machdep.c revision 1.155 1 /* $NetBSD: machdep.c,v 1.155 1998/11/19 02:28:56 ross Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_uvm.h"
70 #include "opt_pmap_new.h"
71 #include "opt_dec_3000_300.h"
72 #include "opt_dec_3000_500.h"
73 #include "opt_compat_osf1.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_inet.h"
76 #include "opt_atalk.h"
77 #include "opt_ccitt.h"
78 #include "opt_iso.h"
79 #include "opt_ns.h"
80 #include "opt_natm.h"
81 #include "opt_sysv.h"
82
83 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84
85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.155 1998/11/19 02:28:56 ross Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/signalvar.h>
90 #include <sys/kernel.h>
91 #include <sys/map.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <sys/reboot.h>
95 #include <sys/device.h>
96 #include <sys/file.h>
97 #ifdef REAL_CLISTS
98 #include <sys/clist.h>
99 #endif
100 #include <sys/callout.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/mman.h>
104 #include <sys/msgbuf.h>
105 #include <sys/ioctl.h>
106 #include <sys/tty.h>
107 #include <sys/user.h>
108 #include <sys/exec.h>
109 #include <sys/exec_ecoff.h>
110 #include <vm/vm.h>
111 #include <sys/sysctl.h>
112 #include <sys/core.h>
113 #include <sys/kcore.h>
114 #include <machine/kcore.h>
115 #ifdef SYSVMSG
116 #include <sys/msg.h>
117 #endif
118 #ifdef SYSVSEM
119 #include <sys/sem.h>
120 #endif
121 #ifdef SYSVSHM
122 #include <sys/shm.h>
123 #endif
124
125 #include <sys/mount.h>
126 #include <sys/syscallargs.h>
127
128 #include <vm/vm_kern.h>
129
130 #if defined(UVM)
131 #include <uvm/uvm_extern.h>
132 #endif
133
134 #include <dev/cons.h>
135
136 #include <machine/autoconf.h>
137 #include <machine/cpu.h>
138 #include <machine/reg.h>
139 #include <machine/rpb.h>
140 #include <machine/prom.h>
141 #include <machine/conf.h>
142
143 #include <alpha/alpha/cpuvar.h>
144
145 #include <net/netisr.h>
146 #include <net/if.h>
147
148 #ifdef INET
149 #include <net/route.h>
150 #include <netinet/in.h>
151 #include <netinet/ip_var.h>
152 #include "arp.h"
153 #if NARP > 0
154 #include <netinet/if_inarp.h>
155 #endif
156 #endif
157 #ifdef NS
158 #include <netns/ns_var.h>
159 #endif
160 #ifdef ISO
161 #include <netiso/iso.h>
162 #include <netiso/clnp.h>
163 #endif
164 #ifdef CCITT
165 #include <netccitt/x25.h>
166 #include <netccitt/pk.h>
167 #include <netccitt/pk_extern.h>
168 #endif
169 #ifdef NATM
170 #include <netnatm/natm.h>
171 #endif
172 #ifdef NETATALK
173 #include <netatalk/at_extern.h>
174 #endif
175 #include "ppp.h"
176 #if NPPP > 0
177 #include <net/ppp_defs.h>
178 #include <net/if_ppp.h>
179 #endif
180
181 #ifdef DDB
182 #include <machine/db_machdep.h>
183 #include <ddb/db_access.h>
184 #include <ddb/db_sym.h>
185 #include <ddb/db_extern.h>
186 #include <ddb/db_interface.h>
187 #endif
188
189 #include <machine/alpha.h>
190 #include <machine/intrcnt.h>
191
192 #include "com.h"
193 #if NCOM > 0
194 extern void comsoft __P((void));
195 #endif
196
197 #if defined(UVM)
198 vm_map_t exec_map = NULL;
199 vm_map_t mb_map = NULL;
200 vm_map_t phys_map = NULL;
201 #else
202 vm_map_t buffer_map;
203 #endif
204
205 /*
206 * Declare these as initialized data so we can patch them.
207 */
208 int nswbuf = 0;
209 #ifdef NBUF
210 int nbuf = NBUF;
211 #else
212 int nbuf = 0;
213 #endif
214
215 #ifndef BUFPAGES
216 #define BUFPAGES 0
217 #endif
218 #ifndef BUFCACHE
219 #define BUFCACHE 10
220 #endif
221
222 int bufpages = BUFPAGES; /* optional hardwired count */
223 int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
224
225 caddr_t msgbufaddr;
226
227 int maxmem; /* max memory per process */
228
229 int totalphysmem; /* total amount of physical memory in system */
230 int physmem; /* physical memory used by NetBSD + some rsvd */
231 int resvmem; /* amount of memory reserved for PROM */
232 int unusedmem; /* amount of memory for OS that we don't use */
233 int unknownmem; /* amount of memory with an unknown use */
234
235 int cputype; /* system type, from the RPB */
236
237 /*
238 * XXX We need an address to which we can assign things so that they
239 * won't be optimized away because we didn't use the value.
240 */
241 u_int32_t no_optimize;
242
243 /* the following is used externally (sysctl_hw) */
244 char machine[] = MACHINE; /* from <machine/param.h> */
245 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
246 char cpu_model[128];
247
248 struct user *proc0paddr;
249
250 /* Number of machine cycles per microsecond */
251 u_int64_t cycles_per_usec;
252
253 /* number of cpus in the box. really! */
254 int ncpus;
255
256 /* machine check info array, valloc()'ed in allocsys() */
257
258 static struct mchkinfo startup_info,
259 *mchkinfo_all_cpus;
260
261 struct bootinfo_kernel bootinfo;
262
263 /* For built-in TCDS */
264 #if defined(DEC_3000_300) || defined(DEC_3000_500)
265 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
266 #endif
267
268 struct platform platform;
269
270 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
271 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
272 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
273
274 #ifdef DDB
275 /* start and end of kernel symbol table */
276 void *ksym_start, *ksym_end;
277 #endif
278
279 /* for cpu_sysctl() */
280 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
281 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
282 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
283
284 /*
285 * XXX This should be dynamically sized, but we have the chicken-egg problem!
286 * XXX it should also be larger than it is, because not all of the mddt
287 * XXX clusters end up being used for VM.
288 */
289 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
290 int mem_cluster_cnt;
291
292 caddr_t allocsys __P((caddr_t));
293 int cpu_dump __P((void));
294 int cpu_dumpsize __P((void));
295 u_long cpu_dump_mempagecnt __P((void));
296 void dumpsys __P((void));
297 void identifycpu __P((void));
298 void netintr __P((void));
299 void printregs __P((struct reg *));
300
301 void
302 alpha_init(pfn, ptb, bim, bip, biv)
303 u_long pfn; /* first free PFN number */
304 u_long ptb; /* PFN of current level 1 page table */
305 u_long bim; /* bootinfo magic */
306 u_long bip; /* bootinfo pointer */
307 u_long biv; /* bootinfo version */
308 {
309 extern char kernel_text[], _end[];
310 struct mddt *mddtp;
311 struct mddt_cluster *memc;
312 int i, mddtweird;
313 struct vm_physseg *vps;
314 vaddr_t kernstart, kernend;
315 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
316 vsize_t size;
317 char *p;
318 caddr_t v;
319 char *bootinfo_msg;
320
321 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
322
323 /*
324 * Turn off interrupts (not mchecks) and floating point.
325 * Make sure the instruction and data streams are consistent.
326 */
327 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
328 alpha_pal_wrfen(0);
329 ALPHA_TBIA();
330 alpha_pal_imb();
331
332 /*
333 * Get critical system information (if possible, from the
334 * information provided by the boot program).
335 */
336 bootinfo_msg = NULL;
337 if (bim == BOOTINFO_MAGIC) {
338 if (biv == 0) { /* backward compat */
339 biv = *(u_long *)bip;
340 bip += 8;
341 }
342 switch (biv) {
343 case 1: {
344 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
345
346 bootinfo.ssym = v1p->ssym;
347 bootinfo.esym = v1p->esym;
348 /* hwrpb may not be provided by boot block in v1 */
349 if (v1p->hwrpb != NULL) {
350 bootinfo.hwrpb_phys =
351 ((struct rpb *)v1p->hwrpb)->rpb_phys;
352 bootinfo.hwrpb_size = v1p->hwrpbsize;
353 } else {
354 bootinfo.hwrpb_phys =
355 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
356 bootinfo.hwrpb_size =
357 ((struct rpb *)HWRPB_ADDR)->rpb_size;
358 }
359 bcopy(v1p->boot_flags, bootinfo.boot_flags,
360 min(sizeof v1p->boot_flags,
361 sizeof bootinfo.boot_flags));
362 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
363 min(sizeof v1p->booted_kernel,
364 sizeof bootinfo.booted_kernel));
365 /* booted dev not provided in bootinfo */
366 init_prom_interface((struct rpb *)
367 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
368 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
369 sizeof bootinfo.booted_dev);
370 break;
371 }
372 default:
373 bootinfo_msg = "unknown bootinfo version";
374 goto nobootinfo;
375 }
376 } else {
377 bootinfo_msg = "boot program did not pass bootinfo";
378 nobootinfo:
379 bootinfo.ssym = (u_long)_end;
380 bootinfo.esym = (u_long)_end;
381 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
382 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
383 init_prom_interface((struct rpb *)HWRPB_ADDR);
384 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
385 sizeof bootinfo.boot_flags);
386 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
387 sizeof bootinfo.booted_kernel);
388 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
389 sizeof bootinfo.booted_dev);
390 }
391
392 /*
393 * Initialize the kernel's mapping of the RPB. It's needed for
394 * lots of things.
395 */
396 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
397
398 #if defined(DEC_3000_300) || defined(DEC_3000_500)
399 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
400 hwrpb->rpb_type == ST_DEC_3000_500) {
401 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
402 sizeof(dec_3000_scsiid));
403 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
404 sizeof(dec_3000_scsifast));
405 }
406 #endif
407
408 /*
409 * Remember how many cycles there are per microsecond,
410 * so that we can use delay(). Round up, for safety.
411 */
412 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
413
414 /*
415 * Initalize the (temporary) bootstrap console interface, so
416 * we can use printf until the VM system starts being setup.
417 * The real console is initialized before then.
418 */
419 init_bootstrap_console();
420
421 /* OUTPUT NOW ALLOWED */
422
423 /* delayed from above */
424 if (bootinfo_msg)
425 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
426 bootinfo_msg, bim, bip, biv);
427
428 /* Initialize the trap vectors on the primary processor. */
429 trap_init();
430
431 /*
432 * Find out what hardware we're on, and do basic initialization.
433 */
434 cputype = hwrpb->rpb_type;
435 if (cputype >= ncpuinit) {
436 platform_not_supported();
437 /* NOTREACHED */
438 }
439 (*cpuinit[cputype].init)();
440 strcpy(cpu_model, platform.model);
441
442 /*
443 * Initalize the real console, so the the bootstrap console is
444 * no longer necessary.
445 */
446 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
447 if (!pmap_uses_prom_console())
448 #endif
449 (*platform.cons_init)();
450
451 #ifdef DIAGNOSTIC
452 /* Paranoid sanity checking */
453
454 /* We should always be running on the the primary. */
455 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
456
457 /*
458 * On single-CPU systypes, the primary should always be CPU 0,
459 * except on Alpha 8200 systems where the CPU id is related
460 * to the VID, which is related to the Turbo Laser node id.
461 */
462 if (cputype != ST_DEC_21000)
463 assert(hwrpb->rpb_primary_cpu_id == 0);
464 #endif
465
466 /* NO MORE FIRMWARE ACCESS ALLOWED */
467 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
468 /*
469 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
470 * XXX pmap_uses_prom_console() evaluates to non-zero.)
471 */
472 #endif
473
474 /*
475 * find out this system's page size
476 */
477 PAGE_SIZE = hwrpb->rpb_page_size;
478 if (PAGE_SIZE != 8192)
479 panic("page size %d != 8192?!", PAGE_SIZE);
480
481 /*
482 * Initialize PAGE_SIZE-dependent variables.
483 */
484 #if defined(UVM)
485 uvm_setpagesize();
486 #else
487 vm_set_page_size();
488 #endif
489
490 /*
491 * Find the beginning and end of the kernel (and leave a
492 * bit of space before the beginning for the bootstrap
493 * stack).
494 */
495 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
496 #ifdef DDB
497 ksym_start = (void *)bootinfo.ssym;
498 ksym_end = (void *)bootinfo.esym;
499 kernend = (vaddr_t)round_page(ksym_end);
500 #else
501 kernend = (vaddr_t)round_page(_end);
502 #endif
503
504 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
505 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
506
507 /*
508 * Find out how much memory is available, by looking at
509 * the memory cluster descriptors. This also tries to do
510 * its best to detect things things that have never been seen
511 * before...
512 */
513 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
514
515 /* MDDT SANITY CHECKING */
516 mddtweird = 0;
517 if (mddtp->mddt_cluster_cnt < 2) {
518 mddtweird = 1;
519 printf("WARNING: weird number of mem clusters: %d\n",
520 mddtp->mddt_cluster_cnt);
521 }
522
523 #if 0
524 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
525 #endif
526
527 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
528 memc = &mddtp->mddt_clusters[i];
529 #if 0
530 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
531 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
532 #endif
533 totalphysmem += memc->mddt_pg_cnt;
534 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
535 mem_clusters[mem_cluster_cnt].start =
536 ptoa(memc->mddt_pfn);
537 mem_clusters[mem_cluster_cnt].size =
538 ptoa(memc->mddt_pg_cnt);
539 if (memc->mddt_usage & MDDT_mbz ||
540 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
541 memc->mddt_usage & MDDT_PALCODE)
542 mem_clusters[mem_cluster_cnt].size |=
543 PROT_READ;
544 else
545 mem_clusters[mem_cluster_cnt].size |=
546 PROT_READ | PROT_WRITE | PROT_EXEC;
547 mem_cluster_cnt++;
548 }
549
550 if (memc->mddt_usage & MDDT_mbz) {
551 mddtweird = 1;
552 printf("WARNING: mem cluster %d has weird "
553 "usage 0x%lx\n", i, memc->mddt_usage);
554 unknownmem += memc->mddt_pg_cnt;
555 continue;
556 }
557 if (memc->mddt_usage & MDDT_NONVOLATILE) {
558 /* XXX should handle these... */
559 printf("WARNING: skipping non-volatile mem "
560 "cluster %d\n", i);
561 unusedmem += memc->mddt_pg_cnt;
562 continue;
563 }
564 if (memc->mddt_usage & MDDT_PALCODE) {
565 resvmem += memc->mddt_pg_cnt;
566 continue;
567 }
568
569 /*
570 * We have a memory cluster available for system
571 * software use. We must determine if this cluster
572 * holds the kernel.
573 */
574 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
575 /*
576 * XXX If the kernel uses the PROM console, we only use the
577 * XXX memory after the kernel in the first system segment,
578 * XXX to avoid clobbering prom mapping, data, etc.
579 */
580 if (!pmap_uses_prom_console() || physmem == 0) {
581 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
582 physmem += memc->mddt_pg_cnt;
583 pfn0 = memc->mddt_pfn;
584 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
585 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
586 /*
587 * Must compute the location of the kernel
588 * within the segment.
589 */
590 #if 0
591 printf("Cluster %d contains kernel\n", i);
592 #endif
593 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
594 if (!pmap_uses_prom_console()) {
595 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
596 if (pfn0 < kernstartpfn) {
597 /*
598 * There is a chunk before the kernel.
599 */
600 #if 0
601 printf("Loading chunk before kernel: "
602 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
603 #endif
604 #if defined(UVM)
605 uvm_page_physload(pfn0, kernstartpfn,
606 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
607 #else
608 vm_page_physload(pfn0, kernstartpfn,
609 pfn0, kernstartpfn);
610 #endif
611 }
612 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
613 }
614 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
615 if (kernendpfn < pfn1) {
616 /*
617 * There is a chunk after the kernel.
618 */
619 #if 0
620 printf("Loading chunk after kernel: "
621 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
622 #endif
623 #if defined(UVM)
624 uvm_page_physload(kernendpfn, pfn1,
625 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
626 #else
627 vm_page_physload(kernendpfn, pfn1,
628 kernendpfn, pfn1);
629 #endif
630 }
631 } else {
632 /*
633 * Just load this cluster as one chunk.
634 */
635 #if 0
636 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
637 pfn0, pfn1);
638 #endif
639 #if defined(UVM)
640 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
641 VM_FREELIST_DEFAULT);
642 #else
643 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
644 #endif
645 }
646 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
647 }
648 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
649 }
650
651 /*
652 * Dump out the MDDT if it looks odd...
653 */
654 if (mddtweird) {
655 printf("\n");
656 printf("complete memory cluster information:\n");
657 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
658 printf("mddt %d:\n", i);
659 printf("\tpfn %lx\n",
660 mddtp->mddt_clusters[i].mddt_pfn);
661 printf("\tcnt %lx\n",
662 mddtp->mddt_clusters[i].mddt_pg_cnt);
663 printf("\ttest %lx\n",
664 mddtp->mddt_clusters[i].mddt_pg_test);
665 printf("\tbva %lx\n",
666 mddtp->mddt_clusters[i].mddt_v_bitaddr);
667 printf("\tbpa %lx\n",
668 mddtp->mddt_clusters[i].mddt_p_bitaddr);
669 printf("\tbcksum %lx\n",
670 mddtp->mddt_clusters[i].mddt_bit_cksum);
671 printf("\tusage %lx\n",
672 mddtp->mddt_clusters[i].mddt_usage);
673 }
674 printf("\n");
675 }
676
677 if (totalphysmem == 0)
678 panic("can't happen: system seems to have no memory!");
679
680 #ifdef LIMITMEM
681 /*
682 * XXX Kludge so we can run on machines with memory larger
683 * XXX than 1G until all device drivers are converted to
684 * XXX use bus_dma. (Relies on the fact that vm_physmem
685 * XXX sorted in order of increasing addresses.)
686 */
687 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
688
689 printf("******** LIMITING MEMORY TO %dMB **********\n",
690 LIMITMEM);
691
692 do {
693 u_long ovf;
694
695 vps = &vm_physmem[vm_nphysseg - 1];
696
697 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
698 /*
699 * If the start is too high, just drop
700 * the whole segment.
701 *
702 * XXX can start != avail_start in this
703 * XXX case? wouldn't that mean that
704 * XXX some memory was stolen above the
705 * XXX limit? What to do?
706 */
707 ovf = vps->end - vps->start;
708 vm_nphysseg--;
709 } else {
710 /*
711 * If the start is OK, calculate how much
712 * to drop and drop it.
713 */
714 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
715 vps->end -= ovf;
716 vps->avail_end -= ovf;
717 }
718 physmem -= ovf;
719 unusedmem += ovf;
720 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
721 }
722 #endif /* LIMITMEM */
723
724 maxmem = physmem;
725
726 #if 0
727 printf("totalphysmem = %d\n", totalphysmem);
728 printf("physmem = %d\n", physmem);
729 printf("resvmem = %d\n", resvmem);
730 printf("unusedmem = %d\n", unusedmem);
731 printf("unknownmem = %d\n", unknownmem);
732 #endif
733
734 /*
735 * Adjust some parameters if the amount of physmem
736 * available would cause us to croak. This is completely
737 * eyeballed and isn't meant to be the final answer.
738 * vm_phys_size is probably the only one to really worry
739 * about.
740 *
741 * It's for booting a GENERIC kernel on a large memory platform.
742 */
743 if (physmem >= atop(128 * 1024 * 1024)) {
744 vm_mbuf_size <<= 1;
745 vm_kmem_size <<= 3;
746 vm_phys_size <<= 2;
747 }
748
749 /*
750 * Initialize error message buffer (at end of core).
751 */
752 {
753 size_t sz = round_page(MSGBUFSIZE);
754
755 vps = &vm_physmem[vm_nphysseg - 1];
756
757 /* shrink so that it'll fit in the last segment */
758 if ((vps->avail_end - vps->avail_start) < atop(sz))
759 sz = ptoa(vps->avail_end - vps->avail_start);
760
761 vps->end -= atop(sz);
762 vps->avail_end -= atop(sz);
763 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
764 initmsgbuf(msgbufaddr, sz);
765
766 /* Remove the last segment if it now has no pages. */
767 if (vps->start == vps->end)
768 vm_nphysseg--;
769
770 /* warn if the message buffer had to be shrunk */
771 if (sz != round_page(MSGBUFSIZE))
772 printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
773 round_page(MSGBUFSIZE), sz);
774
775 }
776
777 /*
778 * Init mapping for u page(s) for proc 0
779 */
780 proc0.p_addr = proc0paddr =
781 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
782
783 /*
784 * Allocate space for system data structures. These data structures
785 * are allocated here instead of cpu_startup() because physical
786 * memory is directly addressable. We don't have to map these into
787 * virtual address space.
788 */
789 size = (vsize_t)allocsys(0);
790 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
791 if ((allocsys(v) - v) != size)
792 panic("alpha_init: table size inconsistency");
793
794 /*
795 * Initialize the virtual memory system, and set the
796 * page table base register in proc 0's PCB.
797 */
798 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
799 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
800
801 /*
802 * Initialize the rest of proc 0's PCB, and cache its physical
803 * address.
804 */
805 proc0.p_md.md_pcbpaddr =
806 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
807
808 /*
809 * Set the kernel sp, reserving space for an (empty) trapframe,
810 * and make proc0's trapframe pointer point to it for sanity.
811 */
812 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
813 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
814 proc0.p_md.md_tf =
815 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
816
817 /*
818 * Look at arguments passed to us and compute boothowto.
819 */
820
821 boothowto = RB_SINGLE;
822 #ifdef KADB
823 boothowto |= RB_KDB;
824 #endif
825 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
826 /*
827 * Note that we'd really like to differentiate case here,
828 * but the Alpha AXP Architecture Reference Manual
829 * says that we shouldn't.
830 */
831 switch (*p) {
832 case 'a': /* autoboot */
833 case 'A':
834 boothowto &= ~RB_SINGLE;
835 break;
836
837 #ifdef DEBUG
838 case 'c': /* crash dump immediately after autoconfig */
839 case 'C':
840 boothowto |= RB_DUMP;
841 break;
842 #endif
843
844 #if defined(KGDB) || defined(DDB)
845 case 'd': /* break into the kernel debugger ASAP */
846 case 'D':
847 boothowto |= RB_KDB;
848 break;
849 #endif
850
851 case 'h': /* always halt, never reboot */
852 case 'H':
853 boothowto |= RB_HALT;
854 break;
855
856 #if 0
857 case 'm': /* mini root present in memory */
858 case 'M':
859 boothowto |= RB_MINIROOT;
860 break;
861 #endif
862
863 case 'n': /* askname */
864 case 'N':
865 boothowto |= RB_ASKNAME;
866 break;
867
868 case 's': /* single-user (default, supported for sanity) */
869 case 'S':
870 boothowto |= RB_SINGLE;
871 break;
872
873 case '-':
874 /*
875 * Just ignore this. It's not required, but it's
876 * common for it to be passed regardless.
877 */
878 break;
879
880 default:
881 printf("Unrecognized boot flag '%c'.\n", *p);
882 break;
883 }
884 }
885
886
887 /*
888 * Figure out the number of cpus in the box, from RPB fields.
889 * Really. We mean it.
890 */
891 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
892 struct pcs *pcsp;
893
894 pcsp = LOCATE_PCS(hwrpb, i);
895 if ((pcsp->pcs_flags & PCS_PP) != 0)
896 ncpus++;
897 }
898
899 /*
900 * Initialize debuggers, and break into them if appropriate.
901 */
902 #ifdef DDB
903 db_machine_init();
904 ddb_init(ksym_start, ksym_end);
905 if (boothowto & RB_KDB)
906 Debugger();
907 #endif
908 #ifdef KGDB
909 if (boothowto & RB_KDB)
910 kgdb_connect(0);
911 #endif
912 /*
913 * Figure out our clock frequency, from RPB fields.
914 */
915 hz = hwrpb->rpb_intr_freq >> 12;
916 if (!(60 <= hz && hz <= 10240)) {
917 hz = 1024;
918 #ifdef DIAGNOSTIC
919 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
920 hwrpb->rpb_intr_freq, hz);
921 #endif
922 }
923 }
924
925 /*
926 * Allocate space for system data structures. We are given
927 * a starting virtual address and we return a final virtual
928 * address; along the way we set each data structure pointer.
929 *
930 * We call allocsys() with 0 to find out how much space we want,
931 * allocate that much and fill it with zeroes, and the call
932 * allocsys() again with the correct base virtual address.
933 */
934 caddr_t
935 allocsys(v)
936 caddr_t v;
937 {
938
939 #define valloc(name, type, num) \
940 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
941
942 #ifdef REAL_CLISTS
943 valloc(cfree, struct cblock, nclist);
944 #endif
945 valloc(callout, struct callout, ncallout);
946 #ifdef SYSVSHM
947 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
948 #endif
949 #ifdef SYSVSEM
950 valloc(sema, struct semid_ds, seminfo.semmni);
951 valloc(sem, struct sem, seminfo.semmns);
952 /* This is pretty disgusting! */
953 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
954 #endif
955 #ifdef SYSVMSG
956 valloc(msgpool, char, msginfo.msgmax);
957 valloc(msgmaps, struct msgmap, msginfo.msgseg);
958 valloc(msghdrs, struct msg, msginfo.msgtql);
959 valloc(msqids, struct msqid_ds, msginfo.msgmni);
960 #endif
961
962 /*
963 * Determine how many buffers to allocate.
964 * We allocate bufcache % of memory for buffer space. Insure a
965 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
966 * headers as file i/o buffers.
967 */
968 if (bufpages == 0)
969 bufpages = physmem / CLSIZE * bufcache / 100;
970 if (nbuf == 0) {
971 nbuf = bufpages;
972 if (nbuf < 16)
973 nbuf = 16;
974 }
975 if (nswbuf == 0) {
976 nswbuf = (nbuf / 2) &~ 1; /* force even */
977 if (nswbuf > 256)
978 nswbuf = 256; /* sanity */
979 }
980 #if !defined(UVM)
981 valloc(swbuf, struct buf, nswbuf);
982 #endif
983 valloc(buf, struct buf, nbuf);
984
985 /*
986 * There appears to be a correlation between the number
987 * of processor slots defined in the HWRPB and the whami
988 * value that can be returned.
989 */
990 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
991
992 return (v);
993 #undef valloc
994 }
995
996 void
997 consinit()
998 {
999
1000 /*
1001 * Everything related to console initialization is done
1002 * in alpha_init().
1003 */
1004 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1005 printf("consinit: %susing prom console\n",
1006 pmap_uses_prom_console() ? "" : "not ");
1007 #endif
1008 }
1009
1010 #include "pckbc.h"
1011 #include "pckbd.h"
1012 #if (NPCKBC > 0) && (NPCKBD == 0)
1013
1014 #include <dev/isa/pckbcvar.h>
1015
1016 /*
1017 * This is called by the pbkbc driver if no pckbd is configured.
1018 * On the i386, it is used to glue in the old, deprecated console
1019 * code. On the Alpha, it does nothing.
1020 */
1021 int
1022 pckbc_machdep_cnattach(kbctag, kbcslot)
1023 pckbc_tag_t kbctag;
1024 pckbc_slot_t kbcslot;
1025 {
1026
1027 return (ENXIO);
1028 }
1029 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1030
1031 void
1032 cpu_startup()
1033 {
1034 register unsigned i;
1035 int base, residual;
1036 vaddr_t minaddr, maxaddr;
1037 vsize_t size;
1038 #if defined(DEBUG)
1039 extern int pmapdebug;
1040 int opmapdebug = pmapdebug;
1041
1042 pmapdebug = 0;
1043 #endif
1044
1045 /*
1046 * Good {morning,afternoon,evening,night}.
1047 */
1048 printf(version);
1049 identifycpu();
1050 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1051 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1052 ptoa(resvmem), ptoa(physmem));
1053 if (unusedmem)
1054 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1055 if (unknownmem)
1056 printf("WARNING: %d bytes of memory with unknown purpose\n",
1057 ctob(unknownmem));
1058
1059 /*
1060 * Allocate virtual address space for file I/O buffers.
1061 * Note they are different than the array of headers, 'buf',
1062 * and usually occupy more virtual memory than physical.
1063 */
1064 size = MAXBSIZE * nbuf;
1065 #if defined(UVM)
1066 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1067 NULL, UVM_UNKNOWN_OFFSET,
1068 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1069 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1070 panic("startup: cannot allocate VM for buffers");
1071 #else
1072 buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1073 &maxaddr, size, TRUE);
1074 minaddr = (vaddr_t)buffers;
1075 if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1076 &minaddr, size, FALSE) != KERN_SUCCESS)
1077 panic("startup: cannot allocate buffers");
1078 #endif /* UVM */
1079 base = bufpages / nbuf;
1080 residual = bufpages % nbuf;
1081 for (i = 0; i < nbuf; i++) {
1082 #if defined(UVM)
1083 vsize_t curbufsize;
1084 vaddr_t curbuf;
1085 struct vm_page *pg;
1086
1087 /*
1088 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1089 * that MAXBSIZE space, we allocate and map (base+1) pages
1090 * for the first "residual" buffers, and then we allocate
1091 * "base" pages for the rest.
1092 */
1093 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1094 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1095
1096 while (curbufsize) {
1097 pg = uvm_pagealloc(NULL, 0, NULL);
1098 if (pg == NULL)
1099 panic("cpu_startup: not enough memory for "
1100 "buffer cache");
1101 #if defined(PMAP_NEW)
1102 pmap_kenter_pgs(curbuf, &pg, 1);
1103 #else
1104 pmap_enter(kernel_map->pmap, curbuf,
1105 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1106 #endif
1107 curbuf += PAGE_SIZE;
1108 curbufsize -= PAGE_SIZE;
1109 }
1110 #else /* ! UVM */
1111 vsize_t curbufsize;
1112 vaddr_t curbuf;
1113
1114 /*
1115 * First <residual> buffers get (base+1) physical pages
1116 * allocated for them. The rest get (base) physical pages.
1117 *
1118 * The rest of each buffer occupies virtual space,
1119 * but has no physical memory allocated for it.
1120 */
1121 curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1122 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1123 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1124 vm_map_simplify(buffer_map, curbuf);
1125 #endif /* UVM */
1126 }
1127 /*
1128 * Allocate a submap for exec arguments. This map effectively
1129 * limits the number of processes exec'ing at any time.
1130 */
1131 #if defined(UVM)
1132 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1133 16 * NCARGS, TRUE, FALSE, NULL);
1134 #else
1135 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1136 16 * NCARGS, TRUE);
1137 #endif
1138
1139 /*
1140 * Allocate a submap for physio
1141 */
1142 #if defined(UVM)
1143 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1144 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1145 #else
1146 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1147 VM_PHYS_SIZE, TRUE);
1148 #endif
1149
1150 /*
1151 * Finally, allocate mbuf cluster submap.
1152 */
1153 #if defined(UVM)
1154 mb_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1155 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1156 #else
1157 mb_map = kmem_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1158 VM_MBUF_SIZE, FALSE);
1159 #endif
1160 /*
1161 * Initialize callouts
1162 */
1163 callfree = callout;
1164 for (i = 1; i < ncallout; i++)
1165 callout[i-1].c_next = &callout[i];
1166 callout[i-1].c_next = NULL;
1167
1168 #if defined(DEBUG)
1169 pmapdebug = opmapdebug;
1170 #endif
1171 #if defined(UVM)
1172 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1173 #else
1174 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1175 #endif
1176 #if 0
1177 {
1178 extern u_long pmap_pages_stolen;
1179 printf("stolen memory for VM structures = %ld bytes\n",
1180 pmap_pages_stolen * PAGE_SIZE);
1181 }
1182 #endif
1183 printf("using %ld buffers containing %ld bytes of memory\n",
1184 (long)nbuf, (long)(bufpages * CLBYTES));
1185
1186 /*
1187 * Set up buffers, so they can be used to read disk labels.
1188 */
1189 bufinit();
1190
1191 /*
1192 * Set up the HWPCB so that it's safe to configure secondary
1193 * CPUs.
1194 */
1195 hwrpb_primary_init();
1196
1197 /*
1198 * Configure the system.
1199 */
1200 configure();
1201 }
1202
1203 /*
1204 * Retrieve the platform name from the DSR.
1205 */
1206 const char *
1207 alpha_dsr_sysname()
1208 {
1209 struct dsrdb *dsr;
1210 const char *sysname;
1211
1212 /*
1213 * DSR does not exist on early HWRPB versions.
1214 */
1215 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1216 return (NULL);
1217
1218 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1219 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1220 sizeof(u_int64_t)));
1221 return (sysname);
1222 }
1223
1224 /*
1225 * Lookup the system specified system variation in the provided table,
1226 * returning the model string on match.
1227 */
1228 const char *
1229 alpha_variation_name(variation, avtp)
1230 u_int64_t variation;
1231 const struct alpha_variation_table *avtp;
1232 {
1233 int i;
1234
1235 for (i = 0; avtp[i].avt_model != NULL; i++)
1236 if (avtp[i].avt_variation == variation)
1237 return (avtp[i].avt_model);
1238 return (NULL);
1239 }
1240
1241 /*
1242 * Generate a default platform name based for unknown system variations.
1243 */
1244 const char *
1245 alpha_unknown_sysname()
1246 {
1247 static char s[128]; /* safe size */
1248
1249 sprintf(s, "%s family, unknown model variation 0x%lx",
1250 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1251 return ((const char *)s);
1252 }
1253
1254 void
1255 identifycpu()
1256 {
1257
1258 /*
1259 * print out CPU identification information.
1260 */
1261 printf("%s, %ldMHz\n", cpu_model,
1262 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1263 printf("%ld byte page size, %d processor%s.\n",
1264 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1265 #if 0
1266 /* this isn't defined for any systems that we run on? */
1267 printf("serial number 0x%lx 0x%lx\n",
1268 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1269
1270 /* and these aren't particularly useful! */
1271 printf("variation: 0x%lx, revision 0x%lx\n",
1272 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1273 #endif
1274 }
1275
1276 int waittime = -1;
1277 struct pcb dumppcb;
1278
1279 void
1280 cpu_reboot(howto, bootstr)
1281 int howto;
1282 char *bootstr;
1283 {
1284 extern int cold;
1285 #if defined(MULTIPROCESSOR)
1286 #if 0 /* XXX See below. */
1287 u_long cpu_id;
1288 #endif
1289 #endif
1290
1291 #if defined(MULTIPROCESSOR)
1292 /* We must be running on the primary CPU. */
1293 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1294 panic("cpu_reboot: not on primary CPU!");
1295 #endif
1296
1297 /* If system is cold, just halt. */
1298 if (cold) {
1299 howto |= RB_HALT;
1300 goto haltsys;
1301 }
1302
1303 /* If "always halt" was specified as a boot flag, obey. */
1304 if ((boothowto & RB_HALT) != 0)
1305 howto |= RB_HALT;
1306
1307 boothowto = howto;
1308 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1309 waittime = 0;
1310 vfs_shutdown();
1311 /*
1312 * If we've been adjusting the clock, the todr
1313 * will be out of synch; adjust it now.
1314 */
1315 resettodr();
1316 }
1317
1318 /* Disable interrupts. */
1319 splhigh();
1320
1321 /* If rebooting and a dump is requested do it. */
1322 #if 0
1323 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1324 #else
1325 if (howto & RB_DUMP)
1326 #endif
1327 dumpsys();
1328
1329 haltsys:
1330
1331 /* run any shutdown hooks */
1332 doshutdownhooks();
1333
1334 #if defined(MULTIPROCESSOR)
1335 #if 0 /* XXX doesn't work when called from here?! */
1336 /* Kill off any secondary CPUs. */
1337 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1338 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1339 cpus[cpu_id] == NULL)
1340 continue;
1341 cpu_halt_secondary(cpu_id);
1342 }
1343 #endif
1344 #endif
1345
1346 #ifdef BOOTKEY
1347 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1348 cnpollc(1); /* for proper keyboard command handling */
1349 cngetc();
1350 cnpollc(0);
1351 printf("\n");
1352 #endif
1353
1354 /* Finally, powerdown/halt/reboot the system. */
1355 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1356 platform.powerdown != NULL) {
1357 (*platform.powerdown)();
1358 printf("WARNING: powerdown failed!\n");
1359 }
1360 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1361 prom_halt(howto & RB_HALT);
1362 /*NOTREACHED*/
1363 }
1364
1365 /*
1366 * These variables are needed by /sbin/savecore
1367 */
1368 u_long dumpmag = 0x8fca0101; /* magic number */
1369 int dumpsize = 0; /* pages */
1370 long dumplo = 0; /* blocks */
1371
1372 /*
1373 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1374 */
1375 int
1376 cpu_dumpsize()
1377 {
1378 int size;
1379
1380 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1381 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1382 if (roundup(size, dbtob(1)) != dbtob(1))
1383 return -1;
1384
1385 return (1);
1386 }
1387
1388 /*
1389 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1390 */
1391 u_long
1392 cpu_dump_mempagecnt()
1393 {
1394 u_long i, n;
1395
1396 n = 0;
1397 for (i = 0; i < mem_cluster_cnt; i++)
1398 n += atop(mem_clusters[i].size);
1399 return (n);
1400 }
1401
1402 /*
1403 * cpu_dump: dump machine-dependent kernel core dump headers.
1404 */
1405 int
1406 cpu_dump()
1407 {
1408 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1409 char buf[dbtob(1)];
1410 kcore_seg_t *segp;
1411 cpu_kcore_hdr_t *cpuhdrp;
1412 phys_ram_seg_t *memsegp;
1413 int i;
1414
1415 dump = bdevsw[major(dumpdev)].d_dump;
1416
1417 bzero(buf, sizeof buf);
1418 segp = (kcore_seg_t *)buf;
1419 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1420 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1421 ALIGN(sizeof(*cpuhdrp))];
1422
1423 /*
1424 * Generate a segment header.
1425 */
1426 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1427 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1428
1429 /*
1430 * Add the machine-dependent header info.
1431 */
1432 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1433 cpuhdrp->page_size = PAGE_SIZE;
1434 cpuhdrp->nmemsegs = mem_cluster_cnt;
1435
1436 /*
1437 * Fill in the memory segment descriptors.
1438 */
1439 for (i = 0; i < mem_cluster_cnt; i++) {
1440 memsegp[i].start = mem_clusters[i].start;
1441 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1442 }
1443
1444 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1445 }
1446
1447 /*
1448 * This is called by main to set dumplo and dumpsize.
1449 * Dumps always skip the first CLBYTES of disk space
1450 * in case there might be a disk label stored there.
1451 * If there is extra space, put dump at the end to
1452 * reduce the chance that swapping trashes it.
1453 */
1454 void
1455 cpu_dumpconf()
1456 {
1457 int nblks, dumpblks; /* size of dump area */
1458 int maj;
1459
1460 if (dumpdev == NODEV)
1461 goto bad;
1462 maj = major(dumpdev);
1463 if (maj < 0 || maj >= nblkdev)
1464 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1465 if (bdevsw[maj].d_psize == NULL)
1466 goto bad;
1467 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1468 if (nblks <= ctod(1))
1469 goto bad;
1470
1471 dumpblks = cpu_dumpsize();
1472 if (dumpblks < 0)
1473 goto bad;
1474 dumpblks += ctod(cpu_dump_mempagecnt());
1475
1476 /* If dump won't fit (incl. room for possible label), punt. */
1477 if (dumpblks > (nblks - ctod(1)))
1478 goto bad;
1479
1480 /* Put dump at end of partition */
1481 dumplo = nblks - dumpblks;
1482
1483 /* dumpsize is in page units, and doesn't include headers. */
1484 dumpsize = cpu_dump_mempagecnt();
1485 return;
1486
1487 bad:
1488 dumpsize = 0;
1489 return;
1490 }
1491
1492 /*
1493 * Dump the kernel's image to the swap partition.
1494 */
1495 #define BYTES_PER_DUMP NBPG
1496
1497 void
1498 dumpsys()
1499 {
1500 u_long totalbytesleft, bytes, i, n, memcl;
1501 u_long maddr;
1502 int psize;
1503 daddr_t blkno;
1504 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1505 int error;
1506
1507 /* Save registers. */
1508 savectx(&dumppcb);
1509
1510 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1511 if (dumpdev == NODEV)
1512 return;
1513
1514 /*
1515 * For dumps during autoconfiguration,
1516 * if dump device has already configured...
1517 */
1518 if (dumpsize == 0)
1519 cpu_dumpconf();
1520 if (dumplo <= 0) {
1521 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1522 minor(dumpdev));
1523 return;
1524 }
1525 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1526 minor(dumpdev), dumplo);
1527
1528 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1529 printf("dump ");
1530 if (psize == -1) {
1531 printf("area unavailable\n");
1532 return;
1533 }
1534
1535 /* XXX should purge all outstanding keystrokes. */
1536
1537 if ((error = cpu_dump()) != 0)
1538 goto err;
1539
1540 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1541 blkno = dumplo + cpu_dumpsize();
1542 dump = bdevsw[major(dumpdev)].d_dump;
1543 error = 0;
1544
1545 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1546 maddr = mem_clusters[memcl].start;
1547 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1548
1549 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1550
1551 /* Print out how many MBs we to go. */
1552 if ((totalbytesleft % (1024*1024)) == 0)
1553 printf("%d ", totalbytesleft / (1024 * 1024));
1554
1555 /* Limit size for next transfer. */
1556 n = bytes - i;
1557 if (n > BYTES_PER_DUMP)
1558 n = BYTES_PER_DUMP;
1559
1560 error = (*dump)(dumpdev, blkno,
1561 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1562 if (error)
1563 goto err;
1564 maddr += n;
1565 blkno += btodb(n); /* XXX? */
1566
1567 /* XXX should look for keystrokes, to cancel. */
1568 }
1569 }
1570
1571 err:
1572 switch (error) {
1573
1574 case ENXIO:
1575 printf("device bad\n");
1576 break;
1577
1578 case EFAULT:
1579 printf("device not ready\n");
1580 break;
1581
1582 case EINVAL:
1583 printf("area improper\n");
1584 break;
1585
1586 case EIO:
1587 printf("i/o error\n");
1588 break;
1589
1590 case EINTR:
1591 printf("aborted from console\n");
1592 break;
1593
1594 case 0:
1595 printf("succeeded\n");
1596 break;
1597
1598 default:
1599 printf("error %d\n", error);
1600 break;
1601 }
1602 printf("\n\n");
1603 delay(1000);
1604 }
1605
1606 void
1607 frametoreg(framep, regp)
1608 struct trapframe *framep;
1609 struct reg *regp;
1610 {
1611
1612 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1613 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1614 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1615 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1616 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1617 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1618 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1619 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1620 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1621 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1622 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1623 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1624 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1625 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1626 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1627 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1628 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1629 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1630 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1631 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1632 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1633 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1634 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1635 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1636 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1637 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1638 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1639 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1640 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1641 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1642 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1643 regp->r_regs[R_ZERO] = 0;
1644 }
1645
1646 void
1647 regtoframe(regp, framep)
1648 struct reg *regp;
1649 struct trapframe *framep;
1650 {
1651
1652 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1653 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1654 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1655 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1656 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1657 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1658 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1659 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1660 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1661 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1662 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1663 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1664 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1665 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1666 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1667 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1668 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1669 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1670 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1671 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1672 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1673 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1674 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1675 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1676 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1677 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1678 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1679 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1680 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1681 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1682 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1683 /* ??? = regp->r_regs[R_ZERO]; */
1684 }
1685
1686 void
1687 printregs(regp)
1688 struct reg *regp;
1689 {
1690 int i;
1691
1692 for (i = 0; i < 32; i++)
1693 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1694 i & 1 ? "\n" : "\t");
1695 }
1696
1697 void
1698 regdump(framep)
1699 struct trapframe *framep;
1700 {
1701 struct reg reg;
1702
1703 frametoreg(framep, ®);
1704 reg.r_regs[R_SP] = alpha_pal_rdusp();
1705
1706 printf("REGISTERS:\n");
1707 printregs(®);
1708 }
1709
1710 #ifdef DEBUG
1711 int sigdebug = 0;
1712 int sigpid = 0;
1713 #define SDB_FOLLOW 0x01
1714 #define SDB_KSTACK 0x02
1715 #endif
1716
1717 /*
1718 * Send an interrupt to process.
1719 */
1720 void
1721 sendsig(catcher, sig, mask, code)
1722 sig_t catcher;
1723 int sig;
1724 sigset_t *mask;
1725 u_long code;
1726 {
1727 struct proc *p = curproc;
1728 struct sigcontext *scp, ksc;
1729 struct trapframe *frame;
1730 struct sigacts *psp = p->p_sigacts;
1731 int onstack, fsize, rndfsize;
1732 extern struct proc *fpcurproc;
1733
1734 frame = p->p_md.md_tf;
1735
1736 /* Do we need to jump onto the signal stack? */
1737 onstack =
1738 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1739 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1740
1741 /* Allocate space for the signal handler context. */
1742 fsize = sizeof(ksc);
1743 rndfsize = ((fsize + 15) / 16) * 16;
1744
1745 if (onstack)
1746 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1747 psp->ps_sigstk.ss_size);
1748 else
1749 scp = (struct sigcontext *)(alpha_pal_rdusp());
1750 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1751
1752 #ifdef DEBUG
1753 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1754 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1755 sig, &onstack, scp);
1756 #endif
1757
1758 /* Build stack frame for signal trampoline. */
1759 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1760 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1761
1762 /* Save register context. */
1763 frametoreg(frame, (struct reg *)ksc.sc_regs);
1764 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1765 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1766
1767 /* save the floating-point state, if necessary, then copy it. */
1768 if (p == fpcurproc) {
1769 alpha_pal_wrfen(1);
1770 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1771 alpha_pal_wrfen(0);
1772 fpcurproc = NULL;
1773 }
1774 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1775 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1776 sizeof(struct fpreg));
1777 ksc.sc_fp_control = 0; /* XXX ? */
1778 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1779 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1780
1781 /* Save signal stack. */
1782 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1783
1784 /* Save signal mask. */
1785 ksc.sc_mask = *mask;
1786
1787 #ifdef COMPAT_13
1788 /*
1789 * XXX We always have to save an old style signal mask because
1790 * XXX we might be delivering a signal to a process which will
1791 * XXX escape from the signal in a non-standard way and invoke
1792 * XXX sigreturn() directly.
1793 */
1794 {
1795 /* Note: it's a long in the stack frame. */
1796 sigset13_t mask13;
1797
1798 native_sigset_to_sigset13(mask, &mask13);
1799 ksc.__sc_mask13 = mask13;
1800 }
1801 #endif
1802
1803 #ifdef COMPAT_OSF1
1804 /*
1805 * XXX Create an OSF/1-style sigcontext and associated goo.
1806 */
1807 #endif
1808
1809 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1810 /*
1811 * Process has trashed its stack; give it an illegal
1812 * instruction to halt it in its tracks.
1813 */
1814 #ifdef DEBUG
1815 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1816 printf("sendsig(%d): copyout failed on sig %d\n",
1817 p->p_pid, sig);
1818 #endif
1819 sigexit(p, SIGILL);
1820 /* NOTREACHED */
1821 }
1822 #ifdef DEBUG
1823 if (sigdebug & SDB_FOLLOW)
1824 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1825 scp, code);
1826 #endif
1827
1828 /* Set up the registers to return to sigcode. */
1829 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1830 frame->tf_regs[FRAME_A0] = sig;
1831 frame->tf_regs[FRAME_A1] = code;
1832 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1833 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1834 alpha_pal_wrusp((unsigned long)scp);
1835
1836 /* Remember that we're now on the signal stack. */
1837 if (onstack)
1838 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1839
1840 #ifdef DEBUG
1841 if (sigdebug & SDB_FOLLOW)
1842 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1843 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1844 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1845 printf("sendsig(%d): sig %d returns\n",
1846 p->p_pid, sig);
1847 #endif
1848 }
1849
1850 /*
1851 * System call to cleanup state after a signal
1852 * has been taken. Reset signal mask and
1853 * stack state from context left by sendsig (above).
1854 * Return to previous pc and psl as specified by
1855 * context left by sendsig. Check carefully to
1856 * make sure that the user has not modified the
1857 * psl to gain improper priviledges or to cause
1858 * a machine fault.
1859 */
1860 /* ARGSUSED */
1861 int
1862 sys___sigreturn14(p, v, retval)
1863 struct proc *p;
1864 void *v;
1865 register_t *retval;
1866 {
1867 struct sys___sigreturn14_args /* {
1868 syscallarg(struct sigcontext *) sigcntxp;
1869 } */ *uap = v;
1870 struct sigcontext *scp, ksc;
1871 extern struct proc *fpcurproc;
1872
1873 /*
1874 * The trampoline code hands us the context.
1875 * It is unsafe to keep track of it ourselves, in the event that a
1876 * program jumps out of a signal handler.
1877 */
1878 scp = SCARG(uap, sigcntxp);
1879 #ifdef DEBUG
1880 if (sigdebug & SDB_FOLLOW)
1881 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1882 #endif
1883 if (ALIGN(scp) != (u_int64_t)scp)
1884 return (EINVAL);
1885
1886 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1887 return (EFAULT);
1888
1889 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1890 return (EINVAL);
1891
1892 /* Restore register context. */
1893 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1894 p->p_md.md_tf->tf_regs[FRAME_PS] =
1895 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1896
1897 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1898 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1899
1900 /* XXX ksc.sc_ownedfp ? */
1901 if (p == fpcurproc)
1902 fpcurproc = NULL;
1903 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1904 sizeof(struct fpreg));
1905 /* XXX ksc.sc_fp_control ? */
1906
1907 /* Restore signal stack. */
1908 if (ksc.sc_onstack & SS_ONSTACK)
1909 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1910 else
1911 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1912
1913 /* Restore signal mask. */
1914 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1915
1916 #ifdef DEBUG
1917 if (sigdebug & SDB_FOLLOW)
1918 printf("sigreturn(%d): returns\n", p->p_pid);
1919 #endif
1920 return (EJUSTRETURN);
1921 }
1922
1923 /*
1924 * machine dependent system variables.
1925 */
1926 int
1927 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1928 int *name;
1929 u_int namelen;
1930 void *oldp;
1931 size_t *oldlenp;
1932 void *newp;
1933 size_t newlen;
1934 struct proc *p;
1935 {
1936 dev_t consdev;
1937
1938 /* all sysctl names at this level are terminal */
1939 if (namelen != 1)
1940 return (ENOTDIR); /* overloaded */
1941
1942 switch (name[0]) {
1943 case CPU_CONSDEV:
1944 if (cn_tab != NULL)
1945 consdev = cn_tab->cn_dev;
1946 else
1947 consdev = NODEV;
1948 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1949 sizeof consdev));
1950
1951 case CPU_ROOT_DEVICE:
1952 return (sysctl_rdstring(oldp, oldlenp, newp,
1953 root_device->dv_xname));
1954
1955 case CPU_UNALIGNED_PRINT:
1956 return (sysctl_int(oldp, oldlenp, newp, newlen,
1957 &alpha_unaligned_print));
1958
1959 case CPU_UNALIGNED_FIX:
1960 return (sysctl_int(oldp, oldlenp, newp, newlen,
1961 &alpha_unaligned_fix));
1962
1963 case CPU_UNALIGNED_SIGBUS:
1964 return (sysctl_int(oldp, oldlenp, newp, newlen,
1965 &alpha_unaligned_sigbus));
1966
1967 case CPU_BOOTED_KERNEL:
1968 return (sysctl_rdstring(oldp, oldlenp, newp,
1969 bootinfo.booted_kernel));
1970
1971 default:
1972 return (EOPNOTSUPP);
1973 }
1974 /* NOTREACHED */
1975 }
1976
1977 /*
1978 * Set registers on exec.
1979 */
1980 void
1981 setregs(p, pack, stack)
1982 register struct proc *p;
1983 struct exec_package *pack;
1984 u_long stack;
1985 {
1986 struct trapframe *tfp = p->p_md.md_tf;
1987 extern struct proc *fpcurproc;
1988 #ifdef DEBUG
1989 int i;
1990 #endif
1991
1992 #ifdef DEBUG
1993 /*
1994 * Crash and dump, if the user requested it.
1995 */
1996 if (boothowto & RB_DUMP)
1997 panic("crash requested by boot flags");
1998 #endif
1999
2000 #ifdef DEBUG
2001 for (i = 0; i < FRAME_SIZE; i++)
2002 tfp->tf_regs[i] = 0xbabefacedeadbeef;
2003 #else
2004 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
2005 #endif
2006 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
2007 #define FP_RN 2 /* XXX */
2008 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
2009 alpha_pal_wrusp(stack);
2010 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
2011 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
2012
2013 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
2014 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
2015 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2016 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2017 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2018
2019 p->p_md.md_flags &= ~MDP_FPUSED;
2020 if (fpcurproc == p)
2021 fpcurproc = NULL;
2022 }
2023
2024 void
2025 netintr()
2026 {
2027 int n, s;
2028
2029 s = splhigh();
2030 n = netisr;
2031 netisr = 0;
2032 splx(s);
2033
2034 #define DONETISR(bit, fn) \
2035 do { \
2036 if (n & (1 << (bit))) \
2037 fn; \
2038 } while (0)
2039
2040 #ifdef INET
2041 #if NARP > 0
2042 DONETISR(NETISR_ARP, arpintr());
2043 #endif
2044 DONETISR(NETISR_IP, ipintr());
2045 #endif
2046 #ifdef NETATALK
2047 DONETISR(NETISR_ATALK, atintr());
2048 #endif
2049 #ifdef NS
2050 DONETISR(NETISR_NS, nsintr());
2051 #endif
2052 #ifdef ISO
2053 DONETISR(NETISR_ISO, clnlintr());
2054 #endif
2055 #ifdef CCITT
2056 DONETISR(NETISR_CCITT, ccittintr());
2057 #endif
2058 #ifdef NATM
2059 DONETISR(NETISR_NATM, natmintr());
2060 #endif
2061 #if NPPP > 1
2062 DONETISR(NETISR_PPP, pppintr());
2063 #endif
2064
2065 #undef DONETISR
2066 }
2067
2068 void
2069 do_sir()
2070 {
2071 u_int64_t n;
2072
2073 do {
2074 (void)splhigh();
2075 n = ssir;
2076 ssir = 0;
2077 splsoft(); /* don't recurse through spl0() */
2078
2079 #if defined(UVM)
2080 #define COUNT_SOFT uvmexp.softs++
2081 #else
2082 #define COUNT_SOFT cnt.v_soft++
2083 #endif
2084
2085 #define DO_SIR(bit, fn) \
2086 do { \
2087 if (n & (bit)) { \
2088 COUNT_SOFT; \
2089 fn; \
2090 } \
2091 } while (0)
2092
2093 DO_SIR(SIR_NET, netintr());
2094 DO_SIR(SIR_CLOCK, softclock());
2095 #if NCOM > 0
2096 DO_SIR(SIR_SERIAL, comsoft());
2097 #endif
2098
2099 #undef COUNT_SOFT
2100 #undef DO_SIR
2101 } while (ssir != 0);
2102 }
2103
2104 int
2105 spl0()
2106 {
2107
2108 if (ssir)
2109 do_sir(); /* it lowers the IPL itself */
2110
2111 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2112 }
2113
2114 /*
2115 * The following primitives manipulate the run queues. _whichqs tells which
2116 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2117 * into queues, Remrunqueue removes them from queues. The running process is
2118 * on no queue, other processes are on a queue related to p->p_priority,
2119 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2120 * available queues.
2121 */
2122 /*
2123 * setrunqueue(p)
2124 * proc *p;
2125 *
2126 * Call should be made at splclock(), and p->p_stat should be SRUN.
2127 */
2128
2129 void
2130 setrunqueue(p)
2131 struct proc *p;
2132 {
2133 int bit;
2134
2135 /* firewall: p->p_back must be NULL */
2136 if (p->p_back != NULL)
2137 panic("setrunqueue");
2138
2139 bit = p->p_priority >> 2;
2140 whichqs |= (1 << bit);
2141 p->p_forw = (struct proc *)&qs[bit];
2142 p->p_back = qs[bit].ph_rlink;
2143 p->p_back->p_forw = p;
2144 qs[bit].ph_rlink = p;
2145 }
2146
2147 /*
2148 * remrunqueue(p)
2149 *
2150 * Call should be made at splclock().
2151 */
2152 void
2153 remrunqueue(p)
2154 struct proc *p;
2155 {
2156 int bit;
2157
2158 bit = p->p_priority >> 2;
2159 if ((whichqs & (1 << bit)) == 0)
2160 panic("remrunqueue");
2161
2162 p->p_back->p_forw = p->p_forw;
2163 p->p_forw->p_back = p->p_back;
2164 p->p_back = NULL; /* for firewall checking. */
2165
2166 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2167 whichqs &= ~(1 << bit);
2168 }
2169
2170 /*
2171 * Return the best possible estimate of the time in the timeval
2172 * to which tvp points. Unfortunately, we can't read the hardware registers.
2173 * We guarantee that the time will be greater than the value obtained by a
2174 * previous call.
2175 */
2176 void
2177 microtime(tvp)
2178 register struct timeval *tvp;
2179 {
2180 int s = splclock();
2181 static struct timeval lasttime;
2182
2183 *tvp = time;
2184 #ifdef notdef
2185 tvp->tv_usec += clkread();
2186 while (tvp->tv_usec > 1000000) {
2187 tvp->tv_sec++;
2188 tvp->tv_usec -= 1000000;
2189 }
2190 #endif
2191 if (tvp->tv_sec == lasttime.tv_sec &&
2192 tvp->tv_usec <= lasttime.tv_usec &&
2193 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2194 tvp->tv_sec++;
2195 tvp->tv_usec -= 1000000;
2196 }
2197 lasttime = *tvp;
2198 splx(s);
2199 }
2200
2201 /*
2202 * Wait "n" microseconds.
2203 */
2204 void
2205 delay(n)
2206 unsigned long n;
2207 {
2208 long N = cycles_per_usec * (n);
2209
2210 while (N > 0) /* XXX */
2211 N -= 3; /* XXX */
2212 }
2213
2214 #if defined(COMPAT_OSF1) || 1 /* XXX */
2215 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2216 u_long));
2217
2218 void
2219 cpu_exec_ecoff_setregs(p, epp, stack)
2220 struct proc *p;
2221 struct exec_package *epp;
2222 u_long stack;
2223 {
2224 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2225
2226 setregs(p, epp, stack);
2227 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2228 }
2229
2230 /*
2231 * cpu_exec_ecoff_hook():
2232 * cpu-dependent ECOFF format hook for execve().
2233 *
2234 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2235 *
2236 */
2237 int
2238 cpu_exec_ecoff_hook(p, epp)
2239 struct proc *p;
2240 struct exec_package *epp;
2241 {
2242 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2243 extern struct emul emul_netbsd;
2244 #ifdef COMPAT_OSF1
2245 extern struct emul emul_osf1;
2246 #endif
2247
2248 switch (execp->f.f_magic) {
2249 #ifdef COMPAT_OSF1
2250 case ECOFF_MAGIC_ALPHA:
2251 epp->ep_emul = &emul_osf1;
2252 break;
2253 #endif
2254
2255 case ECOFF_MAGIC_NETBSD_ALPHA:
2256 epp->ep_emul = &emul_netbsd;
2257 break;
2258
2259 default:
2260 return ENOEXEC;
2261 }
2262 return 0;
2263 }
2264 #endif
2265
2266 int
2267 alpha_pa_access(pa)
2268 u_long pa;
2269 {
2270 int i;
2271
2272 for (i = 0; i < mem_cluster_cnt; i++) {
2273 if (pa < mem_clusters[i].start)
2274 continue;
2275 if ((pa - mem_clusters[i].start) >=
2276 (mem_clusters[i].size & ~PAGE_MASK))
2277 continue;
2278 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2279 }
2280 return (PROT_NONE);
2281 }
2282
2283 /* XXX XXX BEGIN XXX XXX */
2284 paddr_t alpha_XXX_dmamap_or; /* XXX */
2285 /* XXX */
2286 paddr_t /* XXX */
2287 alpha_XXX_dmamap(v) /* XXX */
2288 vaddr_t v; /* XXX */
2289 { /* XXX */
2290 /* XXX */
2291 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2292 } /* XXX */
2293 /* XXX XXX END XXX XXX */
2294
2295 struct mchkinfo *
2296 cpu_mchkinfo()
2297 {
2298 if (mchkinfo_all_cpus == NULL)
2299 return &startup_info;
2300 return mchkinfo_all_cpus + alpha_pal_whami();
2301 }
2302
2303 #define NSIO_PORT 0x26e /* Hardware enabled option: 0x398 */
2304 #define NSIO_BASE 0
2305 #define NSIO_INDEX NSIO_BASE
2306 #define NSIO_DATA 1
2307 #define NSIO_SIZE 2
2308 #define NSIO_CFG0 0
2309 #define NSIO_CFG1 1
2310 #define NSIO_CFG2 2
2311 #define NSIO_IDE_ENABLE 0x40
2312
2313 #define NSIO_MB(type) bus_space_barrier(iot, nsio, NSIO_BASE, NSIO_SIZE, (type))
2314
2315 /*
2316 * DEC uses a chip from NS for junk I/O, but SRM on some platforms
2317 * doesn't enable that section. Do it here if called from a platform-
2318 * specific init routine.
2319 */
2320 void
2321 enable_nsio_ide(iot)
2322 bus_space_tag_t iot;
2323 {
2324 int cfg0val;
2325 bus_space_handle_t nsio;
2326
2327 if (bus_space_map(iot, NSIO_PORT, NSIO_SIZE, 0, &nsio))
2328 return;
2329
2330 bus_space_write_1(iot, nsio, NSIO_INDEX, NSIO_CFG0);
2331 NSIO_MB(BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2332 cfg0val = bus_space_read_1(iot, nsio, NSIO_DATA);
2333
2334 cfg0val |= NSIO_IDE_ENABLE;
2335
2336 bus_space_write_1(iot, nsio, NSIO_INDEX, NSIO_CFG0);
2337 NSIO_MB(BUS_SPACE_BARRIER_WRITE);
2338 bus_space_write_1(iot, nsio, NSIO_DATA, cfg0val);
2339 NSIO_MB(BUS_SPACE_BARRIER_WRITE);
2340 bus_space_write_1(iot, nsio, NSIO_DATA, cfg0val);
2341
2342 /* Leave nsio mapped to catch any accidental port space collisions */
2343 }
2344