machdep.c revision 1.160 1 /* $NetBSD: machdep.c,v 1.160 1999/02/12 06:30:08 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_uvm.h"
70 #include "opt_pmap_new.h"
71 #include "opt_dec_3000_300.h"
72 #include "opt_dec_3000_500.h"
73 #include "opt_compat_osf1.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_inet.h"
76 #include "opt_atalk.h"
77 #include "opt_ccitt.h"
78 #include "opt_iso.h"
79 #include "opt_ns.h"
80 #include "opt_natm.h"
81 #include "opt_sysv.h"
82
83 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84
85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.160 1999/02/12 06:30:08 thorpej Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/signalvar.h>
90 #include <sys/kernel.h>
91 #include <sys/map.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <sys/reboot.h>
95 #include <sys/device.h>
96 #include <sys/file.h>
97 #ifdef REAL_CLISTS
98 #include <sys/clist.h>
99 #endif
100 #include <sys/callout.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/mman.h>
104 #include <sys/msgbuf.h>
105 #include <sys/ioctl.h>
106 #include <sys/tty.h>
107 #include <sys/user.h>
108 #include <sys/exec.h>
109 #include <sys/exec_ecoff.h>
110 #include <vm/vm.h>
111 #include <sys/sysctl.h>
112 #include <sys/core.h>
113 #include <sys/kcore.h>
114 #include <machine/kcore.h>
115 #ifdef SYSVMSG
116 #include <sys/msg.h>
117 #endif
118 #ifdef SYSVSEM
119 #include <sys/sem.h>
120 #endif
121 #ifdef SYSVSHM
122 #include <sys/shm.h>
123 #endif
124
125 #include <sys/mount.h>
126 #include <sys/syscallargs.h>
127
128 #include <vm/vm_kern.h>
129
130 #if defined(UVM)
131 #include <uvm/uvm_extern.h>
132 #endif
133
134 #include <dev/cons.h>
135
136 #include <machine/autoconf.h>
137 #include <machine/cpu.h>
138 #include <machine/reg.h>
139 #include <machine/rpb.h>
140 #include <machine/prom.h>
141 #include <machine/conf.h>
142
143 #include <alpha/alpha/cpuvar.h>
144
145 #include <net/netisr.h>
146 #include <net/if.h>
147
148 #ifdef INET
149 #include <net/route.h>
150 #include <netinet/in.h>
151 #include <netinet/ip_var.h>
152 #include "arp.h"
153 #if NARP > 0
154 #include <netinet/if_inarp.h>
155 #endif
156 #endif
157 #ifdef NS
158 #include <netns/ns_var.h>
159 #endif
160 #ifdef ISO
161 #include <netiso/iso.h>
162 #include <netiso/clnp.h>
163 #endif
164 #ifdef CCITT
165 #include <netccitt/x25.h>
166 #include <netccitt/pk.h>
167 #include <netccitt/pk_extern.h>
168 #endif
169 #ifdef NATM
170 #include <netnatm/natm.h>
171 #endif
172 #ifdef NETATALK
173 #include <netatalk/at_extern.h>
174 #endif
175 #include "ppp.h"
176 #if NPPP > 0
177 #include <net/ppp_defs.h>
178 #include <net/if_ppp.h>
179 #endif
180
181 #ifdef DDB
182 #include <machine/db_machdep.h>
183 #include <ddb/db_access.h>
184 #include <ddb/db_sym.h>
185 #include <ddb/db_extern.h>
186 #include <ddb/db_interface.h>
187 #endif
188
189 #include <machine/alpha.h>
190 #include <machine/intrcnt.h>
191
192 #include "com.h"
193 #if NCOM > 0
194 extern void comsoft __P((void));
195 #endif
196
197 #if defined(UVM)
198 vm_map_t exec_map = NULL;
199 vm_map_t mb_map = NULL;
200 vm_map_t phys_map = NULL;
201 #else
202 vm_map_t buffer_map;
203 #endif
204
205 /*
206 * Declare these as initialized data so we can patch them.
207 */
208 int nswbuf = 0;
209 #ifdef NBUF
210 int nbuf = NBUF;
211 #else
212 int nbuf = 0;
213 #endif
214
215 #ifndef BUFPAGES
216 #define BUFPAGES 0
217 #endif
218 #ifndef BUFCACHE
219 #define BUFCACHE 10
220 #endif
221
222 int bufpages = BUFPAGES; /* optional hardwired count */
223 int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
224
225 caddr_t msgbufaddr;
226
227 int maxmem; /* max memory per process */
228
229 int totalphysmem; /* total amount of physical memory in system */
230 int physmem; /* physical memory used by NetBSD + some rsvd */
231 int resvmem; /* amount of memory reserved for PROM */
232 int unusedmem; /* amount of memory for OS that we don't use */
233 int unknownmem; /* amount of memory with an unknown use */
234
235 int cputype; /* system type, from the RPB */
236
237 /*
238 * XXX We need an address to which we can assign things so that they
239 * won't be optimized away because we didn't use the value.
240 */
241 u_int32_t no_optimize;
242
243 /* the following is used externally (sysctl_hw) */
244 char machine[] = MACHINE; /* from <machine/param.h> */
245 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
246 char cpu_model[128];
247
248 struct user *proc0paddr;
249
250 /* Number of machine cycles per microsecond */
251 u_int64_t cycles_per_usec;
252
253 /* number of cpus in the box. really! */
254 int ncpus;
255
256 /* machine check info array, valloc()'ed in allocsys() */
257
258 static struct mchkinfo startup_info,
259 *mchkinfo_all_cpus;
260
261 struct bootinfo_kernel bootinfo;
262
263 /* For built-in TCDS */
264 #if defined(DEC_3000_300) || defined(DEC_3000_500)
265 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
266 #endif
267
268 struct platform platform;
269
270 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
271 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
272 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
273
274 #ifdef DDB
275 /* start and end of kernel symbol table */
276 void *ksym_start, *ksym_end;
277 #endif
278
279 /* for cpu_sysctl() */
280 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
281 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
282 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
283
284 /*
285 * XXX This should be dynamically sized, but we have the chicken-egg problem!
286 * XXX it should also be larger than it is, because not all of the mddt
287 * XXX clusters end up being used for VM.
288 */
289 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
290 int mem_cluster_cnt;
291
292 caddr_t allocsys __P((caddr_t));
293 int cpu_dump __P((void));
294 int cpu_dumpsize __P((void));
295 u_long cpu_dump_mempagecnt __P((void));
296 void dumpsys __P((void));
297 void identifycpu __P((void));
298 void netintr __P((void));
299 void printregs __P((struct reg *));
300
301 void
302 alpha_init(pfn, ptb, bim, bip, biv)
303 u_long pfn; /* first free PFN number */
304 u_long ptb; /* PFN of current level 1 page table */
305 u_long bim; /* bootinfo magic */
306 u_long bip; /* bootinfo pointer */
307 u_long biv; /* bootinfo version */
308 {
309 extern char kernel_text[], _end[];
310 struct mddt *mddtp;
311 struct mddt_cluster *memc;
312 int i, mddtweird;
313 struct vm_physseg *vps;
314 vaddr_t kernstart, kernend;
315 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
316 vsize_t size;
317 char *p;
318 caddr_t v;
319 char *bootinfo_msg;
320
321 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
322
323 /*
324 * Turn off interrupts (not mchecks) and floating point.
325 * Make sure the instruction and data streams are consistent.
326 */
327 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
328 alpha_pal_wrfen(0);
329 ALPHA_TBIA();
330 alpha_pal_imb();
331
332 /*
333 * Get critical system information (if possible, from the
334 * information provided by the boot program).
335 */
336 bootinfo_msg = NULL;
337 if (bim == BOOTINFO_MAGIC) {
338 if (biv == 0) { /* backward compat */
339 biv = *(u_long *)bip;
340 bip += 8;
341 }
342 switch (biv) {
343 case 1: {
344 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
345
346 bootinfo.ssym = v1p->ssym;
347 bootinfo.esym = v1p->esym;
348 /* hwrpb may not be provided by boot block in v1 */
349 if (v1p->hwrpb != NULL) {
350 bootinfo.hwrpb_phys =
351 ((struct rpb *)v1p->hwrpb)->rpb_phys;
352 bootinfo.hwrpb_size = v1p->hwrpbsize;
353 } else {
354 bootinfo.hwrpb_phys =
355 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
356 bootinfo.hwrpb_size =
357 ((struct rpb *)HWRPB_ADDR)->rpb_size;
358 }
359 bcopy(v1p->boot_flags, bootinfo.boot_flags,
360 min(sizeof v1p->boot_flags,
361 sizeof bootinfo.boot_flags));
362 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
363 min(sizeof v1p->booted_kernel,
364 sizeof bootinfo.booted_kernel));
365 /* booted dev not provided in bootinfo */
366 init_prom_interface((struct rpb *)
367 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
368 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
369 sizeof bootinfo.booted_dev);
370 break;
371 }
372 default:
373 bootinfo_msg = "unknown bootinfo version";
374 goto nobootinfo;
375 }
376 } else {
377 bootinfo_msg = "boot program did not pass bootinfo";
378 nobootinfo:
379 bootinfo.ssym = (u_long)_end;
380 bootinfo.esym = (u_long)_end;
381 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
382 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
383 init_prom_interface((struct rpb *)HWRPB_ADDR);
384 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
385 sizeof bootinfo.boot_flags);
386 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
387 sizeof bootinfo.booted_kernel);
388 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
389 sizeof bootinfo.booted_dev);
390 }
391
392 /*
393 * Initialize the kernel's mapping of the RPB. It's needed for
394 * lots of things.
395 */
396 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
397
398 #if defined(DEC_3000_300) || defined(DEC_3000_500)
399 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
400 hwrpb->rpb_type == ST_DEC_3000_500) {
401 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
402 sizeof(dec_3000_scsiid));
403 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
404 sizeof(dec_3000_scsifast));
405 }
406 #endif
407
408 /*
409 * Remember how many cycles there are per microsecond,
410 * so that we can use delay(). Round up, for safety.
411 */
412 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
413
414 /*
415 * Initalize the (temporary) bootstrap console interface, so
416 * we can use printf until the VM system starts being setup.
417 * The real console is initialized before then.
418 */
419 init_bootstrap_console();
420
421 /* OUTPUT NOW ALLOWED */
422
423 /* delayed from above */
424 if (bootinfo_msg)
425 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
426 bootinfo_msg, bim, bip, biv);
427
428 /* Initialize the trap vectors on the primary processor. */
429 trap_init();
430
431 /*
432 * Find out what hardware we're on, and do basic initialization.
433 */
434 cputype = hwrpb->rpb_type;
435 if (cputype >= ncpuinit) {
436 platform_not_supported();
437 /* NOTREACHED */
438 }
439 (*cpuinit[cputype].init)();
440 strcpy(cpu_model, platform.model);
441
442 /*
443 * Initalize the real console, so the the bootstrap console is
444 * no longer necessary.
445 */
446 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
447 if (!pmap_uses_prom_console())
448 #endif
449 (*platform.cons_init)();
450
451 #ifdef DIAGNOSTIC
452 /* Paranoid sanity checking */
453
454 /* We should always be running on the the primary. */
455 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
456
457 /*
458 * On single-CPU systypes, the primary should always be CPU 0,
459 * except on Alpha 8200 systems where the CPU id is related
460 * to the VID, which is related to the Turbo Laser node id.
461 */
462 if (cputype != ST_DEC_21000)
463 assert(hwrpb->rpb_primary_cpu_id == 0);
464 #endif
465
466 /* NO MORE FIRMWARE ACCESS ALLOWED */
467 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
468 /*
469 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
470 * XXX pmap_uses_prom_console() evaluates to non-zero.)
471 */
472 #endif
473
474 /*
475 * find out this system's page size
476 */
477 PAGE_SIZE = hwrpb->rpb_page_size;
478 if (PAGE_SIZE != 8192)
479 panic("page size %d != 8192?!", PAGE_SIZE);
480
481 /*
482 * Initialize PAGE_SIZE-dependent variables.
483 */
484 #if defined(UVM)
485 uvm_setpagesize();
486 #else
487 vm_set_page_size();
488 #endif
489
490 /*
491 * Find the beginning and end of the kernel (and leave a
492 * bit of space before the beginning for the bootstrap
493 * stack).
494 */
495 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
496 #ifdef DDB
497 ksym_start = (void *)bootinfo.ssym;
498 ksym_end = (void *)bootinfo.esym;
499 kernend = (vaddr_t)round_page(ksym_end);
500 #else
501 kernend = (vaddr_t)round_page(_end);
502 #endif
503
504 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
505 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
506
507 /*
508 * Find out how much memory is available, by looking at
509 * the memory cluster descriptors. This also tries to do
510 * its best to detect things things that have never been seen
511 * before...
512 */
513 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
514
515 /* MDDT SANITY CHECKING */
516 mddtweird = 0;
517 if (mddtp->mddt_cluster_cnt < 2) {
518 mddtweird = 1;
519 printf("WARNING: weird number of mem clusters: %lu\n",
520 mddtp->mddt_cluster_cnt);
521 }
522
523 #if 0
524 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
525 #endif
526
527 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
528 memc = &mddtp->mddt_clusters[i];
529 #if 0
530 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
531 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
532 #endif
533 totalphysmem += memc->mddt_pg_cnt;
534 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
535 mem_clusters[mem_cluster_cnt].start =
536 ptoa(memc->mddt_pfn);
537 mem_clusters[mem_cluster_cnt].size =
538 ptoa(memc->mddt_pg_cnt);
539 if (memc->mddt_usage & MDDT_mbz ||
540 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
541 memc->mddt_usage & MDDT_PALCODE)
542 mem_clusters[mem_cluster_cnt].size |=
543 PROT_READ;
544 else
545 mem_clusters[mem_cluster_cnt].size |=
546 PROT_READ | PROT_WRITE | PROT_EXEC;
547 mem_cluster_cnt++;
548 }
549
550 if (memc->mddt_usage & MDDT_mbz) {
551 mddtweird = 1;
552 printf("WARNING: mem cluster %d has weird "
553 "usage 0x%lx\n", i, memc->mddt_usage);
554 unknownmem += memc->mddt_pg_cnt;
555 continue;
556 }
557 if (memc->mddt_usage & MDDT_NONVOLATILE) {
558 /* XXX should handle these... */
559 printf("WARNING: skipping non-volatile mem "
560 "cluster %d\n", i);
561 unusedmem += memc->mddt_pg_cnt;
562 continue;
563 }
564 if (memc->mddt_usage & MDDT_PALCODE) {
565 resvmem += memc->mddt_pg_cnt;
566 continue;
567 }
568
569 /*
570 * We have a memory cluster available for system
571 * software use. We must determine if this cluster
572 * holds the kernel.
573 */
574 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
575 /*
576 * XXX If the kernel uses the PROM console, we only use the
577 * XXX memory after the kernel in the first system segment,
578 * XXX to avoid clobbering prom mapping, data, etc.
579 */
580 if (!pmap_uses_prom_console() || physmem == 0) {
581 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
582 physmem += memc->mddt_pg_cnt;
583 pfn0 = memc->mddt_pfn;
584 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
585 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
586 /*
587 * Must compute the location of the kernel
588 * within the segment.
589 */
590 #if 0
591 printf("Cluster %d contains kernel\n", i);
592 #endif
593 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
594 if (!pmap_uses_prom_console()) {
595 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
596 if (pfn0 < kernstartpfn) {
597 /*
598 * There is a chunk before the kernel.
599 */
600 #if 0
601 printf("Loading chunk before kernel: "
602 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
603 #endif
604 #if defined(UVM)
605 uvm_page_physload(pfn0, kernstartpfn,
606 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
607 #else
608 vm_page_physload(pfn0, kernstartpfn,
609 pfn0, kernstartpfn);
610 #endif
611 }
612 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
613 }
614 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
615 if (kernendpfn < pfn1) {
616 /*
617 * There is a chunk after the kernel.
618 */
619 #if 0
620 printf("Loading chunk after kernel: "
621 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
622 #endif
623 #if defined(UVM)
624 uvm_page_physload(kernendpfn, pfn1,
625 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
626 #else
627 vm_page_physload(kernendpfn, pfn1,
628 kernendpfn, pfn1);
629 #endif
630 }
631 } else {
632 /*
633 * Just load this cluster as one chunk.
634 */
635 #if 0
636 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
637 pfn0, pfn1);
638 #endif
639 #if defined(UVM)
640 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
641 VM_FREELIST_DEFAULT);
642 #else
643 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
644 #endif
645 }
646 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
647 }
648 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
649 }
650
651 /*
652 * Dump out the MDDT if it looks odd...
653 */
654 if (mddtweird) {
655 printf("\n");
656 printf("complete memory cluster information:\n");
657 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
658 printf("mddt %d:\n", i);
659 printf("\tpfn %lx\n",
660 mddtp->mddt_clusters[i].mddt_pfn);
661 printf("\tcnt %lx\n",
662 mddtp->mddt_clusters[i].mddt_pg_cnt);
663 printf("\ttest %lx\n",
664 mddtp->mddt_clusters[i].mddt_pg_test);
665 printf("\tbva %lx\n",
666 mddtp->mddt_clusters[i].mddt_v_bitaddr);
667 printf("\tbpa %lx\n",
668 mddtp->mddt_clusters[i].mddt_p_bitaddr);
669 printf("\tbcksum %lx\n",
670 mddtp->mddt_clusters[i].mddt_bit_cksum);
671 printf("\tusage %lx\n",
672 mddtp->mddt_clusters[i].mddt_usage);
673 }
674 printf("\n");
675 }
676
677 if (totalphysmem == 0)
678 panic("can't happen: system seems to have no memory!");
679
680 #ifdef LIMITMEM
681 /*
682 * XXX Kludge so we can run on machines with memory larger
683 * XXX than 1G until all device drivers are converted to
684 * XXX use bus_dma. (Relies on the fact that vm_physmem
685 * XXX sorted in order of increasing addresses.)
686 */
687 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
688
689 printf("******** LIMITING MEMORY TO %dMB **********\n",
690 LIMITMEM);
691
692 do {
693 u_long ovf;
694
695 vps = &vm_physmem[vm_nphysseg - 1];
696
697 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
698 /*
699 * If the start is too high, just drop
700 * the whole segment.
701 *
702 * XXX can start != avail_start in this
703 * XXX case? wouldn't that mean that
704 * XXX some memory was stolen above the
705 * XXX limit? What to do?
706 */
707 ovf = vps->end - vps->start;
708 vm_nphysseg--;
709 } else {
710 /*
711 * If the start is OK, calculate how much
712 * to drop and drop it.
713 */
714 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
715 vps->end -= ovf;
716 vps->avail_end -= ovf;
717 }
718 physmem -= ovf;
719 unusedmem += ovf;
720 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
721 }
722 #endif /* LIMITMEM */
723
724 maxmem = physmem;
725
726 #if 0
727 printf("totalphysmem = %d\n", totalphysmem);
728 printf("physmem = %d\n", physmem);
729 printf("resvmem = %d\n", resvmem);
730 printf("unusedmem = %d\n", unusedmem);
731 printf("unknownmem = %d\n", unknownmem);
732 #endif
733
734 /*
735 * Adjust some parameters if the amount of physmem
736 * available would cause us to croak. This is completely
737 * eyeballed and isn't meant to be the final answer.
738 * vm_phys_size is probably the only one to really worry
739 * about.
740 *
741 * It's for booting a GENERIC kernel on a large memory platform.
742 */
743 if (physmem >= atop(128 * 1024 * 1024)) {
744 vm_mbuf_size <<= 1;
745 vm_kmem_size <<= 3;
746 vm_phys_size <<= 2;
747 }
748
749 /*
750 * Initialize error message buffer (at end of core).
751 */
752 {
753 size_t sz = round_page(MSGBUFSIZE);
754
755 vps = &vm_physmem[vm_nphysseg - 1];
756
757 /* shrink so that it'll fit in the last segment */
758 if ((vps->avail_end - vps->avail_start) < atop(sz))
759 sz = ptoa(vps->avail_end - vps->avail_start);
760
761 vps->end -= atop(sz);
762 vps->avail_end -= atop(sz);
763 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
764 initmsgbuf(msgbufaddr, sz);
765
766 /* Remove the last segment if it now has no pages. */
767 if (vps->start == vps->end)
768 vm_nphysseg--;
769
770 /* warn if the message buffer had to be shrunk */
771 if (sz != round_page(MSGBUFSIZE))
772 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
773 round_page(MSGBUFSIZE), sz);
774
775 }
776
777 /*
778 * Init mapping for u page(s) for proc 0
779 */
780 proc0.p_addr = proc0paddr =
781 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
782
783 /*
784 * Allocate space for system data structures. These data structures
785 * are allocated here instead of cpu_startup() because physical
786 * memory is directly addressable. We don't have to map these into
787 * virtual address space.
788 */
789 size = (vsize_t)allocsys(0);
790 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
791 if ((allocsys(v) - v) != size)
792 panic("alpha_init: table size inconsistency");
793
794 /*
795 * Initialize the virtual memory system, and set the
796 * page table base register in proc 0's PCB.
797 */
798 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
799 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
800
801 /*
802 * Initialize the rest of proc 0's PCB, and cache its physical
803 * address.
804 */
805 proc0.p_md.md_pcbpaddr =
806 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
807
808 /*
809 * Set the kernel sp, reserving space for an (empty) trapframe,
810 * and make proc0's trapframe pointer point to it for sanity.
811 */
812 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
813 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
814 proc0.p_md.md_tf =
815 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
816
817 /*
818 * Look at arguments passed to us and compute boothowto.
819 */
820
821 boothowto = RB_SINGLE;
822 #ifdef KADB
823 boothowto |= RB_KDB;
824 #endif
825 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
826 /*
827 * Note that we'd really like to differentiate case here,
828 * but the Alpha AXP Architecture Reference Manual
829 * says that we shouldn't.
830 */
831 switch (*p) {
832 case 'a': /* autoboot */
833 case 'A':
834 boothowto &= ~RB_SINGLE;
835 break;
836
837 #ifdef DEBUG
838 case 'c': /* crash dump immediately after autoconfig */
839 case 'C':
840 boothowto |= RB_DUMP;
841 break;
842 #endif
843
844 #if defined(KGDB) || defined(DDB)
845 case 'd': /* break into the kernel debugger ASAP */
846 case 'D':
847 boothowto |= RB_KDB;
848 break;
849 #endif
850
851 case 'h': /* always halt, never reboot */
852 case 'H':
853 boothowto |= RB_HALT;
854 break;
855
856 #if 0
857 case 'm': /* mini root present in memory */
858 case 'M':
859 boothowto |= RB_MINIROOT;
860 break;
861 #endif
862
863 case 'n': /* askname */
864 case 'N':
865 boothowto |= RB_ASKNAME;
866 break;
867
868 case 's': /* single-user (default, supported for sanity) */
869 case 'S':
870 boothowto |= RB_SINGLE;
871 break;
872
873 case '-':
874 /*
875 * Just ignore this. It's not required, but it's
876 * common for it to be passed regardless.
877 */
878 break;
879
880 default:
881 printf("Unrecognized boot flag '%c'.\n", *p);
882 break;
883 }
884 }
885
886
887 /*
888 * Figure out the number of cpus in the box, from RPB fields.
889 * Really. We mean it.
890 */
891 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
892 struct pcs *pcsp;
893
894 pcsp = LOCATE_PCS(hwrpb, i);
895 if ((pcsp->pcs_flags & PCS_PP) != 0)
896 ncpus++;
897 }
898
899 /*
900 * Initialize debuggers, and break into them if appropriate.
901 */
902 #ifdef DDB
903 db_machine_init();
904 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
905 ksym_start, ksym_end);
906 if (boothowto & RB_KDB)
907 Debugger();
908 #endif
909 #ifdef KGDB
910 if (boothowto & RB_KDB)
911 kgdb_connect(0);
912 #endif
913 /*
914 * Figure out our clock frequency, from RPB fields.
915 */
916 hz = hwrpb->rpb_intr_freq >> 12;
917 if (!(60 <= hz && hz <= 10240)) {
918 hz = 1024;
919 #ifdef DIAGNOSTIC
920 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
921 hwrpb->rpb_intr_freq, hz);
922 #endif
923 }
924 }
925
926 /*
927 * Allocate space for system data structures. We are given
928 * a starting virtual address and we return a final virtual
929 * address; along the way we set each data structure pointer.
930 *
931 * We call allocsys() with 0 to find out how much space we want,
932 * allocate that much and fill it with zeroes, and the call
933 * allocsys() again with the correct base virtual address.
934 */
935 caddr_t
936 allocsys(v)
937 caddr_t v;
938 {
939
940 #define valloc(name, type, num) \
941 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
942
943 #ifdef REAL_CLISTS
944 valloc(cfree, struct cblock, nclist);
945 #endif
946 valloc(callout, struct callout, ncallout);
947 #ifdef SYSVSHM
948 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
949 #endif
950 #ifdef SYSVSEM
951 valloc(sema, struct semid_ds, seminfo.semmni);
952 valloc(sem, struct sem, seminfo.semmns);
953 /* This is pretty disgusting! */
954 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
955 #endif
956 #ifdef SYSVMSG
957 valloc(msgpool, char, msginfo.msgmax);
958 valloc(msgmaps, struct msgmap, msginfo.msgseg);
959 valloc(msghdrs, struct msg, msginfo.msgtql);
960 valloc(msqids, struct msqid_ds, msginfo.msgmni);
961 #endif
962
963 /*
964 * Determine how many buffers to allocate.
965 * We allocate bufcache % of memory for buffer space. Insure a
966 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
967 * headers as file i/o buffers.
968 */
969 if (bufpages == 0)
970 bufpages = physmem / CLSIZE * bufcache / 100;
971 if (nbuf == 0) {
972 nbuf = bufpages;
973 if (nbuf < 16)
974 nbuf = 16;
975 }
976 if (nswbuf == 0) {
977 nswbuf = (nbuf / 2) &~ 1; /* force even */
978 if (nswbuf > 256)
979 nswbuf = 256; /* sanity */
980 }
981 #if !defined(UVM)
982 valloc(swbuf, struct buf, nswbuf);
983 #endif
984 valloc(buf, struct buf, nbuf);
985
986 /*
987 * There appears to be a correlation between the number
988 * of processor slots defined in the HWRPB and the whami
989 * value that can be returned.
990 */
991 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
992
993 return (v);
994 #undef valloc
995 }
996
997 void
998 consinit()
999 {
1000
1001 /*
1002 * Everything related to console initialization is done
1003 * in alpha_init().
1004 */
1005 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1006 printf("consinit: %susing prom console\n",
1007 pmap_uses_prom_console() ? "" : "not ");
1008 #endif
1009 }
1010
1011 #include "pckbc.h"
1012 #include "pckbd.h"
1013 #if (NPCKBC > 0) && (NPCKBD == 0)
1014
1015 #include <dev/isa/pckbcvar.h>
1016
1017 /*
1018 * This is called by the pbkbc driver if no pckbd is configured.
1019 * On the i386, it is used to glue in the old, deprecated console
1020 * code. On the Alpha, it does nothing.
1021 */
1022 int
1023 pckbc_machdep_cnattach(kbctag, kbcslot)
1024 pckbc_tag_t kbctag;
1025 pckbc_slot_t kbcslot;
1026 {
1027
1028 return (ENXIO);
1029 }
1030 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1031
1032 void
1033 cpu_startup()
1034 {
1035 register unsigned i;
1036 int base, residual;
1037 vaddr_t minaddr, maxaddr;
1038 vsize_t size;
1039 #if defined(DEBUG)
1040 extern int pmapdebug;
1041 int opmapdebug = pmapdebug;
1042
1043 pmapdebug = 0;
1044 #endif
1045
1046 /*
1047 * Good {morning,afternoon,evening,night}.
1048 */
1049 printf(version);
1050 identifycpu();
1051 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1052 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1053 ptoa(resvmem), ptoa(physmem));
1054 if (unusedmem)
1055 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1056 if (unknownmem)
1057 printf("WARNING: %d bytes of memory with unknown purpose\n",
1058 ctob(unknownmem));
1059
1060 /*
1061 * Allocate virtual address space for file I/O buffers.
1062 * Note they are different than the array of headers, 'buf',
1063 * and usually occupy more virtual memory than physical.
1064 */
1065 size = MAXBSIZE * nbuf;
1066 #if defined(UVM)
1067 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1068 NULL, UVM_UNKNOWN_OFFSET,
1069 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1070 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1071 panic("startup: cannot allocate VM for buffers");
1072 #else
1073 buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1074 &maxaddr, size, TRUE);
1075 minaddr = (vaddr_t)buffers;
1076 if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1077 &minaddr, size, FALSE) != KERN_SUCCESS)
1078 panic("startup: cannot allocate buffers");
1079 #endif /* UVM */
1080 base = bufpages / nbuf;
1081 residual = bufpages % nbuf;
1082 for (i = 0; i < nbuf; i++) {
1083 #if defined(UVM)
1084 vsize_t curbufsize;
1085 vaddr_t curbuf;
1086 struct vm_page *pg;
1087
1088 /*
1089 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1090 * that MAXBSIZE space, we allocate and map (base+1) pages
1091 * for the first "residual" buffers, and then we allocate
1092 * "base" pages for the rest.
1093 */
1094 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1095 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1096
1097 while (curbufsize) {
1098 pg = uvm_pagealloc(NULL, 0, NULL);
1099 if (pg == NULL)
1100 panic("cpu_startup: not enough memory for "
1101 "buffer cache");
1102 #if defined(PMAP_NEW)
1103 pmap_kenter_pgs(curbuf, &pg, 1);
1104 #else
1105 pmap_enter(kernel_map->pmap, curbuf,
1106 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1107 #endif
1108 curbuf += PAGE_SIZE;
1109 curbufsize -= PAGE_SIZE;
1110 }
1111 #else /* ! UVM */
1112 vsize_t curbufsize;
1113 vaddr_t curbuf;
1114
1115 /*
1116 * First <residual> buffers get (base+1) physical pages
1117 * allocated for them. The rest get (base) physical pages.
1118 *
1119 * The rest of each buffer occupies virtual space,
1120 * but has no physical memory allocated for it.
1121 */
1122 curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1123 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1124 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1125 vm_map_simplify(buffer_map, curbuf);
1126 #endif /* UVM */
1127 }
1128 /*
1129 * Allocate a submap for exec arguments. This map effectively
1130 * limits the number of processes exec'ing at any time.
1131 */
1132 #if defined(UVM)
1133 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1134 16 * NCARGS, TRUE, FALSE, NULL);
1135 #else
1136 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1137 16 * NCARGS, TRUE);
1138 #endif
1139
1140 /*
1141 * Allocate a submap for physio
1142 */
1143 #if defined(UVM)
1144 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1145 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1146 #else
1147 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1148 VM_PHYS_SIZE, TRUE);
1149 #endif
1150
1151 /*
1152 * Finally, allocate mbuf cluster submap.
1153 */
1154 #if defined(UVM)
1155 mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1156 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1157 #else
1158 mb_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1159 VM_MBUF_SIZE, FALSE);
1160 #endif
1161 /*
1162 * Initialize callouts
1163 */
1164 callfree = callout;
1165 for (i = 1; i < ncallout; i++)
1166 callout[i-1].c_next = &callout[i];
1167 callout[i-1].c_next = NULL;
1168
1169 #if defined(DEBUG)
1170 pmapdebug = opmapdebug;
1171 #endif
1172 #if defined(UVM)
1173 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1174 #else
1175 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1176 #endif
1177 #if 0
1178 {
1179 extern u_long pmap_pages_stolen;
1180 printf("stolen memory for VM structures = %ld bytes\n",
1181 pmap_pages_stolen * PAGE_SIZE);
1182 }
1183 #endif
1184 printf("using %ld buffers containing %ld bytes of memory\n",
1185 (long)nbuf, (long)(bufpages * CLBYTES));
1186
1187 /*
1188 * Set up buffers, so they can be used to read disk labels.
1189 */
1190 bufinit();
1191
1192 /*
1193 * Set up the HWPCB so that it's safe to configure secondary
1194 * CPUs.
1195 */
1196 hwrpb_primary_init();
1197
1198 /*
1199 * Configure the system.
1200 */
1201 configure();
1202 }
1203
1204 /*
1205 * Retrieve the platform name from the DSR.
1206 */
1207 const char *
1208 alpha_dsr_sysname()
1209 {
1210 struct dsrdb *dsr;
1211 const char *sysname;
1212
1213 /*
1214 * DSR does not exist on early HWRPB versions.
1215 */
1216 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1217 return (NULL);
1218
1219 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1220 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1221 sizeof(u_int64_t)));
1222 return (sysname);
1223 }
1224
1225 /*
1226 * Lookup the system specified system variation in the provided table,
1227 * returning the model string on match.
1228 */
1229 const char *
1230 alpha_variation_name(variation, avtp)
1231 u_int64_t variation;
1232 const struct alpha_variation_table *avtp;
1233 {
1234 int i;
1235
1236 for (i = 0; avtp[i].avt_model != NULL; i++)
1237 if (avtp[i].avt_variation == variation)
1238 return (avtp[i].avt_model);
1239 return (NULL);
1240 }
1241
1242 /*
1243 * Generate a default platform name based for unknown system variations.
1244 */
1245 const char *
1246 alpha_unknown_sysname()
1247 {
1248 static char s[128]; /* safe size */
1249
1250 sprintf(s, "%s family, unknown model variation 0x%lx",
1251 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1252 return ((const char *)s);
1253 }
1254
1255 void
1256 identifycpu()
1257 {
1258
1259 /*
1260 * print out CPU identification information.
1261 */
1262 printf("%s, %ldMHz\n", cpu_model,
1263 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1264 printf("%ld byte page size, %d processor%s.\n",
1265 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1266 #if 0
1267 /* this isn't defined for any systems that we run on? */
1268 printf("serial number 0x%lx 0x%lx\n",
1269 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1270
1271 /* and these aren't particularly useful! */
1272 printf("variation: 0x%lx, revision 0x%lx\n",
1273 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1274 #endif
1275 }
1276
1277 int waittime = -1;
1278 struct pcb dumppcb;
1279
1280 void
1281 cpu_reboot(howto, bootstr)
1282 int howto;
1283 char *bootstr;
1284 {
1285 extern int cold;
1286 #if defined(MULTIPROCESSOR)
1287 #if 0 /* XXX See below. */
1288 u_long cpu_id;
1289 #endif
1290 #endif
1291
1292 #if defined(MULTIPROCESSOR)
1293 /* We must be running on the primary CPU. */
1294 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1295 panic("cpu_reboot: not on primary CPU!");
1296 #endif
1297
1298 /* If system is cold, just halt. */
1299 if (cold) {
1300 howto |= RB_HALT;
1301 goto haltsys;
1302 }
1303
1304 /* If "always halt" was specified as a boot flag, obey. */
1305 if ((boothowto & RB_HALT) != 0)
1306 howto |= RB_HALT;
1307
1308 boothowto = howto;
1309 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1310 waittime = 0;
1311 vfs_shutdown();
1312 /*
1313 * If we've been adjusting the clock, the todr
1314 * will be out of synch; adjust it now.
1315 */
1316 resettodr();
1317 }
1318
1319 /* Disable interrupts. */
1320 splhigh();
1321
1322 /* If rebooting and a dump is requested do it. */
1323 #if 0
1324 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1325 #else
1326 if (howto & RB_DUMP)
1327 #endif
1328 dumpsys();
1329
1330 haltsys:
1331
1332 /* run any shutdown hooks */
1333 doshutdownhooks();
1334
1335 #if defined(MULTIPROCESSOR)
1336 #if 0 /* XXX doesn't work when called from here?! */
1337 /* Kill off any secondary CPUs. */
1338 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1339 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1340 cpus[cpu_id] == NULL)
1341 continue;
1342 cpu_halt_secondary(cpu_id);
1343 }
1344 #endif
1345 #endif
1346
1347 #ifdef BOOTKEY
1348 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1349 cnpollc(1); /* for proper keyboard command handling */
1350 cngetc();
1351 cnpollc(0);
1352 printf("\n");
1353 #endif
1354
1355 /* Finally, powerdown/halt/reboot the system. */
1356 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1357 platform.powerdown != NULL) {
1358 (*platform.powerdown)();
1359 printf("WARNING: powerdown failed!\n");
1360 }
1361 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1362 prom_halt(howto & RB_HALT);
1363 /*NOTREACHED*/
1364 }
1365
1366 /*
1367 * These variables are needed by /sbin/savecore
1368 */
1369 u_long dumpmag = 0x8fca0101; /* magic number */
1370 int dumpsize = 0; /* pages */
1371 long dumplo = 0; /* blocks */
1372
1373 /*
1374 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1375 */
1376 int
1377 cpu_dumpsize()
1378 {
1379 int size;
1380
1381 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1382 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1383 if (roundup(size, dbtob(1)) != dbtob(1))
1384 return -1;
1385
1386 return (1);
1387 }
1388
1389 /*
1390 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1391 */
1392 u_long
1393 cpu_dump_mempagecnt()
1394 {
1395 u_long i, n;
1396
1397 n = 0;
1398 for (i = 0; i < mem_cluster_cnt; i++)
1399 n += atop(mem_clusters[i].size);
1400 return (n);
1401 }
1402
1403 /*
1404 * cpu_dump: dump machine-dependent kernel core dump headers.
1405 */
1406 int
1407 cpu_dump()
1408 {
1409 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1410 char buf[dbtob(1)];
1411 kcore_seg_t *segp;
1412 cpu_kcore_hdr_t *cpuhdrp;
1413 phys_ram_seg_t *memsegp;
1414 int i;
1415
1416 dump = bdevsw[major(dumpdev)].d_dump;
1417
1418 bzero(buf, sizeof buf);
1419 segp = (kcore_seg_t *)buf;
1420 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1421 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1422 ALIGN(sizeof(*cpuhdrp))];
1423
1424 /*
1425 * Generate a segment header.
1426 */
1427 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1428 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1429
1430 /*
1431 * Add the machine-dependent header info.
1432 */
1433 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1434 cpuhdrp->page_size = PAGE_SIZE;
1435 cpuhdrp->nmemsegs = mem_cluster_cnt;
1436
1437 /*
1438 * Fill in the memory segment descriptors.
1439 */
1440 for (i = 0; i < mem_cluster_cnt; i++) {
1441 memsegp[i].start = mem_clusters[i].start;
1442 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1443 }
1444
1445 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1446 }
1447
1448 /*
1449 * This is called by main to set dumplo and dumpsize.
1450 * Dumps always skip the first CLBYTES of disk space
1451 * in case there might be a disk label stored there.
1452 * If there is extra space, put dump at the end to
1453 * reduce the chance that swapping trashes it.
1454 */
1455 void
1456 cpu_dumpconf()
1457 {
1458 int nblks, dumpblks; /* size of dump area */
1459 int maj;
1460
1461 if (dumpdev == NODEV)
1462 goto bad;
1463 maj = major(dumpdev);
1464 if (maj < 0 || maj >= nblkdev)
1465 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1466 if (bdevsw[maj].d_psize == NULL)
1467 goto bad;
1468 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1469 if (nblks <= ctod(1))
1470 goto bad;
1471
1472 dumpblks = cpu_dumpsize();
1473 if (dumpblks < 0)
1474 goto bad;
1475 dumpblks += ctod(cpu_dump_mempagecnt());
1476
1477 /* If dump won't fit (incl. room for possible label), punt. */
1478 if (dumpblks > (nblks - ctod(1)))
1479 goto bad;
1480
1481 /* Put dump at end of partition */
1482 dumplo = nblks - dumpblks;
1483
1484 /* dumpsize is in page units, and doesn't include headers. */
1485 dumpsize = cpu_dump_mempagecnt();
1486 return;
1487
1488 bad:
1489 dumpsize = 0;
1490 return;
1491 }
1492
1493 /*
1494 * Dump the kernel's image to the swap partition.
1495 */
1496 #define BYTES_PER_DUMP NBPG
1497
1498 void
1499 dumpsys()
1500 {
1501 u_long totalbytesleft, bytes, i, n, memcl;
1502 u_long maddr;
1503 int psize;
1504 daddr_t blkno;
1505 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1506 int error;
1507
1508 /* Save registers. */
1509 savectx(&dumppcb);
1510
1511 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1512 if (dumpdev == NODEV)
1513 return;
1514
1515 /*
1516 * For dumps during autoconfiguration,
1517 * if dump device has already configured...
1518 */
1519 if (dumpsize == 0)
1520 cpu_dumpconf();
1521 if (dumplo <= 0) {
1522 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1523 minor(dumpdev));
1524 return;
1525 }
1526 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1527 minor(dumpdev), dumplo);
1528
1529 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1530 printf("dump ");
1531 if (psize == -1) {
1532 printf("area unavailable\n");
1533 return;
1534 }
1535
1536 /* XXX should purge all outstanding keystrokes. */
1537
1538 if ((error = cpu_dump()) != 0)
1539 goto err;
1540
1541 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1542 blkno = dumplo + cpu_dumpsize();
1543 dump = bdevsw[major(dumpdev)].d_dump;
1544 error = 0;
1545
1546 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1547 maddr = mem_clusters[memcl].start;
1548 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1549
1550 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1551
1552 /* Print out how many MBs we to go. */
1553 if ((totalbytesleft % (1024*1024)) == 0)
1554 printf("%ld ", totalbytesleft / (1024 * 1024));
1555
1556 /* Limit size for next transfer. */
1557 n = bytes - i;
1558 if (n > BYTES_PER_DUMP)
1559 n = BYTES_PER_DUMP;
1560
1561 error = (*dump)(dumpdev, blkno,
1562 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1563 if (error)
1564 goto err;
1565 maddr += n;
1566 blkno += btodb(n); /* XXX? */
1567
1568 /* XXX should look for keystrokes, to cancel. */
1569 }
1570 }
1571
1572 err:
1573 switch (error) {
1574
1575 case ENXIO:
1576 printf("device bad\n");
1577 break;
1578
1579 case EFAULT:
1580 printf("device not ready\n");
1581 break;
1582
1583 case EINVAL:
1584 printf("area improper\n");
1585 break;
1586
1587 case EIO:
1588 printf("i/o error\n");
1589 break;
1590
1591 case EINTR:
1592 printf("aborted from console\n");
1593 break;
1594
1595 case 0:
1596 printf("succeeded\n");
1597 break;
1598
1599 default:
1600 printf("error %d\n", error);
1601 break;
1602 }
1603 printf("\n\n");
1604 delay(1000);
1605 }
1606
1607 void
1608 frametoreg(framep, regp)
1609 struct trapframe *framep;
1610 struct reg *regp;
1611 {
1612
1613 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1614 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1615 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1616 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1617 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1618 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1619 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1620 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1621 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1622 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1623 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1624 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1625 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1626 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1627 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1628 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1629 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1630 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1631 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1632 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1633 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1634 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1635 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1636 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1637 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1638 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1639 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1640 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1641 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1642 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1643 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1644 regp->r_regs[R_ZERO] = 0;
1645 }
1646
1647 void
1648 regtoframe(regp, framep)
1649 struct reg *regp;
1650 struct trapframe *framep;
1651 {
1652
1653 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1654 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1655 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1656 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1657 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1658 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1659 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1660 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1661 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1662 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1663 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1664 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1665 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1666 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1667 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1668 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1669 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1670 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1671 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1672 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1673 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1674 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1675 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1676 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1677 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1678 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1679 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1680 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1681 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1682 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1683 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1684 /* ??? = regp->r_regs[R_ZERO]; */
1685 }
1686
1687 void
1688 printregs(regp)
1689 struct reg *regp;
1690 {
1691 int i;
1692
1693 for (i = 0; i < 32; i++)
1694 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1695 i & 1 ? "\n" : "\t");
1696 }
1697
1698 void
1699 regdump(framep)
1700 struct trapframe *framep;
1701 {
1702 struct reg reg;
1703
1704 frametoreg(framep, ®);
1705 reg.r_regs[R_SP] = alpha_pal_rdusp();
1706
1707 printf("REGISTERS:\n");
1708 printregs(®);
1709 }
1710
1711 #ifdef DEBUG
1712 int sigdebug = 0;
1713 int sigpid = 0;
1714 #define SDB_FOLLOW 0x01
1715 #define SDB_KSTACK 0x02
1716 #endif
1717
1718 /*
1719 * Send an interrupt to process.
1720 */
1721 void
1722 sendsig(catcher, sig, mask, code)
1723 sig_t catcher;
1724 int sig;
1725 sigset_t *mask;
1726 u_long code;
1727 {
1728 struct proc *p = curproc;
1729 struct sigcontext *scp, ksc;
1730 struct trapframe *frame;
1731 struct sigacts *psp = p->p_sigacts;
1732 int onstack, fsize, rndfsize;
1733 extern struct proc *fpcurproc;
1734
1735 frame = p->p_md.md_tf;
1736
1737 /* Do we need to jump onto the signal stack? */
1738 onstack =
1739 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1740 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1741
1742 /* Allocate space for the signal handler context. */
1743 fsize = sizeof(ksc);
1744 rndfsize = ((fsize + 15) / 16) * 16;
1745
1746 if (onstack)
1747 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1748 psp->ps_sigstk.ss_size);
1749 else
1750 scp = (struct sigcontext *)(alpha_pal_rdusp());
1751 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1752
1753 #ifdef DEBUG
1754 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1755 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1756 sig, &onstack, scp);
1757 #endif
1758
1759 /* Build stack frame for signal trampoline. */
1760 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1761 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1762
1763 /* Save register context. */
1764 frametoreg(frame, (struct reg *)ksc.sc_regs);
1765 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1766 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1767
1768 /* save the floating-point state, if necessary, then copy it. */
1769 if (p == fpcurproc) {
1770 alpha_pal_wrfen(1);
1771 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1772 alpha_pal_wrfen(0);
1773 fpcurproc = NULL;
1774 }
1775 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1776 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1777 sizeof(struct fpreg));
1778 ksc.sc_fp_control = 0; /* XXX ? */
1779 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1780 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1781
1782 /* Save signal stack. */
1783 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1784
1785 /* Save signal mask. */
1786 ksc.sc_mask = *mask;
1787
1788 #ifdef COMPAT_13
1789 /*
1790 * XXX We always have to save an old style signal mask because
1791 * XXX we might be delivering a signal to a process which will
1792 * XXX escape from the signal in a non-standard way and invoke
1793 * XXX sigreturn() directly.
1794 */
1795 {
1796 /* Note: it's a long in the stack frame. */
1797 sigset13_t mask13;
1798
1799 native_sigset_to_sigset13(mask, &mask13);
1800 ksc.__sc_mask13 = mask13;
1801 }
1802 #endif
1803
1804 #ifdef COMPAT_OSF1
1805 /*
1806 * XXX Create an OSF/1-style sigcontext and associated goo.
1807 */
1808 #endif
1809
1810 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1811 /*
1812 * Process has trashed its stack; give it an illegal
1813 * instruction to halt it in its tracks.
1814 */
1815 #ifdef DEBUG
1816 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1817 printf("sendsig(%d): copyout failed on sig %d\n",
1818 p->p_pid, sig);
1819 #endif
1820 sigexit(p, SIGILL);
1821 /* NOTREACHED */
1822 }
1823 #ifdef DEBUG
1824 if (sigdebug & SDB_FOLLOW)
1825 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1826 scp, code);
1827 #endif
1828
1829 /* Set up the registers to return to sigcode. */
1830 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1831 frame->tf_regs[FRAME_A0] = sig;
1832 frame->tf_regs[FRAME_A1] = code;
1833 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1834 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1835 alpha_pal_wrusp((unsigned long)scp);
1836
1837 /* Remember that we're now on the signal stack. */
1838 if (onstack)
1839 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1840
1841 #ifdef DEBUG
1842 if (sigdebug & SDB_FOLLOW)
1843 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1844 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1845 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1846 printf("sendsig(%d): sig %d returns\n",
1847 p->p_pid, sig);
1848 #endif
1849 }
1850
1851 /*
1852 * System call to cleanup state after a signal
1853 * has been taken. Reset signal mask and
1854 * stack state from context left by sendsig (above).
1855 * Return to previous pc and psl as specified by
1856 * context left by sendsig. Check carefully to
1857 * make sure that the user has not modified the
1858 * psl to gain improper priviledges or to cause
1859 * a machine fault.
1860 */
1861 /* ARGSUSED */
1862 int
1863 sys___sigreturn14(p, v, retval)
1864 struct proc *p;
1865 void *v;
1866 register_t *retval;
1867 {
1868 struct sys___sigreturn14_args /* {
1869 syscallarg(struct sigcontext *) sigcntxp;
1870 } */ *uap = v;
1871 struct sigcontext *scp, ksc;
1872 extern struct proc *fpcurproc;
1873
1874 /*
1875 * The trampoline code hands us the context.
1876 * It is unsafe to keep track of it ourselves, in the event that a
1877 * program jumps out of a signal handler.
1878 */
1879 scp = SCARG(uap, sigcntxp);
1880 #ifdef DEBUG
1881 if (sigdebug & SDB_FOLLOW)
1882 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1883 #endif
1884 if (ALIGN(scp) != (u_int64_t)scp)
1885 return (EINVAL);
1886
1887 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1888 return (EFAULT);
1889
1890 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1891 return (EINVAL);
1892
1893 /* Restore register context. */
1894 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1895 p->p_md.md_tf->tf_regs[FRAME_PS] =
1896 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1897
1898 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1899 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1900
1901 /* XXX ksc.sc_ownedfp ? */
1902 if (p == fpcurproc)
1903 fpcurproc = NULL;
1904 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1905 sizeof(struct fpreg));
1906 /* XXX ksc.sc_fp_control ? */
1907
1908 /* Restore signal stack. */
1909 if (ksc.sc_onstack & SS_ONSTACK)
1910 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1911 else
1912 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1913
1914 /* Restore signal mask. */
1915 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1916
1917 #ifdef DEBUG
1918 if (sigdebug & SDB_FOLLOW)
1919 printf("sigreturn(%d): returns\n", p->p_pid);
1920 #endif
1921 return (EJUSTRETURN);
1922 }
1923
1924 /*
1925 * machine dependent system variables.
1926 */
1927 int
1928 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1929 int *name;
1930 u_int namelen;
1931 void *oldp;
1932 size_t *oldlenp;
1933 void *newp;
1934 size_t newlen;
1935 struct proc *p;
1936 {
1937 dev_t consdev;
1938
1939 /* all sysctl names at this level are terminal */
1940 if (namelen != 1)
1941 return (ENOTDIR); /* overloaded */
1942
1943 switch (name[0]) {
1944 case CPU_CONSDEV:
1945 if (cn_tab != NULL)
1946 consdev = cn_tab->cn_dev;
1947 else
1948 consdev = NODEV;
1949 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1950 sizeof consdev));
1951
1952 case CPU_ROOT_DEVICE:
1953 return (sysctl_rdstring(oldp, oldlenp, newp,
1954 root_device->dv_xname));
1955
1956 case CPU_UNALIGNED_PRINT:
1957 return (sysctl_int(oldp, oldlenp, newp, newlen,
1958 &alpha_unaligned_print));
1959
1960 case CPU_UNALIGNED_FIX:
1961 return (sysctl_int(oldp, oldlenp, newp, newlen,
1962 &alpha_unaligned_fix));
1963
1964 case CPU_UNALIGNED_SIGBUS:
1965 return (sysctl_int(oldp, oldlenp, newp, newlen,
1966 &alpha_unaligned_sigbus));
1967
1968 case CPU_BOOTED_KERNEL:
1969 return (sysctl_rdstring(oldp, oldlenp, newp,
1970 bootinfo.booted_kernel));
1971
1972 default:
1973 return (EOPNOTSUPP);
1974 }
1975 /* NOTREACHED */
1976 }
1977
1978 /*
1979 * Set registers on exec.
1980 */
1981 void
1982 setregs(p, pack, stack)
1983 register struct proc *p;
1984 struct exec_package *pack;
1985 u_long stack;
1986 {
1987 struct trapframe *tfp = p->p_md.md_tf;
1988 extern struct proc *fpcurproc;
1989 #ifdef DEBUG
1990 int i;
1991 #endif
1992
1993 #ifdef DEBUG
1994 /*
1995 * Crash and dump, if the user requested it.
1996 */
1997 if (boothowto & RB_DUMP)
1998 panic("crash requested by boot flags");
1999 #endif
2000
2001 #ifdef DEBUG
2002 for (i = 0; i < FRAME_SIZE; i++)
2003 tfp->tf_regs[i] = 0xbabefacedeadbeef;
2004 #else
2005 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
2006 #endif
2007 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
2008 #define FP_RN 2 /* XXX */
2009 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
2010 alpha_pal_wrusp(stack);
2011 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
2012 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
2013
2014 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
2015 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
2016 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2017 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2018 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2019
2020 p->p_md.md_flags &= ~MDP_FPUSED;
2021 if (fpcurproc == p)
2022 fpcurproc = NULL;
2023 }
2024
2025 void
2026 netintr()
2027 {
2028 int n, s;
2029
2030 s = splhigh();
2031 n = netisr;
2032 netisr = 0;
2033 splx(s);
2034
2035 #define DONETISR(bit, fn) \
2036 do { \
2037 if (n & (1 << (bit))) \
2038 fn; \
2039 } while (0)
2040
2041 #ifdef INET
2042 #if NARP > 0
2043 DONETISR(NETISR_ARP, arpintr());
2044 #endif
2045 DONETISR(NETISR_IP, ipintr());
2046 #endif
2047 #ifdef NETATALK
2048 DONETISR(NETISR_ATALK, atintr());
2049 #endif
2050 #ifdef NS
2051 DONETISR(NETISR_NS, nsintr());
2052 #endif
2053 #ifdef ISO
2054 DONETISR(NETISR_ISO, clnlintr());
2055 #endif
2056 #ifdef CCITT
2057 DONETISR(NETISR_CCITT, ccittintr());
2058 #endif
2059 #ifdef NATM
2060 DONETISR(NETISR_NATM, natmintr());
2061 #endif
2062 #if NPPP > 1
2063 DONETISR(NETISR_PPP, pppintr());
2064 #endif
2065
2066 #undef DONETISR
2067 }
2068
2069 void
2070 do_sir()
2071 {
2072 u_int64_t n;
2073
2074 do {
2075 (void)splhigh();
2076 n = ssir;
2077 ssir = 0;
2078 splsoft(); /* don't recurse through spl0() */
2079
2080 #if defined(UVM)
2081 #define COUNT_SOFT uvmexp.softs++
2082 #else
2083 #define COUNT_SOFT cnt.v_soft++
2084 #endif
2085
2086 #define DO_SIR(bit, fn) \
2087 do { \
2088 if (n & (bit)) { \
2089 COUNT_SOFT; \
2090 fn; \
2091 } \
2092 } while (0)
2093
2094 DO_SIR(SIR_NET, netintr());
2095 DO_SIR(SIR_CLOCK, softclock());
2096 #if NCOM > 0
2097 DO_SIR(SIR_SERIAL, comsoft());
2098 #endif
2099
2100 #undef COUNT_SOFT
2101 #undef DO_SIR
2102 } while (ssir != 0);
2103 }
2104
2105 int
2106 spl0()
2107 {
2108
2109 if (ssir)
2110 do_sir(); /* it lowers the IPL itself */
2111
2112 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2113 }
2114
2115 /*
2116 * The following primitives manipulate the run queues. _whichqs tells which
2117 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2118 * into queues, Remrunqueue removes them from queues. The running process is
2119 * on no queue, other processes are on a queue related to p->p_priority,
2120 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2121 * available queues.
2122 */
2123 /*
2124 * setrunqueue(p)
2125 * proc *p;
2126 *
2127 * Call should be made at splclock(), and p->p_stat should be SRUN.
2128 */
2129
2130 void
2131 setrunqueue(p)
2132 struct proc *p;
2133 {
2134 int bit;
2135
2136 /* firewall: p->p_back must be NULL */
2137 if (p->p_back != NULL)
2138 panic("setrunqueue");
2139
2140 bit = p->p_priority >> 2;
2141 whichqs |= (1 << bit);
2142 p->p_forw = (struct proc *)&qs[bit];
2143 p->p_back = qs[bit].ph_rlink;
2144 p->p_back->p_forw = p;
2145 qs[bit].ph_rlink = p;
2146 }
2147
2148 /*
2149 * remrunqueue(p)
2150 *
2151 * Call should be made at splclock().
2152 */
2153 void
2154 remrunqueue(p)
2155 struct proc *p;
2156 {
2157 int bit;
2158
2159 bit = p->p_priority >> 2;
2160 if ((whichqs & (1 << bit)) == 0)
2161 panic("remrunqueue");
2162
2163 p->p_back->p_forw = p->p_forw;
2164 p->p_forw->p_back = p->p_back;
2165 p->p_back = NULL; /* for firewall checking. */
2166
2167 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2168 whichqs &= ~(1 << bit);
2169 }
2170
2171 /*
2172 * Return the best possible estimate of the time in the timeval
2173 * to which tvp points. Unfortunately, we can't read the hardware registers.
2174 * We guarantee that the time will be greater than the value obtained by a
2175 * previous call.
2176 */
2177 void
2178 microtime(tvp)
2179 register struct timeval *tvp;
2180 {
2181 int s = splclock();
2182 static struct timeval lasttime;
2183
2184 *tvp = time;
2185 #ifdef notdef
2186 tvp->tv_usec += clkread();
2187 while (tvp->tv_usec > 1000000) {
2188 tvp->tv_sec++;
2189 tvp->tv_usec -= 1000000;
2190 }
2191 #endif
2192 if (tvp->tv_sec == lasttime.tv_sec &&
2193 tvp->tv_usec <= lasttime.tv_usec &&
2194 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2195 tvp->tv_sec++;
2196 tvp->tv_usec -= 1000000;
2197 }
2198 lasttime = *tvp;
2199 splx(s);
2200 }
2201
2202 /*
2203 * Wait "n" microseconds.
2204 */
2205 void
2206 delay(n)
2207 unsigned long n;
2208 {
2209 long N = cycles_per_usec * (n);
2210
2211 while (N > 0) /* XXX */
2212 N -= 3; /* XXX */
2213 }
2214
2215 #if defined(COMPAT_OSF1) || 1 /* XXX */
2216 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2217 u_long));
2218
2219 void
2220 cpu_exec_ecoff_setregs(p, epp, stack)
2221 struct proc *p;
2222 struct exec_package *epp;
2223 u_long stack;
2224 {
2225 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2226
2227 setregs(p, epp, stack);
2228 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2229 }
2230
2231 /*
2232 * cpu_exec_ecoff_hook():
2233 * cpu-dependent ECOFF format hook for execve().
2234 *
2235 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2236 *
2237 */
2238 int
2239 cpu_exec_ecoff_hook(p, epp)
2240 struct proc *p;
2241 struct exec_package *epp;
2242 {
2243 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2244 extern struct emul emul_netbsd;
2245 #ifdef COMPAT_OSF1
2246 extern struct emul emul_osf1;
2247 #endif
2248
2249 switch (execp->f.f_magic) {
2250 #ifdef COMPAT_OSF1
2251 case ECOFF_MAGIC_ALPHA:
2252 epp->ep_emul = &emul_osf1;
2253 break;
2254 #endif
2255
2256 case ECOFF_MAGIC_NETBSD_ALPHA:
2257 epp->ep_emul = &emul_netbsd;
2258 break;
2259
2260 default:
2261 return ENOEXEC;
2262 }
2263 return 0;
2264 }
2265 #endif
2266
2267 int
2268 alpha_pa_access(pa)
2269 u_long pa;
2270 {
2271 int i;
2272
2273 for (i = 0; i < mem_cluster_cnt; i++) {
2274 if (pa < mem_clusters[i].start)
2275 continue;
2276 if ((pa - mem_clusters[i].start) >=
2277 (mem_clusters[i].size & ~PAGE_MASK))
2278 continue;
2279 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2280 }
2281 return (PROT_NONE);
2282 }
2283
2284 /* XXX XXX BEGIN XXX XXX */
2285 paddr_t alpha_XXX_dmamap_or; /* XXX */
2286 /* XXX */
2287 paddr_t /* XXX */
2288 alpha_XXX_dmamap(v) /* XXX */
2289 vaddr_t v; /* XXX */
2290 { /* XXX */
2291 /* XXX */
2292 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2293 } /* XXX */
2294 /* XXX XXX END XXX XXX */
2295
2296 struct mchkinfo *
2297 cpu_mchkinfo()
2298 {
2299 if (mchkinfo_all_cpus == NULL)
2300 return &startup_info;
2301 return mchkinfo_all_cpus + alpha_pal_whami();
2302 }
2303