machdep.c revision 1.162 1 /* $NetBSD: machdep.c,v 1.162 1999/02/27 06:39:34 scottr Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_bufcache.h"
68 #include "opt_ddb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_uvm.h"
71 #include "opt_pmap_new.h"
72 #include "opt_dec_3000_300.h"
73 #include "opt_dec_3000_500.h"
74 #include "opt_compat_osf1.h"
75 #include "opt_compat_netbsd.h"
76 #include "opt_inet.h"
77 #include "opt_atalk.h"
78 #include "opt_ccitt.h"
79 #include "opt_iso.h"
80 #include "opt_ns.h"
81 #include "opt_natm.h"
82 #include "opt_sysv.h"
83
84 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
85
86 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.162 1999/02/27 06:39:34 scottr Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/signalvar.h>
91 #include <sys/kernel.h>
92 #include <sys/map.h>
93 #include <sys/proc.h>
94 #include <sys/buf.h>
95 #include <sys/reboot.h>
96 #include <sys/device.h>
97 #include <sys/file.h>
98 #ifdef REAL_CLISTS
99 #include <sys/clist.h>
100 #endif
101 #include <sys/callout.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/mman.h>
105 #include <sys/msgbuf.h>
106 #include <sys/ioctl.h>
107 #include <sys/tty.h>
108 #include <sys/user.h>
109 #include <sys/exec.h>
110 #include <sys/exec_ecoff.h>
111 #include <vm/vm.h>
112 #include <sys/sysctl.h>
113 #include <sys/core.h>
114 #include <sys/kcore.h>
115 #include <machine/kcore.h>
116 #ifdef SYSVMSG
117 #include <sys/msg.h>
118 #endif
119 #ifdef SYSVSEM
120 #include <sys/sem.h>
121 #endif
122 #ifdef SYSVSHM
123 #include <sys/shm.h>
124 #endif
125
126 #include <sys/mount.h>
127 #include <sys/syscallargs.h>
128
129 #include <vm/vm_kern.h>
130
131 #if defined(UVM)
132 #include <uvm/uvm_extern.h>
133 #endif
134
135 #include <dev/cons.h>
136
137 #include <machine/autoconf.h>
138 #include <machine/cpu.h>
139 #include <machine/reg.h>
140 #include <machine/rpb.h>
141 #include <machine/prom.h>
142 #include <machine/conf.h>
143
144 #include <alpha/alpha/cpuvar.h>
145
146 #include <net/netisr.h>
147 #include <net/if.h>
148
149 #ifdef INET
150 #include <net/route.h>
151 #include <netinet/in.h>
152 #include <netinet/ip_var.h>
153 #include "arp.h"
154 #if NARP > 0
155 #include <netinet/if_inarp.h>
156 #endif
157 #endif
158 #ifdef NS
159 #include <netns/ns_var.h>
160 #endif
161 #ifdef ISO
162 #include <netiso/iso.h>
163 #include <netiso/clnp.h>
164 #endif
165 #ifdef CCITT
166 #include <netccitt/x25.h>
167 #include <netccitt/pk.h>
168 #include <netccitt/pk_extern.h>
169 #endif
170 #ifdef NATM
171 #include <netnatm/natm.h>
172 #endif
173 #ifdef NETATALK
174 #include <netatalk/at_extern.h>
175 #endif
176 #include "ppp.h"
177 #if NPPP > 0
178 #include <net/ppp_defs.h>
179 #include <net/if_ppp.h>
180 #endif
181
182 #ifdef DDB
183 #include <machine/db_machdep.h>
184 #include <ddb/db_access.h>
185 #include <ddb/db_sym.h>
186 #include <ddb/db_extern.h>
187 #include <ddb/db_interface.h>
188 #endif
189
190 #include <machine/alpha.h>
191 #include <machine/intrcnt.h>
192
193 #include "com.h"
194 #if NCOM > 0
195 extern void comsoft __P((void));
196 #endif
197
198 #if defined(UVM)
199 vm_map_t exec_map = NULL;
200 vm_map_t mb_map = NULL;
201 vm_map_t phys_map = NULL;
202 #else
203 vm_map_t buffer_map;
204 #endif
205
206 /*
207 * Declare these as initialized data so we can patch them.
208 */
209 int nswbuf = 0;
210 #ifdef NBUF
211 int nbuf = NBUF;
212 #else
213 int nbuf = 0;
214 #endif
215
216 #ifndef BUFPAGES
217 #define BUFPAGES 0
218 #endif
219 #ifndef BUFCACHE
220 #define BUFCACHE 10
221 #endif
222
223 int bufpages = BUFPAGES; /* optional hardwired count */
224 int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
225
226 caddr_t msgbufaddr;
227
228 int maxmem; /* max memory per process */
229
230 int totalphysmem; /* total amount of physical memory in system */
231 int physmem; /* physical memory used by NetBSD + some rsvd */
232 int resvmem; /* amount of memory reserved for PROM */
233 int unusedmem; /* amount of memory for OS that we don't use */
234 int unknownmem; /* amount of memory with an unknown use */
235
236 int cputype; /* system type, from the RPB */
237
238 /*
239 * XXX We need an address to which we can assign things so that they
240 * won't be optimized away because we didn't use the value.
241 */
242 u_int32_t no_optimize;
243
244 /* the following is used externally (sysctl_hw) */
245 char machine[] = MACHINE; /* from <machine/param.h> */
246 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
247 char cpu_model[128];
248
249 struct user *proc0paddr;
250
251 /* Number of machine cycles per microsecond */
252 u_int64_t cycles_per_usec;
253
254 /* number of cpus in the box. really! */
255 int ncpus;
256
257 /* machine check info array, valloc()'ed in allocsys() */
258
259 static struct mchkinfo startup_info,
260 *mchkinfo_all_cpus;
261
262 struct bootinfo_kernel bootinfo;
263
264 /* For built-in TCDS */
265 #if defined(DEC_3000_300) || defined(DEC_3000_500)
266 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
267 #endif
268
269 struct platform platform;
270
271 u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
272 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
273 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
274
275 #ifdef DDB
276 /* start and end of kernel symbol table */
277 void *ksym_start, *ksym_end;
278 #endif
279
280 /* for cpu_sysctl() */
281 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
282 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
283 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
284
285 /*
286 * XXX This should be dynamically sized, but we have the chicken-egg problem!
287 * XXX it should also be larger than it is, because not all of the mddt
288 * XXX clusters end up being used for VM.
289 */
290 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
291 int mem_cluster_cnt;
292
293 caddr_t allocsys __P((caddr_t));
294 int cpu_dump __P((void));
295 int cpu_dumpsize __P((void));
296 u_long cpu_dump_mempagecnt __P((void));
297 void dumpsys __P((void));
298 void identifycpu __P((void));
299 void netintr __P((void));
300 void printregs __P((struct reg *));
301
302 void
303 alpha_init(pfn, ptb, bim, bip, biv)
304 u_long pfn; /* first free PFN number */
305 u_long ptb; /* PFN of current level 1 page table */
306 u_long bim; /* bootinfo magic */
307 u_long bip; /* bootinfo pointer */
308 u_long biv; /* bootinfo version */
309 {
310 extern char kernel_text[], _end[];
311 struct mddt *mddtp;
312 struct mddt_cluster *memc;
313 int i, mddtweird;
314 struct vm_physseg *vps;
315 vaddr_t kernstart, kernend;
316 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
317 vsize_t size;
318 char *p;
319 caddr_t v;
320 char *bootinfo_msg;
321
322 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
323
324 /*
325 * Turn off interrupts (not mchecks) and floating point.
326 * Make sure the instruction and data streams are consistent.
327 */
328 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
329 alpha_pal_wrfen(0);
330 ALPHA_TBIA();
331 alpha_pal_imb();
332
333 /*
334 * Get critical system information (if possible, from the
335 * information provided by the boot program).
336 */
337 bootinfo_msg = NULL;
338 if (bim == BOOTINFO_MAGIC) {
339 if (biv == 0) { /* backward compat */
340 biv = *(u_long *)bip;
341 bip += 8;
342 }
343 switch (biv) {
344 case 1: {
345 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
346
347 bootinfo.ssym = v1p->ssym;
348 bootinfo.esym = v1p->esym;
349 /* hwrpb may not be provided by boot block in v1 */
350 if (v1p->hwrpb != NULL) {
351 bootinfo.hwrpb_phys =
352 ((struct rpb *)v1p->hwrpb)->rpb_phys;
353 bootinfo.hwrpb_size = v1p->hwrpbsize;
354 } else {
355 bootinfo.hwrpb_phys =
356 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
357 bootinfo.hwrpb_size =
358 ((struct rpb *)HWRPB_ADDR)->rpb_size;
359 }
360 bcopy(v1p->boot_flags, bootinfo.boot_flags,
361 min(sizeof v1p->boot_flags,
362 sizeof bootinfo.boot_flags));
363 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
364 min(sizeof v1p->booted_kernel,
365 sizeof bootinfo.booted_kernel));
366 /* booted dev not provided in bootinfo */
367 init_prom_interface((struct rpb *)
368 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
369 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
370 sizeof bootinfo.booted_dev);
371 break;
372 }
373 default:
374 bootinfo_msg = "unknown bootinfo version";
375 goto nobootinfo;
376 }
377 } else {
378 bootinfo_msg = "boot program did not pass bootinfo";
379 nobootinfo:
380 bootinfo.ssym = (u_long)_end;
381 bootinfo.esym = (u_long)_end;
382 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
383 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
384 init_prom_interface((struct rpb *)HWRPB_ADDR);
385 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
386 sizeof bootinfo.boot_flags);
387 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
388 sizeof bootinfo.booted_kernel);
389 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
390 sizeof bootinfo.booted_dev);
391 }
392
393 /*
394 * Initialize the kernel's mapping of the RPB. It's needed for
395 * lots of things.
396 */
397 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
398
399 #if defined(DEC_3000_300) || defined(DEC_3000_500)
400 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
401 hwrpb->rpb_type == ST_DEC_3000_500) {
402 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
403 sizeof(dec_3000_scsiid));
404 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
405 sizeof(dec_3000_scsifast));
406 }
407 #endif
408
409 /*
410 * Remember how many cycles there are per microsecond,
411 * so that we can use delay(). Round up, for safety.
412 */
413 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
414
415 /*
416 * Initalize the (temporary) bootstrap console interface, so
417 * we can use printf until the VM system starts being setup.
418 * The real console is initialized before then.
419 */
420 init_bootstrap_console();
421
422 /* OUTPUT NOW ALLOWED */
423
424 /* delayed from above */
425 if (bootinfo_msg)
426 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
427 bootinfo_msg, bim, bip, biv);
428
429 /* Initialize the trap vectors on the primary processor. */
430 trap_init();
431
432 /*
433 * Find out what hardware we're on, and do basic initialization.
434 */
435 cputype = hwrpb->rpb_type;
436 if (cputype >= ncpuinit) {
437 platform_not_supported();
438 /* NOTREACHED */
439 }
440 (*cpuinit[cputype].init)();
441 strcpy(cpu_model, platform.model);
442
443 /*
444 * Initalize the real console, so the the bootstrap console is
445 * no longer necessary.
446 */
447 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
448 if (!pmap_uses_prom_console())
449 #endif
450 (*platform.cons_init)();
451
452 #ifdef DIAGNOSTIC
453 /* Paranoid sanity checking */
454
455 /* We should always be running on the the primary. */
456 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
457
458 /*
459 * On single-CPU systypes, the primary should always be CPU 0,
460 * except on Alpha 8200 systems where the CPU id is related
461 * to the VID, which is related to the Turbo Laser node id.
462 */
463 if (cputype != ST_DEC_21000)
464 assert(hwrpb->rpb_primary_cpu_id == 0);
465 #endif
466
467 /* NO MORE FIRMWARE ACCESS ALLOWED */
468 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
469 /*
470 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
471 * XXX pmap_uses_prom_console() evaluates to non-zero.)
472 */
473 #endif
474
475 /*
476 * find out this system's page size
477 */
478 PAGE_SIZE = hwrpb->rpb_page_size;
479 if (PAGE_SIZE != 8192)
480 panic("page size %d != 8192?!", PAGE_SIZE);
481
482 /*
483 * Initialize PAGE_SIZE-dependent variables.
484 */
485 #if defined(UVM)
486 uvm_setpagesize();
487 #else
488 vm_set_page_size();
489 #endif
490
491 /*
492 * Find the beginning and end of the kernel (and leave a
493 * bit of space before the beginning for the bootstrap
494 * stack).
495 */
496 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
497 #ifdef DDB
498 ksym_start = (void *)bootinfo.ssym;
499 ksym_end = (void *)bootinfo.esym;
500 kernend = (vaddr_t)round_page(ksym_end);
501 #else
502 kernend = (vaddr_t)round_page(_end);
503 #endif
504
505 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
506 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
507
508 /*
509 * Find out how much memory is available, by looking at
510 * the memory cluster descriptors. This also tries to do
511 * its best to detect things things that have never been seen
512 * before...
513 */
514 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
515
516 /* MDDT SANITY CHECKING */
517 mddtweird = 0;
518 if (mddtp->mddt_cluster_cnt < 2) {
519 mddtweird = 1;
520 printf("WARNING: weird number of mem clusters: %lu\n",
521 mddtp->mddt_cluster_cnt);
522 }
523
524 #if 0
525 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
526 #endif
527
528 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
529 memc = &mddtp->mddt_clusters[i];
530 #if 0
531 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
532 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
533 #endif
534 totalphysmem += memc->mddt_pg_cnt;
535 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
536 mem_clusters[mem_cluster_cnt].start =
537 ptoa(memc->mddt_pfn);
538 mem_clusters[mem_cluster_cnt].size =
539 ptoa(memc->mddt_pg_cnt);
540 if (memc->mddt_usage & MDDT_mbz ||
541 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
542 memc->mddt_usage & MDDT_PALCODE)
543 mem_clusters[mem_cluster_cnt].size |=
544 PROT_READ;
545 else
546 mem_clusters[mem_cluster_cnt].size |=
547 PROT_READ | PROT_WRITE | PROT_EXEC;
548 mem_cluster_cnt++;
549 }
550
551 if (memc->mddt_usage & MDDT_mbz) {
552 mddtweird = 1;
553 printf("WARNING: mem cluster %d has weird "
554 "usage 0x%lx\n", i, memc->mddt_usage);
555 unknownmem += memc->mddt_pg_cnt;
556 continue;
557 }
558 if (memc->mddt_usage & MDDT_NONVOLATILE) {
559 /* XXX should handle these... */
560 printf("WARNING: skipping non-volatile mem "
561 "cluster %d\n", i);
562 unusedmem += memc->mddt_pg_cnt;
563 continue;
564 }
565 if (memc->mddt_usage & MDDT_PALCODE) {
566 resvmem += memc->mddt_pg_cnt;
567 continue;
568 }
569
570 /*
571 * We have a memory cluster available for system
572 * software use. We must determine if this cluster
573 * holds the kernel.
574 */
575 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
576 /*
577 * XXX If the kernel uses the PROM console, we only use the
578 * XXX memory after the kernel in the first system segment,
579 * XXX to avoid clobbering prom mapping, data, etc.
580 */
581 if (!pmap_uses_prom_console() || physmem == 0) {
582 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
583 physmem += memc->mddt_pg_cnt;
584 pfn0 = memc->mddt_pfn;
585 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
586 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
587 /*
588 * Must compute the location of the kernel
589 * within the segment.
590 */
591 #if 0
592 printf("Cluster %d contains kernel\n", i);
593 #endif
594 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
595 if (!pmap_uses_prom_console()) {
596 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
597 if (pfn0 < kernstartpfn) {
598 /*
599 * There is a chunk before the kernel.
600 */
601 #if 0
602 printf("Loading chunk before kernel: "
603 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
604 #endif
605 #if defined(UVM)
606 uvm_page_physload(pfn0, kernstartpfn,
607 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
608 #else
609 vm_page_physload(pfn0, kernstartpfn,
610 pfn0, kernstartpfn);
611 #endif
612 }
613 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
614 }
615 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
616 if (kernendpfn < pfn1) {
617 /*
618 * There is a chunk after the kernel.
619 */
620 #if 0
621 printf("Loading chunk after kernel: "
622 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
623 #endif
624 #if defined(UVM)
625 uvm_page_physload(kernendpfn, pfn1,
626 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
627 #else
628 vm_page_physload(kernendpfn, pfn1,
629 kernendpfn, pfn1);
630 #endif
631 }
632 } else {
633 /*
634 * Just load this cluster as one chunk.
635 */
636 #if 0
637 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
638 pfn0, pfn1);
639 #endif
640 #if defined(UVM)
641 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
642 VM_FREELIST_DEFAULT);
643 #else
644 vm_page_physload(pfn0, pfn1, pfn0, pfn1);
645 #endif
646 }
647 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
648 }
649 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
650 }
651
652 /*
653 * Dump out the MDDT if it looks odd...
654 */
655 if (mddtweird) {
656 printf("\n");
657 printf("complete memory cluster information:\n");
658 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
659 printf("mddt %d:\n", i);
660 printf("\tpfn %lx\n",
661 mddtp->mddt_clusters[i].mddt_pfn);
662 printf("\tcnt %lx\n",
663 mddtp->mddt_clusters[i].mddt_pg_cnt);
664 printf("\ttest %lx\n",
665 mddtp->mddt_clusters[i].mddt_pg_test);
666 printf("\tbva %lx\n",
667 mddtp->mddt_clusters[i].mddt_v_bitaddr);
668 printf("\tbpa %lx\n",
669 mddtp->mddt_clusters[i].mddt_p_bitaddr);
670 printf("\tbcksum %lx\n",
671 mddtp->mddt_clusters[i].mddt_bit_cksum);
672 printf("\tusage %lx\n",
673 mddtp->mddt_clusters[i].mddt_usage);
674 }
675 printf("\n");
676 }
677
678 if (totalphysmem == 0)
679 panic("can't happen: system seems to have no memory!");
680
681 #ifdef LIMITMEM
682 /*
683 * XXX Kludge so we can run on machines with memory larger
684 * XXX than 1G until all device drivers are converted to
685 * XXX use bus_dma. (Relies on the fact that vm_physmem
686 * XXX sorted in order of increasing addresses.)
687 */
688 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
689
690 printf("******** LIMITING MEMORY TO %dMB **********\n",
691 LIMITMEM);
692
693 do {
694 u_long ovf;
695
696 vps = &vm_physmem[vm_nphysseg - 1];
697
698 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
699 /*
700 * If the start is too high, just drop
701 * the whole segment.
702 *
703 * XXX can start != avail_start in this
704 * XXX case? wouldn't that mean that
705 * XXX some memory was stolen above the
706 * XXX limit? What to do?
707 */
708 ovf = vps->end - vps->start;
709 vm_nphysseg--;
710 } else {
711 /*
712 * If the start is OK, calculate how much
713 * to drop and drop it.
714 */
715 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
716 vps->end -= ovf;
717 vps->avail_end -= ovf;
718 }
719 physmem -= ovf;
720 unusedmem += ovf;
721 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
722 }
723 #endif /* LIMITMEM */
724
725 maxmem = physmem;
726
727 #if 0
728 printf("totalphysmem = %d\n", totalphysmem);
729 printf("physmem = %d\n", physmem);
730 printf("resvmem = %d\n", resvmem);
731 printf("unusedmem = %d\n", unusedmem);
732 printf("unknownmem = %d\n", unknownmem);
733 #endif
734
735 /*
736 * Adjust some parameters if the amount of physmem
737 * available would cause us to croak. This is completely
738 * eyeballed and isn't meant to be the final answer.
739 * vm_phys_size is probably the only one to really worry
740 * about.
741 *
742 * It's for booting a GENERIC kernel on a large memory platform.
743 */
744 if (physmem >= atop(128 * 1024 * 1024)) {
745 vm_mbuf_size <<= 1;
746 vm_kmem_size <<= 3;
747 vm_phys_size <<= 2;
748 }
749
750 /*
751 * Initialize error message buffer (at end of core).
752 */
753 {
754 size_t sz = round_page(MSGBUFSIZE);
755
756 vps = &vm_physmem[vm_nphysseg - 1];
757
758 /* shrink so that it'll fit in the last segment */
759 if ((vps->avail_end - vps->avail_start) < atop(sz))
760 sz = ptoa(vps->avail_end - vps->avail_start);
761
762 vps->end -= atop(sz);
763 vps->avail_end -= atop(sz);
764 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
765 initmsgbuf(msgbufaddr, sz);
766
767 /* Remove the last segment if it now has no pages. */
768 if (vps->start == vps->end)
769 vm_nphysseg--;
770
771 /* warn if the message buffer had to be shrunk */
772 if (sz != round_page(MSGBUFSIZE))
773 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
774 round_page(MSGBUFSIZE), sz);
775
776 }
777
778 /*
779 * Init mapping for u page(s) for proc 0
780 */
781 proc0.p_addr = proc0paddr =
782 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
783
784 /*
785 * Allocate space for system data structures. These data structures
786 * are allocated here instead of cpu_startup() because physical
787 * memory is directly addressable. We don't have to map these into
788 * virtual address space.
789 */
790 size = (vsize_t)allocsys(0);
791 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
792 if ((allocsys(v) - v) != size)
793 panic("alpha_init: table size inconsistency");
794
795 /*
796 * Initialize the virtual memory system, and set the
797 * page table base register in proc 0's PCB.
798 */
799 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
800 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
801
802 /*
803 * Initialize the rest of proc 0's PCB, and cache its physical
804 * address.
805 */
806 proc0.p_md.md_pcbpaddr =
807 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
808
809 /*
810 * Set the kernel sp, reserving space for an (empty) trapframe,
811 * and make proc0's trapframe pointer point to it for sanity.
812 */
813 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
814 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
815 proc0.p_md.md_tf =
816 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
817
818 /*
819 * Look at arguments passed to us and compute boothowto.
820 */
821
822 boothowto = RB_SINGLE;
823 #ifdef KADB
824 boothowto |= RB_KDB;
825 #endif
826 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
827 /*
828 * Note that we'd really like to differentiate case here,
829 * but the Alpha AXP Architecture Reference Manual
830 * says that we shouldn't.
831 */
832 switch (*p) {
833 case 'a': /* autoboot */
834 case 'A':
835 boothowto &= ~RB_SINGLE;
836 break;
837
838 #ifdef DEBUG
839 case 'c': /* crash dump immediately after autoconfig */
840 case 'C':
841 boothowto |= RB_DUMP;
842 break;
843 #endif
844
845 #if defined(KGDB) || defined(DDB)
846 case 'd': /* break into the kernel debugger ASAP */
847 case 'D':
848 boothowto |= RB_KDB;
849 break;
850 #endif
851
852 case 'h': /* always halt, never reboot */
853 case 'H':
854 boothowto |= RB_HALT;
855 break;
856
857 #if 0
858 case 'm': /* mini root present in memory */
859 case 'M':
860 boothowto |= RB_MINIROOT;
861 break;
862 #endif
863
864 case 'n': /* askname */
865 case 'N':
866 boothowto |= RB_ASKNAME;
867 break;
868
869 case 's': /* single-user (default, supported for sanity) */
870 case 'S':
871 boothowto |= RB_SINGLE;
872 break;
873
874 case '-':
875 /*
876 * Just ignore this. It's not required, but it's
877 * common for it to be passed regardless.
878 */
879 break;
880
881 default:
882 printf("Unrecognized boot flag '%c'.\n", *p);
883 break;
884 }
885 }
886
887
888 /*
889 * Figure out the number of cpus in the box, from RPB fields.
890 * Really. We mean it.
891 */
892 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
893 struct pcs *pcsp;
894
895 pcsp = LOCATE_PCS(hwrpb, i);
896 if ((pcsp->pcs_flags & PCS_PP) != 0)
897 ncpus++;
898 }
899
900 /*
901 * Initialize debuggers, and break into them if appropriate.
902 */
903 #ifdef DDB
904 db_machine_init();
905 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
906 ksym_start, ksym_end);
907 if (boothowto & RB_KDB)
908 Debugger();
909 #endif
910 #ifdef KGDB
911 if (boothowto & RB_KDB)
912 kgdb_connect(0);
913 #endif
914 /*
915 * Figure out our clock frequency, from RPB fields.
916 */
917 hz = hwrpb->rpb_intr_freq >> 12;
918 if (!(60 <= hz && hz <= 10240)) {
919 hz = 1024;
920 #ifdef DIAGNOSTIC
921 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
922 hwrpb->rpb_intr_freq, hz);
923 #endif
924 }
925 }
926
927 /*
928 * Allocate space for system data structures. We are given
929 * a starting virtual address and we return a final virtual
930 * address; along the way we set each data structure pointer.
931 *
932 * We call allocsys() with 0 to find out how much space we want,
933 * allocate that much and fill it with zeroes, and the call
934 * allocsys() again with the correct base virtual address.
935 */
936 caddr_t
937 allocsys(v)
938 caddr_t v;
939 {
940
941 #define valloc(name, type, num) \
942 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
943
944 #ifdef REAL_CLISTS
945 valloc(cfree, struct cblock, nclist);
946 #endif
947 valloc(callout, struct callout, ncallout);
948 #ifdef SYSVSHM
949 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
950 #endif
951 #ifdef SYSVSEM
952 valloc(sema, struct semid_ds, seminfo.semmni);
953 valloc(sem, struct sem, seminfo.semmns);
954 /* This is pretty disgusting! */
955 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
956 #endif
957 #ifdef SYSVMSG
958 valloc(msgpool, char, msginfo.msgmax);
959 valloc(msgmaps, struct msgmap, msginfo.msgseg);
960 valloc(msghdrs, struct msg, msginfo.msgtql);
961 valloc(msqids, struct msqid_ds, msginfo.msgmni);
962 #endif
963
964 /*
965 * Determine how many buffers to allocate.
966 * We allocate bufcache % of memory for buffer space. Insure a
967 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
968 * headers as file i/o buffers.
969 */
970 if (bufpages == 0)
971 bufpages = physmem / CLSIZE * bufcache / 100;
972 if (nbuf == 0) {
973 nbuf = bufpages;
974 if (nbuf < 16)
975 nbuf = 16;
976 }
977 if (nswbuf == 0) {
978 nswbuf = (nbuf / 2) &~ 1; /* force even */
979 if (nswbuf > 256)
980 nswbuf = 256; /* sanity */
981 }
982 #if !defined(UVM)
983 valloc(swbuf, struct buf, nswbuf);
984 #endif
985 valloc(buf, struct buf, nbuf);
986
987 /*
988 * There appears to be a correlation between the number
989 * of processor slots defined in the HWRPB and the whami
990 * value that can be returned.
991 */
992 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
993
994 return (v);
995 #undef valloc
996 }
997
998 void
999 consinit()
1000 {
1001
1002 /*
1003 * Everything related to console initialization is done
1004 * in alpha_init().
1005 */
1006 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1007 printf("consinit: %susing prom console\n",
1008 pmap_uses_prom_console() ? "" : "not ");
1009 #endif
1010 }
1011
1012 #include "pckbc.h"
1013 #include "pckbd.h"
1014 #if (NPCKBC > 0) && (NPCKBD == 0)
1015
1016 #include <dev/isa/pckbcvar.h>
1017
1018 /*
1019 * This is called by the pbkbc driver if no pckbd is configured.
1020 * On the i386, it is used to glue in the old, deprecated console
1021 * code. On the Alpha, it does nothing.
1022 */
1023 int
1024 pckbc_machdep_cnattach(kbctag, kbcslot)
1025 pckbc_tag_t kbctag;
1026 pckbc_slot_t kbcslot;
1027 {
1028
1029 return (ENXIO);
1030 }
1031 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1032
1033 void
1034 cpu_startup()
1035 {
1036 register unsigned i;
1037 int base, residual;
1038 vaddr_t minaddr, maxaddr;
1039 vsize_t size;
1040 #if defined(DEBUG)
1041 extern int pmapdebug;
1042 int opmapdebug = pmapdebug;
1043
1044 pmapdebug = 0;
1045 #endif
1046
1047 /*
1048 * Good {morning,afternoon,evening,night}.
1049 */
1050 printf(version);
1051 identifycpu();
1052 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1053 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1054 ptoa(resvmem), ptoa(physmem));
1055 if (unusedmem)
1056 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1057 if (unknownmem)
1058 printf("WARNING: %d bytes of memory with unknown purpose\n",
1059 ctob(unknownmem));
1060
1061 /*
1062 * Allocate virtual address space for file I/O buffers.
1063 * Note they are different than the array of headers, 'buf',
1064 * and usually occupy more virtual memory than physical.
1065 */
1066 size = MAXBSIZE * nbuf;
1067 #if defined(UVM)
1068 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1069 NULL, UVM_UNKNOWN_OFFSET,
1070 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1071 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1072 panic("startup: cannot allocate VM for buffers");
1073 #else
1074 buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1075 &maxaddr, size, TRUE);
1076 minaddr = (vaddr_t)buffers;
1077 if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1078 &minaddr, size, FALSE) != KERN_SUCCESS)
1079 panic("startup: cannot allocate buffers");
1080 #endif /* UVM */
1081 base = bufpages / nbuf;
1082 residual = bufpages % nbuf;
1083 for (i = 0; i < nbuf; i++) {
1084 #if defined(UVM)
1085 vsize_t curbufsize;
1086 vaddr_t curbuf;
1087 struct vm_page *pg;
1088
1089 /*
1090 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1091 * that MAXBSIZE space, we allocate and map (base+1) pages
1092 * for the first "residual" buffers, and then we allocate
1093 * "base" pages for the rest.
1094 */
1095 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1096 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1097
1098 while (curbufsize) {
1099 pg = uvm_pagealloc(NULL, 0, NULL);
1100 if (pg == NULL)
1101 panic("cpu_startup: not enough memory for "
1102 "buffer cache");
1103 #if defined(PMAP_NEW)
1104 pmap_kenter_pgs(curbuf, &pg, 1);
1105 #else
1106 pmap_enter(kernel_map->pmap, curbuf,
1107 VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1108 #endif
1109 curbuf += PAGE_SIZE;
1110 curbufsize -= PAGE_SIZE;
1111 }
1112 #else /* ! UVM */
1113 vsize_t curbufsize;
1114 vaddr_t curbuf;
1115
1116 /*
1117 * First <residual> buffers get (base+1) physical pages
1118 * allocated for them. The rest get (base) physical pages.
1119 *
1120 * The rest of each buffer occupies virtual space,
1121 * but has no physical memory allocated for it.
1122 */
1123 curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1124 curbufsize = CLBYTES * (i < residual ? base+1 : base);
1125 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1126 vm_map_simplify(buffer_map, curbuf);
1127 #endif /* UVM */
1128 }
1129 /*
1130 * Allocate a submap for exec arguments. This map effectively
1131 * limits the number of processes exec'ing at any time.
1132 */
1133 #if defined(UVM)
1134 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1135 16 * NCARGS, TRUE, FALSE, NULL);
1136 #else
1137 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1138 16 * NCARGS, TRUE);
1139 #endif
1140
1141 /*
1142 * Allocate a submap for physio
1143 */
1144 #if defined(UVM)
1145 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1146 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1147 #else
1148 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1149 VM_PHYS_SIZE, TRUE);
1150 #endif
1151
1152 /*
1153 * Finally, allocate mbuf cluster submap.
1154 */
1155 #if defined(UVM)
1156 mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1157 VM_MBUF_SIZE, FALSE, FALSE, NULL);
1158 #else
1159 mb_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1160 VM_MBUF_SIZE, FALSE);
1161 #endif
1162 /*
1163 * Initialize callouts
1164 */
1165 callfree = callout;
1166 for (i = 1; i < ncallout; i++)
1167 callout[i-1].c_next = &callout[i];
1168 callout[i-1].c_next = NULL;
1169
1170 #if defined(DEBUG)
1171 pmapdebug = opmapdebug;
1172 #endif
1173 #if defined(UVM)
1174 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1175 #else
1176 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1177 #endif
1178 #if 0
1179 {
1180 extern u_long pmap_pages_stolen;
1181 printf("stolen memory for VM structures = %ld bytes\n",
1182 pmap_pages_stolen * PAGE_SIZE);
1183 }
1184 #endif
1185 printf("using %ld buffers containing %ld bytes of memory\n",
1186 (long)nbuf, (long)(bufpages * CLBYTES));
1187
1188 /*
1189 * Set up buffers, so they can be used to read disk labels.
1190 */
1191 bufinit();
1192
1193 /*
1194 * Set up the HWPCB so that it's safe to configure secondary
1195 * CPUs.
1196 */
1197 hwrpb_primary_init();
1198
1199 /*
1200 * Configure the system.
1201 */
1202 configure();
1203 }
1204
1205 /*
1206 * Retrieve the platform name from the DSR.
1207 */
1208 const char *
1209 alpha_dsr_sysname()
1210 {
1211 struct dsrdb *dsr;
1212 const char *sysname;
1213
1214 /*
1215 * DSR does not exist on early HWRPB versions.
1216 */
1217 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1218 return (NULL);
1219
1220 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1221 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1222 sizeof(u_int64_t)));
1223 return (sysname);
1224 }
1225
1226 /*
1227 * Lookup the system specified system variation in the provided table,
1228 * returning the model string on match.
1229 */
1230 const char *
1231 alpha_variation_name(variation, avtp)
1232 u_int64_t variation;
1233 const struct alpha_variation_table *avtp;
1234 {
1235 int i;
1236
1237 for (i = 0; avtp[i].avt_model != NULL; i++)
1238 if (avtp[i].avt_variation == variation)
1239 return (avtp[i].avt_model);
1240 return (NULL);
1241 }
1242
1243 /*
1244 * Generate a default platform name based for unknown system variations.
1245 */
1246 const char *
1247 alpha_unknown_sysname()
1248 {
1249 static char s[128]; /* safe size */
1250
1251 sprintf(s, "%s family, unknown model variation 0x%lx",
1252 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1253 return ((const char *)s);
1254 }
1255
1256 void
1257 identifycpu()
1258 {
1259
1260 /*
1261 * print out CPU identification information.
1262 */
1263 printf("%s, %ldMHz\n", cpu_model,
1264 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1265 printf("%ld byte page size, %d processor%s.\n",
1266 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1267 #if 0
1268 /* this isn't defined for any systems that we run on? */
1269 printf("serial number 0x%lx 0x%lx\n",
1270 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1271
1272 /* and these aren't particularly useful! */
1273 printf("variation: 0x%lx, revision 0x%lx\n",
1274 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1275 #endif
1276 }
1277
1278 int waittime = -1;
1279 struct pcb dumppcb;
1280
1281 void
1282 cpu_reboot(howto, bootstr)
1283 int howto;
1284 char *bootstr;
1285 {
1286 extern int cold;
1287 #if defined(MULTIPROCESSOR)
1288 #if 0 /* XXX See below. */
1289 u_long cpu_id;
1290 #endif
1291 #endif
1292
1293 #if defined(MULTIPROCESSOR)
1294 /* We must be running on the primary CPU. */
1295 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1296 panic("cpu_reboot: not on primary CPU!");
1297 #endif
1298
1299 /* If system is cold, just halt. */
1300 if (cold) {
1301 howto |= RB_HALT;
1302 goto haltsys;
1303 }
1304
1305 /* If "always halt" was specified as a boot flag, obey. */
1306 if ((boothowto & RB_HALT) != 0)
1307 howto |= RB_HALT;
1308
1309 boothowto = howto;
1310 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1311 waittime = 0;
1312 vfs_shutdown();
1313 /*
1314 * If we've been adjusting the clock, the todr
1315 * will be out of synch; adjust it now.
1316 */
1317 resettodr();
1318 }
1319
1320 /* Disable interrupts. */
1321 splhigh();
1322
1323 /* If rebooting and a dump is requested do it. */
1324 #if 0
1325 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1326 #else
1327 if (howto & RB_DUMP)
1328 #endif
1329 dumpsys();
1330
1331 haltsys:
1332
1333 /* run any shutdown hooks */
1334 doshutdownhooks();
1335
1336 #if defined(MULTIPROCESSOR)
1337 #if 0 /* XXX doesn't work when called from here?! */
1338 /* Kill off any secondary CPUs. */
1339 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1340 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1341 cpu_info[cpu_id].ci_softc == NULL)
1342 continue;
1343 cpu_halt_secondary(cpu_id);
1344 }
1345 #endif
1346 #endif
1347
1348 #ifdef BOOTKEY
1349 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1350 cnpollc(1); /* for proper keyboard command handling */
1351 cngetc();
1352 cnpollc(0);
1353 printf("\n");
1354 #endif
1355
1356 /* Finally, powerdown/halt/reboot the system. */
1357 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1358 platform.powerdown != NULL) {
1359 (*platform.powerdown)();
1360 printf("WARNING: powerdown failed!\n");
1361 }
1362 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1363 prom_halt(howto & RB_HALT);
1364 /*NOTREACHED*/
1365 }
1366
1367 /*
1368 * These variables are needed by /sbin/savecore
1369 */
1370 u_long dumpmag = 0x8fca0101; /* magic number */
1371 int dumpsize = 0; /* pages */
1372 long dumplo = 0; /* blocks */
1373
1374 /*
1375 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1376 */
1377 int
1378 cpu_dumpsize()
1379 {
1380 int size;
1381
1382 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1383 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1384 if (roundup(size, dbtob(1)) != dbtob(1))
1385 return -1;
1386
1387 return (1);
1388 }
1389
1390 /*
1391 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1392 */
1393 u_long
1394 cpu_dump_mempagecnt()
1395 {
1396 u_long i, n;
1397
1398 n = 0;
1399 for (i = 0; i < mem_cluster_cnt; i++)
1400 n += atop(mem_clusters[i].size);
1401 return (n);
1402 }
1403
1404 /*
1405 * cpu_dump: dump machine-dependent kernel core dump headers.
1406 */
1407 int
1408 cpu_dump()
1409 {
1410 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1411 char buf[dbtob(1)];
1412 kcore_seg_t *segp;
1413 cpu_kcore_hdr_t *cpuhdrp;
1414 phys_ram_seg_t *memsegp;
1415 int i;
1416
1417 dump = bdevsw[major(dumpdev)].d_dump;
1418
1419 bzero(buf, sizeof buf);
1420 segp = (kcore_seg_t *)buf;
1421 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1422 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1423 ALIGN(sizeof(*cpuhdrp))];
1424
1425 /*
1426 * Generate a segment header.
1427 */
1428 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1429 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1430
1431 /*
1432 * Add the machine-dependent header info.
1433 */
1434 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1435 cpuhdrp->page_size = PAGE_SIZE;
1436 cpuhdrp->nmemsegs = mem_cluster_cnt;
1437
1438 /*
1439 * Fill in the memory segment descriptors.
1440 */
1441 for (i = 0; i < mem_cluster_cnt; i++) {
1442 memsegp[i].start = mem_clusters[i].start;
1443 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1444 }
1445
1446 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1447 }
1448
1449 /*
1450 * This is called by main to set dumplo and dumpsize.
1451 * Dumps always skip the first CLBYTES of disk space
1452 * in case there might be a disk label stored there.
1453 * If there is extra space, put dump at the end to
1454 * reduce the chance that swapping trashes it.
1455 */
1456 void
1457 cpu_dumpconf()
1458 {
1459 int nblks, dumpblks; /* size of dump area */
1460 int maj;
1461
1462 if (dumpdev == NODEV)
1463 goto bad;
1464 maj = major(dumpdev);
1465 if (maj < 0 || maj >= nblkdev)
1466 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1467 if (bdevsw[maj].d_psize == NULL)
1468 goto bad;
1469 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1470 if (nblks <= ctod(1))
1471 goto bad;
1472
1473 dumpblks = cpu_dumpsize();
1474 if (dumpblks < 0)
1475 goto bad;
1476 dumpblks += ctod(cpu_dump_mempagecnt());
1477
1478 /* If dump won't fit (incl. room for possible label), punt. */
1479 if (dumpblks > (nblks - ctod(1)))
1480 goto bad;
1481
1482 /* Put dump at end of partition */
1483 dumplo = nblks - dumpblks;
1484
1485 /* dumpsize is in page units, and doesn't include headers. */
1486 dumpsize = cpu_dump_mempagecnt();
1487 return;
1488
1489 bad:
1490 dumpsize = 0;
1491 return;
1492 }
1493
1494 /*
1495 * Dump the kernel's image to the swap partition.
1496 */
1497 #define BYTES_PER_DUMP NBPG
1498
1499 void
1500 dumpsys()
1501 {
1502 u_long totalbytesleft, bytes, i, n, memcl;
1503 u_long maddr;
1504 int psize;
1505 daddr_t blkno;
1506 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1507 int error;
1508
1509 /* Save registers. */
1510 savectx(&dumppcb);
1511
1512 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1513 if (dumpdev == NODEV)
1514 return;
1515
1516 /*
1517 * For dumps during autoconfiguration,
1518 * if dump device has already configured...
1519 */
1520 if (dumpsize == 0)
1521 cpu_dumpconf();
1522 if (dumplo <= 0) {
1523 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1524 minor(dumpdev));
1525 return;
1526 }
1527 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1528 minor(dumpdev), dumplo);
1529
1530 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1531 printf("dump ");
1532 if (psize == -1) {
1533 printf("area unavailable\n");
1534 return;
1535 }
1536
1537 /* XXX should purge all outstanding keystrokes. */
1538
1539 if ((error = cpu_dump()) != 0)
1540 goto err;
1541
1542 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1543 blkno = dumplo + cpu_dumpsize();
1544 dump = bdevsw[major(dumpdev)].d_dump;
1545 error = 0;
1546
1547 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1548 maddr = mem_clusters[memcl].start;
1549 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1550
1551 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1552
1553 /* Print out how many MBs we to go. */
1554 if ((totalbytesleft % (1024*1024)) == 0)
1555 printf("%ld ", totalbytesleft / (1024 * 1024));
1556
1557 /* Limit size for next transfer. */
1558 n = bytes - i;
1559 if (n > BYTES_PER_DUMP)
1560 n = BYTES_PER_DUMP;
1561
1562 error = (*dump)(dumpdev, blkno,
1563 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1564 if (error)
1565 goto err;
1566 maddr += n;
1567 blkno += btodb(n); /* XXX? */
1568
1569 /* XXX should look for keystrokes, to cancel. */
1570 }
1571 }
1572
1573 err:
1574 switch (error) {
1575
1576 case ENXIO:
1577 printf("device bad\n");
1578 break;
1579
1580 case EFAULT:
1581 printf("device not ready\n");
1582 break;
1583
1584 case EINVAL:
1585 printf("area improper\n");
1586 break;
1587
1588 case EIO:
1589 printf("i/o error\n");
1590 break;
1591
1592 case EINTR:
1593 printf("aborted from console\n");
1594 break;
1595
1596 case 0:
1597 printf("succeeded\n");
1598 break;
1599
1600 default:
1601 printf("error %d\n", error);
1602 break;
1603 }
1604 printf("\n\n");
1605 delay(1000);
1606 }
1607
1608 void
1609 frametoreg(framep, regp)
1610 struct trapframe *framep;
1611 struct reg *regp;
1612 {
1613
1614 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1615 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1616 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1617 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1618 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1619 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1620 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1621 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1622 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1623 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1624 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1625 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1626 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1627 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1628 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1629 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1630 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1631 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1632 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1633 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1634 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1635 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1636 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1637 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1638 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1639 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1640 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1641 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1642 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1643 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1644 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1645 regp->r_regs[R_ZERO] = 0;
1646 }
1647
1648 void
1649 regtoframe(regp, framep)
1650 struct reg *regp;
1651 struct trapframe *framep;
1652 {
1653
1654 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1655 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1656 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1657 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1658 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1659 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1660 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1661 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1662 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1663 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1664 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1665 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1666 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1667 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1668 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1669 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1670 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1671 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1672 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1673 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1674 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1675 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1676 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1677 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1678 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1679 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1680 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1681 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1682 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1683 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1684 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1685 /* ??? = regp->r_regs[R_ZERO]; */
1686 }
1687
1688 void
1689 printregs(regp)
1690 struct reg *regp;
1691 {
1692 int i;
1693
1694 for (i = 0; i < 32; i++)
1695 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1696 i & 1 ? "\n" : "\t");
1697 }
1698
1699 void
1700 regdump(framep)
1701 struct trapframe *framep;
1702 {
1703 struct reg reg;
1704
1705 frametoreg(framep, ®);
1706 reg.r_regs[R_SP] = alpha_pal_rdusp();
1707
1708 printf("REGISTERS:\n");
1709 printregs(®);
1710 }
1711
1712 #ifdef DEBUG
1713 int sigdebug = 0;
1714 int sigpid = 0;
1715 #define SDB_FOLLOW 0x01
1716 #define SDB_KSTACK 0x02
1717 #endif
1718
1719 /*
1720 * Send an interrupt to process.
1721 */
1722 void
1723 sendsig(catcher, sig, mask, code)
1724 sig_t catcher;
1725 int sig;
1726 sigset_t *mask;
1727 u_long code;
1728 {
1729 struct proc *p = curproc;
1730 struct sigcontext *scp, ksc;
1731 struct trapframe *frame;
1732 struct sigacts *psp = p->p_sigacts;
1733 int onstack, fsize, rndfsize;
1734
1735 frame = p->p_md.md_tf;
1736
1737 /* Do we need to jump onto the signal stack? */
1738 onstack =
1739 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1740 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1741
1742 /* Allocate space for the signal handler context. */
1743 fsize = sizeof(ksc);
1744 rndfsize = ((fsize + 15) / 16) * 16;
1745
1746 if (onstack)
1747 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1748 psp->ps_sigstk.ss_size);
1749 else
1750 scp = (struct sigcontext *)(alpha_pal_rdusp());
1751 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1752
1753 #ifdef DEBUG
1754 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1755 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1756 sig, &onstack, scp);
1757 #endif
1758
1759 /* Build stack frame for signal trampoline. */
1760 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1761 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1762
1763 /* Save register context. */
1764 frametoreg(frame, (struct reg *)ksc.sc_regs);
1765 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1766 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1767
1768 /* save the floating-point state, if necessary, then copy it. */
1769 if (p == fpcurproc) {
1770 alpha_pal_wrfen(1);
1771 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1772 alpha_pal_wrfen(0);
1773 fpcurproc = NULL;
1774 }
1775 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1776 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1777 sizeof(struct fpreg));
1778 ksc.sc_fp_control = 0; /* XXX ? */
1779 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1780 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1781
1782 /* Save signal stack. */
1783 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1784
1785 /* Save signal mask. */
1786 ksc.sc_mask = *mask;
1787
1788 #ifdef COMPAT_13
1789 /*
1790 * XXX We always have to save an old style signal mask because
1791 * XXX we might be delivering a signal to a process which will
1792 * XXX escape from the signal in a non-standard way and invoke
1793 * XXX sigreturn() directly.
1794 */
1795 {
1796 /* Note: it's a long in the stack frame. */
1797 sigset13_t mask13;
1798
1799 native_sigset_to_sigset13(mask, &mask13);
1800 ksc.__sc_mask13 = mask13;
1801 }
1802 #endif
1803
1804 #ifdef COMPAT_OSF1
1805 /*
1806 * XXX Create an OSF/1-style sigcontext and associated goo.
1807 */
1808 #endif
1809
1810 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1811 /*
1812 * Process has trashed its stack; give it an illegal
1813 * instruction to halt it in its tracks.
1814 */
1815 #ifdef DEBUG
1816 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1817 printf("sendsig(%d): copyout failed on sig %d\n",
1818 p->p_pid, sig);
1819 #endif
1820 sigexit(p, SIGILL);
1821 /* NOTREACHED */
1822 }
1823 #ifdef DEBUG
1824 if (sigdebug & SDB_FOLLOW)
1825 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1826 scp, code);
1827 #endif
1828
1829 /* Set up the registers to return to sigcode. */
1830 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1831 frame->tf_regs[FRAME_A0] = sig;
1832 frame->tf_regs[FRAME_A1] = code;
1833 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1834 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1835 alpha_pal_wrusp((unsigned long)scp);
1836
1837 /* Remember that we're now on the signal stack. */
1838 if (onstack)
1839 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1840
1841 #ifdef DEBUG
1842 if (sigdebug & SDB_FOLLOW)
1843 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1844 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1845 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1846 printf("sendsig(%d): sig %d returns\n",
1847 p->p_pid, sig);
1848 #endif
1849 }
1850
1851 /*
1852 * System call to cleanup state after a signal
1853 * has been taken. Reset signal mask and
1854 * stack state from context left by sendsig (above).
1855 * Return to previous pc and psl as specified by
1856 * context left by sendsig. Check carefully to
1857 * make sure that the user has not modified the
1858 * psl to gain improper priviledges or to cause
1859 * a machine fault.
1860 */
1861 /* ARGSUSED */
1862 int
1863 sys___sigreturn14(p, v, retval)
1864 struct proc *p;
1865 void *v;
1866 register_t *retval;
1867 {
1868 struct sys___sigreturn14_args /* {
1869 syscallarg(struct sigcontext *) sigcntxp;
1870 } */ *uap = v;
1871 struct sigcontext *scp, ksc;
1872
1873 /*
1874 * The trampoline code hands us the context.
1875 * It is unsafe to keep track of it ourselves, in the event that a
1876 * program jumps out of a signal handler.
1877 */
1878 scp = SCARG(uap, sigcntxp);
1879 #ifdef DEBUG
1880 if (sigdebug & SDB_FOLLOW)
1881 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1882 #endif
1883 if (ALIGN(scp) != (u_int64_t)scp)
1884 return (EINVAL);
1885
1886 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1887 return (EFAULT);
1888
1889 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1890 return (EINVAL);
1891
1892 /* Restore register context. */
1893 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1894 p->p_md.md_tf->tf_regs[FRAME_PS] =
1895 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1896
1897 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1898 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1899
1900 /* XXX ksc.sc_ownedfp ? */
1901 if (p == fpcurproc)
1902 fpcurproc = NULL;
1903 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1904 sizeof(struct fpreg));
1905 /* XXX ksc.sc_fp_control ? */
1906
1907 /* Restore signal stack. */
1908 if (ksc.sc_onstack & SS_ONSTACK)
1909 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1910 else
1911 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1912
1913 /* Restore signal mask. */
1914 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1915
1916 #ifdef DEBUG
1917 if (sigdebug & SDB_FOLLOW)
1918 printf("sigreturn(%d): returns\n", p->p_pid);
1919 #endif
1920 return (EJUSTRETURN);
1921 }
1922
1923 /*
1924 * machine dependent system variables.
1925 */
1926 int
1927 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1928 int *name;
1929 u_int namelen;
1930 void *oldp;
1931 size_t *oldlenp;
1932 void *newp;
1933 size_t newlen;
1934 struct proc *p;
1935 {
1936 dev_t consdev;
1937
1938 /* all sysctl names at this level are terminal */
1939 if (namelen != 1)
1940 return (ENOTDIR); /* overloaded */
1941
1942 switch (name[0]) {
1943 case CPU_CONSDEV:
1944 if (cn_tab != NULL)
1945 consdev = cn_tab->cn_dev;
1946 else
1947 consdev = NODEV;
1948 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1949 sizeof consdev));
1950
1951 case CPU_ROOT_DEVICE:
1952 return (sysctl_rdstring(oldp, oldlenp, newp,
1953 root_device->dv_xname));
1954
1955 case CPU_UNALIGNED_PRINT:
1956 return (sysctl_int(oldp, oldlenp, newp, newlen,
1957 &alpha_unaligned_print));
1958
1959 case CPU_UNALIGNED_FIX:
1960 return (sysctl_int(oldp, oldlenp, newp, newlen,
1961 &alpha_unaligned_fix));
1962
1963 case CPU_UNALIGNED_SIGBUS:
1964 return (sysctl_int(oldp, oldlenp, newp, newlen,
1965 &alpha_unaligned_sigbus));
1966
1967 case CPU_BOOTED_KERNEL:
1968 return (sysctl_rdstring(oldp, oldlenp, newp,
1969 bootinfo.booted_kernel));
1970
1971 default:
1972 return (EOPNOTSUPP);
1973 }
1974 /* NOTREACHED */
1975 }
1976
1977 /*
1978 * Set registers on exec.
1979 */
1980 void
1981 setregs(p, pack, stack)
1982 register struct proc *p;
1983 struct exec_package *pack;
1984 u_long stack;
1985 {
1986 struct trapframe *tfp = p->p_md.md_tf;
1987 #ifdef DEBUG
1988 int i;
1989 #endif
1990
1991 #ifdef DEBUG
1992 /*
1993 * Crash and dump, if the user requested it.
1994 */
1995 if (boothowto & RB_DUMP)
1996 panic("crash requested by boot flags");
1997 #endif
1998
1999 #ifdef DEBUG
2000 for (i = 0; i < FRAME_SIZE; i++)
2001 tfp->tf_regs[i] = 0xbabefacedeadbeef;
2002 #else
2003 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
2004 #endif
2005 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
2006 #define FP_RN 2 /* XXX */
2007 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
2008 alpha_pal_wrusp(stack);
2009 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
2010 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
2011
2012 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
2013 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
2014 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2015 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2016 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2017
2018 p->p_md.md_flags &= ~MDP_FPUSED;
2019 if (fpcurproc == p)
2020 fpcurproc = NULL;
2021 }
2022
2023 void
2024 netintr()
2025 {
2026 int n, s;
2027
2028 s = splhigh();
2029 n = netisr;
2030 netisr = 0;
2031 splx(s);
2032
2033 #define DONETISR(bit, fn) \
2034 do { \
2035 if (n & (1 << (bit))) \
2036 fn; \
2037 } while (0)
2038
2039 #ifdef INET
2040 #if NARP > 0
2041 DONETISR(NETISR_ARP, arpintr());
2042 #endif
2043 DONETISR(NETISR_IP, ipintr());
2044 #endif
2045 #ifdef NETATALK
2046 DONETISR(NETISR_ATALK, atintr());
2047 #endif
2048 #ifdef NS
2049 DONETISR(NETISR_NS, nsintr());
2050 #endif
2051 #ifdef ISO
2052 DONETISR(NETISR_ISO, clnlintr());
2053 #endif
2054 #ifdef CCITT
2055 DONETISR(NETISR_CCITT, ccittintr());
2056 #endif
2057 #ifdef NATM
2058 DONETISR(NETISR_NATM, natmintr());
2059 #endif
2060 #if NPPP > 1
2061 DONETISR(NETISR_PPP, pppintr());
2062 #endif
2063
2064 #undef DONETISR
2065 }
2066
2067 void
2068 do_sir()
2069 {
2070 u_int64_t n;
2071
2072 do {
2073 (void)splhigh();
2074 n = ssir;
2075 ssir = 0;
2076 splsoft(); /* don't recurse through spl0() */
2077
2078 #if defined(UVM)
2079 #define COUNT_SOFT uvmexp.softs++
2080 #else
2081 #define COUNT_SOFT cnt.v_soft++
2082 #endif
2083
2084 #define DO_SIR(bit, fn) \
2085 do { \
2086 if (n & (bit)) { \
2087 COUNT_SOFT; \
2088 fn; \
2089 } \
2090 } while (0)
2091
2092 DO_SIR(SIR_NET, netintr());
2093 DO_SIR(SIR_CLOCK, softclock());
2094 #if NCOM > 0
2095 DO_SIR(SIR_SERIAL, comsoft());
2096 #endif
2097
2098 #undef COUNT_SOFT
2099 #undef DO_SIR
2100 } while (ssir != 0);
2101 }
2102
2103 int
2104 spl0()
2105 {
2106
2107 if (ssir)
2108 do_sir(); /* it lowers the IPL itself */
2109
2110 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2111 }
2112
2113 /*
2114 * The following primitives manipulate the run queues. _whichqs tells which
2115 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2116 * into queues, Remrunqueue removes them from queues. The running process is
2117 * on no queue, other processes are on a queue related to p->p_priority,
2118 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2119 * available queues.
2120 */
2121 /*
2122 * setrunqueue(p)
2123 * proc *p;
2124 *
2125 * Call should be made at splclock(), and p->p_stat should be SRUN.
2126 */
2127
2128 void
2129 setrunqueue(p)
2130 struct proc *p;
2131 {
2132 int bit;
2133
2134 /* firewall: p->p_back must be NULL */
2135 if (p->p_back != NULL)
2136 panic("setrunqueue");
2137
2138 bit = p->p_priority >> 2;
2139 whichqs |= (1 << bit);
2140 p->p_forw = (struct proc *)&qs[bit];
2141 p->p_back = qs[bit].ph_rlink;
2142 p->p_back->p_forw = p;
2143 qs[bit].ph_rlink = p;
2144 }
2145
2146 /*
2147 * remrunqueue(p)
2148 *
2149 * Call should be made at splclock().
2150 */
2151 void
2152 remrunqueue(p)
2153 struct proc *p;
2154 {
2155 int bit;
2156
2157 bit = p->p_priority >> 2;
2158 if ((whichqs & (1 << bit)) == 0)
2159 panic("remrunqueue");
2160
2161 p->p_back->p_forw = p->p_forw;
2162 p->p_forw->p_back = p->p_back;
2163 p->p_back = NULL; /* for firewall checking. */
2164
2165 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2166 whichqs &= ~(1 << bit);
2167 }
2168
2169 /*
2170 * Return the best possible estimate of the time in the timeval
2171 * to which tvp points. Unfortunately, we can't read the hardware registers.
2172 * We guarantee that the time will be greater than the value obtained by a
2173 * previous call.
2174 */
2175 void
2176 microtime(tvp)
2177 register struct timeval *tvp;
2178 {
2179 int s = splclock();
2180 static struct timeval lasttime;
2181
2182 *tvp = time;
2183 #ifdef notdef
2184 tvp->tv_usec += clkread();
2185 while (tvp->tv_usec > 1000000) {
2186 tvp->tv_sec++;
2187 tvp->tv_usec -= 1000000;
2188 }
2189 #endif
2190 if (tvp->tv_sec == lasttime.tv_sec &&
2191 tvp->tv_usec <= lasttime.tv_usec &&
2192 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2193 tvp->tv_sec++;
2194 tvp->tv_usec -= 1000000;
2195 }
2196 lasttime = *tvp;
2197 splx(s);
2198 }
2199
2200 /*
2201 * Wait "n" microseconds.
2202 */
2203 void
2204 delay(n)
2205 unsigned long n;
2206 {
2207 long N = cycles_per_usec * (n);
2208
2209 while (N > 0) /* XXX */
2210 N -= 3; /* XXX */
2211 }
2212
2213 #if defined(COMPAT_OSF1) || 1 /* XXX */
2214 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2215 u_long));
2216
2217 void
2218 cpu_exec_ecoff_setregs(p, epp, stack)
2219 struct proc *p;
2220 struct exec_package *epp;
2221 u_long stack;
2222 {
2223 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2224
2225 setregs(p, epp, stack);
2226 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2227 }
2228
2229 /*
2230 * cpu_exec_ecoff_hook():
2231 * cpu-dependent ECOFF format hook for execve().
2232 *
2233 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2234 *
2235 */
2236 int
2237 cpu_exec_ecoff_hook(p, epp)
2238 struct proc *p;
2239 struct exec_package *epp;
2240 {
2241 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2242 extern struct emul emul_netbsd;
2243 #ifdef COMPAT_OSF1
2244 extern struct emul emul_osf1;
2245 #endif
2246
2247 switch (execp->f.f_magic) {
2248 #ifdef COMPAT_OSF1
2249 case ECOFF_MAGIC_ALPHA:
2250 epp->ep_emul = &emul_osf1;
2251 break;
2252 #endif
2253
2254 case ECOFF_MAGIC_NETBSD_ALPHA:
2255 epp->ep_emul = &emul_netbsd;
2256 break;
2257
2258 default:
2259 return ENOEXEC;
2260 }
2261 return 0;
2262 }
2263 #endif
2264
2265 int
2266 alpha_pa_access(pa)
2267 u_long pa;
2268 {
2269 int i;
2270
2271 for (i = 0; i < mem_cluster_cnt; i++) {
2272 if (pa < mem_clusters[i].start)
2273 continue;
2274 if ((pa - mem_clusters[i].start) >=
2275 (mem_clusters[i].size & ~PAGE_MASK))
2276 continue;
2277 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2278 }
2279 return (PROT_NONE);
2280 }
2281
2282 /* XXX XXX BEGIN XXX XXX */
2283 paddr_t alpha_XXX_dmamap_or; /* XXX */
2284 /* XXX */
2285 paddr_t /* XXX */
2286 alpha_XXX_dmamap(v) /* XXX */
2287 vaddr_t v; /* XXX */
2288 { /* XXX */
2289 /* XXX */
2290 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2291 } /* XXX */
2292 /* XXX XXX END XXX XXX */
2293
2294 struct mchkinfo *
2295 cpu_mchkinfo()
2296 {
2297 if (mchkinfo_all_cpus == NULL)
2298 return &startup_info;
2299 return mchkinfo_all_cpus + alpha_pal_whami();
2300 }
2301