Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.164
      1 /* $NetBSD: machdep.c,v 1.164 1999/03/26 00:15:04 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_bufcache.h"
     68 #include "opt_ddb.h"
     69 #include "opt_multiprocessor.h"
     70 #include "opt_pmap_new.h"
     71 #include "opt_dec_3000_300.h"
     72 #include "opt_dec_3000_500.h"
     73 #include "opt_compat_osf1.h"
     74 #include "opt_compat_netbsd.h"
     75 #include "opt_inet.h"
     76 #include "opt_atalk.h"
     77 #include "opt_ccitt.h"
     78 #include "opt_iso.h"
     79 #include "opt_ns.h"
     80 #include "opt_natm.h"
     81 #include "opt_sysv.h"
     82 
     83 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     84 
     85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.164 1999/03/26 00:15:04 thorpej Exp $");
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/kernel.h>
     91 #include <sys/map.h>
     92 #include <sys/proc.h>
     93 #include <sys/buf.h>
     94 #include <sys/reboot.h>
     95 #include <sys/device.h>
     96 #include <sys/file.h>
     97 #ifdef REAL_CLISTS
     98 #include <sys/clist.h>
     99 #endif
    100 #include <sys/callout.h>
    101 #include <sys/malloc.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/mman.h>
    104 #include <sys/msgbuf.h>
    105 #include <sys/ioctl.h>
    106 #include <sys/tty.h>
    107 #include <sys/user.h>
    108 #include <sys/exec.h>
    109 #include <sys/exec_ecoff.h>
    110 #include <vm/vm.h>
    111 #include <sys/sysctl.h>
    112 #include <sys/core.h>
    113 #include <sys/kcore.h>
    114 #include <machine/kcore.h>
    115 #ifdef SYSVMSG
    116 #include <sys/msg.h>
    117 #endif
    118 #ifdef SYSVSEM
    119 #include <sys/sem.h>
    120 #endif
    121 #ifdef SYSVSHM
    122 #include <sys/shm.h>
    123 #endif
    124 
    125 #include <sys/mount.h>
    126 #include <sys/syscallargs.h>
    127 
    128 #include <vm/vm_kern.h>
    129 
    130 #include <uvm/uvm_extern.h>
    131 
    132 #include <dev/cons.h>
    133 
    134 #include <machine/autoconf.h>
    135 #include <machine/cpu.h>
    136 #include <machine/reg.h>
    137 #include <machine/rpb.h>
    138 #include <machine/prom.h>
    139 #include <machine/conf.h>
    140 
    141 #include <alpha/alpha/cpuvar.h>
    142 
    143 #include <net/netisr.h>
    144 #include <net/if.h>
    145 
    146 #ifdef INET
    147 #include <net/route.h>
    148 #include <netinet/in.h>
    149 #include <netinet/ip_var.h>
    150 #include "arp.h"
    151 #if NARP > 0
    152 #include <netinet/if_inarp.h>
    153 #endif
    154 #endif
    155 #ifdef NS
    156 #include <netns/ns_var.h>
    157 #endif
    158 #ifdef ISO
    159 #include <netiso/iso.h>
    160 #include <netiso/clnp.h>
    161 #endif
    162 #ifdef CCITT
    163 #include <netccitt/x25.h>
    164 #include <netccitt/pk.h>
    165 #include <netccitt/pk_extern.h>
    166 #endif
    167 #ifdef NATM
    168 #include <netnatm/natm.h>
    169 #endif
    170 #ifdef NETATALK
    171 #include <netatalk/at_extern.h>
    172 #endif
    173 #include "ppp.h"
    174 #if NPPP > 0
    175 #include <net/ppp_defs.h>
    176 #include <net/if_ppp.h>
    177 #endif
    178 
    179 #ifdef DDB
    180 #include <machine/db_machdep.h>
    181 #include <ddb/db_access.h>
    182 #include <ddb/db_sym.h>
    183 #include <ddb/db_extern.h>
    184 #include <ddb/db_interface.h>
    185 #endif
    186 
    187 #include <machine/alpha.h>
    188 #include <machine/intrcnt.h>
    189 
    190 #include "com.h"
    191 #if NCOM > 0
    192 extern void comsoft __P((void));
    193 #endif
    194 
    195 vm_map_t exec_map = NULL;
    196 vm_map_t mb_map = NULL;
    197 vm_map_t phys_map = NULL;
    198 
    199 /*
    200  * Declare these as initialized data so we can patch them.
    201  */
    202 int	nswbuf = 0;
    203 #ifdef	NBUF
    204 int	nbuf = NBUF;
    205 #else
    206 int	nbuf = 0;
    207 #endif
    208 
    209 #ifndef	BUFPAGES
    210 #define BUFPAGES 0
    211 #endif
    212 #ifndef BUFCACHE
    213 #define BUFCACHE 10
    214 #endif
    215 
    216 int	bufpages = BUFPAGES;	/* optional hardwired count */
    217 int	bufcache = BUFCACHE;	/* % of RAM to use for buffer cache */
    218 
    219 caddr_t msgbufaddr;
    220 
    221 int	maxmem;			/* max memory per process */
    222 
    223 int	totalphysmem;		/* total amount of physical memory in system */
    224 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    225 int	resvmem;		/* amount of memory reserved for PROM */
    226 int	unusedmem;		/* amount of memory for OS that we don't use */
    227 int	unknownmem;		/* amount of memory with an unknown use */
    228 
    229 int	cputype;		/* system type, from the RPB */
    230 
    231 /*
    232  * XXX We need an address to which we can assign things so that they
    233  * won't be optimized away because we didn't use the value.
    234  */
    235 u_int32_t no_optimize;
    236 
    237 /* the following is used externally (sysctl_hw) */
    238 char	machine[] = MACHINE;		/* from <machine/param.h> */
    239 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    240 char	cpu_model[128];
    241 
    242 struct	user *proc0paddr;
    243 
    244 /* Number of machine cycles per microsecond */
    245 u_int64_t	cycles_per_usec;
    246 
    247 /* number of cpus in the box.  really! */
    248 int		ncpus;
    249 
    250 /* machine check info array, valloc()'ed in allocsys() */
    251 
    252 static struct mchkinfo startup_info,
    253 			*mchkinfo_all_cpus;
    254 
    255 struct bootinfo_kernel bootinfo;
    256 
    257 /* For built-in TCDS */
    258 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    259 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    260 #endif
    261 
    262 struct platform platform;
    263 
    264 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    265 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    266 
    267 #ifdef DDB
    268 /* start and end of kernel symbol table */
    269 void	*ksym_start, *ksym_end;
    270 #endif
    271 
    272 /* for cpu_sysctl() */
    273 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    274 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    275 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    276 
    277 /*
    278  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    279  * XXX it should also be larger than it is, because not all of the mddt
    280  * XXX clusters end up being used for VM.
    281  */
    282 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    283 int	mem_cluster_cnt;
    284 
    285 caddr_t	allocsys __P((caddr_t));
    286 int	cpu_dump __P((void));
    287 int	cpu_dumpsize __P((void));
    288 u_long	cpu_dump_mempagecnt __P((void));
    289 void	dumpsys __P((void));
    290 void	identifycpu __P((void));
    291 void	netintr __P((void));
    292 void	printregs __P((struct reg *));
    293 
    294 void
    295 alpha_init(pfn, ptb, bim, bip, biv)
    296 	u_long pfn;		/* first free PFN number */
    297 	u_long ptb;		/* PFN of current level 1 page table */
    298 	u_long bim;		/* bootinfo magic */
    299 	u_long bip;		/* bootinfo pointer */
    300 	u_long biv;		/* bootinfo version */
    301 {
    302 	extern char kernel_text[], _end[];
    303 	struct mddt *mddtp;
    304 	struct mddt_cluster *memc;
    305 	int i, mddtweird;
    306 	struct vm_physseg *vps;
    307 	vaddr_t kernstart, kernend;
    308 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    309 	vsize_t size;
    310 	char *p;
    311 	caddr_t v;
    312 	char *bootinfo_msg;
    313 
    314 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    315 
    316 	/*
    317 	 * Turn off interrupts (not mchecks) and floating point.
    318 	 * Make sure the instruction and data streams are consistent.
    319 	 */
    320 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    321 	alpha_pal_wrfen(0);
    322 	ALPHA_TBIA();
    323 	alpha_pal_imb();
    324 
    325 	/*
    326 	 * Get critical system information (if possible, from the
    327 	 * information provided by the boot program).
    328 	 */
    329 	bootinfo_msg = NULL;
    330 	if (bim == BOOTINFO_MAGIC) {
    331 		if (biv == 0) {		/* backward compat */
    332 			biv = *(u_long *)bip;
    333 			bip += 8;
    334 		}
    335 		switch (biv) {
    336 		case 1: {
    337 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    338 
    339 			bootinfo.ssym = v1p->ssym;
    340 			bootinfo.esym = v1p->esym;
    341 			/* hwrpb may not be provided by boot block in v1 */
    342 			if (v1p->hwrpb != NULL) {
    343 				bootinfo.hwrpb_phys =
    344 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    345 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    346 			} else {
    347 				bootinfo.hwrpb_phys =
    348 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    349 				bootinfo.hwrpb_size =
    350 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    351 			}
    352 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    353 			    min(sizeof v1p->boot_flags,
    354 			      sizeof bootinfo.boot_flags));
    355 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    356 			    min(sizeof v1p->booted_kernel,
    357 			      sizeof bootinfo.booted_kernel));
    358 			/* booted dev not provided in bootinfo */
    359 			init_prom_interface((struct rpb *)
    360 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    361                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    362 			    sizeof bootinfo.booted_dev);
    363 			break;
    364 		}
    365 		default:
    366 			bootinfo_msg = "unknown bootinfo version";
    367 			goto nobootinfo;
    368 		}
    369 	} else {
    370 		bootinfo_msg = "boot program did not pass bootinfo";
    371 nobootinfo:
    372 		bootinfo.ssym = (u_long)_end;
    373 		bootinfo.esym = (u_long)_end;
    374 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    375 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    376 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    377 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    378 		    sizeof bootinfo.boot_flags);
    379 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    380 		    sizeof bootinfo.booted_kernel);
    381 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    382 		    sizeof bootinfo.booted_dev);
    383 	}
    384 
    385 	/*
    386 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    387 	 * lots of things.
    388 	 */
    389 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    390 
    391 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    392 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    393 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    394 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    395 		    sizeof(dec_3000_scsiid));
    396 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    397 		    sizeof(dec_3000_scsifast));
    398 	}
    399 #endif
    400 
    401 	/*
    402 	 * Remember how many cycles there are per microsecond,
    403 	 * so that we can use delay().  Round up, for safety.
    404 	 */
    405 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    406 
    407 	/*
    408 	 * Initalize the (temporary) bootstrap console interface, so
    409 	 * we can use printf until the VM system starts being setup.
    410 	 * The real console is initialized before then.
    411 	 */
    412 	init_bootstrap_console();
    413 
    414 	/* OUTPUT NOW ALLOWED */
    415 
    416 	/* delayed from above */
    417 	if (bootinfo_msg)
    418 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    419 		    bootinfo_msg, bim, bip, biv);
    420 
    421 	/* Initialize the trap vectors on the primary processor. */
    422 	trap_init();
    423 
    424 	/*
    425 	 * Find out what hardware we're on, and do basic initialization.
    426 	 */
    427 	cputype = hwrpb->rpb_type;
    428 	if (cputype >= ncpuinit) {
    429 		platform_not_supported();
    430 		/* NOTREACHED */
    431 	}
    432 	(*cpuinit[cputype].init)();
    433 	strcpy(cpu_model, platform.model);
    434 
    435 	/*
    436 	 * Initalize the real console, so the the bootstrap console is
    437 	 * no longer necessary.
    438 	 */
    439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    440 	if (!pmap_uses_prom_console())
    441 #endif
    442 		(*platform.cons_init)();
    443 
    444 #ifdef DIAGNOSTIC
    445 	/* Paranoid sanity checking */
    446 
    447 	/* We should always be running on the the primary. */
    448 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    449 
    450 	/*
    451 	 * On single-CPU systypes, the primary should always be CPU 0,
    452 	 * except on Alpha 8200 systems where the CPU id is related
    453 	 * to the VID, which is related to the Turbo Laser node id.
    454 	 */
    455 	if (cputype != ST_DEC_21000)
    456 		assert(hwrpb->rpb_primary_cpu_id == 0);
    457 #endif
    458 
    459 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    460 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    461 	/*
    462 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    463 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    464 	 */
    465 #endif
    466 
    467 	/*
    468 	 * find out this system's page size
    469 	 */
    470 	PAGE_SIZE = hwrpb->rpb_page_size;
    471 	if (PAGE_SIZE != 8192)
    472 		panic("page size %d != 8192?!", PAGE_SIZE);
    473 
    474 	/*
    475 	 * Initialize PAGE_SIZE-dependent variables.
    476 	 */
    477 	uvm_setpagesize();
    478 
    479 	/*
    480 	 * Find the beginning and end of the kernel (and leave a
    481 	 * bit of space before the beginning for the bootstrap
    482 	 * stack).
    483 	 */
    484 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    485 #ifdef DDB
    486 	ksym_start = (void *)bootinfo.ssym;
    487 	ksym_end   = (void *)bootinfo.esym;
    488 	kernend = (vaddr_t)round_page(ksym_end);
    489 #else
    490 	kernend = (vaddr_t)round_page(_end);
    491 #endif
    492 
    493 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    494 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    495 
    496 	/*
    497 	 * Find out how much memory is available, by looking at
    498 	 * the memory cluster descriptors.  This also tries to do
    499 	 * its best to detect things things that have never been seen
    500 	 * before...
    501 	 */
    502 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    503 
    504 	/* MDDT SANITY CHECKING */
    505 	mddtweird = 0;
    506 	if (mddtp->mddt_cluster_cnt < 2) {
    507 		mddtweird = 1;
    508 		printf("WARNING: weird number of mem clusters: %lu\n",
    509 		    mddtp->mddt_cluster_cnt);
    510 	}
    511 
    512 #if 0
    513 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    514 #endif
    515 
    516 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    517 		memc = &mddtp->mddt_clusters[i];
    518 #if 0
    519 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    520 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    521 #endif
    522 		totalphysmem += memc->mddt_pg_cnt;
    523 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    524 			mem_clusters[mem_cluster_cnt].start =
    525 			    ptoa(memc->mddt_pfn);
    526 			mem_clusters[mem_cluster_cnt].size =
    527 			    ptoa(memc->mddt_pg_cnt);
    528 			if (memc->mddt_usage & MDDT_mbz ||
    529 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    530 			    memc->mddt_usage & MDDT_PALCODE)
    531 				mem_clusters[mem_cluster_cnt].size |=
    532 				    PROT_READ;
    533 			else
    534 				mem_clusters[mem_cluster_cnt].size |=
    535 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    536 			mem_cluster_cnt++;
    537 		}
    538 
    539 		if (memc->mddt_usage & MDDT_mbz) {
    540 			mddtweird = 1;
    541 			printf("WARNING: mem cluster %d has weird "
    542 			    "usage 0x%lx\n", i, memc->mddt_usage);
    543 			unknownmem += memc->mddt_pg_cnt;
    544 			continue;
    545 		}
    546 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    547 			/* XXX should handle these... */
    548 			printf("WARNING: skipping non-volatile mem "
    549 			    "cluster %d\n", i);
    550 			unusedmem += memc->mddt_pg_cnt;
    551 			continue;
    552 		}
    553 		if (memc->mddt_usage & MDDT_PALCODE) {
    554 			resvmem += memc->mddt_pg_cnt;
    555 			continue;
    556 		}
    557 
    558 		/*
    559 		 * We have a memory cluster available for system
    560 		 * software use.  We must determine if this cluster
    561 		 * holds the kernel.
    562 		 */
    563 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    564 		/*
    565 		 * XXX If the kernel uses the PROM console, we only use the
    566 		 * XXX memory after the kernel in the first system segment,
    567 		 * XXX to avoid clobbering prom mapping, data, etc.
    568 		 */
    569 	    if (!pmap_uses_prom_console() || physmem == 0) {
    570 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    571 		physmem += memc->mddt_pg_cnt;
    572 		pfn0 = memc->mddt_pfn;
    573 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    574 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    575 			/*
    576 			 * Must compute the location of the kernel
    577 			 * within the segment.
    578 			 */
    579 #if 0
    580 			printf("Cluster %d contains kernel\n", i);
    581 #endif
    582 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    583 		    if (!pmap_uses_prom_console()) {
    584 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    585 			if (pfn0 < kernstartpfn) {
    586 				/*
    587 				 * There is a chunk before the kernel.
    588 				 */
    589 #if 0
    590 				printf("Loading chunk before kernel: "
    591 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    592 #endif
    593 				uvm_page_physload(pfn0, kernstartpfn,
    594 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    595 			}
    596 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    597 		    }
    598 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    599 			if (kernendpfn < pfn1) {
    600 				/*
    601 				 * There is a chunk after the kernel.
    602 				 */
    603 #if 0
    604 				printf("Loading chunk after kernel: "
    605 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    606 #endif
    607 				uvm_page_physload(kernendpfn, pfn1,
    608 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    609 			}
    610 		} else {
    611 			/*
    612 			 * Just load this cluster as one chunk.
    613 			 */
    614 #if 0
    615 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    616 			    pfn0, pfn1);
    617 #endif
    618 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    619 			    VM_FREELIST_DEFAULT);
    620 		}
    621 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    622 	    }
    623 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    624 	}
    625 
    626 	/*
    627 	 * Dump out the MDDT if it looks odd...
    628 	 */
    629 	if (mddtweird) {
    630 		printf("\n");
    631 		printf("complete memory cluster information:\n");
    632 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    633 			printf("mddt %d:\n", i);
    634 			printf("\tpfn %lx\n",
    635 			    mddtp->mddt_clusters[i].mddt_pfn);
    636 			printf("\tcnt %lx\n",
    637 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    638 			printf("\ttest %lx\n",
    639 			    mddtp->mddt_clusters[i].mddt_pg_test);
    640 			printf("\tbva %lx\n",
    641 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    642 			printf("\tbpa %lx\n",
    643 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    644 			printf("\tbcksum %lx\n",
    645 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    646 			printf("\tusage %lx\n",
    647 			    mddtp->mddt_clusters[i].mddt_usage);
    648 		}
    649 		printf("\n");
    650 	}
    651 
    652 	if (totalphysmem == 0)
    653 		panic("can't happen: system seems to have no memory!");
    654 
    655 #ifdef LIMITMEM
    656 	/*
    657 	 * XXX Kludge so we can run on machines with memory larger
    658 	 * XXX than 1G until all device drivers are converted to
    659 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    660 	 * XXX sorted in order of increasing addresses.)
    661 	 */
    662 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    663 
    664 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    665 		    LIMITMEM);
    666 
    667 		do {
    668 			u_long ovf;
    669 
    670 			vps = &vm_physmem[vm_nphysseg - 1];
    671 
    672 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    673 				/*
    674 				 * If the start is too high, just drop
    675 				 * the whole segment.
    676 				 *
    677 				 * XXX can start != avail_start in this
    678 				 * XXX case?  wouldn't that mean that
    679 				 * XXX some memory was stolen above the
    680 				 * XXX limit?  What to do?
    681 				 */
    682 				ovf = vps->end - vps->start;
    683 				vm_nphysseg--;
    684 			} else {
    685 				/*
    686 				 * If the start is OK, calculate how much
    687 				 * to drop and drop it.
    688 				 */
    689 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    690 				vps->end -= ovf;
    691 				vps->avail_end -= ovf;
    692 			}
    693 			physmem -= ovf;
    694 			unusedmem += ovf;
    695 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    696 	}
    697 #endif /* LIMITMEM */
    698 
    699 	maxmem = physmem;
    700 
    701 #if 0
    702 	printf("totalphysmem = %d\n", totalphysmem);
    703 	printf("physmem = %d\n", physmem);
    704 	printf("resvmem = %d\n", resvmem);
    705 	printf("unusedmem = %d\n", unusedmem);
    706 	printf("unknownmem = %d\n", unknownmem);
    707 #endif
    708 
    709 	/*
    710 	 * Adjust some parameters if the amount of physmem
    711 	 * available would cause us to croak. This is completely
    712 	 * eyeballed and isn't meant to be the final answer.
    713 	 * vm_phys_size is probably the only one to really worry
    714 	 * about.
    715  	 *
    716 	 * It's for booting a GENERIC kernel on a large memory platform.
    717 	 */
    718 	if (physmem >= atop(128 * 1024 * 1024)) {
    719 		vm_kmem_size <<= 3;
    720 		vm_phys_size <<= 2;
    721 	}
    722 
    723 	/*
    724 	 * Initialize error message buffer (at end of core).
    725 	 */
    726 	{
    727 		size_t sz = round_page(MSGBUFSIZE);
    728 
    729 		vps = &vm_physmem[vm_nphysseg - 1];
    730 
    731 		/* shrink so that it'll fit in the last segment */
    732 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    733 			sz = ptoa(vps->avail_end - vps->avail_start);
    734 
    735 		vps->end -= atop(sz);
    736 		vps->avail_end -= atop(sz);
    737 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    738 		initmsgbuf(msgbufaddr, sz);
    739 
    740 		/* Remove the last segment if it now has no pages. */
    741 		if (vps->start == vps->end)
    742 			vm_nphysseg--;
    743 
    744 		/* warn if the message buffer had to be shrunk */
    745 		if (sz != round_page(MSGBUFSIZE))
    746 			printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
    747 			    round_page(MSGBUFSIZE), sz);
    748 
    749 	}
    750 
    751 	/*
    752 	 * Init mapping for u page(s) for proc 0
    753 	 */
    754 	proc0.p_addr = proc0paddr =
    755 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    756 
    757 	/*
    758 	 * Allocate space for system data structures.  These data structures
    759 	 * are allocated here instead of cpu_startup() because physical
    760 	 * memory is directly addressable.  We don't have to map these into
    761 	 * virtual address space.
    762 	 */
    763 	size = (vsize_t)allocsys(0);
    764 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    765 	if ((allocsys(v) - v) != size)
    766 		panic("alpha_init: table size inconsistency");
    767 
    768 	/*
    769 	 * Initialize the virtual memory system, and set the
    770 	 * page table base register in proc 0's PCB.
    771 	 */
    772 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    773 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    774 
    775 	/*
    776 	 * Initialize the rest of proc 0's PCB, and cache its physical
    777 	 * address.
    778 	 */
    779 	proc0.p_md.md_pcbpaddr =
    780 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    781 
    782 	/*
    783 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    784 	 * and make proc0's trapframe pointer point to it for sanity.
    785 	 */
    786 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    787 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    788 	proc0.p_md.md_tf =
    789 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    790 
    791 	/*
    792 	 * Look at arguments passed to us and compute boothowto.
    793 	 */
    794 
    795 	boothowto = RB_SINGLE;
    796 #ifdef KADB
    797 	boothowto |= RB_KDB;
    798 #endif
    799 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    800 		/*
    801 		 * Note that we'd really like to differentiate case here,
    802 		 * but the Alpha AXP Architecture Reference Manual
    803 		 * says that we shouldn't.
    804 		 */
    805 		switch (*p) {
    806 		case 'a': /* autoboot */
    807 		case 'A':
    808 			boothowto &= ~RB_SINGLE;
    809 			break;
    810 
    811 #ifdef DEBUG
    812 		case 'c': /* crash dump immediately after autoconfig */
    813 		case 'C':
    814 			boothowto |= RB_DUMP;
    815 			break;
    816 #endif
    817 
    818 #if defined(KGDB) || defined(DDB)
    819 		case 'd': /* break into the kernel debugger ASAP */
    820 		case 'D':
    821 			boothowto |= RB_KDB;
    822 			break;
    823 #endif
    824 
    825 		case 'h': /* always halt, never reboot */
    826 		case 'H':
    827 			boothowto |= RB_HALT;
    828 			break;
    829 
    830 #if 0
    831 		case 'm': /* mini root present in memory */
    832 		case 'M':
    833 			boothowto |= RB_MINIROOT;
    834 			break;
    835 #endif
    836 
    837 		case 'n': /* askname */
    838 		case 'N':
    839 			boothowto |= RB_ASKNAME;
    840 			break;
    841 
    842 		case 's': /* single-user (default, supported for sanity) */
    843 		case 'S':
    844 			boothowto |= RB_SINGLE;
    845 			break;
    846 
    847 		case '-':
    848 			/*
    849 			 * Just ignore this.  It's not required, but it's
    850 			 * common for it to be passed regardless.
    851 			 */
    852 			break;
    853 
    854 		default:
    855 			printf("Unrecognized boot flag '%c'.\n", *p);
    856 			break;
    857 		}
    858 	}
    859 
    860 
    861 	/*
    862 	 * Figure out the number of cpus in the box, from RPB fields.
    863 	 * Really.  We mean it.
    864 	 */
    865 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    866 		struct pcs *pcsp;
    867 
    868 		pcsp = LOCATE_PCS(hwrpb, i);
    869 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    870 			ncpus++;
    871 	}
    872 
    873 	/*
    874 	 * Initialize debuggers, and break into them if appropriate.
    875 	 */
    876 #ifdef DDB
    877 	db_machine_init();
    878 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    879 	    ksym_start, ksym_end);
    880 	if (boothowto & RB_KDB)
    881 		Debugger();
    882 #endif
    883 #ifdef KGDB
    884 	if (boothowto & RB_KDB)
    885 		kgdb_connect(0);
    886 #endif
    887 	/*
    888 	 * Figure out our clock frequency, from RPB fields.
    889 	 */
    890 	hz = hwrpb->rpb_intr_freq >> 12;
    891 	if (!(60 <= hz && hz <= 10240)) {
    892 		hz = 1024;
    893 #ifdef DIAGNOSTIC
    894 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    895 			hwrpb->rpb_intr_freq, hz);
    896 #endif
    897 	}
    898 }
    899 
    900 /*
    901  * Allocate space for system data structures.  We are given
    902  * a starting virtual address and we return a final virtual
    903  * address; along the way we set each data structure pointer.
    904  *
    905  * We call allocsys() with 0 to find out how much space we want,
    906  * allocate that much and fill it with zeroes, and the call
    907  * allocsys() again with the correct base virtual address.
    908  */
    909 caddr_t
    910 allocsys(v)
    911 	caddr_t v;
    912 {
    913 
    914 #define valloc(name, type, num) \
    915 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    916 
    917 #ifdef REAL_CLISTS
    918 	valloc(cfree, struct cblock, nclist);
    919 #endif
    920 	valloc(callout, struct callout, ncallout);
    921 #ifdef SYSVSHM
    922 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    923 #endif
    924 #ifdef SYSVSEM
    925 	valloc(sema, struct semid_ds, seminfo.semmni);
    926 	valloc(sem, struct sem, seminfo.semmns);
    927 	/* This is pretty disgusting! */
    928 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    929 #endif
    930 #ifdef SYSVMSG
    931 	valloc(msgpool, char, msginfo.msgmax);
    932 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    933 	valloc(msghdrs, struct msg, msginfo.msgtql);
    934 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    935 #endif
    936 
    937 	/*
    938 	 * Determine how many buffers to allocate.
    939 	 * We allocate bufcache % of memory for buffer space.  Insure a
    940 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    941 	 * headers as file i/o buffers.
    942 	 */
    943 	if (bufpages == 0)
    944 		bufpages = physmem / CLSIZE * bufcache / 100;
    945 	if (nbuf == 0) {
    946 		nbuf = bufpages;
    947 		if (nbuf < 16)
    948 			nbuf = 16;
    949 	}
    950 	if (nswbuf == 0) {
    951 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    952 		if (nswbuf > 256)
    953 			nswbuf = 256;		/* sanity */
    954 	}
    955 	valloc(buf, struct buf, nbuf);
    956 
    957 	/*
    958 	 * There appears to be a correlation between the number
    959 	 * of processor slots defined in the HWRPB and the whami
    960 	 * value that can be returned.
    961 	 */
    962 	valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
    963 
    964 	return (v);
    965 #undef valloc
    966 }
    967 
    968 void
    969 consinit()
    970 {
    971 
    972 	/*
    973 	 * Everything related to console initialization is done
    974 	 * in alpha_init().
    975 	 */
    976 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    977 	printf("consinit: %susing prom console\n",
    978 	    pmap_uses_prom_console() ? "" : "not ");
    979 #endif
    980 }
    981 
    982 #include "pckbc.h"
    983 #include "pckbd.h"
    984 #if (NPCKBC > 0) && (NPCKBD == 0)
    985 
    986 #include <dev/isa/pckbcvar.h>
    987 
    988 /*
    989  * This is called by the pbkbc driver if no pckbd is configured.
    990  * On the i386, it is used to glue in the old, deprecated console
    991  * code.  On the Alpha, it does nothing.
    992  */
    993 int
    994 pckbc_machdep_cnattach(kbctag, kbcslot)
    995 	pckbc_tag_t kbctag;
    996 	pckbc_slot_t kbcslot;
    997 {
    998 
    999 	return (ENXIO);
   1000 }
   1001 #endif /* NPCKBC > 0 && NPCKBD == 0 */
   1002 
   1003 void
   1004 cpu_startup()
   1005 {
   1006 	register unsigned i;
   1007 	int base, residual;
   1008 	vaddr_t minaddr, maxaddr;
   1009 	vsize_t size;
   1010 #if defined(DEBUG)
   1011 	extern int pmapdebug;
   1012 	int opmapdebug = pmapdebug;
   1013 
   1014 	pmapdebug = 0;
   1015 #endif
   1016 
   1017 	/*
   1018 	 * Good {morning,afternoon,evening,night}.
   1019 	 */
   1020 	printf(version);
   1021 	identifycpu();
   1022 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
   1023 	    ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
   1024 	    ptoa(resvmem), ptoa(physmem));
   1025 	if (unusedmem)
   1026 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
   1027 	if (unknownmem)
   1028 		printf("WARNING: %d bytes of memory with unknown purpose\n",
   1029 		    ctob(unknownmem));
   1030 
   1031 	/*
   1032 	 * Allocate virtual address space for file I/O buffers.
   1033 	 * Note they are different than the array of headers, 'buf',
   1034 	 * and usually occupy more virtual memory than physical.
   1035 	 */
   1036 	size = MAXBSIZE * nbuf;
   1037 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
   1038 		    NULL, UVM_UNKNOWN_OFFSET,
   1039 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1040 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1041 		panic("startup: cannot allocate VM for buffers");
   1042 	base = bufpages / nbuf;
   1043 	residual = bufpages % nbuf;
   1044 	for (i = 0; i < nbuf; i++) {
   1045 		vsize_t curbufsize;
   1046 		vaddr_t curbuf;
   1047 		struct vm_page *pg;
   1048 
   1049 		/*
   1050 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1051 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1052 		 * for the first "residual" buffers, and then we allocate
   1053 		 * "base" pages for the rest.
   1054 		 */
   1055 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
   1056 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1057 
   1058 		while (curbufsize) {
   1059 			pg = uvm_pagealloc(NULL, 0, NULL);
   1060 			if (pg == NULL)
   1061 				panic("cpu_startup: not enough memory for "
   1062 				    "buffer cache");
   1063 #if defined(PMAP_NEW)
   1064 			pmap_kenter_pgs(curbuf, &pg, 1);
   1065 #else
   1066 			pmap_enter(kernel_map->pmap, curbuf,
   1067 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1068 #endif
   1069 			curbuf += PAGE_SIZE;
   1070 			curbufsize -= PAGE_SIZE;
   1071 		}
   1072 	}
   1073 	/*
   1074 	 * Allocate a submap for exec arguments.  This map effectively
   1075 	 * limits the number of processes exec'ing at any time.
   1076 	 */
   1077 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1078 				   16 * NCARGS, TRUE, FALSE, NULL);
   1079 
   1080 	/*
   1081 	 * Allocate a submap for physio
   1082 	 */
   1083 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1084 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1085 
   1086 	/*
   1087 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
   1088 	 * are allocated via the pool allocator, and we use K0SEG to
   1089 	 * map those pages.
   1090 	 */
   1091 
   1092 	/*
   1093 	 * Initialize callouts
   1094 	 */
   1095 	callfree = callout;
   1096 	for (i = 1; i < ncallout; i++)
   1097 		callout[i-1].c_next = &callout[i];
   1098 	callout[i-1].c_next = NULL;
   1099 
   1100 #if defined(DEBUG)
   1101 	pmapdebug = opmapdebug;
   1102 #endif
   1103 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1104 #if 0
   1105 	{
   1106 		extern u_long pmap_pages_stolen;
   1107 		printf("stolen memory for VM structures = %ld bytes\n",
   1108 		    pmap_pages_stolen * PAGE_SIZE);
   1109 	}
   1110 #endif
   1111 	printf("using %ld buffers containing %ld bytes of memory\n",
   1112 		(long)nbuf, (long)(bufpages * CLBYTES));
   1113 
   1114 	/*
   1115 	 * Set up buffers, so they can be used to read disk labels.
   1116 	 */
   1117 	bufinit();
   1118 
   1119 	/*
   1120 	 * Set up the HWPCB so that it's safe to configure secondary
   1121 	 * CPUs.
   1122 	 */
   1123 	hwrpb_primary_init();
   1124 
   1125 	/*
   1126 	 * Configure the system.
   1127 	 */
   1128 	configure();
   1129 }
   1130 
   1131 /*
   1132  * Retrieve the platform name from the DSR.
   1133  */
   1134 const char *
   1135 alpha_dsr_sysname()
   1136 {
   1137 	struct dsrdb *dsr;
   1138 	const char *sysname;
   1139 
   1140 	/*
   1141 	 * DSR does not exist on early HWRPB versions.
   1142 	 */
   1143 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1144 		return (NULL);
   1145 
   1146 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1147 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1148 	    sizeof(u_int64_t)));
   1149 	return (sysname);
   1150 }
   1151 
   1152 /*
   1153  * Lookup the system specified system variation in the provided table,
   1154  * returning the model string on match.
   1155  */
   1156 const char *
   1157 alpha_variation_name(variation, avtp)
   1158 	u_int64_t variation;
   1159 	const struct alpha_variation_table *avtp;
   1160 {
   1161 	int i;
   1162 
   1163 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1164 		if (avtp[i].avt_variation == variation)
   1165 			return (avtp[i].avt_model);
   1166 	return (NULL);
   1167 }
   1168 
   1169 /*
   1170  * Generate a default platform name based for unknown system variations.
   1171  */
   1172 const char *
   1173 alpha_unknown_sysname()
   1174 {
   1175 	static char s[128];		/* safe size */
   1176 
   1177 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1178 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1179 	return ((const char *)s);
   1180 }
   1181 
   1182 void
   1183 identifycpu()
   1184 {
   1185 
   1186 	/*
   1187 	 * print out CPU identification information.
   1188 	 */
   1189 	printf("%s, %ldMHz\n", cpu_model,
   1190 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1191 	printf("%ld byte page size, %d processor%s.\n",
   1192 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1193 #if 0
   1194 	/* this isn't defined for any systems that we run on? */
   1195 	printf("serial number 0x%lx 0x%lx\n",
   1196 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1197 
   1198 	/* and these aren't particularly useful! */
   1199 	printf("variation: 0x%lx, revision 0x%lx\n",
   1200 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1201 #endif
   1202 }
   1203 
   1204 int	waittime = -1;
   1205 struct pcb dumppcb;
   1206 
   1207 void
   1208 cpu_reboot(howto, bootstr)
   1209 	int howto;
   1210 	char *bootstr;
   1211 {
   1212 	extern int cold;
   1213 #if defined(MULTIPROCESSOR)
   1214 #if 0 /* XXX See below. */
   1215 	u_long cpu_id;
   1216 #endif
   1217 #endif
   1218 
   1219 #if defined(MULTIPROCESSOR)
   1220 	/* We must be running on the primary CPU. */
   1221 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1222 		panic("cpu_reboot: not on primary CPU!");
   1223 #endif
   1224 
   1225 	/* If system is cold, just halt. */
   1226 	if (cold) {
   1227 		howto |= RB_HALT;
   1228 		goto haltsys;
   1229 	}
   1230 
   1231 	/* If "always halt" was specified as a boot flag, obey. */
   1232 	if ((boothowto & RB_HALT) != 0)
   1233 		howto |= RB_HALT;
   1234 
   1235 	boothowto = howto;
   1236 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1237 		waittime = 0;
   1238 		vfs_shutdown();
   1239 		/*
   1240 		 * If we've been adjusting the clock, the todr
   1241 		 * will be out of synch; adjust it now.
   1242 		 */
   1243 		resettodr();
   1244 	}
   1245 
   1246 	/* Disable interrupts. */
   1247 	splhigh();
   1248 
   1249 	/* If rebooting and a dump is requested do it. */
   1250 #if 0
   1251 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1252 #else
   1253 	if (howto & RB_DUMP)
   1254 #endif
   1255 		dumpsys();
   1256 
   1257 haltsys:
   1258 
   1259 	/* run any shutdown hooks */
   1260 	doshutdownhooks();
   1261 
   1262 #if defined(MULTIPROCESSOR)
   1263 #if 0 /* XXX doesn't work when called from here?! */
   1264 	/* Kill off any secondary CPUs. */
   1265 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1266 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1267 		    cpu_info[cpu_id].ci_softc == NULL)
   1268 			continue;
   1269 		cpu_halt_secondary(cpu_id);
   1270 	}
   1271 #endif
   1272 #endif
   1273 
   1274 #ifdef BOOTKEY
   1275 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1276 	cnpollc(1);	/* for proper keyboard command handling */
   1277 	cngetc();
   1278 	cnpollc(0);
   1279 	printf("\n");
   1280 #endif
   1281 
   1282 	/* Finally, powerdown/halt/reboot the system. */
   1283 	if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
   1284 	    platform.powerdown != NULL) {
   1285 		(*platform.powerdown)();
   1286 		printf("WARNING: powerdown failed!\n");
   1287 	}
   1288 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1289 	prom_halt(howto & RB_HALT);
   1290 	/*NOTREACHED*/
   1291 }
   1292 
   1293 /*
   1294  * These variables are needed by /sbin/savecore
   1295  */
   1296 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1297 int 	dumpsize = 0;		/* pages */
   1298 long	dumplo = 0; 		/* blocks */
   1299 
   1300 /*
   1301  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1302  */
   1303 int
   1304 cpu_dumpsize()
   1305 {
   1306 	int size;
   1307 
   1308 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1309 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1310 	if (roundup(size, dbtob(1)) != dbtob(1))
   1311 		return -1;
   1312 
   1313 	return (1);
   1314 }
   1315 
   1316 /*
   1317  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1318  */
   1319 u_long
   1320 cpu_dump_mempagecnt()
   1321 {
   1322 	u_long i, n;
   1323 
   1324 	n = 0;
   1325 	for (i = 0; i < mem_cluster_cnt; i++)
   1326 		n += atop(mem_clusters[i].size);
   1327 	return (n);
   1328 }
   1329 
   1330 /*
   1331  * cpu_dump: dump machine-dependent kernel core dump headers.
   1332  */
   1333 int
   1334 cpu_dump()
   1335 {
   1336 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1337 	char buf[dbtob(1)];
   1338 	kcore_seg_t *segp;
   1339 	cpu_kcore_hdr_t *cpuhdrp;
   1340 	phys_ram_seg_t *memsegp;
   1341 	int i;
   1342 
   1343 	dump = bdevsw[major(dumpdev)].d_dump;
   1344 
   1345 	bzero(buf, sizeof buf);
   1346 	segp = (kcore_seg_t *)buf;
   1347 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1348 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1349 	    ALIGN(sizeof(*cpuhdrp))];
   1350 
   1351 	/*
   1352 	 * Generate a segment header.
   1353 	 */
   1354 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1355 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1356 
   1357 	/*
   1358 	 * Add the machine-dependent header info.
   1359 	 */
   1360 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1361 	cpuhdrp->page_size = PAGE_SIZE;
   1362 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1363 
   1364 	/*
   1365 	 * Fill in the memory segment descriptors.
   1366 	 */
   1367 	for (i = 0; i < mem_cluster_cnt; i++) {
   1368 		memsegp[i].start = mem_clusters[i].start;
   1369 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1370 	}
   1371 
   1372 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1373 }
   1374 
   1375 /*
   1376  * This is called by main to set dumplo and dumpsize.
   1377  * Dumps always skip the first CLBYTES of disk space
   1378  * in case there might be a disk label stored there.
   1379  * If there is extra space, put dump at the end to
   1380  * reduce the chance that swapping trashes it.
   1381  */
   1382 void
   1383 cpu_dumpconf()
   1384 {
   1385 	int nblks, dumpblks;	/* size of dump area */
   1386 	int maj;
   1387 
   1388 	if (dumpdev == NODEV)
   1389 		goto bad;
   1390 	maj = major(dumpdev);
   1391 	if (maj < 0 || maj >= nblkdev)
   1392 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1393 	if (bdevsw[maj].d_psize == NULL)
   1394 		goto bad;
   1395 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1396 	if (nblks <= ctod(1))
   1397 		goto bad;
   1398 
   1399 	dumpblks = cpu_dumpsize();
   1400 	if (dumpblks < 0)
   1401 		goto bad;
   1402 	dumpblks += ctod(cpu_dump_mempagecnt());
   1403 
   1404 	/* If dump won't fit (incl. room for possible label), punt. */
   1405 	if (dumpblks > (nblks - ctod(1)))
   1406 		goto bad;
   1407 
   1408 	/* Put dump at end of partition */
   1409 	dumplo = nblks - dumpblks;
   1410 
   1411 	/* dumpsize is in page units, and doesn't include headers. */
   1412 	dumpsize = cpu_dump_mempagecnt();
   1413 	return;
   1414 
   1415 bad:
   1416 	dumpsize = 0;
   1417 	return;
   1418 }
   1419 
   1420 /*
   1421  * Dump the kernel's image to the swap partition.
   1422  */
   1423 #define	BYTES_PER_DUMP	NBPG
   1424 
   1425 void
   1426 dumpsys()
   1427 {
   1428 	u_long totalbytesleft, bytes, i, n, memcl;
   1429 	u_long maddr;
   1430 	int psize;
   1431 	daddr_t blkno;
   1432 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1433 	int error;
   1434 
   1435 	/* Save registers. */
   1436 	savectx(&dumppcb);
   1437 
   1438 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1439 	if (dumpdev == NODEV)
   1440 		return;
   1441 
   1442 	/*
   1443 	 * For dumps during autoconfiguration,
   1444 	 * if dump device has already configured...
   1445 	 */
   1446 	if (dumpsize == 0)
   1447 		cpu_dumpconf();
   1448 	if (dumplo <= 0) {
   1449 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1450 		    minor(dumpdev));
   1451 		return;
   1452 	}
   1453 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1454 	    minor(dumpdev), dumplo);
   1455 
   1456 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1457 	printf("dump ");
   1458 	if (psize == -1) {
   1459 		printf("area unavailable\n");
   1460 		return;
   1461 	}
   1462 
   1463 	/* XXX should purge all outstanding keystrokes. */
   1464 
   1465 	if ((error = cpu_dump()) != 0)
   1466 		goto err;
   1467 
   1468 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1469 	blkno = dumplo + cpu_dumpsize();
   1470 	dump = bdevsw[major(dumpdev)].d_dump;
   1471 	error = 0;
   1472 
   1473 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1474 		maddr = mem_clusters[memcl].start;
   1475 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1476 
   1477 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1478 
   1479 			/* Print out how many MBs we to go. */
   1480 			if ((totalbytesleft % (1024*1024)) == 0)
   1481 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1482 
   1483 			/* Limit size for next transfer. */
   1484 			n = bytes - i;
   1485 			if (n > BYTES_PER_DUMP)
   1486 				n =  BYTES_PER_DUMP;
   1487 
   1488 			error = (*dump)(dumpdev, blkno,
   1489 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1490 			if (error)
   1491 				goto err;
   1492 			maddr += n;
   1493 			blkno += btodb(n);			/* XXX? */
   1494 
   1495 			/* XXX should look for keystrokes, to cancel. */
   1496 		}
   1497 	}
   1498 
   1499 err:
   1500 	switch (error) {
   1501 
   1502 	case ENXIO:
   1503 		printf("device bad\n");
   1504 		break;
   1505 
   1506 	case EFAULT:
   1507 		printf("device not ready\n");
   1508 		break;
   1509 
   1510 	case EINVAL:
   1511 		printf("area improper\n");
   1512 		break;
   1513 
   1514 	case EIO:
   1515 		printf("i/o error\n");
   1516 		break;
   1517 
   1518 	case EINTR:
   1519 		printf("aborted from console\n");
   1520 		break;
   1521 
   1522 	case 0:
   1523 		printf("succeeded\n");
   1524 		break;
   1525 
   1526 	default:
   1527 		printf("error %d\n", error);
   1528 		break;
   1529 	}
   1530 	printf("\n\n");
   1531 	delay(1000);
   1532 }
   1533 
   1534 void
   1535 frametoreg(framep, regp)
   1536 	struct trapframe *framep;
   1537 	struct reg *regp;
   1538 {
   1539 
   1540 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1541 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1542 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1543 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1544 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1545 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1546 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1547 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1548 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1549 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1550 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1551 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1552 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1553 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1554 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1555 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1556 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1557 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1558 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1559 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1560 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1561 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1562 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1563 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1564 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1565 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1566 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1567 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1568 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1569 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1570 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1571 	regp->r_regs[R_ZERO] = 0;
   1572 }
   1573 
   1574 void
   1575 regtoframe(regp, framep)
   1576 	struct reg *regp;
   1577 	struct trapframe *framep;
   1578 {
   1579 
   1580 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1581 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1582 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1583 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1584 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1585 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1586 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1587 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1588 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1589 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1590 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1591 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1592 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1593 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1594 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1595 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1596 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1597 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1598 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1599 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1600 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1601 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1602 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1603 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1604 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1605 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1606 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1607 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1608 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1609 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1610 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1611 	/* ??? = regp->r_regs[R_ZERO]; */
   1612 }
   1613 
   1614 void
   1615 printregs(regp)
   1616 	struct reg *regp;
   1617 {
   1618 	int i;
   1619 
   1620 	for (i = 0; i < 32; i++)
   1621 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1622 		   i & 1 ? "\n" : "\t");
   1623 }
   1624 
   1625 void
   1626 regdump(framep)
   1627 	struct trapframe *framep;
   1628 {
   1629 	struct reg reg;
   1630 
   1631 	frametoreg(framep, &reg);
   1632 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1633 
   1634 	printf("REGISTERS:\n");
   1635 	printregs(&reg);
   1636 }
   1637 
   1638 #ifdef DEBUG
   1639 int sigdebug = 0;
   1640 int sigpid = 0;
   1641 #define	SDB_FOLLOW	0x01
   1642 #define	SDB_KSTACK	0x02
   1643 #endif
   1644 
   1645 /*
   1646  * Send an interrupt to process.
   1647  */
   1648 void
   1649 sendsig(catcher, sig, mask, code)
   1650 	sig_t catcher;
   1651 	int sig;
   1652 	sigset_t *mask;
   1653 	u_long code;
   1654 {
   1655 	struct proc *p = curproc;
   1656 	struct sigcontext *scp, ksc;
   1657 	struct trapframe *frame;
   1658 	struct sigacts *psp = p->p_sigacts;
   1659 	int onstack, fsize, rndfsize;
   1660 
   1661 	frame = p->p_md.md_tf;
   1662 
   1663 	/* Do we need to jump onto the signal stack? */
   1664 	onstack =
   1665 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1666 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1667 
   1668 	/* Allocate space for the signal handler context. */
   1669 	fsize = sizeof(ksc);
   1670 	rndfsize = ((fsize + 15) / 16) * 16;
   1671 
   1672 	if (onstack)
   1673 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1674 						     psp->ps_sigstk.ss_size);
   1675 	else
   1676 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1677 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1678 
   1679 #ifdef DEBUG
   1680 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1681 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1682 		    sig, &onstack, scp);
   1683 #endif
   1684 
   1685 	/* Build stack frame for signal trampoline. */
   1686 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1687 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1688 
   1689 	/* Save register context. */
   1690 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1691 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1692 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1693 
   1694 	/* save the floating-point state, if necessary, then copy it. */
   1695 	if (p == fpcurproc) {
   1696 		alpha_pal_wrfen(1);
   1697 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1698 		alpha_pal_wrfen(0);
   1699 		fpcurproc = NULL;
   1700 	}
   1701 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1702 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1703 	    sizeof(struct fpreg));
   1704 	ksc.sc_fp_control = 0;					/* XXX ? */
   1705 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1706 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1707 
   1708 	/* Save signal stack. */
   1709 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1710 
   1711 	/* Save signal mask. */
   1712 	ksc.sc_mask = *mask;
   1713 
   1714 #ifdef COMPAT_13
   1715 	/*
   1716 	 * XXX We always have to save an old style signal mask because
   1717 	 * XXX we might be delivering a signal to a process which will
   1718 	 * XXX escape from the signal in a non-standard way and invoke
   1719 	 * XXX sigreturn() directly.
   1720 	 */
   1721 	{
   1722 		/* Note: it's a long in the stack frame. */
   1723 		sigset13_t mask13;
   1724 
   1725 		native_sigset_to_sigset13(mask, &mask13);
   1726 		ksc.__sc_mask13 = mask13;
   1727 	}
   1728 #endif
   1729 
   1730 #ifdef COMPAT_OSF1
   1731 	/*
   1732 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1733 	 */
   1734 #endif
   1735 
   1736 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1737 		/*
   1738 		 * Process has trashed its stack; give it an illegal
   1739 		 * instruction to halt it in its tracks.
   1740 		 */
   1741 #ifdef DEBUG
   1742 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1743 			printf("sendsig(%d): copyout failed on sig %d\n",
   1744 			    p->p_pid, sig);
   1745 #endif
   1746 		sigexit(p, SIGILL);
   1747 		/* NOTREACHED */
   1748 	}
   1749 #ifdef DEBUG
   1750 	if (sigdebug & SDB_FOLLOW)
   1751 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1752 		    scp, code);
   1753 #endif
   1754 
   1755 	/* Set up the registers to return to sigcode. */
   1756 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1757 	frame->tf_regs[FRAME_A0] = sig;
   1758 	frame->tf_regs[FRAME_A1] = code;
   1759 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1760 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1761 	alpha_pal_wrusp((unsigned long)scp);
   1762 
   1763 	/* Remember that we're now on the signal stack. */
   1764 	if (onstack)
   1765 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1766 
   1767 #ifdef DEBUG
   1768 	if (sigdebug & SDB_FOLLOW)
   1769 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1770 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1771 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1772 		printf("sendsig(%d): sig %d returns\n",
   1773 		    p->p_pid, sig);
   1774 #endif
   1775 }
   1776 
   1777 /*
   1778  * System call to cleanup state after a signal
   1779  * has been taken.  Reset signal mask and
   1780  * stack state from context left by sendsig (above).
   1781  * Return to previous pc and psl as specified by
   1782  * context left by sendsig. Check carefully to
   1783  * make sure that the user has not modified the
   1784  * psl to gain improper priviledges or to cause
   1785  * a machine fault.
   1786  */
   1787 /* ARGSUSED */
   1788 int
   1789 sys___sigreturn14(p, v, retval)
   1790 	struct proc *p;
   1791 	void *v;
   1792 	register_t *retval;
   1793 {
   1794 	struct sys___sigreturn14_args /* {
   1795 		syscallarg(struct sigcontext *) sigcntxp;
   1796 	} */ *uap = v;
   1797 	struct sigcontext *scp, ksc;
   1798 
   1799 	/*
   1800 	 * The trampoline code hands us the context.
   1801 	 * It is unsafe to keep track of it ourselves, in the event that a
   1802 	 * program jumps out of a signal handler.
   1803 	 */
   1804 	scp = SCARG(uap, sigcntxp);
   1805 #ifdef DEBUG
   1806 	if (sigdebug & SDB_FOLLOW)
   1807 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1808 #endif
   1809 	if (ALIGN(scp) != (u_int64_t)scp)
   1810 		return (EINVAL);
   1811 
   1812 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1813 		return (EFAULT);
   1814 
   1815 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1816 		return (EINVAL);
   1817 
   1818 	/* Restore register context. */
   1819 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1820 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1821 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1822 
   1823 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1824 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1825 
   1826 	/* XXX ksc.sc_ownedfp ? */
   1827 	if (p == fpcurproc)
   1828 		fpcurproc = NULL;
   1829 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1830 	    sizeof(struct fpreg));
   1831 	/* XXX ksc.sc_fp_control ? */
   1832 
   1833 	/* Restore signal stack. */
   1834 	if (ksc.sc_onstack & SS_ONSTACK)
   1835 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1836 	else
   1837 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1838 
   1839 	/* Restore signal mask. */
   1840 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1841 
   1842 #ifdef DEBUG
   1843 	if (sigdebug & SDB_FOLLOW)
   1844 		printf("sigreturn(%d): returns\n", p->p_pid);
   1845 #endif
   1846 	return (EJUSTRETURN);
   1847 }
   1848 
   1849 /*
   1850  * machine dependent system variables.
   1851  */
   1852 int
   1853 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1854 	int *name;
   1855 	u_int namelen;
   1856 	void *oldp;
   1857 	size_t *oldlenp;
   1858 	void *newp;
   1859 	size_t newlen;
   1860 	struct proc *p;
   1861 {
   1862 	dev_t consdev;
   1863 
   1864 	/* all sysctl names at this level are terminal */
   1865 	if (namelen != 1)
   1866 		return (ENOTDIR);		/* overloaded */
   1867 
   1868 	switch (name[0]) {
   1869 	case CPU_CONSDEV:
   1870 		if (cn_tab != NULL)
   1871 			consdev = cn_tab->cn_dev;
   1872 		else
   1873 			consdev = NODEV;
   1874 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1875 			sizeof consdev));
   1876 
   1877 	case CPU_ROOT_DEVICE:
   1878 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1879 		    root_device->dv_xname));
   1880 
   1881 	case CPU_UNALIGNED_PRINT:
   1882 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1883 		    &alpha_unaligned_print));
   1884 
   1885 	case CPU_UNALIGNED_FIX:
   1886 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1887 		    &alpha_unaligned_fix));
   1888 
   1889 	case CPU_UNALIGNED_SIGBUS:
   1890 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1891 		    &alpha_unaligned_sigbus));
   1892 
   1893 	case CPU_BOOTED_KERNEL:
   1894 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1895 		    bootinfo.booted_kernel));
   1896 
   1897 	default:
   1898 		return (EOPNOTSUPP);
   1899 	}
   1900 	/* NOTREACHED */
   1901 }
   1902 
   1903 /*
   1904  * Set registers on exec.
   1905  */
   1906 void
   1907 setregs(p, pack, stack)
   1908 	register struct proc *p;
   1909 	struct exec_package *pack;
   1910 	u_long stack;
   1911 {
   1912 	struct trapframe *tfp = p->p_md.md_tf;
   1913 #ifdef DEBUG
   1914 	int i;
   1915 #endif
   1916 
   1917 #ifdef DEBUG
   1918 	/*
   1919 	 * Crash and dump, if the user requested it.
   1920 	 */
   1921 	if (boothowto & RB_DUMP)
   1922 		panic("crash requested by boot flags");
   1923 #endif
   1924 
   1925 #ifdef DEBUG
   1926 	for (i = 0; i < FRAME_SIZE; i++)
   1927 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1928 #else
   1929 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1930 #endif
   1931 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1932 #define FP_RN 2 /* XXX */
   1933 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1934 	alpha_pal_wrusp(stack);
   1935 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1936 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1937 
   1938 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1939 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1940 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1941 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1942 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1943 
   1944 	p->p_md.md_flags &= ~MDP_FPUSED;
   1945 	if (fpcurproc == p)
   1946 		fpcurproc = NULL;
   1947 }
   1948 
   1949 void
   1950 netintr()
   1951 {
   1952 	int n, s;
   1953 
   1954 	s = splhigh();
   1955 	n = netisr;
   1956 	netisr = 0;
   1957 	splx(s);
   1958 
   1959 #define	DONETISR(bit, fn)						\
   1960 	do {								\
   1961 		if (n & (1 << (bit)))					\
   1962 			fn;						\
   1963 	} while (0)
   1964 
   1965 #ifdef INET
   1966 #if NARP > 0
   1967 	DONETISR(NETISR_ARP, arpintr());
   1968 #endif
   1969 	DONETISR(NETISR_IP, ipintr());
   1970 #endif
   1971 #ifdef NETATALK
   1972 	DONETISR(NETISR_ATALK, atintr());
   1973 #endif
   1974 #ifdef NS
   1975 	DONETISR(NETISR_NS, nsintr());
   1976 #endif
   1977 #ifdef ISO
   1978 	DONETISR(NETISR_ISO, clnlintr());
   1979 #endif
   1980 #ifdef CCITT
   1981 	DONETISR(NETISR_CCITT, ccittintr());
   1982 #endif
   1983 #ifdef NATM
   1984 	DONETISR(NETISR_NATM, natmintr());
   1985 #endif
   1986 #if NPPP > 1
   1987 	DONETISR(NETISR_PPP, pppintr());
   1988 #endif
   1989 
   1990 #undef DONETISR
   1991 }
   1992 
   1993 void
   1994 do_sir()
   1995 {
   1996 	u_int64_t n;
   1997 
   1998 	do {
   1999 		(void)splhigh();
   2000 		n = ssir;
   2001 		ssir = 0;
   2002 		splsoft();		/* don't recurse through spl0() */
   2003 
   2004 #define	COUNT_SOFT	uvmexp.softs++
   2005 
   2006 #define	DO_SIR(bit, fn)							\
   2007 		do {							\
   2008 			if (n & (bit)) {				\
   2009 				COUNT_SOFT;				\
   2010 				fn;					\
   2011 			}						\
   2012 		} while (0)
   2013 
   2014 		DO_SIR(SIR_NET, netintr());
   2015 		DO_SIR(SIR_CLOCK, softclock());
   2016 #if NCOM > 0
   2017 		DO_SIR(SIR_SERIAL, comsoft());
   2018 #endif
   2019 
   2020 #undef COUNT_SOFT
   2021 #undef DO_SIR
   2022 	} while (ssir != 0);
   2023 }
   2024 
   2025 int
   2026 spl0()
   2027 {
   2028 
   2029 	if (ssir)
   2030 		do_sir();		/* it lowers the IPL itself */
   2031 
   2032 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2033 }
   2034 
   2035 /*
   2036  * The following primitives manipulate the run queues.  _whichqs tells which
   2037  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2038  * into queues, Remrunqueue removes them from queues.  The running process is
   2039  * on no queue, other processes are on a queue related to p->p_priority,
   2040  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2041  * available queues.
   2042  */
   2043 /*
   2044  * setrunqueue(p)
   2045  *	proc *p;
   2046  *
   2047  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2048  */
   2049 
   2050 void
   2051 setrunqueue(p)
   2052 	struct proc *p;
   2053 {
   2054 	int bit;
   2055 
   2056 	/* firewall: p->p_back must be NULL */
   2057 	if (p->p_back != NULL)
   2058 		panic("setrunqueue");
   2059 
   2060 	bit = p->p_priority >> 2;
   2061 	whichqs |= (1 << bit);
   2062 	p->p_forw = (struct proc *)&qs[bit];
   2063 	p->p_back = qs[bit].ph_rlink;
   2064 	p->p_back->p_forw = p;
   2065 	qs[bit].ph_rlink = p;
   2066 }
   2067 
   2068 /*
   2069  * remrunqueue(p)
   2070  *
   2071  * Call should be made at splclock().
   2072  */
   2073 void
   2074 remrunqueue(p)
   2075 	struct proc *p;
   2076 {
   2077 	int bit;
   2078 
   2079 	bit = p->p_priority >> 2;
   2080 	if ((whichqs & (1 << bit)) == 0)
   2081 		panic("remrunqueue");
   2082 
   2083 	p->p_back->p_forw = p->p_forw;
   2084 	p->p_forw->p_back = p->p_back;
   2085 	p->p_back = NULL;	/* for firewall checking. */
   2086 
   2087 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2088 		whichqs &= ~(1 << bit);
   2089 }
   2090 
   2091 /*
   2092  * Return the best possible estimate of the time in the timeval
   2093  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2094  * We guarantee that the time will be greater than the value obtained by a
   2095  * previous call.
   2096  */
   2097 void
   2098 microtime(tvp)
   2099 	register struct timeval *tvp;
   2100 {
   2101 	int s = splclock();
   2102 	static struct timeval lasttime;
   2103 
   2104 	*tvp = time;
   2105 #ifdef notdef
   2106 	tvp->tv_usec += clkread();
   2107 	while (tvp->tv_usec > 1000000) {
   2108 		tvp->tv_sec++;
   2109 		tvp->tv_usec -= 1000000;
   2110 	}
   2111 #endif
   2112 	if (tvp->tv_sec == lasttime.tv_sec &&
   2113 	    tvp->tv_usec <= lasttime.tv_usec &&
   2114 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2115 		tvp->tv_sec++;
   2116 		tvp->tv_usec -= 1000000;
   2117 	}
   2118 	lasttime = *tvp;
   2119 	splx(s);
   2120 }
   2121 
   2122 /*
   2123  * Wait "n" microseconds.
   2124  */
   2125 void
   2126 delay(n)
   2127 	unsigned long n;
   2128 {
   2129 	long N = cycles_per_usec * (n);
   2130 
   2131 	while (N > 0)				/* XXX */
   2132 		N -= 3;				/* XXX */
   2133 }
   2134 
   2135 #if defined(COMPAT_OSF1) || 1		/* XXX */
   2136 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2137 	    u_long));
   2138 
   2139 void
   2140 cpu_exec_ecoff_setregs(p, epp, stack)
   2141 	struct proc *p;
   2142 	struct exec_package *epp;
   2143 	u_long stack;
   2144 {
   2145 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2146 
   2147 	setregs(p, epp, stack);
   2148 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2149 }
   2150 
   2151 /*
   2152  * cpu_exec_ecoff_hook():
   2153  *	cpu-dependent ECOFF format hook for execve().
   2154  *
   2155  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2156  *
   2157  */
   2158 int
   2159 cpu_exec_ecoff_hook(p, epp)
   2160 	struct proc *p;
   2161 	struct exec_package *epp;
   2162 {
   2163 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2164 	extern struct emul emul_netbsd;
   2165 #ifdef COMPAT_OSF1
   2166 	extern struct emul emul_osf1;
   2167 #endif
   2168 
   2169 	switch (execp->f.f_magic) {
   2170 #ifdef COMPAT_OSF1
   2171 	case ECOFF_MAGIC_ALPHA:
   2172 		epp->ep_emul = &emul_osf1;
   2173 		break;
   2174 #endif
   2175 
   2176 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2177 		epp->ep_emul = &emul_netbsd;
   2178 		break;
   2179 
   2180 	default:
   2181 		return ENOEXEC;
   2182 	}
   2183 	return 0;
   2184 }
   2185 #endif
   2186 
   2187 int
   2188 alpha_pa_access(pa)
   2189 	u_long pa;
   2190 {
   2191 	int i;
   2192 
   2193 	for (i = 0; i < mem_cluster_cnt; i++) {
   2194 		if (pa < mem_clusters[i].start)
   2195 			continue;
   2196 		if ((pa - mem_clusters[i].start) >=
   2197 		    (mem_clusters[i].size & ~PAGE_MASK))
   2198 			continue;
   2199 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2200 	}
   2201 	return (PROT_NONE);
   2202 }
   2203 
   2204 /* XXX XXX BEGIN XXX XXX */
   2205 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2206 								/* XXX */
   2207 paddr_t								/* XXX */
   2208 alpha_XXX_dmamap(v)						/* XXX */
   2209 	vaddr_t v;						/* XXX */
   2210 {								/* XXX */
   2211 								/* XXX */
   2212 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2213 }								/* XXX */
   2214 /* XXX XXX END XXX XXX */
   2215 
   2216 struct mchkinfo *
   2217 cpu_mchkinfo()
   2218 {
   2219 	if (mchkinfo_all_cpus == NULL)
   2220 		return &startup_info;
   2221 	return mchkinfo_all_cpus + alpha_pal_whami();
   2222 }
   2223