif
1840 }
1841
1842 /*
1843 * System call to cleanup state after a signal
1844 * has been taken. Reset signal mask and
1845 * stack state from context left by sendsig (above).
1846 * Return to previous pc and psl as specified by
1847 * context left by sendsig. Check carefully to
1848 * make sure that the user has not modified the
1849 * psl to gain improper priviledges or to cause
1850 * a machine fault.
1851 */
1852 /* ARGSUSED */
1853 int
1854 sys___sigreturn14(p, v, retval)
1855 struct proc *p;
1856 void *v;
1857 register_t *retval;
1858 {
1859 struct sys___sigreturn14_args /* {
1860 syscallarg(struct sigcontext *) sigcntxp;
1861 } */ *uap = v;
1862 struct sigcontext *scp, ksc;
1863 extern struct proc *fpcurproc;
1864
1865 /*
1866 * The trampoline code hands us the context.
1867 * It is unsafe to keep track of it ourselves, in the event that a
1868 * program jumps out of a signal handler.
1869 */
1870 scp = SCARG(uap, sigcntxp);
1871 #ifdef DEBUG
1872 if (sigdebug & SDB_FOLLOW)
1873 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1874 #endif
1875 if (ALIGN(scp) != (u_int64_t)scp)
1876 return (EINVAL);
1877
1878 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1879 return (EFAULT);
1880
1881 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1882 return (EINVAL);
1883
1884 /* Restore register context. */
1885 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1886 p->p_md.md_tf->tf_regs[FRAME_PS] =
1887 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1888
1889 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1890 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1891
1892 /* XXX ksc.sc_ownedfp ? */
1893 if (p == fpcurproc)
1894 fpcurproc = NULL;
1895 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1896 sizeof(struct fpreg));
1897 /* XXX ksc.sc_fp_control ? */
1898
1899 /* Restore signal stack. */
1900 if (ksc.sc_onstack & SS_ONSTACK)
1901 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1902 else
1903 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1904
1905 /* Restore signal mask. */
1906 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1907
1908 #ifdef DEBUG
1909 if (sigdebug & SDB_FOLLOW)
1910 printf("sigreturn(%d): returns\n", p->p_pid);
1911 #endif
1912 return (EJUSTRETURN);
1913 }
1914
1915 /*
1916 * machine dependent system variables.
1917 */
1918 int
1919 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1920 int *name;
1921 u_int namelen;
1922 void *oldp;
1923 size_t *oldlenp;
1924 void *newp;
1925 size_t newlen;
1926 struct proc *p;
1927 {
1928 dev_t consdev;
1929
1930 /* all sysctl names at this level are terminal */
1931 if (namelen != 1)
1932 return (ENOTDIR); /* overloaded */
1933
1934 switch (name[0]) {
1935 case CPU_CONSDEV:
1936 if (cn_tab != NULL)
1937 consdev = cn_tab->cn_dev;
1938 else
1939 consdev = NODEV;
1940 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1941 sizeof consdev));
1942
1943 case CPU_ROOT_DEVICE:
1944 return (sysctl_rdstring(oldp, oldlenp, newp,
1945 root_device->dv_xname));
1946
1947 case CPU_UNALIGNED_PRINT:
1948 return (sysctl_int(oldp, oldlenp, newp, newlen,
1949 &alpha_unaligned_print));
1950
1951 case CPU_UNALIGNED_FIX:
1952 return (sysctl_int(oldp, oldlenp, newp, newlen,
1953 &alpha_unaligned_fix));
1954
1955 case CPU_UNALIGNED_SIGBUS:
1956 return (sysctl_int(oldp, oldlenp, newp, newlen,
1957 &alpha_unaligned_sigbus));
1958
1959 case CPU_BOOTED_KERNEL:
1960 return (sysctl_rdstring(oldp, oldlenp, newp,
1961 bootinfo.booted_kernel));
1962
1963 default:
1964 return (EOPNOTSUPP);
1965 }
1966 /* NOTREACHED */
1967 }
1968
1969 /*
1970 * Set registers on exec.
1971 */
1972 void
1973 setregs(p, pack, stack)
1974 register struct proc *p;
1975 struct exec_package *pack;
1976 u_long stack;
1977 {
1978 struct trapframe *tfp = p->p_md.md_tf;
1979 extern struct proc *fpcurproc;
1980 #ifdef DEBUG
1981 int i;
1982 #endif
1983
1984 #ifdef DEBUG
1985 /*
1986 * Crash and dump, if the user requested it.
1987 */
1988 if (boothowto & RB_DUMP)
1989 panic("crash requested by boot flags");
1990 #endif
1991
1992 #ifdef DEBUG
1993 for (i = 0; i < FRAME_SIZE; i++)
1994 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1995 #else
1996 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1997 #endif
1998 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1999 #define FP_RN 2 /* XXX */
2000 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
2001 alpha_pal_wrusp(stack);
2002 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
2003 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
2004
2005 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
2006 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
2007 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2008 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2009 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2010
2011 p->p_md.md_flags &= ~MDP_FPUSED;
2012 if (fpcurproc == p)
2013 fpcurproc = NULL;
2014 }
2015
2016 void
2017 netintr()
2018 {
2019 int n, s;
2020
2021 s = splhigh();
2022 n = netisr;
2023 netisr = 0;
2024 splx(s);
2025
2026 #define DONETISR(bit, fn) \
2027 do { \
2028 if (n & (1 << (bit))) \
2029 fn; \
2030 } while (0)
2031
2032 #ifdef INET
2033 #if NARP > 0
2034 DONETISR(NETISR_ARP, arpintr());
2035 #endif
2036 DONETISR(NETISR_IP, ipintr());
2037 #endif
2038 #ifdef NETATALK
2039 DONETISR(NETISR_ATALK, atintr());
2040 #endif
2041 #ifdef NS
2042 DONETISR(NETISR_NS, nsintr());
2043 #endif
2044 #ifdef ISO
2045 DONETISR(NETISR_ISO, clnlintr());
2046 #endif
2047 #ifdef CCITT
2048 DONETISR(NETISR_CCITT, ccittintr());
2049 #endif
2050 #ifdef NATM
2051 DONETISR(NETISR_NATM, natmintr());
2052 #endif
2053 #if NPPP > 1
2054 DONETISR(NETISR_PPP, pppintr());
2055 #endif
2056
2057 #undef DONETISR
2058 }
2059
2060 void
2061 do_sir()
2062 {
2063 u_int64_t n;
2064
2065 do {
2066 (void)splhigh();
2067 n = ssir;
2068 ssir = 0;
2069 splsoft(); /* don't recurse through spl0() */
2070
2071 #if defined(UVM)
2072 #define COUNT_SOFT uvmexp.softs++
2073 #else
2074 #define COUNT_SOFT cnt.v_soft++
2075 #endif
2076
2077 #define DO_SIR(bit, fn) \
2078 do { \
2079 if (n & (bit)) { \
2080 COUNT_SOFT; \
2081 fn; \
2082 } \
2083 } while (0)
2084
2085 DO_SIR(SIR_NET, netintr());
2086 DO_SIR(SIR_CLOCK, softclock());
2087 #if NCOM > 0
2088 DO_SIR(SIR_SERIAL, comsoft());
2089 #endif
2090
2091 #undef COUNT_SOFT
2092 #undef DO_SIR
2093 } while (ssir != 0);
2094 }
2095
2096 int
2097 spl0()
2098 {
2099
2100 if (ssir)
2101 do_sir(); /* it lowers the IPL itself */
2102
2103 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2104 }
2105
2106 /*
2107 * The following primitives manipulate the run queues. _whichqs tells which
2108 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2109 * into queues, Remrunqueue removes them from queues. The running process is
2110 * on no queue, other processes are on a queue related to p->p_priority,
2111 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2112 * available queues.
2113 */
2114 /*
2115 * setrunqueue(p)
2116 * proc *p;
2117 *
2118 * Call should be made at splclock(), and p->p_stat should be SRUN.
2119 */
2120
2121 void
2122 setrunqueue(p)
2123 struct proc *p;
2124 {
2125 int bit;
2126
2127 /* firewall: p->p_back must be NULL */
2128 if (p->p_back != NULL)
2129 panic("setrunqueue");
2130
2131 bit = p->p_priority >> 2;
2132 whichqs |= (1 << bit);
2133 p->p_forw = (struct proc *)&qs[bit];
2134 p->p_back = qs[bit].ph_rlink;
2135 p->p_back->p_forw = p;
2136 qs[bit].ph_rlink = p;
2137 }
2138
2139 /*
2140 * remrunqueue(p)
2141 *
2142 * Call should be made at splclock().
2143 */
2144 void
2145 remrunqueue(p)
2146 struct proc *p;
2147 {
2148 int bit;
2149
2150 bit = p->p_priority >> 2;
2151 if ((whichqs & (1 << bit)) == 0)
2152 panic("remrunqueue");
2153
2154 p->p_back->p_forw = p->p_forw;
2155 p->p_forw->p_back = p->p_back;
2156 p->p_back = NULL; /* for firewall checking. */
2157
2158 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2159 whichqs &= ~(1 << bit);
2160 }
2161
2162 /*
2163 * Return the best possible estimate of the time in the timeval
2164 * to which tvp points. Unfortunately, we can't read the hardware registers.
2165 * We guarantee that the time will be greater than the value obtained by a
2166 * previous call.
2167 */
2168 void
2169 microtime(tvp)
2170 register struct timeval *tvp;
2171 {
2172 int s = splclock();
2173 static struct timeval lasttime;
2174
2175 *tvp = time;
2176 #ifdef notdef
2177 tvp->tv_usec += clkread();
2178 while (tvp->tv_usec > 1000000) {
2179 tvp->tv_sec++;
2180 tvp->tv_usec -= 1000000;
2181 }
2182 #endif
2183 if (tvp->tv_sec == lasttime.tv_sec &&
2184 tvp->tv_usec <= lasttime.tv_usec &&
2185 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2186 tvp->tv_sec++;
2187 tvp->tv_usec -= 1000000;
2188 }
2189 lasttime = *tvp;
2190 splx(s);
2191 }
2192
2193 /*
2194 * Wait "n" microseconds.
2195 */
2196 void
2197 delay(n)
2198 unsigned long n;
2199 {
2200 long N = cycles_per_usec * (n);
2201
2202 while (N > 0) /* XXX */
2203 N -= 3; /* XXX */
2204 }
2205
2206 #if defined(COMPAT_OSF1) || 1 /* XXX */
2207 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2208 u_long));
2209
2210 void
2211 cpu_exec_ecoff_setregs(p, epp, stack)
2212 struct proc *p;
2213 struct exec_package *epp;
2214 u_long stack;
2215 {
2216 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2217
2218 setregs(p, epp, stack);
2219 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2220 }
2221
2222 /*
2223 * cpu_exec_ecoff_hook():
2224 * cpu-dependent ECOFF format hook for execve().
2225 *
2226 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2227 *
2228 */
2229 int
2230 cpu_exec_ecoff_hook(p, epp)
2231 struct proc *p;
2232 struct exec_package *epp;
2233 {
2234 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2235 extern struct emul emul_netbsd;
2236 #ifdef COMPAT_OSF1
2237 extern struct emul emul_osf1;
2238 #endif
2239
2240 switch (execp->f.f_magic) {
2241 #ifdef COMPAT_OSF1
2242 case ECOFF_MAGIC_ALPHA:
2243 epp->ep_emul = &emul_osf1;
2244 break;
2245 #endif
2246
2247 case ECOFF_MAGIC_NETBSD_ALPHA:
2248 epp->ep_emul = &emul_netbsd;
2249 break;
2250
2251 default:
2252 return ENOEXEC;
2253 }
2254 return 0;
2255 }
2256 #endif
2257
2258 int
2259 alpha_pa_access(pa)
2260 u_long pa;
2261 {
2262 int i;
2263
2264 for (i = 0; i < mem_cluster_cnt; i++) {
2265 if (pa < mem_clusters[i].start)
2266 continue;
2267 if ((pa - mem_clusters[i].start) >=
2268 (mem_clusters[i].size & ~PAGE_MASK))
2269 continue;
2270 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2271 }
2272 return (PROT_NONE);
2273 }
2274
2275 /* XXX XXX BEGIN XXX XXX */
2276 paddr_t alpha_XXX_dmamap_or; /* XXX */
2277 /* XXX */
2278 paddr_t /* XXX */
2279 alpha_XXX_dmamap(v) /* XXX */
2280 vaddr_t v; /* XXX */
2281 { /* XXX */
2282 /* XXX */
2283 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2284 } /* XXX */
2285 /* XXX XXX END XXX XXX */
2286
2287 struct mchkinfo *
2288 cpu_mchkinfo()
2289 {
2290 if (mchkinfo_all_cpus == NULL)
2291 return &startup_info;
2292 return mchkinfo_all_cpus + alpha_pal_whami();
2293 }
2294