machdep.c revision 1.154 1 /* $NetBSD: machdep.c,v 1.154 1998/11/02 04:43:23 ross Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_uvm.h"
70 #include "opt_pmap_new.h"
71 #include "opt_dec_3000_300.h"
72 #include "opt_dec_3000_500.h"
73 #include "opt_compat_osf1.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_inet.h"
76 #include "opt_atalk.h"
77 #include "opt_ccitt.h"
78 #include "opt_iso.h"
79 #include "opt_ns.h"
80 #include "opt_natm.h"
81 #include "opt_sysv.h"
82
83 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84
85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.154 1998/11/02 04:43:23 ross Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/signalvar.h>
90 #include <sys/kernel.h>
91 #include <sys/map.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <sys/reboot.h>
95 #include <sys/device.h>
96 #include <sys/file.h>
97 #ifdef REAL_CLISTS
98 #include <sys/clist.h>
99 #endif
100 #include <sys/callout.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/mman.h>
104 #include <sys/msgbuf.h>
105 #include <sys/ioctl.h>
106 #include <sys/tty.h>
107 #include <sys/user.h>
108 #include <sys/exec.h>
109 #include <sys/exec_ecoff.h>
110 #include <vm/vm.h>
111 #include <sys/sysctl.h>
112 #include <sys/core.h>
113 #include <sys/kcore.h>
114 #include <machine/kcore.h>
115 #ifdef SYSVMSG
116 #include <sys/msg.h>
117 #endif
118 #ifdef SYSVSEM
119 #include <sys/sem.h>
120 #endif
121 #ifdef SYSVSHM
122 #include <sys/shm.h>
123 #endif
124
125 #include <sys/mount.h>
126 #include <sys/syscallargs.h>
127
128 #include <vm/vm_kern.h>
129
130 #if defined(UVM)
131 #include <uvm/uvm_extern.h>
132 #endif
133
134 #include <dev/cons.h>
135
136 #include <machine/autoconf.h>
137 #include <machine/cpu.h>
138 #include <machine/reg.h>
139 #include <machine/rpb.h>
140 #include <machine/prom.h>
141 #include <machine/conf.h>
142
143 #include <alpha/alpha/cpuvar.h>
144
145 #include <net/netisr.h>
146 #include <net/if.h>
147
148 #ifdef INET
149 #include <net/route.h>
150 #include <netinet/in.h>
151 #include <netinet/ip_var.h>
152 #include "arp.h"
153 #if NARP > 0
154 #include <netinet/if_inarp.h>
155 #endif
156 #endif
157 #ifdef NS
158 #include <netns/ns_var.h>
159 #endif
160 #ifdef ISO
161 #include <netiso/iso.h>
162 #include <netiso/clnp.h>
163 #endif
164 #ifdef CCITT
165 #include <netccitt/x25.h>
166 #include <netccitt/pk.h>
167 #include <netccitt/pk_extern.h>
168 #endif
169 #ifdef NATM
170 #include <netnatm/natm.h>
171 #endif
172 #ifdef NETATALK
173 #include <netatalk/at_extern.h>
174 #endif
175 #include "ppp.h"
176 #if NPPP > 0
177 #include <net/ppp_defs.h>
178 #include <net/if_ppp.h>
179 #endif
180
181 #ifdef DDB
182 #include <machine/db_machdep.h>
183 #include <ddb/db_access.h>
184 #include <ddb/db_sym.h>
185 #include <ddb/db_extern.h>
186 #include <ddb/db_interface.h>
187 #endif
188
189 #include "com.h"
190 #if NCOM > 0
191 extern void comsoft __P((void));
192 #endif
193
194 #if defined(UVM)
195 vm_map_t exec_map = NULL;
196 vm_map_t mb_map = NULL;
197 vm_map_t phys_map = NULL;
198 #else
199 vm_map_t buffer_map;
200 #endif
201
202 /*
203 * Declare these as initialized data so we can patch them.
204 */
205 int nswbuf = 0;
206 #ifdef NBUF
207 int nbuf = NBUF;
208 #else
209 int nbuf = 0;
210 #endif
211
212 #ifndef BUFPAGES
213 #define BUFPAGES 0
214 #endif
215 #ifndef BUFCACHE
216 #define BUFCACHE 10
217 #endif
218
219 int bufpages = BUFPAGES; /* optional hardwired count */
220 int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
221
222 caddr_t msgbufaddr;
223
224 int maxmem; /* max memory per process */
225
226 int totalphysmem; /* total amount of physical memory in system */
227 int physmem; /* physical memory used by NetBSD + some rsvd */
228 int resvmem; /* amount of memory reserved for PROM */
229 int unusedmem; /* amount of memory for OS that we don't use */
230 int unknownmem; /* amount of memory with an unknown use */
231
232 int cputype; /* system type, from the RPB */
233
234 /*
235 * XXX We need an address to which we can assign things so that they
236 * won't be optimized away because we didn't use the value.
237 */
238 u_int32_t no_optimize;
239
240 /* the following is used externally (sysctl_hw) */
241 char machine[] = MACHINE; /* from <machine/param.h> */
242 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
243 char cpu_model[128];
244
245 struct user *proc0paddr;
246
247 /* Number of machine cycles per microsecond */
248 u_int64_t cycles_per_usec;
249
250 /* number of cpus in the box. really! */
251 int ncpus;
252
253 /* machine check info array, valloc()'ed in allocsys() */
254
255 static struct mchkinfo startup_info,
256 *mchkinfo_all_cpus;
257
258 struct bootinfo_kernel bootinfo;
259
260 /* For built-in TCDS */
261 #if defined(DEC_3000_300) || defined(DEC_3000_500)
262 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
263 #endif
264
265 struct platform platform;
266
267 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
268 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
269 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
270
271 #ifdef DDB
272 /* start and end of kernel symbol table */
273 void *ksym_start, *ksym_end;
274 #endif
275
276 /* for cpu_sysctl() */
277 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
278 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
279 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
280
281 /*
282 * XXX This should be dynamically sized, but we have the chicken-egg problem!
283 * XXX it should also be larger than it is, because not all of the mddt
284 * XXX clusters end up being used for VM.
285 */
286 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
287 int mem_cluster_cnt;
288
289 caddr_t allocsys __P((caddr_t));
290 int cpu_dump __P((void));
291 int cpu_dumpsize __P((void));
292 u_long cpu_dump_mempagecnt __P((void));
293 void dumpsys __P((void));
294 void identifycpu __P((void));
295 void netintr __P((void));
296 void printregs __P((struct reg *));
297
298 void
299 alpha_init(pfn, ptb, bim, bip, biv)
300 u_long pfn; /* first free PFN number */
301 u_long ptb; /* PFN of current level 1 page table */
302 u_long bim; /* bootinfo magic */
303 u_long bip; /* bootinfo pointer */
304 u_long biv; /* bootinfo version */
305 {
306 extern char kernel_text[], _end[];
307 struct mddt *mddtp;
308 struct mddt_cluster *memc;
309 int i, mddtweird;
310 struct vm_physseg *vps;
311 vaddr_t kernstart, kernend;
312 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
313 vsize_t size;
314 char *p;
315 caddr_t v;
316 char *bootinfo_msg;
317
318 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
319
320 /*
321 * Turn off interrupts (not mchecks) and floating point.
322 * Make sure the instruction and data streams are consistent.
323 */
324 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
325 alpha_pal_wrfen(0);
326 ALPHA_TBIA();
327 alpha_pal_imb();
328
329 /*
330 * Get critical system information (if possible, from the
331 * information provided by the boot program).
332 */
333 bootinfo_msg = NULL;
334 if (bim == BOOTINFO_MAGIC) {
335 if (biv == 0) { /* backward compat */
336 biv = *(u_long *)bip;
337 bip += 8;
338 }
339 switch (biv) {
340 case 1: {
341 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
342
343 bootinfo.ssym = v1p->ssym;
344 bootinfo.esym = v1p->esym;
345 /* hwrpb may not be provided by boot block in v1 */
346 if (v1p->hwrpb != NULL) {
347 bootinfo.hwrpb_phys =
348 ((struct rpb *)v1p->hwrpb)->rpb_phys;
349 bootinfo.hwrpb_size = v1p->hwrpbsize;
350 } else {
351 bootinfo.hwrpb_phys =
352 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
353 bootinfo.hwrpb_size =
354 ((struct rpb *)HWRPB_ADDR)->rpb_size;
355 }
356 bcopy(v1p->boot_flags, bootinfo.boot_flags,
357 min(sizeof v1p->boot_flags,
358 sizeof bootinfo.boot_flags));
359 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
360 min(sizeof v1p->booted_kernel,
361 sizeof bootinfo.booted_kernel));
362 /* booted dev not provided in bootinfo */
363 init_prom_interface((struct rpb *)
364 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
365 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
366 sizeof bootinfo.booted_dev);
367 break;
368 }
369 default:
370 bootinfo_msg = "unknown bootinfo version";
371 goto nobootinfo;
372 }
373 } else {
374 bootinfo_msg = "boot program did not pass bootinfo";
375 nobootinfo:
376 bootinfo.ssym = (u_long)_end;
377 bootinfo.esym = (u_long)_end;
378 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
379 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
380 init_prom_interface((struct rpb *)HWRPB_ADDR);
381 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
382 sizeof bootinfo.boot_flags);
383 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
384 sizeof bootinfo.booted_kernel);
385 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
386 sizeof bootinfo.booted_dev);
387 }
388
389 /*
390 * Initialize the kernel's mapping of the RPB. It's needed for
391 * lots of things.
392 */
393 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
394
395 #if defined(DEC_3000_300) || defined(DEC_3000_500)
396 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
397 hwrpb->rpb_type == ST_DEC_3000_500) {
398 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
399 sizeof(dec_3000_scsiid));
400 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
401 sizeof(dec_3000_scsifast));
402 }
403 #endif
404
405 /*
406 * Remember how many cycles there are per microsecond,
407 * so that we can use delay(). Round up, for safety.
408 */
409 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
410
411 /*
412 * Initalize the (temporary) bootstrap console interface, so
413 * we can use printf until the VM system starts being setup.
414 * The real console is initialized before then.
415 */
416 init_bootstrap_console();
417
418 /* OUTPUT NOW ALLOWED */
419
420 /* delayed from above */
421 if (bootinfo_msg)
422 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
423 bootinfo_msg, bim, bip, biv);
424
425 /* Initialize the trap vectors on the primary processor. */
426 trap_init();
427
428 /*
429 * Find out what hardware we're on, and do basic initialization.
430 */
431 cputype = hwrpb->rpb_type;
432 if (cputype >= ncpuinit) {
433 platform_not_supported();
434 /* NOTREACHED */
435 }
436 (*cpuinit[cputype].init)();
437 strcpy(cpu_model, platform.model);
438
439 /*
440 * Initalize the real console, so the the bootstrap console is
441 * no longer necessary.
442 */
443 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
444 if (!pmap_uses_prom_console())
445 #endif
446 (*platform.cons_init)();
447
448 #ifdef DIAGNOSTIC
449 /* Paranoid sanity checking */
450
451 /* We should always be running on the the primary. */
452 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
453
454 /*
455 * On single-CPU systypes, the primary should always be CPU 0,
456 * except on Alpha 8200 systems where the CPU id is related
457 * to the VID, which is related to the Turbo Laser node id.
458 */
459 if (cputype != ST_DEC_21000)
460 assert(hwrpb->rpb_primary_cpu_id == 0);
461 #endif
462
463 /* NO MORE FIRMWARE ACCESS ALLOWED */
464 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
465 /*
466 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
467 * XXX pmap_uses_prom_console() evaluates to non-zero.)
468 */
469 #endif
470
471 /*
472 * find out this system's page size
473 */
474 PAGE_SIZE = hwrpb->rpb_page_size;
475 if (PAGE_SIZE != 8192)
476 panic("page size %d != 8192?!", PAGE_SIZE);
477
478 /*
479 * Initialize PAGE_SIZE-dependent variables.
480 */
481 #if defined(UVM)
482 uvm_setpagesize();
483 #else
484 vm_set_page_size();
485 #endif
486
487 /*
488 * Find the beginning and end of the kernel (and leave a
489 * bit of space before the beginning for the bootstrap
490 * stack).
491 */
492 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
493 #ifdef DDB
494 ksym_start = (void *)bootinfo.ssym;
495 ksym_end = (void *)bootinfo.esym;
496 kernend = (vaddr_t)round_page(ksym_end);
497 #else
498 kernend = (vaddr_t)round_page(_end);
499 #endif
500
501 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
502 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
503
504 /*
505 * Find out how much memory is available, by looking at
506 * the memory cluster descriptors. This also tries to do
507 * its best to detect things things that have never been seen
508 * before...
509 */
510 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
511
512 /* MDDT SANITY CHECKING */
513 mddtweird = 0;
514 if (mddtp->mddt_cluster_cnt < 2) {
515 mddtweird = 1;
516 printf("WARNING: weird number of mem clusters: %d\n",
517 mddtp->mddt_cluster_cnt);
518 }
519
520 #if 0
521 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
522 #endif
523
524 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
525 memc = &mddtp->mddt_clusters[i];
526 #if 0
527 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
528 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
529 #endif
530 totalphysmem += memc->mddt_pg_cnt;
531 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
532 mem_clusters[mem_cluster_cnt].start =
533 ptoa(memc->mddt_pfn);
534 mem_clusters[mem_cluster_cnt].size =
535 ptoa(memc->mddt_pg_cnt);
536 if (memc->mddt_usage & MDDT_mbz ||
537 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
538 memc->mddt_usage & MDDT_PALCODE)
539 mem_clusters[mem_cluster_cnt].size |=
540 PROT_READ;
541 else
542 mem_clusters[mem_cluster_cnt].size |=
543 PROT_READ | PROT_WRITE | PROT_EXEC;
544 mem_cluster_cnt++;
545 }
546
547 if (memc->mddt_usage & MDDT_mbz) {
548 mddtweird = 1;
549 printf("WARNING: mem cluster %d has weird "
550 "usage 0x%lx\n", i, memc->mddt_usage);
551 unknownmem += memc->mddt_pg_cnt;
552 continue;
553 }
554 if (memc->mddt_usage & MDDT_NONVOLATILE) {
555 /* XXX should handle these... */
556 printf("WARNING: skipping non-volatile mem "
557 "cluster %d\n", i);
558 unusedmem += memc->mddt_pg_cnt;
559 continue;
560 }
561 if (memc->mddt_usage & MDDT_PALCODE) {
562 resvmem += memc->mddt_pg_cnt;
563 continue;
564 }
565
566 /*
567 * We have a memory cluster available for system
568 * software use. We must determine if this cluster
569 * holds the kernel.
570 */
571 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
572 /*
573 * XXX If the kernel uses the PROM console, we only use the
574 * XXX memory after the kernel in the first system segment,
575 * XXX to avoid clobbering prom mapping, data, etc.
576 */
577 if (!pmap_uses_prom_console() || physmem == 0) {
578 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
579 physmem += memc->mddt_pg_cnt;
580 pfn0 = memc->mddt_pfn;
581 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
582 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
583 /*
584 * Must compute the location of the kernel
585 * within the segment.
586 */
587 #if 0
588 printf("Cluster %d contains kernel\n", i);
589 #endif
590 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
591 if (!pmap_uses_prom_console()) {
592 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
593 if (pfn0 < kernstartpfn) {
594 /*
595 * There is a chunk before the kernel.
596 */
597 #if 0
598 printf("Loading chunk before kernel: "
599 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
600 #endif
601 #if defined(UVM)
602 uvm_page_physload(pfn0, kernstartpfn,
603 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
604 #else
605 vm_page_physload(pfn0, kernstartpfn,
606 pfn0, kernstartpfn);
607 #endif
608 }
609 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
610 }
611 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
612 if (kernendpfn < pfn1) {
613 /*
614 * There is a chunk after the kernel.
615 */
616 #if 0
617 printf("Loading chunk after kernel: "
618 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
619 #endif
620 #if defined(UVM)
621 uvm_page_physload(kernendpfn, pfn1,
622 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
623 #else
624 vm_page_physload(kernendpfn, pfn1,
625 kernendpfn, pfn1);
626 #endif
627 }
628 } else {
629 /*
630 * Just load this cluster as one chunk.
631 */
632 #if 0
633 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
634 pfn0, pfn1);
635 #endif
636 #if defined(UVM)
637 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
638 VM_FREELIST_DEFAULT);
639 #else
640 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
641 #endif
642 }
643 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
644 }
645 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
646 }
647
648 /*
649 * Dump out the MDDT if it looks odd...
650 */
651 if (mddtweird) {
652 printf("\n");
653 printf("complete memory cluster information:\n");
654 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
655 printf("mddt %d:\n", i);
656 printf("\tpfn %lx\n",
657 mddtp->mddt_clusters[i].mddt_pfn);
658 printf("\tcnt %lx\n",
659 mddtp->mddt_clusters[i].mddt_pg_cnt);
660 printf("\ttest %lx\n",
661 mddtp->mddt_clusters[i].mddt_pg_test);
662 printf("\tbva %lx\n",
663 mddtp->mddt_clusters[i].mddt_v_bitaddr);
664 printf("\tbpa %lx\n",
665 mddtp->mddt_clusters[i].mddt_p_bitaddr);
666 printf("\tbcksum %lx\n",
667 mddtp->mddt_clusters[i].mddt_bit_cksum);
668 printf("\tusage %lx\n",
669 mddtp->mddt_clusters[i].mddt_usage);
670 }
671 printf("\n");
672 }
673
674 if (totalphysmem == 0)
675 panic("can't happen: system seems to have no memory!");
676
677 #ifdef LIMITMEM
678 /*
679 * XXX Kludge so we can run on machines with memory larger
680 * XXX than 1G until all device drivers are converted to
681 * XXX use bus_dma. (Relies on the fact that vm_physmem
682 * XXX sorted in order of increasing addresses.)
683 */
684 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
685
686 printf("******** LIMITING MEMORY TO %dMB **********\n",
687 LIMITMEM);
688
689 do {
690 u_long ovf;
691
692 vps = &vm_physmem[vm_nphysseg - 1];
693
694 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
695 /*
696 * If the start is too high, just drop
697 * the whole segment.
698 *
699 * XXX can start != avail_start in this
700 * XXX case? wouldn't that mean that
701 * XXX some memory was stolen above the
702 * XXX limit? What to do?
703 */
704 ovf = vps->end - vps->start;
705 vm_nphysseg--;
706 } else {
707 /*
708 * If the start is OK, calculate how much
709 * to drop and drop it.
710 */
711 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
712 vps->end -= ovf;
713 vps->avail_end -= ovf;
714 }
715 physmem -= ovf;
716 unusedmem += ovf;
717 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
718 }
719 #endif /* LIMITMEM */
720
721 maxmem = physmem;
722
723 #if 0
724 printf("totalphysmem = %d\n", totalphysmem);
725 printf("physmem = %d\n", physmem);
726 printf("resvmem = %d\n", resvmem);
727 printf("unusedmem = %d\n", unusedmem);
728 printf("unknownmem = %d\n", unknownmem);
729 #endif
730
731 /*
732 * Adjust some parameters if the amount of physmem
733 * available would cause us to croak. This is completely
734 * eyeballed and isn't meant to be the final answer.
735 * vm_phys_size is probably the only one to really worry
736 * about.
737 *
738 * It's for booting a GENERIC kernel on a large memory platform.
739 */
740 if (physmem >= atop(128 * 1024 * 1024)) {
741 vm_mbuf_size <<= 1;
742 vm_kmem_size <<= 3;
743 vm_phys_size <<= 2;
744 }
745
746 /*
747 * Initialize error message buffer (at end of core).
748 */
749 {
750 size_t sz = round_page(MSGBUFSIZE);
751
752 vps = &vm_physmem[vm_nphysseg - 1];
753
754 /* shrink so that it'll fit in the last segment */
755 if ((vps->avail_end - vps->avail_start) < atop(sz))
756 sz = ptoa(vps->avail_end - vps->avail_start);
757
758 vps->end -= atop(sz);
759 vps->avail_end -= atop(sz);
760 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
761 initmsgbuf(msgbufaddr, sz);
762
763 /* Remove the last segment if it now has no pages. */
764 if (vps->start == vps->end)
765 vm_nphysseg--;
766
767 /* warn if the message buffer had to be shrunk */
768 if (sz != round_page(MSGBUFSIZE))
769 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
770 round_page(MSGBUFSIZE), sz);
771
772 }
773
774 /*
775 * Init mapping for u page(s) for proc 0
776 */
777 proc0.p_addr = proc0paddr =
778 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
779
780 /*
781 * Allocate space for system data structures. These data structures
782 * are allocated here instead of cpu_startup() because physical
783 * memory is directly addressable. We don't have to map these into
784 * virtual address space.
785 */
786 size = (vsize_t)allocsys(0);
787 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
788 if ((allocsys(v) - v) != size)
789 panic("alpha_init: table size inconsistency");
790
791 /*
792 * Initialize the virtual memory system, and set the
793 * page table base register in proc 0's PCB.
794 */
795 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
796 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
797
798 /*
799 * Initialize the rest of proc 0's PCB, and cache its physical
800 * address.
801 */
802 proc0.p_md.md_pcbpaddr =
803 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
804
805 /*
806 * Set the kernel sp, reserving space for an (empty) trapframe,
807 * and make proc0's trapframe pointer point to it for sanity.
808 */
809 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
810 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
811 proc0.p_md.md_tf =
812 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
813
814 /*
815 * Look at arguments passed to us and compute boothowto.
816 */
817
818 boothowto = RB_SINGLE;
819 #ifdef KADB
820 boothowto |= RB_KDB;
821 #endif
822 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
823 /*
824 * Note that we'd really like to differentiate case here,
825 * but the Alpha AXP Architecture Reference Manual
826 * says that we shouldn't.
827 */
828 switch (*p) {
829 case 'a': /* autoboot */
830 case 'A':
831 boothowto &= ~RB_SINGLE;
832 break;
833
834 #ifdef DEBUG
835 case 'c': /* crash dump immediately after autoconfig */
836 case 'C':
837 boothowto |= RB_DUMP;
838 break;
839 #endif
840
841 #if defined(KGDB) || defined(DDB)
842 case 'd': /* break into the kernel debugger ASAP */
843 case 'D':
844 boothowto |= RB_KDB;
845 break;
846 #endif
847
848 case 'h': /* always halt, never reboot */
849 case 'H':
850 boothowto |= RB_HALT;
851 break;
852
853 #if 0
854 case 'm': /* mini root present in memory */
855 case 'M':
856 boothowto |= RB_MINIROOT;
857 break;
858 #endif
859
860 case 'n': /* askname */
861 case 'N':
862 boothowto |= RB_ASKNAME;
863 break;
864
865 case 's': /* single-user (default, supported for sanity) */
866 case 'S':
867 boothowto |= RB_SINGLE;
868 break;
869
870 case '-':
871 /*
872 * Just ignore this. It's not required, but it's
873 * common for it to be passed regardless.
874 */
875 break;
876
877 default:
878 printf("Unrecognized boot flag '%c'.\n", *p);
879 break;
880 }
881 }
882
883
884 /*
885 * Figure out the number of cpus in the box, from RPB fields.
886 * Really. We mean it.
887 */
888 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
889 struct pcs *pcsp;
890
891 pcsp = LOCATE_PCS(hwrpb, i);
892 if ((pcsp->pcs_flags & PCS_PP) != 0)
893 ncpus++;
894 }
895
896 /*
897 * Initialize debuggers, and break into them if appropriate.
898 */
899 #ifdef DDB
900 db_machine_init();
901 ddb_init(ksym_start, ksym_end);
902 if (boothowto & RB_KDB)
903 Debugger();
904 #endif
905 #ifdef KGDB
906 if (boothowto & RB_KDB)
907 kgdb_connect(0);
908 #endif
909 /*
910 * Figure out our clock frequency, from RPB fields.
911 */
912 hz = hwrpb->rpb_intr_freq >> 12;
913 if (!(60 <= hz && hz <= 10240)) {
914 hz = 1024;
915 #ifdef DIAGNOSTIC
916 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
917 hwrpb->rpb_intr_freq, hz);
918 #endif
919 }
920 }
921
922 /*
923 * Allocate space for system data structures. We are given
924 * a starting virtual address and we return a final virtual
925 * address; along the way we set each data structure pointer.
926 *
927 * We call allocsys() with 0 to find out how much space we want,
928 * allocate that much and fill it with zeroes, and the call
929 * allocsys() again with the correct base virtual address.
930 */
931 caddr_t
932 allocsys(v)
933 caddr_t v;
934 {
935
936 #define valloc(name, type, num) \
937 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
938
939 #ifdef REAL_CLISTS
940 valloc(cfree, struct cblock, nclist);
941 #endif
942 valloc(callout, struct callout, ncallout);
943 #ifdef SYSVSHM
944 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
945 #endif
946 #ifdef SYSVSEM
947 valloc(sema, struct semid_ds, seminfo.semmni);
948 valloc(sem, struct sem, seminfo.semmns);
949 /* This is pretty disgusting! */
950 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
951 #endif
952 #ifdef SYSVMSG
953 valloc(msgpool, char, msginfo.msgmax);
954 valloc(msgmaps, struct msgmap, msginfo.msgseg);
955 valloc(msghdrs, struct msg, msginfo.msgtql);
956 valloc(msqids, struct msqid_ds, msginfo.msgmni);
957 #endif
958
959 /*
960 * Determine how many buffers to allocate.
961 * We allocate bufcache % of memory for buffer space. Insure a
962 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
963 * headers as file i/o buffers.
964 */
965 if (bufpages == 0)
966 bufpages = physmem / CLSIZE * bufcache / 100;
967 if (nbuf == 0) {
968 nbuf = bufpages;
969 if (nbuf < 16)
970 nbuf = 16;
971 }
972 if (nswbuf == 0) {
973 nswbuf = (nbuf / 2) &~ 1; /* force even */
974 if (nswbuf > 256)
975 nswbuf = 256; /* sanity */
976 }
977 #if !defined(UVM)
978 valloc(swbuf, struct buf, nswbuf);
979 #endif
980 valloc(buf, struct buf, nbuf);
981
982 /*
983 * There appears to be a correlation between the number
984 * of processor slots defined in the HWRPB and the whami
985 * value that can be returned.
986 */
987 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
988
989 return (v);
990 #undef valloc
991 }
992
993 void
994 consinit()
995 {
996
997 /*
998 * Everything related to console initialization is done
999 * in alpha_init().
1000 */
1001 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1002 printf("consinit: %susing prom console\n",
1003 pmap_uses_prom_console() ? "" : "not ");
1004 #endif
1005 }
1006
1007 #include "pckbc.h"
1008 #include "pckbd.h"
1009 #if (NPCKBC > 0) && (NPCKBD == 0)
1010
1011 #include <machine/bus.h>
1012 #include <dev/isa/pckbcvar.h>
1013
1014 /*
1015 * This is called by the pbkbc driver if no pckbd is configured.
1016 * On the i386, it is used to glue in the old, deprecated console
1017 * code. On the Alpha, it does nothing.
1018 */
1019 int
1020 pckbc_machdep_cnattach(kbctag, kbcslot)
1021 pckbc_tag_t kbctag;
1022 pckbc_slot_t kbcslot;
1023 {
1024
1025 return (ENXIO);
1026 }
1027 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1028
1029 void
1030 cpu_startup()
1031 {
1032 register unsigned i;
1033 int base, residual;
1034 vaddr_t minaddr, maxaddr;
1035 vsize_t size;
1036 #if defined(DEBUG)
1037 extern int pmapdebug;
1038 int opmapdebug = pmapdebug;
1039
1040 pmapdebug = 0;
1041 #endif
1042
1043 /*
1044 * Good {morning,afternoon,evening,night}.
1045 */
1046 printf(version);
1047 identifycpu();
1048 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1049 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1050 ptoa(resvmem), ptoa(physmem));
1051 if (unusedmem)
1052 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1053 if (unknownmem)
1054 printf("WARNING: %d bytes of memory with unknown purpose\n",
1055 ctob(unknownmem));
1056
1057 /*
1058 * Allocate virtual address space for file I/O buffers.
1059 * Note they are different than the array of headers, 'buf',
1060 * and usually occupy more virtual memory than physical.
1061 */
1062 size = MAXBSIZE * nbuf;
1063 #if defined(UVM)
1064 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1065 NULL, UVM_UNKNOWN_OFFSET,
1066 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1067 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1068 panic("startup: cannot allocate VM for buffers");
1069 #else
1070 buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1071 &maxaddr, size, TRUE);
1072 minaddr = (vaddr_t)buffers;
1073 if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1074 &minaddr, size, FALSE) != KERN_SUCCESS)
1075 panic("startup: cannot allocate buffers");
1076 #endif /* UVM */
1077 base = bufpages / nbuf;
1078 residual = bufpages % nbuf;
1079 for (i = 0; i < nbuf; i++) {
1080 #if defined(UVM)
1081 vsize_t curbufsize;
1082 vaddr_t curbuf;
1083 struct vm_page *pg;
1084
1085 /*
1086 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1087 * that MAXBSIZE space, we allocate and map (base+1) pages
1088 * for the first "residual" buffers, and then we allocate
1089 * "base" pages for the rest.
1090 */
1091 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1092 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1093
1094 while (curbufsize) {
1095 pg = uvm_pagealloc(NULL, 0, NULL);
1096 if (pg == NULL)
1097 panic("cpu_startup: not enough memory for "
1098 "buffer cache");
1099 #if defined(PMAP_NEW)
1100 pmap_kenter_pgs(curbuf, &pg, 1);
1101 #else
1102 pmap_enter(kernel_map->pmap, curbuf,
1103 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1104 #endif
1105 curbuf += PAGE_SIZE;
1106 curbufsize -= PAGE_SIZE;
1107 }
1108 #else /* ! UVM */
1109 vsize_t curbufsize;
1110 vaddr_t curbuf;
1111
1112 /*
1113 * First <residual> buffers get (base+1) physical pages
1114 * allocated for them. The rest get (base) physical pages.
1115 *
1116 * The rest of each buffer occupies virtual space,
1117 * but has no physical memory allocated for it.
1118 */
1119 curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1120 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1121 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1122 vm_map_simplify(buffer_map, curbuf);
1123 #endif /* UVM */
1124 }
1125 /*
1126 * Allocate a submap for exec arguments. This map effectively
1127 * limits the number of processes exec'ing at any time.
1128 */
1129 #if defined(UVM)
1130 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1131 16 * NCARGS, TRUE, FALSE, NULL);
1132 #else
1133 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1134 16 * NCARGS, TRUE);
1135 #endif
1136
1137 /*
1138 * Allocate a submap for physio
1139 */
1140 #if defined(UVM)
1141 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1142 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1143 #else
1144 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1145 VM_PHYS_SIZE, TRUE);
1146 #endif
1147
1148 /*
1149 * Finally, allocate mbuf cluster submap.
1150 */
1151 #if defined(UVM)
1152 mb_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1153 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1154 #else
1155 mb_map = kmem_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1156 VM_MBUF_SIZE, FALSE);
1157 #endif
1158 /*
1159 * Initialize callouts
1160 */
1161 callfree = callout;
1162 for (i = 1; i < ncallout; i++)
1163 callout[i-1].c_next = &callout[i];
1164 callout[i-1].c_next = NULL;
1165
1166 #if defined(DEBUG)
1167 pmapdebug = opmapdebug;
1168 #endif
1169 #if defined(UVM)
1170 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1171 #else
1172 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1173 #endif
1174 #if 0
1175 {
1176 extern u_long pmap_pages_stolen;
1177 printf("stolen memory for VM structures = %ld bytes\n",
1178 pmap_pages_stolen * PAGE_SIZE);
1179 }
1180 #endif
1181 printf("using %ld buffers containing %ld bytes of memory\n",
1182 (long)nbuf, (long)(bufpages * CLBYTES));
1183
1184 /*
1185 * Set up buffers, so they can be used to read disk labels.
1186 */
1187 bufinit();
1188
1189 /*
1190 * Set up the HWPCB so that it's safe to configure secondary
1191 * CPUs.
1192 */
1193 hwrpb_primary_init();
1194
1195 /*
1196 * Configure the system.
1197 */
1198 configure();
1199 }
1200
1201 /*
1202 * Retrieve the platform name from the DSR.
1203 */
1204 const char *
1205 alpha_dsr_sysname()
1206 {
1207 struct dsrdb *dsr;
1208 const char *sysname;
1209
1210 /*
1211 * DSR does not exist on early HWRPB versions.
1212 */
1213 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1214 return (NULL);
1215
1216 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1217 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1218 sizeof(u_int64_t)));
1219 return (sysname);
1220 }
1221
1222 /*
1223 * Lookup the system specified system variation in the provided table,
1224 * returning the model string on match.
1225 */
1226 const char *
1227 alpha_variation_name(variation, avtp)
1228 u_int64_t variation;
1229 const struct alpha_variation_table *avtp;
1230 {
1231 int i;
1232
1233 for (i = 0; avtp[i].avt_model != NULL; i++)
1234 if (avtp[i].avt_variation == variation)
1235 return (avtp[i].avt_model);
1236 return (NULL);
1237 }
1238
1239 /*
1240 * Generate a default platform name based for unknown system variations.
1241 */
1242 const char *
1243 alpha_unknown_sysname()
1244 {
1245 static char s[128]; /* safe size */
1246
1247 sprintf(s, "%s family, unknown model variation 0x%lx",
1248 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1249 return ((const char *)s);
1250 }
1251
1252 void
1253 identifycpu()
1254 {
1255
1256 /*
1257 * print out CPU identification information.
1258 */
1259 printf("%s, %ldMHz\n", cpu_model,
1260 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1261 printf("%ld byte page size, %d processor%s.\n",
1262 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1263 #if 0
1264 /* this isn't defined for any systems that we run on? */
1265 printf("serial number 0x%lx 0x%lx\n",
1266 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1267
1268 /* and these aren't particularly useful! */
1269 printf("variation: 0x%lx, revision 0x%lx\n",
1270 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1271 #endif
1272 }
1273
1274 int waittime = -1;
1275 struct pcb dumppcb;
1276
1277 void
1278 cpu_reboot(howto, bootstr)
1279 int howto;
1280 char *bootstr;
1281 {
1282 extern int cold;
1283 #if defined(MULTIPROCESSOR)
1284 #if 0 /* XXX See below. */
1285 u_long cpu_id;
1286 #endif
1287 #endif
1288
1289 #if defined(MULTIPROCESSOR)
1290 /* We must be running on the primary CPU. */
1291 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1292 panic("cpu_reboot: not on primary CPU!");
1293 #endif
1294
1295 /* If system is cold, just halt. */
1296 if (cold) {
1297 howto |= RB_HALT;
1298 goto haltsys;
1299 }
1300
1301 /* If "always halt" was specified as a boot flag, obey. */
1302 if ((boothowto & RB_HALT) != 0)
1303 howto |= RB_HALT;
1304
1305 boothowto = howto;
1306 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1307 waittime = 0;
1308 vfs_shutdown();
1309 /*
1310 * If we've been adjusting the clock, the todr
1311 * will be out of synch; adjust it now.
1312 */
1313 resettodr();
1314 }
1315
1316 /* Disable interrupts. */
1317 splhigh();
1318
1319 /* If rebooting and a dump is requested do it. */
1320 #if 0
1321 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1322 #else
1323 if (howto & RB_DUMP)
1324 #endif
1325 dumpsys();
1326
1327 haltsys:
1328
1329 /* run any shutdown hooks */
1330 doshutdownhooks();
1331
1332 #if defined(MULTIPROCESSOR)
1333 #if 0 /* XXX doesn't work when called from here?! */
1334 /* Kill off any secondary CPUs. */
1335 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1336 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1337 cpus[cpu_id] == NULL)
1338 continue;
1339 cpu_halt_secondary(cpu_id);
1340 }
1341 #endif
1342 #endif
1343
1344 #ifdef BOOTKEY
1345 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1346 cnpollc(1); /* for proper keyboard command handling */
1347 cngetc();
1348 cnpollc(0);
1349 printf("\n");
1350 #endif
1351
1352 /* Finally, powerdown/halt/reboot the system. */
1353 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1354 platform.powerdown != NULL) {
1355 (*platform.powerdown)();
1356 printf("WARNING: powerdown failed!\n");
1357 }
1358 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1359 prom_halt(howto & RB_HALT);
1360 /*NOTREACHED*/
1361 }
1362
1363 /*
1364 * These variables are needed by /sbin/savecore
1365 */
1366 u_long dumpmag = 0x8fca0101; /* magic number */
1367 int dumpsize = 0; /* pages */
1368 long dumplo = 0; /* blocks */
1369
1370 /*
1371 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1372 */
1373 int
1374 cpu_dumpsize()
1375 {
1376 int size;
1377
1378 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1379 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1380 if (roundup(size, dbtob(1)) != dbtob(1))
1381 return -1;
1382
1383 return (1);
1384 }
1385
1386 /*
1387 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1388 */
1389 u_long
1390 cpu_dump_mempagecnt()
1391 {
1392 u_long i, n;
1393
1394 n = 0;
1395 for (i = 0; i < mem_cluster_cnt; i++)
1396 n += atop(mem_clusters[i].size);
1397 return (n);
1398 }
1399
1400 /*
1401 * cpu_dump: dump machine-dependent kernel core dump headers.
1402 */
1403 int
1404 cpu_dump()
1405 {
1406 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1407 char buf[dbtob(1)];
1408 kcore_seg_t *segp;
1409 cpu_kcore_hdr_t *cpuhdrp;
1410 phys_ram_seg_t *memsegp;
1411 int i;
1412
1413 dump = bdevsw[major(dumpdev)].d_dump;
1414
1415 bzero(buf, sizeof buf);
1416 segp = (kcore_seg_t *)buf;
1417 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1418 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1419 ALIGN(sizeof(*cpuhdrp))];
1420
1421 /*
1422 * Generate a segment header.
1423 */
1424 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1425 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1426
1427 /*
1428 * Add the machine-dependent header info.
1429 */
1430 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1431 cpuhdrp->page_size = PAGE_SIZE;
1432 cpuhdrp->nmemsegs = mem_cluster_cnt;
1433
1434 /*
1435 * Fill in the memory segment descriptors.
1436 */
1437 for (i = 0; i < mem_cluster_cnt; i++) {
1438 memsegp[i].start = mem_clusters[i].start;
1439 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1440 }
1441
1442 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1443 }
1444
1445 /*
1446 * This is called by main to set dumplo and dumpsize.
1447 * Dumps always skip the first CLBYTES of disk space
1448 * in case there might be a disk label stored there.
1449 * If there is extra space, put dump at the end to
1450 * reduce the chance that swapping trashes it.
1451 */
1452 void
1453 cpu_dumpconf()
1454 {
1455 int nblks, dumpblks; /* size of dump area */
1456 int maj;
1457
1458 if (dumpdev == NODEV)
1459 goto bad;
1460 maj = major(dumpdev);
1461 if (maj < 0 || maj >= nblkdev)
1462 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1463 if (bdevsw[maj].d_psize == NULL)
1464 goto bad;
1465 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1466 if (nblks <= ctod(1))
1467 goto bad;
1468
1469 dumpblks = cpu_dumpsize();
1470 if (dumpblks < 0)
1471 goto bad;
1472 dumpblks += ctod(cpu_dump_mempagecnt());
1473
1474 /* If dump won't fit (incl. room for possible label), punt. */
1475 if (dumpblks > (nblks - ctod(1)))
1476 goto bad;
1477
1478 /* Put dump at end of partition */
1479 dumplo = nblks - dumpblks;
1480
1481 /* dumpsize is in page units, and doesn't include headers. */
1482 dumpsize = cpu_dump_mempagecnt();
1483 return;
1484
1485 bad:
1486 dumpsize = 0;
1487 return;
1488 }
1489
1490 /*
1491 * Dump the kernel's image to the swap partition.
1492 */
1493 #define BYTES_PER_DUMP NBPG
1494
1495 void
1496 dumpsys()
1497 {
1498 u_long totalbytesleft, bytes, i, n, memcl;
1499 u_long maddr;
1500 int psize;
1501 daddr_t blkno;
1502 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1503 int error;
1504
1505 /* Save registers. */
1506 savectx(&dumppcb);
1507
1508 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1509 if (dumpdev == NODEV)
1510 return;
1511
1512 /*
1513 * For dumps during autoconfiguration,
1514 * if dump device has already configured...
1515 */
1516 if (dumpsize == 0)
1517 cpu_dumpconf();
1518 if (dumplo <= 0) {
1519 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1520 minor(dumpdev));
1521 return;
1522 }
1523 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1524 minor(dumpdev), dumplo);
1525
1526 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1527 printf("dump ");
1528 if (psize == -1) {
1529 printf("area unavailable\n");
1530 return;
1531 }
1532
1533 /* XXX should purge all outstanding keystrokes. */
1534
1535 if ((error = cpu_dump()) != 0)
1536 goto err;
1537
1538 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1539 blkno = dumplo + cpu_dumpsize();
1540 dump = bdevsw[major(dumpdev)].d_dump;
1541 error = 0;
1542
1543 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1544 maddr = mem_clusters[memcl].start;
1545 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1546
1547 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1548
1549 /* Print out how many MBs we to go. */
1550 if ((totalbytesleft % (1024*1024)) == 0)
1551 printf("%d ", totalbytesleft / (1024 * 1024));
1552
1553 /* Limit size for next transfer. */
1554 n = bytes - i;
1555 if (n > BYTES_PER_DUMP)
1556 n = BYTES_PER_DUMP;
1557
1558 error = (*dump)(dumpdev, blkno,
1559 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1560 if (error)
1561 goto err;
1562 maddr += n;
1563 blkno += btodb(n); /* XXX? */
1564
1565 /* XXX should look for keystrokes, to cancel. */
1566 }
1567 }
1568
1569 err:
1570 switch (error) {
1571
1572 case ENXIO:
1573 printf("device bad\n");
1574 break;
1575
1576 case EFAULT:
1577 printf("device not ready\n");
1578 break;
1579
1580 case EINVAL:
1581 printf("area improper\n");
1582 break;
1583
1584 case EIO:
1585 printf("i/o error\n");
1586 break;
1587
1588 case EINTR:
1589 printf("aborted from console\n");
1590 break;
1591
1592 case 0:
1593 printf("succeeded\n");
1594 break;
1595
1596 default:
1597 printf("error %d\n", error);
1598 break;
1599 }
1600 printf("\n\n");
1601 delay(1000);
1602 }
1603
1604 void
1605 frametoreg(framep, regp)
1606 struct trapframe *framep;
1607 struct reg *regp;
1608 {
1609
1610 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1611 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1612 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1613 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1614 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1615 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1616 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1617 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1618 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1619 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1620 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1621 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1622 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1623 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1624 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1625 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1626 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1627 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1628 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1629 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1630 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1631 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1632 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1633 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1634 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1635 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1636 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1637 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1638 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1639 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1640 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1641 regp->r_regs[R_ZERO] = 0;
1642 }
1643
1644 void
1645 regtoframe(regp, framep)
1646 struct reg *regp;
1647 struct trapframe *framep;
1648 {
1649
1650 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1651 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1652 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1653 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1654 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1655 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1656 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1657 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1658 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1659 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1660 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1661 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1662 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1663 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1664 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1665 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1666 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1667 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1668 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1669 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1670 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1671 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1672 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1673 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1674 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1675 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1676 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1677 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1678 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1679 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1680 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1681 /* ??? = regp->r_regs[R_ZERO]; */
1682 }
1683
1684 void
1685 printregs(regp)
1686 struct reg *regp;
1687 {
1688 int i;
1689
1690 for (i = 0; i < 32; i++)
1691 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1692 i & 1 ? "\n" : "\t");
1693 }
1694
1695 void
1696 regdump(framep)
1697 struct trapframe *framep;
1698 {
1699 struct reg reg;
1700
1701 frametoreg(framep, ®);
1702 reg.r_regs[R_SP] = alpha_pal_rdusp();
1703
1704 printf("REGISTERS:\n");
1705 printregs(®);
1706 }
1707
1708 #ifdef DEBUG
1709 int sigdebug = 0;
1710 int sigpid = 0;
1711 #define SDB_FOLLOW 0x01
1712 #define SDB_KSTACK 0x02
1713 #endif
1714
1715 /*
1716 * Send an interrupt to process.
1717 */
1718 void
1719 sendsig(catcher, sig, mask, code)
1720 sig_t catcher;
1721 int sig;
1722 sigset_t *mask;
1723 u_long code;
1724 {
1725 struct proc *p = curproc;
1726 struct sigcontext *scp, ksc;
1727 struct trapframe *frame;
1728 struct sigacts *psp = p->p_sigacts;
1729 int onstack, fsize, rndfsize;
1730 extern struct proc *fpcurproc;
1731
1732 frame = p->p_md.md_tf;
1733
1734 /* Do we need to jump onto the signal stack? */
1735 onstack =
1736 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1737 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1738
1739 /* Allocate space for the signal handler context. */
1740 fsize = sizeof(ksc);
1741 rndfsize = ((fsize + 15) / 16) * 16;
1742
1743 if (onstack)
1744 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1745 psp->ps_sigstk.ss_size);
1746 else
1747 scp = (struct sigcontext *)(alpha_pal_rdusp());
1748 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1749
1750 #ifdef DEBUG
1751 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1752 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1753 sig, &onstack, scp);
1754 #endif
1755
1756 /* Build stack frame for signal trampoline. */
1757 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1758 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1759
1760 /* Save register context. */
1761 frametoreg(frame, (struct reg *)ksc.sc_regs);
1762 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1763 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1764
1765 /* save the floating-point state, if necessary, then copy it. */
1766 if (p == fpcurproc) {
1767 alpha_pal_wrfen(1);
1768 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1769 alpha_pal_wrfen(0);
1770 fpcurproc = NULL;
1771 }
1772 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1773 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1774 sizeof(struct fpreg));
1775 ksc.sc_fp_control = 0; /* XXX ? */
1776 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1777 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1778
1779 /* Save signal stack. */
1780 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1781
1782 /* Save signal mask. */
1783 ksc.sc_mask = *mask;
1784
1785 #ifdef COMPAT_13
1786 /*
1787 * XXX We always have to save an old style signal mask because
1788 * XXX we might be delivering a signal to a process which will
1789 * XXX escape from the signal in a non-standard way and invoke
1790 * XXX sigreturn() directly.
1791 */
1792 {
1793 /* Note: it's a long in the stack frame. */
1794 sigset13_t mask13;
1795
1796 native_sigset_to_sigset13(mask, &mask13);
1797 ksc.__sc_mask13 = mask13;
1798 }
1799 #endif
1800
1801 #ifdef COMPAT_OSF1
1802 /*
1803 * XXX Create an OSF/1-style sigcontext and associated goo.
1804 */
1805 #endif
1806
1807 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1808 /*
1809 * Process has trashed its stack; give it an illegal
1810 * instruction to halt it in its tracks.
1811 */
1812 #ifdef DEBUG
1813 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1814 printf("sendsig(%d): copyout failed on sig %d\n",
1815 p->p_pid, sig);
1816 #endif
1817 sigexit(p, SIGILL);
1818 /* NOTREACHED */
1819 }
1820 #ifdef DEBUG
1821 if (sigdebug & SDB_FOLLOW)
1822 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1823 scp, code);
1824 #endif
1825
1826 /* Set up the registers to return to sigcode. */
1827 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1828 frame->tf_regs[FRAME_A0] = sig;
1829 frame->tf_regs[FRAME_A1] = code;
1830 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1831 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1832 alpha_pal_wrusp((unsigned long)scp);
1833
1834 /* Remember that we're now on the signal stack. */
1835 if (onstack)
1836 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1837
1838 #ifdef DEBUG
1839 if (sigdebug & SDB_FOLLOW)
1840 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1841 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1842 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1843 printf("sendsig(%d): sig %d returns\n",
1844 p->p_pid, sig);
1845 #endif
1846 }
1847
1848 /*
1849 * System call to cleanup state after a signal
1850 * has been taken. Reset signal mask and
1851 * stack state from context left by sendsig (above).
1852 * Return to previous pc and psl as specified by
1853 * context left by sendsig. Check carefully to
1854 * make sure that the user has not modified the
1855 * psl to gain improper priviledges or to cause
1856 * a machine fault.
1857 */
1858 /* ARGSUSED */
1859 int
1860 sys___sigreturn14(p, v, retval)
1861 struct proc *p;
1862 void *v;
1863 register_t *retval;
1864 {
1865 struct sys___sigreturn14_args /* {
1866 syscallarg(struct sigcontext *) sigcntxp;
1867 } */ *uap = v;
1868 struct sigcontext *scp, ksc;
1869 extern struct proc *fpcurproc;
1870
1871 /*
1872 * The trampoline code hands us the context.
1873 * It is unsafe to keep track of it ourselves, in the event that a
1874 * program jumps out of a signal handler.
1875 */
1876 scp = SCARG(uap, sigcntxp);
1877 #ifdef DEBUG
1878 if (sigdebug & SDB_FOLLOW)
1879 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1880 #endif
1881 if (ALIGN(scp) != (u_int64_t)scp)
1882 return (EINVAL);
1883
1884 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1885 return (EFAULT);
1886
1887 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1888 return (EINVAL);
1889
1890 /* Restore register context. */
1891 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1892 p->p_md.md_tf->tf_regs[FRAME_PS] =
1893 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1894
1895 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1896 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1897
1898 /* XXX ksc.sc_ownedfp ? */
1899 if (p == fpcurproc)
1900 fpcurproc = NULL;
1901 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1902 sizeof(struct fpreg));
1903 /* XXX ksc.sc_fp_control ? */
1904
1905 /* Restore signal stack. */
1906 if (ksc.sc_onstack & SS_ONSTACK)
1907 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1908 else
1909 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1910
1911 /* Restore signal mask. */
1912 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1913
1914 #ifdef DEBUG
1915 if (sigdebug & SDB_FOLLOW)
1916 printf("sigreturn(%d): returns\n", p->p_pid);
1917 #endif
1918 return (EJUSTRETURN);
1919 }
1920
1921 /*
1922 * machine dependent system variables.
1923 */
1924 int
1925 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1926 int *name;
1927 u_int namelen;
1928 void *oldp;
1929 size_t *oldlenp;
1930 void *newp;
1931 size_t newlen;
1932 struct proc *p;
1933 {
1934 dev_t consdev;
1935
1936 /* all sysctl names at this level are terminal */
1937 if (namelen != 1)
1938 return (ENOTDIR); /* overloaded */
1939
1940 switch (name[0]) {
1941 case CPU_CONSDEV:
1942 if (cn_tab != NULL)
1943 consdev = cn_tab->cn_dev;
1944 else
1945 consdev = NODEV;
1946 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1947 sizeof consdev));
1948
1949 case CPU_ROOT_DEVICE:
1950 return (sysctl_rdstring(oldp, oldlenp, newp,
1951 root_device->dv_xname));
1952
1953 case CPU_UNALIGNED_PRINT:
1954 return (sysctl_int(oldp, oldlenp, newp, newlen,
1955 &alpha_unaligned_print));
1956
1957 case CPU_UNALIGNED_FIX:
1958 return (sysctl_int(oldp, oldlenp, newp, newlen,
1959 &alpha_unaligned_fix));
1960
1961 case CPU_UNALIGNED_SIGBUS:
1962 return (sysctl_int(oldp, oldlenp, newp, newlen,
1963 &alpha_unaligned_sigbus));
1964
1965 case CPU_BOOTED_KERNEL:
1966 return (sysctl_rdstring(oldp, oldlenp, newp,
1967 bootinfo.booted_kernel));
1968
1969 default:
1970 return (EOPNOTSUPP);
1971 }
1972 /* NOTREACHED */
1973 }
1974
1975 /*
1976 * Set registers on exec.
1977 */
1978 void
1979 setregs(p, pack, stack)
1980 register struct proc *p;
1981 struct exec_package *pack;
1982 u_long stack;
1983 {
1984 struct trapframe *tfp = p->p_md.md_tf;
1985 extern struct proc *fpcurproc;
1986 #ifdef DEBUG
1987 int i;
1988 #endif
1989
1990 #ifdef DEBUG
1991 /*
1992 * Crash and dump, if the user requested it.
1993 */
1994 if (boothowto & RB_DUMP)
1995 panic("crash requested by boot flags");
1996 #endif
1997
1998 #ifdef DEBUG
1999 for (i = 0; i < FRAME_SIZE; i++)
2000 tfp->tf_regs[i] = 0xbabefacedeadbeef;
2001 #else
2002 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
2003 #endif
2004 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
2005 #define FP_RN 2 /* XXX */
2006 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
2007 alpha_pal_wrusp(stack);
2008 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
2009 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
2010
2011 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
2012 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
2013 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2014 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2015 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2016
2017 p->p_md.md_flags &= ~MDP_FPUSED;
2018 if (fpcurproc == p)
2019 fpcurproc = NULL;
2020 }
2021
2022 void
2023 netintr()
2024 {
2025 int n, s;
2026
2027 s = splhigh();
2028 n = netisr;
2029 netisr = 0;
2030 splx(s);
2031
2032 #define DONETISR(bit, fn) \
2033 do { \
2034 if (n & (1 << (bit))) \
2035 fn; \
2036 } while (0)
2037
2038 #ifdef INET
2039 #if NARP > 0
2040 DONETISR(NETISR_ARP, arpintr());
2041 #endif
2042 DONETISR(NETISR_IP, ipintr());
2043 #endif
2044 #ifdef NETATALK
2045 DONETISR(NETISR_ATALK, atintr());
2046 #endif
2047 #ifdef NS
2048 DONETISR(NETISR_NS, nsintr());
2049 #endif
2050 #ifdef ISO
2051 DONETISR(NETISR_ISO, clnlintr());
2052 #endif
2053 #ifdef CCITT
2054 DONETISR(NETISR_CCITT, ccittintr());
2055 #endif
2056 #ifdef NATM
2057 DONETISR(NETISR_NATM, natmintr());
2058 #endif
2059 #if NPPP > 1
2060 DONETISR(NETISR_PPP, pppintr());
2061 #endif
2062
2063 #undef DONETISR
2064 }
2065
2066 void
2067 do_sir()
2068 {
2069 u_int64_t n;
2070
2071 do {
2072 (void)splhigh();
2073 n = ssir;
2074 ssir = 0;
2075 splsoft(); /* don't recurse through spl0() */
2076
2077 #if defined(UVM)
2078 #define COUNT_SOFT uvmexp.softs++
2079 #else
2080 #define COUNT_SOFT cnt.v_soft++
2081 #endif
2082
2083 #define DO_SIR(bit, fn) \
2084 do { \
2085 if (n & (bit)) { \
2086 COUNT_SOFT; \
2087 fn; \
2088 } \
2089 } while (0)
2090
2091 DO_SIR(SIR_NET, netintr());
2092 DO_SIR(SIR_CLOCK, softclock());
2093 #if NCOM > 0
2094 DO_SIR(SIR_SERIAL, comsoft());
2095 #endif
2096
2097 #undef COUNT_SOFT
2098 #undef DO_SIR
2099 } while (ssir != 0);
2100 }
2101
2102 int
2103 spl0()
2104 {
2105
2106 if (ssir)
2107 do_sir(); /* it lowers the IPL itself */
2108
2109 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2110 }
2111
2112 /*
2113 * The following primitives manipulate the run queues. _whichqs tells which
2114 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2115 * into queues, Remrunqueue removes them from queues. The running process is
2116 * on no queue, other processes are on a queue related to p->p_priority,
2117 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2118 * available queues.
2119 */
2120 /*
2121 * setrunqueue(p)
2122 * proc *p;
2123 *
2124 * Call should be made at splclock(), and p->p_stat should be SRUN.
2125 */
2126
2127 void
2128 setrunqueue(p)
2129 struct proc *p;
2130 {
2131 int bit;
2132
2133 /* firewall: p->p_back must be NULL */
2134 if (p->p_back != NULL)
2135 panic("setrunqueue");
2136
2137 bit = p->p_priority >> 2;
2138 whichqs |= (1 << bit);
2139 p->p_forw = (struct proc *)&qs[bit];
2140 p->p_back = qs[bit].ph_rlink;
2141 p->p_back->p_forw = p;
2142 qs[bit].ph_rlink = p;
2143 }
2144
2145 /*
2146 * remrunqueue(p)
2147 *
2148 * Call should be made at splclock().
2149 */
2150 void
2151 remrunqueue(p)
2152 struct proc *p;
2153 {
2154 int bit;
2155
2156 bit = p->p_priority >> 2;
2157 if ((whichqs & (1 << bit)) == 0)
2158 panic("remrunqueue");
2159
2160 p->p_back->p_forw = p->p_forw;
2161 p->p_forw->p_back = p->p_back;
2162 p->p_back = NULL; /* for firewall checking. */
2163
2164 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2165 whichqs &= ~(1 << bit);
2166 }
2167
2168 /*
2169 * Return the best possible estimate of the time in the timeval
2170 * to which tvp points. Unfortunately, we can't read the hardware registers.
2171 * We guarantee that the time will be greater than the value obtained by a
2172 * previous call.
2173 */
2174 void
2175 microtime(tvp)
2176 register struct timeval *tvp;
2177 {
2178 int s = splclock();
2179 static struct timeval lasttime;
2180
2181 *tvp = time;
2182 #ifdef notdef
2183 tvp->tv_usec += clkread();
2184 while (tvp->tv_usec > 1000000) {
2185 tvp->tv_sec++;
2186 tvp->tv_usec -= 1000000;
2187 }
2188 #endif
2189 if (tvp->tv_sec == lasttime.tv_sec &&
2190 tvp->tv_usec <= lasttime.tv_usec &&
2191 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2192 tvp->tv_sec++;
2193 tvp->tv_usec -= 1000000;
2194 }
2195 lasttime = *tvp;
2196 splx(s);
2197 }
2198
2199 /*
2200 * Wait "n" microseconds.
2201 */
2202 void
2203 delay(n)
2204 unsigned long n;
2205 {
2206 long N = cycles_per_usec * (n);
2207
2208 while (N > 0) /* XXX */
2209 N -= 3; /* XXX */
2210 }
2211
2212 #if defined(COMPAT_OSF1) || 1 /* XXX */
2213 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2214 u_long));
2215
2216 void
2217 cpu_exec_ecoff_setregs(p, epp, stack)
2218 struct proc *p;
2219 struct exec_package *epp;
2220 u_long stack;
2221 {
2222 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2223
2224 setregs(p, epp, stack);
2225 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2226 }
2227
2228 /*
2229 * cpu_exec_ecoff_hook():
2230 * cpu-dependent ECOFF format hook for execve().
2231 *
2232 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2233 *
2234 */
2235 int
2236 cpu_exec_ecoff_hook(p, epp)
2237 struct proc *p;
2238 struct exec_package *epp;
2239 {
2240 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2241 extern struct emul emul_netbsd;
2242 #ifdef COMPAT_OSF1
2243 extern struct emul emul_osf1;
2244 #endif
2245
2246 switch (execp->f.f_magic) {
2247 #ifdef COMPAT_OSF1
2248 case ECOFF_MAGIC_ALPHA:
2249 epp->ep_emul = &emul_osf1;
2250 break;
2251 #endif
2252
2253 case ECOFF_MAGIC_NETBSD_ALPHA:
2254 epp->ep_emul = &emul_netbsd;
2255 break;
2256
2257 default:
2258 return ENOEXEC;
2259 }
2260 return 0;
2261 }
2262 #endif
2263
2264 int
2265 alpha_pa_access(pa)
2266 u_long pa;
2267 {
2268 int i;
2269
2270 for (i = 0; i < mem_cluster_cnt; i++) {
2271 if (pa < mem_clusters[i].start)
2272 continue;
2273 if ((pa - mem_clusters[i].start) >=
2274 (mem_clusters[i].size & ~PAGE_MASK))
2275 continue;
2276 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2277 }
2278 return (PROT_NONE);
2279 }
2280
2281 /* XXX XXX BEGIN XXX XXX */
2282 paddr_t alpha_XXX_dmamap_or; /* XXX */
2283 /* XXX */
2284 paddr_t /* XXX */
2285 alpha_XXX_dmamap(v) /* XXX */
2286 vaddr_t v; /* XXX */
2287 { /* XXX */
2288 /* XXX */
2289 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2290 } /* XXX */
2291 /* XXX XXX END XXX XXX */
2292
2293 struct mchkinfo *
2294 cpu_mchkinfo()
2295 {
2296 if (mchkinfo_all_cpus == NULL)
2297 return &startup_info;
2298 return mchkinfo_all_cpus + alpha_pal_whami();
2299 }
2300