machdep.c revision 1.168 1 /* $NetBSD: machdep.c,v 1.168 1999/04/11 04:04:04 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_bufcache.h"
68 #include "opt_ddb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_pmap_new.h"
71 #include "opt_dec_3000_300.h"
72 #include "opt_dec_3000_500.h"
73 #include "opt_compat_osf1.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_inet.h"
76 #include "opt_atalk.h"
77 #include "opt_ccitt.h"
78 #include "opt_iso.h"
79 #include "opt_ns.h"
80 #include "opt_natm.h"
81 #include "opt_sysv.h"
82
83 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84
85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.168 1999/04/11 04:04:04 chs Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/signalvar.h>
90 #include <sys/kernel.h>
91 #include <sys/map.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <sys/reboot.h>
95 #include <sys/device.h>
96 #include <sys/file.h>
97 #ifdef REAL_CLISTS
98 #include <sys/clist.h>
99 #endif
100 #include <sys/callout.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/mman.h>
104 #include <sys/msgbuf.h>
105 #include <sys/ioctl.h>
106 #include <sys/tty.h>
107 #include <sys/user.h>
108 #include <sys/exec.h>
109 #include <sys/exec_ecoff.h>
110 #include <vm/vm.h>
111 #include <sys/sysctl.h>
112 #include <sys/core.h>
113 #include <sys/kcore.h>
114 #include <machine/kcore.h>
115 #ifdef SYSVMSG
116 #include <sys/msg.h>
117 #endif
118 #ifdef SYSVSEM
119 #include <sys/sem.h>
120 #endif
121 #ifdef SYSVSHM
122 #include <sys/shm.h>
123 #endif
124
125 #include <sys/mount.h>
126 #include <sys/syscallargs.h>
127
128 #include <vm/vm_kern.h>
129
130 #include <uvm/uvm_extern.h>
131
132 #include <dev/cons.h>
133
134 #include <machine/autoconf.h>
135 #include <machine/cpu.h>
136 #include <machine/reg.h>
137 #include <machine/rpb.h>
138 #include <machine/prom.h>
139 #include <machine/conf.h>
140
141 #include <alpha/alpha/cpuvar.h>
142
143 #include <net/netisr.h>
144 #include <net/if.h>
145
146 #ifdef INET
147 #include <net/route.h>
148 #include <netinet/in.h>
149 #include <netinet/ip_var.h>
150 #include "arp.h"
151 #if NARP > 0
152 #include <netinet/if_inarp.h>
153 #endif
154 #endif
155 #ifdef NS
156 #include <netns/ns_var.h>
157 #endif
158 #ifdef ISO
159 #include <netiso/iso.h>
160 #include <netiso/clnp.h>
161 #endif
162 #ifdef CCITT
163 #include <netccitt/x25.h>
164 #include <netccitt/pk.h>
165 #include <netccitt/pk_extern.h>
166 #endif
167 #ifdef NATM
168 #include <netnatm/natm.h>
169 #endif
170 #ifdef NETATALK
171 #include <netatalk/at_extern.h>
172 #endif
173 #include "ppp.h"
174 #if NPPP > 0
175 #include <net/ppp_defs.h>
176 #include <net/if_ppp.h>
177 #endif
178
179 #ifdef DDB
180 #include <machine/db_machdep.h>
181 #include <ddb/db_access.h>
182 #include <ddb/db_sym.h>
183 #include <ddb/db_extern.h>
184 #include <ddb/db_interface.h>
185 #endif
186
187 #include <machine/alpha.h>
188 #include <machine/intrcnt.h>
189
190 #include "com.h"
191 #if NCOM > 0
192 extern void comsoft __P((void));
193 #endif
194
195 vm_map_t exec_map = NULL;
196 vm_map_t mb_map = NULL;
197 vm_map_t phys_map = NULL;
198
199 /*
200 * Declare these as initialized data so we can patch them.
201 */
202 int nswbuf = 0;
203 #ifdef NBUF
204 int nbuf = NBUF;
205 #else
206 int nbuf = 0;
207 #endif
208
209 #ifndef BUFPAGES
210 #define BUFPAGES 0
211 #endif
212 #ifndef BUFCACHE
213 #define BUFCACHE 10
214 #endif
215
216 int bufpages = BUFPAGES; /* optional hardwired count */
217 int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
218
219 caddr_t msgbufaddr;
220
221 int maxmem; /* max memory per process */
222
223 int totalphysmem; /* total amount of physical memory in system */
224 int physmem; /* physical memory used by NetBSD + some rsvd */
225 int resvmem; /* amount of memory reserved for PROM */
226 int unusedmem; /* amount of memory for OS that we don't use */
227 int unknownmem; /* amount of memory with an unknown use */
228
229 int cputype; /* system type, from the RPB */
230
231 /*
232 * XXX We need an address to which we can assign things so that they
233 * won't be optimized away because we didn't use the value.
234 */
235 u_int32_t no_optimize;
236
237 /* the following is used externally (sysctl_hw) */
238 char machine[] = MACHINE; /* from <machine/param.h> */
239 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
240 char cpu_model[128];
241
242 struct user *proc0paddr;
243
244 /* Number of machine cycles per microsecond */
245 u_int64_t cycles_per_usec;
246
247 /* number of cpus in the box. really! */
248 int ncpus;
249
250 /* machine check info array, valloc()'ed in allocsys() */
251
252 static struct mchkinfo startup_info,
253 *mchkinfo_all_cpus;
254
255 struct bootinfo_kernel bootinfo;
256
257 /* For built-in TCDS */
258 #if defined(DEC_3000_300) || defined(DEC_3000_500)
259 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
260 #endif
261
262 struct platform platform;
263
264 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
265 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
266
267 #ifdef DDB
268 /* start and end of kernel symbol table */
269 void *ksym_start, *ksym_end;
270 #endif
271
272 /* for cpu_sysctl() */
273 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
274 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
275 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
276
277 /*
278 * XXX This should be dynamically sized, but we have the chicken-egg problem!
279 * XXX it should also be larger than it is, because not all of the mddt
280 * XXX clusters end up being used for VM.
281 */
282 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
283 int mem_cluster_cnt;
284
285 caddr_t allocsys __P((caddr_t));
286 int cpu_dump __P((void));
287 int cpu_dumpsize __P((void));
288 u_long cpu_dump_mempagecnt __P((void));
289 void dumpsys __P((void));
290 void identifycpu __P((void));
291 void netintr __P((void));
292 void printregs __P((struct reg *));
293
294 void
295 alpha_init(pfn, ptb, bim, bip, biv)
296 u_long pfn; /* first free PFN number */
297 u_long ptb; /* PFN of current level 1 page table */
298 u_long bim; /* bootinfo magic */
299 u_long bip; /* bootinfo pointer */
300 u_long biv; /* bootinfo version */
301 {
302 extern char kernel_text[], _end[];
303 struct mddt *mddtp;
304 struct mddt_cluster *memc;
305 int i, mddtweird;
306 struct vm_physseg *vps;
307 vaddr_t kernstart, kernend;
308 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
309 vsize_t size;
310 char *p;
311 caddr_t v;
312 char *bootinfo_msg;
313
314 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
315
316 /*
317 * Turn off interrupts (not mchecks) and floating point.
318 * Make sure the instruction and data streams are consistent.
319 */
320 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
321 alpha_pal_wrfen(0);
322 ALPHA_TBIA();
323 alpha_pal_imb();
324
325 /*
326 * Get critical system information (if possible, from the
327 * information provided by the boot program).
328 */
329 bootinfo_msg = NULL;
330 if (bim == BOOTINFO_MAGIC) {
331 if (biv == 0) { /* backward compat */
332 biv = *(u_long *)bip;
333 bip += 8;
334 }
335 switch (biv) {
336 case 1: {
337 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
338
339 bootinfo.ssym = v1p->ssym;
340 bootinfo.esym = v1p->esym;
341 /* hwrpb may not be provided by boot block in v1 */
342 if (v1p->hwrpb != NULL) {
343 bootinfo.hwrpb_phys =
344 ((struct rpb *)v1p->hwrpb)->rpb_phys;
345 bootinfo.hwrpb_size = v1p->hwrpbsize;
346 } else {
347 bootinfo.hwrpb_phys =
348 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
349 bootinfo.hwrpb_size =
350 ((struct rpb *)HWRPB_ADDR)->rpb_size;
351 }
352 bcopy(v1p->boot_flags, bootinfo.boot_flags,
353 min(sizeof v1p->boot_flags,
354 sizeof bootinfo.boot_flags));
355 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
356 min(sizeof v1p->booted_kernel,
357 sizeof bootinfo.booted_kernel));
358 /* booted dev not provided in bootinfo */
359 init_prom_interface((struct rpb *)
360 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
361 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
362 sizeof bootinfo.booted_dev);
363 break;
364 }
365 default:
366 bootinfo_msg = "unknown bootinfo version";
367 goto nobootinfo;
368 }
369 } else {
370 bootinfo_msg = "boot program did not pass bootinfo";
371 nobootinfo:
372 bootinfo.ssym = (u_long)_end;
373 bootinfo.esym = (u_long)_end;
374 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
375 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
376 init_prom_interface((struct rpb *)HWRPB_ADDR);
377 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
378 sizeof bootinfo.boot_flags);
379 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
380 sizeof bootinfo.booted_kernel);
381 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
382 sizeof bootinfo.booted_dev);
383 }
384
385 /*
386 * Initialize the kernel's mapping of the RPB. It's needed for
387 * lots of things.
388 */
389 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
390
391 #if defined(DEC_3000_300) || defined(DEC_3000_500)
392 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
393 hwrpb->rpb_type == ST_DEC_3000_500) {
394 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
395 sizeof(dec_3000_scsiid));
396 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
397 sizeof(dec_3000_scsifast));
398 }
399 #endif
400
401 /*
402 * Remember how many cycles there are per microsecond,
403 * so that we can use delay(). Round up, for safety.
404 */
405 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
406
407 /*
408 * Initalize the (temporary) bootstrap console interface, so
409 * we can use printf until the VM system starts being setup.
410 * The real console is initialized before then.
411 */
412 init_bootstrap_console();
413
414 /* OUTPUT NOW ALLOWED */
415
416 /* delayed from above */
417 if (bootinfo_msg)
418 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
419 bootinfo_msg, bim, bip, biv);
420
421 /* Initialize the trap vectors on the primary processor. */
422 trap_init();
423
424 /*
425 * Find out what hardware we're on, and do basic initialization.
426 */
427 cputype = hwrpb->rpb_type;
428 if (cputype < 0) {
429 /*
430 * At least some white-box systems have SRM which
431 * reports a systype that's the negative of their
432 * blue-box counterpart.
433 */
434 cputype = -cputype;
435 }
436 if (cputype >= ncpuinit) {
437 platform_not_supported();
438 /* NOTREACHED */
439 }
440 (*cpuinit[cputype].init)();
441 strcpy(cpu_model, platform.model);
442
443 /*
444 * Initalize the real console, so the the bootstrap console is
445 * no longer necessary.
446 */
447 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
448 if (!pmap_uses_prom_console())
449 #endif
450 (*platform.cons_init)();
451
452 #ifdef DIAGNOSTIC
453 /* Paranoid sanity checking */
454
455 /* We should always be running on the the primary. */
456 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
457
458 /*
459 * On single-CPU systypes, the primary should always be CPU 0,
460 * except on Alpha 8200 systems where the CPU id is related
461 * to the VID, which is related to the Turbo Laser node id.
462 */
463 if (cputype != ST_DEC_21000)
464 assert(hwrpb->rpb_primary_cpu_id == 0);
465 #endif
466
467 /* NO MORE FIRMWARE ACCESS ALLOWED */
468 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
469 /*
470 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
471 * XXX pmap_uses_prom_console() evaluates to non-zero.)
472 */
473 #endif
474
475 /*
476 * find out this system's page size
477 */
478 PAGE_SIZE = hwrpb->rpb_page_size;
479 if (PAGE_SIZE != 8192)
480 panic("page size %d != 8192?!", PAGE_SIZE);
481
482 /*
483 * Initialize PAGE_SIZE-dependent variables.
484 */
485 uvm_setpagesize();
486
487 /*
488 * Find the beginning and end of the kernel (and leave a
489 * bit of space before the beginning for the bootstrap
490 * stack).
491 */
492 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
493 #ifdef DDB
494 ksym_start = (void *)bootinfo.ssym;
495 ksym_end = (void *)bootinfo.esym;
496 kernend = (vaddr_t)round_page(ksym_end);
497 #else
498 kernend = (vaddr_t)round_page(_end);
499 #endif
500
501 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
502 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
503
504 /*
505 * Find out how much memory is available, by looking at
506 * the memory cluster descriptors. This also tries to do
507 * its best to detect things things that have never been seen
508 * before...
509 */
510 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
511
512 /* MDDT SANITY CHECKING */
513 mddtweird = 0;
514 if (mddtp->mddt_cluster_cnt < 2) {
515 mddtweird = 1;
516 printf("WARNING: weird number of mem clusters: %lu\n",
517 mddtp->mddt_cluster_cnt);
518 }
519
520 #if 0
521 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
522 #endif
523
524 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
525 memc = &mddtp->mddt_clusters[i];
526 #if 0
527 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
528 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
529 #endif
530 totalphysmem += memc->mddt_pg_cnt;
531 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
532 mem_clusters[mem_cluster_cnt].start =
533 ptoa(memc->mddt_pfn);
534 mem_clusters[mem_cluster_cnt].size =
535 ptoa(memc->mddt_pg_cnt);
536 if (memc->mddt_usage & MDDT_mbz ||
537 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
538 memc->mddt_usage & MDDT_PALCODE)
539 mem_clusters[mem_cluster_cnt].size |=
540 PROT_READ;
541 else
542 mem_clusters[mem_cluster_cnt].size |=
543 PROT_READ | PROT_WRITE | PROT_EXEC;
544 mem_cluster_cnt++;
545 }
546
547 if (memc->mddt_usage & MDDT_mbz) {
548 mddtweird = 1;
549 printf("WARNING: mem cluster %d has weird "
550 "usage 0x%lx\n", i, memc->mddt_usage);
551 unknownmem += memc->mddt_pg_cnt;
552 continue;
553 }
554 if (memc->mddt_usage & MDDT_NONVOLATILE) {
555 /* XXX should handle these... */
556 printf("WARNING: skipping non-volatile mem "
557 "cluster %d\n", i);
558 unusedmem += memc->mddt_pg_cnt;
559 continue;
560 }
561 if (memc->mddt_usage & MDDT_PALCODE) {
562 resvmem += memc->mddt_pg_cnt;
563 continue;
564 }
565
566 /*
567 * We have a memory cluster available for system
568 * software use. We must determine if this cluster
569 * holds the kernel.
570 */
571 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
572 /*
573 * XXX If the kernel uses the PROM console, we only use the
574 * XXX memory after the kernel in the first system segment,
575 * XXX to avoid clobbering prom mapping, data, etc.
576 */
577 if (!pmap_uses_prom_console() || physmem == 0) {
578 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
579 physmem += memc->mddt_pg_cnt;
580 pfn0 = memc->mddt_pfn;
581 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
582 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
583 /*
584 * Must compute the location of the kernel
585 * within the segment.
586 */
587 #if 0
588 printf("Cluster %d contains kernel\n", i);
589 #endif
590 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
591 if (!pmap_uses_prom_console()) {
592 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
593 if (pfn0 < kernstartpfn) {
594 /*
595 * There is a chunk before the kernel.
596 */
597 #if 0
598 printf("Loading chunk before kernel: "
599 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
600 #endif
601 uvm_page_physload(pfn0, kernstartpfn,
602 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
603 }
604 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
605 }
606 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
607 if (kernendpfn < pfn1) {
608 /*
609 * There is a chunk after the kernel.
610 */
611 #if 0
612 printf("Loading chunk after kernel: "
613 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
614 #endif
615 uvm_page_physload(kernendpfn, pfn1,
616 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
617 }
618 } else {
619 /*
620 * Just load this cluster as one chunk.
621 */
622 #if 0
623 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
624 pfn0, pfn1);
625 #endif
626 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
627 VM_FREELIST_DEFAULT);
628 }
629 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
630 }
631 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
632 }
633
634 /*
635 * Dump out the MDDT if it looks odd...
636 */
637 if (mddtweird) {
638 printf("\n");
639 printf("complete memory cluster information:\n");
640 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
641 printf("mddt %d:\n", i);
642 printf("\tpfn %lx\n",
643 mddtp->mddt_clusters[i].mddt_pfn);
644 printf("\tcnt %lx\n",
645 mddtp->mddt_clusters[i].mddt_pg_cnt);
646 printf("\ttest %lx\n",
647 mddtp->mddt_clusters[i].mddt_pg_test);
648 printf("\tbva %lx\n",
649 mddtp->mddt_clusters[i].mddt_v_bitaddr);
650 printf("\tbpa %lx\n",
651 mddtp->mddt_clusters[i].mddt_p_bitaddr);
652 printf("\tbcksum %lx\n",
653 mddtp->mddt_clusters[i].mddt_bit_cksum);
654 printf("\tusage %lx\n",
655 mddtp->mddt_clusters[i].mddt_usage);
656 }
657 printf("\n");
658 }
659
660 if (totalphysmem == 0)
661 panic("can't happen: system seems to have no memory!");
662
663 #ifdef LIMITMEM
664 /*
665 * XXX Kludge so we can run on machines with memory larger
666 * XXX than 1G until all device drivers are converted to
667 * XXX use bus_dma. (Relies on the fact that vm_physmem
668 * XXX sorted in order of increasing addresses.)
669 */
670 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
671
672 printf("******** LIMITING MEMORY TO %dMB **********\n",
673 LIMITMEM);
674
675 do {
676 u_long ovf;
677
678 vps = &vm_physmem[vm_nphysseg - 1];
679
680 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
681 /*
682 * If the start is too high, just drop
683 * the whole segment.
684 *
685 * XXX can start != avail_start in this
686 * XXX case? wouldn't that mean that
687 * XXX some memory was stolen above the
688 * XXX limit? What to do?
689 */
690 ovf = vps->end - vps->start;
691 vm_nphysseg--;
692 } else {
693 /*
694 * If the start is OK, calculate how much
695 * to drop and drop it.
696 */
697 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
698 vps->end -= ovf;
699 vps->avail_end -= ovf;
700 }
701 physmem -= ovf;
702 unusedmem += ovf;
703 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
704 }
705 #endif /* LIMITMEM */
706
707 maxmem = physmem;
708
709 #if 0
710 printf("totalphysmem = %d\n", totalphysmem);
711 printf("physmem = %d\n", physmem);
712 printf("resvmem = %d\n", resvmem);
713 printf("unusedmem = %d\n", unusedmem);
714 printf("unknownmem = %d\n", unknownmem);
715 #endif
716
717 /*
718 * Adjust some parameters if the amount of physmem
719 * available would cause us to croak. This is completely
720 * eyeballed and isn't meant to be the final answer.
721 * vm_phys_size is probably the only one to really worry
722 * about.
723 *
724 * It's for booting a GENERIC kernel on a large memory platform.
725 */
726 if (physmem >= atop(128 * 1024 * 1024)) {
727 vm_kmem_size <<= 3;
728 vm_phys_size <<= 2;
729 }
730
731 /*
732 * Initialize error message buffer (at end of core).
733 */
734 {
735 size_t sz = round_page(MSGBUFSIZE);
736
737 vps = &vm_physmem[vm_nphysseg - 1];
738
739 /* shrink so that it'll fit in the last segment */
740 if ((vps->avail_end - vps->avail_start) < atop(sz))
741 sz = ptoa(vps->avail_end - vps->avail_start);
742
743 vps->end -= atop(sz);
744 vps->avail_end -= atop(sz);
745 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
746 initmsgbuf(msgbufaddr, sz);
747
748 /* Remove the last segment if it now has no pages. */
749 if (vps->start == vps->end)
750 vm_nphysseg--;
751
752 /* warn if the message buffer had to be shrunk */
753 if (sz != round_page(MSGBUFSIZE))
754 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
755 round_page(MSGBUFSIZE), sz);
756
757 }
758
759 /*
760 * Init mapping for u page(s) for proc 0
761 */
762 proc0.p_addr = proc0paddr =
763 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
764
765 /*
766 * Allocate space for system data structures. These data structures
767 * are allocated here instead of cpu_startup() because physical
768 * memory is directly addressable. We don't have to map these into
769 * virtual address space.
770 */
771 size = (vsize_t)allocsys(0);
772 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
773 if ((allocsys(v) - v) != size)
774 panic("alpha_init: table size inconsistency");
775
776 /*
777 * Initialize the virtual memory system, and set the
778 * page table base register in proc 0's PCB.
779 */
780 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
781 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
782
783 /*
784 * Initialize the rest of proc 0's PCB, and cache its physical
785 * address.
786 */
787 proc0.p_md.md_pcbpaddr =
788 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
789
790 /*
791 * Set the kernel sp, reserving space for an (empty) trapframe,
792 * and make proc0's trapframe pointer point to it for sanity.
793 */
794 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
795 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
796 proc0.p_md.md_tf =
797 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
798
799 /*
800 * Look at arguments passed to us and compute boothowto.
801 */
802
803 boothowto = RB_SINGLE;
804 #ifdef KADB
805 boothowto |= RB_KDB;
806 #endif
807 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
808 /*
809 * Note that we'd really like to differentiate case here,
810 * but the Alpha AXP Architecture Reference Manual
811 * says that we shouldn't.
812 */
813 switch (*p) {
814 case 'a': /* autoboot */
815 case 'A':
816 boothowto &= ~RB_SINGLE;
817 break;
818
819 #ifdef DEBUG
820 case 'c': /* crash dump immediately after autoconfig */
821 case 'C':
822 boothowto |= RB_DUMP;
823 break;
824 #endif
825
826 #if defined(KGDB) || defined(DDB)
827 case 'd': /* break into the kernel debugger ASAP */
828 case 'D':
829 boothowto |= RB_KDB;
830 break;
831 #endif
832
833 case 'h': /* always halt, never reboot */
834 case 'H':
835 boothowto |= RB_HALT;
836 break;
837
838 #if 0
839 case 'm': /* mini root present in memory */
840 case 'M':
841 boothowto |= RB_MINIROOT;
842 break;
843 #endif
844
845 case 'n': /* askname */
846 case 'N':
847 boothowto |= RB_ASKNAME;
848 break;
849
850 case 's': /* single-user (default, supported for sanity) */
851 case 'S':
852 boothowto |= RB_SINGLE;
853 break;
854
855 case '-':
856 /*
857 * Just ignore this. It's not required, but it's
858 * common for it to be passed regardless.
859 */
860 break;
861
862 default:
863 printf("Unrecognized boot flag '%c'.\n", *p);
864 break;
865 }
866 }
867
868
869 /*
870 * Figure out the number of cpus in the box, from RPB fields.
871 * Really. We mean it.
872 */
873 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
874 struct pcs *pcsp;
875
876 pcsp = LOCATE_PCS(hwrpb, i);
877 if ((pcsp->pcs_flags & PCS_PP) != 0)
878 ncpus++;
879 }
880
881 /*
882 * Initialize debuggers, and break into them if appropriate.
883 */
884 #ifdef DDB
885 db_machine_init();
886 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
887 ksym_start, ksym_end);
888 if (boothowto & RB_KDB)
889 Debugger();
890 #endif
891 #ifdef KGDB
892 if (boothowto & RB_KDB)
893 kgdb_connect(0);
894 #endif
895 /*
896 * Figure out our clock frequency, from RPB fields.
897 */
898 hz = hwrpb->rpb_intr_freq >> 12;
899 if (!(60 <= hz && hz <= 10240)) {
900 hz = 1024;
901 #ifdef DIAGNOSTIC
902 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
903 hwrpb->rpb_intr_freq, hz);
904 #endif
905 }
906 }
907
908 /*
909 * Allocate space for system data structures. We are given
910 * a starting virtual address and we return a final virtual
911 * address; along the way we set each data structure pointer.
912 *
913 * We call allocsys() with 0 to find out how much space we want,
914 * allocate that much and fill it with zeroes, and the call
915 * allocsys() again with the correct base virtual address.
916 */
917 caddr_t
918 allocsys(v)
919 caddr_t v;
920 {
921
922 #define valloc(name, type, num) \
923 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
924
925 #ifdef REAL_CLISTS
926 valloc(cfree, struct cblock, nclist);
927 #endif
928 valloc(callout, struct callout, ncallout);
929 #ifdef SYSVSHM
930 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
931 #endif
932 #ifdef SYSVSEM
933 valloc(sema, struct semid_ds, seminfo.semmni);
934 valloc(sem, struct sem, seminfo.semmns);
935 /* This is pretty disgusting! */
936 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
937 #endif
938 #ifdef SYSVMSG
939 valloc(msgpool, char, msginfo.msgmax);
940 valloc(msgmaps, struct msgmap, msginfo.msgseg);
941 valloc(msghdrs, struct msg, msginfo.msgtql);
942 valloc(msqids, struct msqid_ds, msginfo.msgmni);
943 #endif
944
945 /*
946 * Determine how many buffers to allocate.
947 * We allocate bufcache % of memory for buffer space. Insure a
948 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
949 * headers as file i/o buffers.
950 */
951 if (bufpages == 0)
952 bufpages = physmem / CLSIZE * bufcache / 100;
953 if (nbuf == 0) {
954 nbuf = bufpages;
955 if (nbuf < 16)
956 nbuf = 16;
957 }
958 if (nswbuf == 0) {
959 nswbuf = (nbuf / 2) &~ 1; /* force even */
960 if (nswbuf > 256)
961 nswbuf = 256; /* sanity */
962 }
963 valloc(buf, struct buf, nbuf);
964
965 /*
966 * There appears to be a correlation between the number
967 * of processor slots defined in the HWRPB and the whami
968 * value that can be returned.
969 */
970 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
971
972 return (v);
973 #undef valloc
974 }
975
976 void
977 consinit()
978 {
979
980 /*
981 * Everything related to console initialization is done
982 * in alpha_init().
983 */
984 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
985 printf("consinit: %susing prom console\n",
986 pmap_uses_prom_console() ? "" : "not ");
987 #endif
988 }
989
990 #include "pckbc.h"
991 #include "pckbd.h"
992 #if (NPCKBC > 0) && (NPCKBD == 0)
993
994 #include <dev/isa/pckbcvar.h>
995
996 /*
997 * This is called by the pbkbc driver if no pckbd is configured.
998 * On the i386, it is used to glue in the old, deprecated console
999 * code. On the Alpha, it does nothing.
1000 */
1001 int
1002 pckbc_machdep_cnattach(kbctag, kbcslot)
1003 pckbc_tag_t kbctag;
1004 pckbc_slot_t kbcslot;
1005 {
1006
1007 return (ENXIO);
1008 }
1009 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1010
1011 void
1012 cpu_startup()
1013 {
1014 register unsigned i;
1015 int base, residual;
1016 vaddr_t minaddr, maxaddr;
1017 vsize_t size;
1018 #if defined(DEBUG)
1019 extern int pmapdebug;
1020 int opmapdebug = pmapdebug;
1021
1022 pmapdebug = 0;
1023 #endif
1024
1025 /*
1026 * Good {morning,afternoon,evening,night}.
1027 */
1028 printf(version);
1029 identifycpu();
1030 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1031 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1032 ptoa(resvmem), ptoa(physmem));
1033 if (unusedmem)
1034 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1035 if (unknownmem)
1036 printf("WARNING: %d bytes of memory with unknown purpose\n",
1037 ctob(unknownmem));
1038
1039 /*
1040 * Allocate virtual address space for file I/O buffers.
1041 * Note they are different than the array of headers, 'buf',
1042 * and usually occupy more virtual memory than physical.
1043 */
1044 size = MAXBSIZE * nbuf;
1045 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1046 NULL, UVM_UNKNOWN_OFFSET,
1047 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1048 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1049 panic("startup: cannot allocate VM for buffers");
1050 base = bufpages / nbuf;
1051 residual = bufpages % nbuf;
1052 for (i = 0; i < nbuf; i++) {
1053 vsize_t curbufsize;
1054 vaddr_t curbuf;
1055 struct vm_page *pg;
1056
1057 /*
1058 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1059 * that MAXBSIZE space, we allocate and map (base+1) pages
1060 * for the first "residual" buffers, and then we allocate
1061 * "base" pages for the rest.
1062 */
1063 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1064 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1065
1066 while (curbufsize) {
1067 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1068 if (pg == NULL)
1069 panic("cpu_startup: not enough memory for "
1070 "buffer cache");
1071 #if defined(PMAP_NEW)
1072 pmap_kenter_pgs(curbuf, &pg, 1);
1073 #else
1074 pmap_enter(kernel_map->pmap, curbuf,
1075 VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
1076 TRUE, VM_PROT_READ|VM_PROT_WRITE);
1077 #endif
1078 curbuf += PAGE_SIZE;
1079 curbufsize -= PAGE_SIZE;
1080 }
1081 }
1082 /*
1083 * Allocate a submap for exec arguments. This map effectively
1084 * limits the number of processes exec'ing at any time.
1085 */
1086 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1087 16 * NCARGS, TRUE, FALSE, NULL);
1088
1089 /*
1090 * Allocate a submap for physio
1091 */
1092 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1093 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1094
1095 /*
1096 * No need to allocate an mbuf cluster submap. Mbuf clusters
1097 * are allocated via the pool allocator, and we use K0SEG to
1098 * map those pages.
1099 */
1100
1101 /*
1102 * Initialize callouts
1103 */
1104 callfree = callout;
1105 for (i = 1; i < ncallout; i++)
1106 callout[i-1].c_next = &callout[i];
1107 callout[i-1].c_next = NULL;
1108
1109 #if defined(DEBUG)
1110 pmapdebug = opmapdebug;
1111 #endif
1112 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1113 #if 0
1114 {
1115 extern u_long pmap_pages_stolen;
1116 printf("stolen memory for VM structures = %ld bytes\n",
1117 pmap_pages_stolen * PAGE_SIZE);
1118 }
1119 #endif
1120 printf("using %ld buffers containing %ld bytes of memory\n",
1121 (long)nbuf, (long)(bufpages * CLBYTES));
1122
1123 /*
1124 * Set up buffers, so they can be used to read disk labels.
1125 */
1126 bufinit();
1127
1128 /*
1129 * Set up the HWPCB so that it's safe to configure secondary
1130 * CPUs.
1131 */
1132 hwrpb_primary_init();
1133 }
1134
1135 /*
1136 * Retrieve the platform name from the DSR.
1137 */
1138 const char *
1139 alpha_dsr_sysname()
1140 {
1141 struct dsrdb *dsr;
1142 const char *sysname;
1143
1144 /*
1145 * DSR does not exist on early HWRPB versions.
1146 */
1147 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1148 return (NULL);
1149
1150 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1151 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1152 sizeof(u_int64_t)));
1153 return (sysname);
1154 }
1155
1156 /*
1157 * Lookup the system specified system variation in the provided table,
1158 * returning the model string on match.
1159 */
1160 const char *
1161 alpha_variation_name(variation, avtp)
1162 u_int64_t variation;
1163 const struct alpha_variation_table *avtp;
1164 {
1165 int i;
1166
1167 for (i = 0; avtp[i].avt_model != NULL; i++)
1168 if (avtp[i].avt_variation == variation)
1169 return (avtp[i].avt_model);
1170 return (NULL);
1171 }
1172
1173 /*
1174 * Generate a default platform name based for unknown system variations.
1175 */
1176 const char *
1177 alpha_unknown_sysname()
1178 {
1179 static char s[128]; /* safe size */
1180
1181 sprintf(s, "%s family, unknown model variation 0x%lx",
1182 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1183 return ((const char *)s);
1184 }
1185
1186 void
1187 identifycpu()
1188 {
1189
1190 /*
1191 * print out CPU identification information.
1192 */
1193 printf("%s, %ldMHz\n", cpu_model,
1194 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1195 printf("%ld byte page size, %d processor%s.\n",
1196 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1197 #if 0
1198 /* this isn't defined for any systems that we run on? */
1199 printf("serial number 0x%lx 0x%lx\n",
1200 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1201
1202 /* and these aren't particularly useful! */
1203 printf("variation: 0x%lx, revision 0x%lx\n",
1204 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1205 #endif
1206 }
1207
1208 int waittime = -1;
1209 struct pcb dumppcb;
1210
1211 void
1212 cpu_reboot(howto, bootstr)
1213 int howto;
1214 char *bootstr;
1215 {
1216 extern int cold;
1217 #if defined(MULTIPROCESSOR)
1218 #if 0 /* XXX See below. */
1219 u_long cpu_id;
1220 #endif
1221 #endif
1222
1223 #if defined(MULTIPROCESSOR)
1224 /* We must be running on the primary CPU. */
1225 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1226 panic("cpu_reboot: not on primary CPU!");
1227 #endif
1228
1229 /* If system is cold, just halt. */
1230 if (cold) {
1231 howto |= RB_HALT;
1232 goto haltsys;
1233 }
1234
1235 /* If "always halt" was specified as a boot flag, obey. */
1236 if ((boothowto & RB_HALT) != 0)
1237 howto |= RB_HALT;
1238
1239 boothowto = howto;
1240 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1241 waittime = 0;
1242 vfs_shutdown();
1243 /*
1244 * If we've been adjusting the clock, the todr
1245 * will be out of synch; adjust it now.
1246 */
1247 resettodr();
1248 }
1249
1250 /* Disable interrupts. */
1251 splhigh();
1252
1253 /* If rebooting and a dump is requested do it. */
1254 #if 0
1255 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1256 #else
1257 if (howto & RB_DUMP)
1258 #endif
1259 dumpsys();
1260
1261 haltsys:
1262
1263 /* run any shutdown hooks */
1264 doshutdownhooks();
1265
1266 #if defined(MULTIPROCESSOR)
1267 #if 0 /* XXX doesn't work when called from here?! */
1268 /* Kill off any secondary CPUs. */
1269 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1270 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1271 cpu_info[cpu_id].ci_softc == NULL)
1272 continue;
1273 cpu_halt_secondary(cpu_id);
1274 }
1275 #endif
1276 #endif
1277
1278 #ifdef BOOTKEY
1279 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1280 cnpollc(1); /* for proper keyboard command handling */
1281 cngetc();
1282 cnpollc(0);
1283 printf("\n");
1284 #endif
1285
1286 /* Finally, powerdown/halt/reboot the system. */
1287 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1288 platform.powerdown != NULL) {
1289 (*platform.powerdown)();
1290 printf("WARNING: powerdown failed!\n");
1291 }
1292 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1293 prom_halt(howto & RB_HALT);
1294 /*NOTREACHED*/
1295 }
1296
1297 /*
1298 * These variables are needed by /sbin/savecore
1299 */
1300 u_long dumpmag = 0x8fca0101; /* magic number */
1301 int dumpsize = 0; /* pages */
1302 long dumplo = 0; /* blocks */
1303
1304 /*
1305 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1306 */
1307 int
1308 cpu_dumpsize()
1309 {
1310 int size;
1311
1312 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1313 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1314 if (roundup(size, dbtob(1)) != dbtob(1))
1315 return -1;
1316
1317 return (1);
1318 }
1319
1320 /*
1321 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1322 */
1323 u_long
1324 cpu_dump_mempagecnt()
1325 {
1326 u_long i, n;
1327
1328 n = 0;
1329 for (i = 0; i < mem_cluster_cnt; i++)
1330 n += atop(mem_clusters[i].size);
1331 return (n);
1332 }
1333
1334 /*
1335 * cpu_dump: dump machine-dependent kernel core dump headers.
1336 */
1337 int
1338 cpu_dump()
1339 {
1340 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1341 char buf[dbtob(1)];
1342 kcore_seg_t *segp;
1343 cpu_kcore_hdr_t *cpuhdrp;
1344 phys_ram_seg_t *memsegp;
1345 int i;
1346
1347 dump = bdevsw[major(dumpdev)].d_dump;
1348
1349 bzero(buf, sizeof buf);
1350 segp = (kcore_seg_t *)buf;
1351 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1352 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1353 ALIGN(sizeof(*cpuhdrp))];
1354
1355 /*
1356 * Generate a segment header.
1357 */
1358 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1359 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1360
1361 /*
1362 * Add the machine-dependent header info.
1363 */
1364 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1365 cpuhdrp->page_size = PAGE_SIZE;
1366 cpuhdrp->nmemsegs = mem_cluster_cnt;
1367
1368 /*
1369 * Fill in the memory segment descriptors.
1370 */
1371 for (i = 0; i < mem_cluster_cnt; i++) {
1372 memsegp[i].start = mem_clusters[i].start;
1373 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1374 }
1375
1376 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1377 }
1378
1379 /*
1380 * This is called by main to set dumplo and dumpsize.
1381 * Dumps always skip the first CLBYTES of disk space
1382 * in case there might be a disk label stored there.
1383 * If there is extra space, put dump at the end to
1384 * reduce the chance that swapping trashes it.
1385 */
1386 void
1387 cpu_dumpconf()
1388 {
1389 int nblks, dumpblks; /* size of dump area */
1390 int maj;
1391
1392 if (dumpdev == NODEV)
1393 goto bad;
1394 maj = major(dumpdev);
1395 if (maj < 0 || maj >= nblkdev)
1396 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1397 if (bdevsw[maj].d_psize == NULL)
1398 goto bad;
1399 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1400 if (nblks <= ctod(1))
1401 goto bad;
1402
1403 dumpblks = cpu_dumpsize();
1404 if (dumpblks < 0)
1405 goto bad;
1406 dumpblks += ctod(cpu_dump_mempagecnt());
1407
1408 /* If dump won't fit (incl. room for possible label), punt. */
1409 if (dumpblks > (nblks - ctod(1)))
1410 goto bad;
1411
1412 /* Put dump at end of partition */
1413 dumplo = nblks - dumpblks;
1414
1415 /* dumpsize is in page units, and doesn't include headers. */
1416 dumpsize = cpu_dump_mempagecnt();
1417 return;
1418
1419 bad:
1420 dumpsize = 0;
1421 return;
1422 }
1423
1424 /*
1425 * Dump the kernel's image to the swap partition.
1426 */
1427 #define BYTES_PER_DUMP NBPG
1428
1429 void
1430 dumpsys()
1431 {
1432 u_long totalbytesleft, bytes, i, n, memcl;
1433 u_long maddr;
1434 int psize;
1435 daddr_t blkno;
1436 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1437 int error;
1438
1439 /* Save registers. */
1440 savectx(&dumppcb);
1441
1442 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1443 if (dumpdev == NODEV)
1444 return;
1445
1446 /*
1447 * For dumps during autoconfiguration,
1448 * if dump device has already configured...
1449 */
1450 if (dumpsize == 0)
1451 cpu_dumpconf();
1452 if (dumplo <= 0) {
1453 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1454 minor(dumpdev));
1455 return;
1456 }
1457 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1458 minor(dumpdev), dumplo);
1459
1460 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1461 printf("dump ");
1462 if (psize == -1) {
1463 printf("area unavailable\n");
1464 return;
1465 }
1466
1467 /* XXX should purge all outstanding keystrokes. */
1468
1469 if ((error = cpu_dump()) != 0)
1470 goto err;
1471
1472 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1473 blkno = dumplo + cpu_dumpsize();
1474 dump = bdevsw[major(dumpdev)].d_dump;
1475 error = 0;
1476
1477 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1478 maddr = mem_clusters[memcl].start;
1479 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1480
1481 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1482
1483 /* Print out how many MBs we to go. */
1484 if ((totalbytesleft % (1024*1024)) == 0)
1485 printf("%ld ", totalbytesleft / (1024 * 1024));
1486
1487 /* Limit size for next transfer. */
1488 n = bytes - i;
1489 if (n > BYTES_PER_DUMP)
1490 n = BYTES_PER_DUMP;
1491
1492 error = (*dump)(dumpdev, blkno,
1493 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1494 if (error)
1495 goto err;
1496 maddr += n;
1497 blkno += btodb(n); /* XXX? */
1498
1499 /* XXX should look for keystrokes, to cancel. */
1500 }
1501 }
1502
1503 err:
1504 switch (error) {
1505
1506 case ENXIO:
1507 printf("device bad\n");
1508 break;
1509
1510 case EFAULT:
1511 printf("device not ready\n");
1512 break;
1513
1514 case EINVAL:
1515 printf("area improper\n");
1516 break;
1517
1518 case EIO:
1519 printf("i/o error\n");
1520 break;
1521
1522 case EINTR:
1523 printf("aborted from console\n");
1524 break;
1525
1526 case 0:
1527 printf("succeeded\n");
1528 break;
1529
1530 default:
1531 printf("error %d\n", error);
1532 break;
1533 }
1534 printf("\n\n");
1535 delay(1000);
1536 }
1537
1538 void
1539 frametoreg(framep, regp)
1540 struct trapframe *framep;
1541 struct reg *regp;
1542 {
1543
1544 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1545 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1546 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1547 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1548 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1549 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1550 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1551 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1552 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1553 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1554 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1555 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1556 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1557 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1558 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1559 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1560 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1561 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1562 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1563 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1564 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1565 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1566 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1567 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1568 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1569 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1570 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1571 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1572 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1573 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1574 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1575 regp->r_regs[R_ZERO] = 0;
1576 }
1577
1578 void
1579 regtoframe(regp, framep)
1580 struct reg *regp;
1581 struct trapframe *framep;
1582 {
1583
1584 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1585 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1586 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1587 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1588 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1589 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1590 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1591 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1592 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1593 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1594 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1595 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1596 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1597 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1598 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1599 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1600 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1601 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1602 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1603 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1604 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1605 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1606 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1607 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1608 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1609 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1610 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1611 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1612 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1613 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1614 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1615 /* ??? = regp->r_regs[R_ZERO]; */
1616 }
1617
1618 void
1619 printregs(regp)
1620 struct reg *regp;
1621 {
1622 int i;
1623
1624 for (i = 0; i < 32; i++)
1625 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1626 i & 1 ? "\n" : "\t");
1627 }
1628
1629 void
1630 regdump(framep)
1631 struct trapframe *framep;
1632 {
1633 struct reg reg;
1634
1635 frametoreg(framep, ®);
1636 reg.r_regs[R_SP] = alpha_pal_rdusp();
1637
1638 printf("REGISTERS:\n");
1639 printregs(®);
1640 }
1641
1642 #ifdef DEBUG
1643 int sigdebug = 0;
1644 int sigpid = 0;
1645 #define SDB_FOLLOW 0x01
1646 #define SDB_KSTACK 0x02
1647 #endif
1648
1649 /*
1650 * Send an interrupt to process.
1651 */
1652 void
1653 sendsig(catcher, sig, mask, code)
1654 sig_t catcher;
1655 int sig;
1656 sigset_t *mask;
1657 u_long code;
1658 {
1659 struct proc *p = curproc;
1660 struct sigcontext *scp, ksc;
1661 struct trapframe *frame;
1662 struct sigacts *psp = p->p_sigacts;
1663 int onstack, fsize, rndfsize;
1664
1665 frame = p->p_md.md_tf;
1666
1667 /* Do we need to jump onto the signal stack? */
1668 onstack =
1669 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1670 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1671
1672 /* Allocate space for the signal handler context. */
1673 fsize = sizeof(ksc);
1674 rndfsize = ((fsize + 15) / 16) * 16;
1675
1676 if (onstack)
1677 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1678 psp->ps_sigstk.ss_size);
1679 else
1680 scp = (struct sigcontext *)(alpha_pal_rdusp());
1681 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1682
1683 #ifdef DEBUG
1684 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1685 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1686 sig, &onstack, scp);
1687 #endif
1688
1689 /* Build stack frame for signal trampoline. */
1690 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1691 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1692
1693 /* Save register context. */
1694 frametoreg(frame, (struct reg *)ksc.sc_regs);
1695 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1696 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1697
1698 /* save the floating-point state, if necessary, then copy it. */
1699 if (p == fpcurproc) {
1700 alpha_pal_wrfen(1);
1701 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1702 alpha_pal_wrfen(0);
1703 fpcurproc = NULL;
1704 }
1705 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1706 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1707 sizeof(struct fpreg));
1708 ksc.sc_fp_control = 0; /* XXX ? */
1709 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1710 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1711
1712 /* Save signal stack. */
1713 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1714
1715 /* Save signal mask. */
1716 ksc.sc_mask = *mask;
1717
1718 #ifdef COMPAT_13
1719 /*
1720 * XXX We always have to save an old style signal mask because
1721 * XXX we might be delivering a signal to a process which will
1722 * XXX escape from the signal in a non-standard way and invoke
1723 * XXX sigreturn() directly.
1724 */
1725 {
1726 /* Note: it's a long in the stack frame. */
1727 sigset13_t mask13;
1728
1729 native_sigset_to_sigset13(mask, &mask13);
1730 ksc.__sc_mask13 = mask13;
1731 }
1732 #endif
1733
1734 #ifdef COMPAT_OSF1
1735 /*
1736 * XXX Create an OSF/1-style sigcontext and associated goo.
1737 */
1738 #endif
1739
1740 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1741 /*
1742 * Process has trashed its stack; give it an illegal
1743 * instruction to halt it in its tracks.
1744 */
1745 #ifdef DEBUG
1746 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1747 printf("sendsig(%d): copyout failed on sig %d\n",
1748 p->p_pid, sig);
1749 #endif
1750 sigexit(p, SIGILL);
1751 /* NOTREACHED */
1752 }
1753 #ifdef DEBUG
1754 if (sigdebug & SDB_FOLLOW)
1755 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1756 scp, code);
1757 #endif
1758
1759 /* Set up the registers to return to sigcode. */
1760 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1761 frame->tf_regs[FRAME_A0] = sig;
1762 frame->tf_regs[FRAME_A1] = code;
1763 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1764 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1765 alpha_pal_wrusp((unsigned long)scp);
1766
1767 /* Remember that we're now on the signal stack. */
1768 if (onstack)
1769 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1770
1771 #ifdef DEBUG
1772 if (sigdebug & SDB_FOLLOW)
1773 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1774 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1775 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1776 printf("sendsig(%d): sig %d returns\n",
1777 p->p_pid, sig);
1778 #endif
1779 }
1780
1781 /*
1782 * System call to cleanup state after a signal
1783 * has been taken. Reset signal mask and
1784 * stack state from context left by sendsig (above).
1785 * Return to previous pc and psl as specified by
1786 * context left by sendsig. Check carefully to
1787 * make sure that the user has not modified the
1788 * psl to gain improper priviledges or to cause
1789 * a machine fault.
1790 */
1791 /* ARGSUSED */
1792 int
1793 sys___sigreturn14(p, v, retval)
1794 struct proc *p;
1795 void *v;
1796 register_t *retval;
1797 {
1798 struct sys___sigreturn14_args /* {
1799 syscallarg(struct sigcontext *) sigcntxp;
1800 } */ *uap = v;
1801 struct sigcontext *scp, ksc;
1802
1803 /*
1804 * The trampoline code hands us the context.
1805 * It is unsafe to keep track of it ourselves, in the event that a
1806 * program jumps out of a signal handler.
1807 */
1808 scp = SCARG(uap, sigcntxp);
1809 #ifdef DEBUG
1810 if (sigdebug & SDB_FOLLOW)
1811 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1812 #endif
1813 if (ALIGN(scp) != (u_int64_t)scp)
1814 return (EINVAL);
1815
1816 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1817 return (EFAULT);
1818
1819 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1820 return (EINVAL);
1821
1822 /* Restore register context. */
1823 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1824 p->p_md.md_tf->tf_regs[FRAME_PS] =
1825 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1826
1827 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1828 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1829
1830 /* XXX ksc.sc_ownedfp ? */
1831 if (p == fpcurproc)
1832 fpcurproc = NULL;
1833 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1834 sizeof(struct fpreg));
1835 /* XXX ksc.sc_fp_control ? */
1836
1837 /* Restore signal stack. */
1838 if (ksc.sc_onstack & SS_ONSTACK)
1839 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1840 else
1841 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1842
1843 /* Restore signal mask. */
1844 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1845
1846 #ifdef DEBUG
1847 if (sigdebug & SDB_FOLLOW)
1848 printf("sigreturn(%d): returns\n", p->p_pid);
1849 #endif
1850 return (EJUSTRETURN);
1851 }
1852
1853 /*
1854 * machine dependent system variables.
1855 */
1856 int
1857 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1858 int *name;
1859 u_int namelen;
1860 void *oldp;
1861 size_t *oldlenp;
1862 void *newp;
1863 size_t newlen;
1864 struct proc *p;
1865 {
1866 dev_t consdev;
1867
1868 /* all sysctl names at this level are terminal */
1869 if (namelen != 1)
1870 return (ENOTDIR); /* overloaded */
1871
1872 switch (name[0]) {
1873 case CPU_CONSDEV:
1874 if (cn_tab != NULL)
1875 consdev = cn_tab->cn_dev;
1876 else
1877 consdev = NODEV;
1878 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1879 sizeof consdev));
1880
1881 case CPU_ROOT_DEVICE:
1882 return (sysctl_rdstring(oldp, oldlenp, newp,
1883 root_device->dv_xname));
1884
1885 case CPU_UNALIGNED_PRINT:
1886 return (sysctl_int(oldp, oldlenp, newp, newlen,
1887 &alpha_unaligned_print));
1888
1889 case CPU_UNALIGNED_FIX:
1890 return (sysctl_int(oldp, oldlenp, newp, newlen,
1891 &alpha_unaligned_fix));
1892
1893 case CPU_UNALIGNED_SIGBUS:
1894 return (sysctl_int(oldp, oldlenp, newp, newlen,
1895 &alpha_unaligned_sigbus));
1896
1897 case CPU_BOOTED_KERNEL:
1898 return (sysctl_rdstring(oldp, oldlenp, newp,
1899 bootinfo.booted_kernel));
1900
1901 default:
1902 return (EOPNOTSUPP);
1903 }
1904 /* NOTREACHED */
1905 }
1906
1907 /*
1908 * Set registers on exec.
1909 */
1910 void
1911 setregs(p, pack, stack)
1912 register struct proc *p;
1913 struct exec_package *pack;
1914 u_long stack;
1915 {
1916 struct trapframe *tfp = p->p_md.md_tf;
1917 #ifdef DEBUG
1918 int i;
1919 #endif
1920
1921 #ifdef DEBUG
1922 /*
1923 * Crash and dump, if the user requested it.
1924 */
1925 if (boothowto & RB_DUMP)
1926 panic("crash requested by boot flags");
1927 #endif
1928
1929 #ifdef DEBUG
1930 for (i = 0; i < FRAME_SIZE; i++)
1931 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1932 #else
1933 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1934 #endif
1935 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1936 #define FP_RN 2 /* XXX */
1937 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1938 alpha_pal_wrusp(stack);
1939 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1940 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1941
1942 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1943 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1944 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1945 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1946 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1947
1948 p->p_md.md_flags &= ~MDP_FPUSED;
1949 if (fpcurproc == p)
1950 fpcurproc = NULL;
1951 }
1952
1953 void
1954 netintr()
1955 {
1956 int n, s;
1957
1958 s = splhigh();
1959 n = netisr;
1960 netisr = 0;
1961 splx(s);
1962
1963 #define DONETISR(bit, fn) \
1964 do { \
1965 if (n & (1 << (bit))) \
1966 fn; \
1967 } while (0)
1968
1969 #ifdef INET
1970 #if NARP > 0
1971 DONETISR(NETISR_ARP, arpintr());
1972 #endif
1973 DONETISR(NETISR_IP, ipintr());
1974 #endif
1975 #ifdef NETATALK
1976 DONETISR(NETISR_ATALK, atintr());
1977 #endif
1978 #ifdef NS
1979 DONETISR(NETISR_NS, nsintr());
1980 #endif
1981 #ifdef ISO
1982 DONETISR(NETISR_ISO, clnlintr());
1983 #endif
1984 #ifdef CCITT
1985 DONETISR(NETISR_CCITT, ccittintr());
1986 #endif
1987 #ifdef NATM
1988 DONETISR(NETISR_NATM, natmintr());
1989 #endif
1990 #if NPPP > 1
1991 DONETISR(NETISR_PPP, pppintr());
1992 #endif
1993
1994 #undef DONETISR
1995 }
1996
1997 void
1998 do_sir()
1999 {
2000 u_int64_t n;
2001
2002 do {
2003 (void)splhigh();
2004 n = ssir;
2005 ssir = 0;
2006 splsoft(); /* don't recurse through spl0() */
2007
2008 #define COUNT_SOFT uvmexp.softs++
2009
2010 #define DO_SIR(bit, fn) \
2011 do { \
2012 if (n & (bit)) { \
2013 COUNT_SOFT; \
2014 fn; \
2015 } \
2016 } while (0)
2017
2018 DO_SIR(SIR_NET, netintr());
2019 DO_SIR(SIR_CLOCK, softclock());
2020 #if NCOM > 0
2021 DO_SIR(SIR_SERIAL, comsoft());
2022 #endif
2023
2024 #undef COUNT_SOFT
2025 #undef DO_SIR
2026 } while (ssir != 0);
2027 }
2028
2029 int
2030 spl0()
2031 {
2032
2033 if (ssir)
2034 do_sir(); /* it lowers the IPL itself */
2035
2036 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2037 }
2038
2039 /*
2040 * The following primitives manipulate the run queues. _whichqs tells which
2041 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2042 * into queues, Remrunqueue removes them from queues. The running process is
2043 * on no queue, other processes are on a queue related to p->p_priority,
2044 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2045 * available queues.
2046 */
2047 /*
2048 * setrunqueue(p)
2049 * proc *p;
2050 *
2051 * Call should be made at splclock(), and p->p_stat should be SRUN.
2052 */
2053
2054 void
2055 setrunqueue(p)
2056 struct proc *p;
2057 {
2058 int bit;
2059
2060 /* firewall: p->p_back must be NULL */
2061 if (p->p_back != NULL)
2062 panic("setrunqueue");
2063
2064 bit = p->p_priority >> 2;
2065 whichqs |= (1 << bit);
2066 p->p_forw = (struct proc *)&qs[bit];
2067 p->p_back = qs[bit].ph_rlink;
2068 p->p_back->p_forw = p;
2069 qs[bit].ph_rlink = p;
2070 }
2071
2072 /*
2073 * remrunqueue(p)
2074 *
2075 * Call should be made at splclock().
2076 */
2077 void
2078 remrunqueue(p)
2079 struct proc *p;
2080 {
2081 int bit;
2082
2083 bit = p->p_priority >> 2;
2084 if ((whichqs & (1 << bit)) == 0)
2085 panic("remrunqueue");
2086
2087 p->p_back->p_forw = p->p_forw;
2088 p->p_forw->p_back = p->p_back;
2089 p->p_back = NULL; /* for firewall checking. */
2090
2091 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2092 whichqs &= ~(1 << bit);
2093 }
2094
2095 /*
2096 * Return the best possible estimate of the time in the timeval
2097 * to which tvp points. Unfortunately, we can't read the hardware registers.
2098 * We guarantee that the time will be greater than the value obtained by a
2099 * previous call.
2100 */
2101 void
2102 microtime(tvp)
2103 register struct timeval *tvp;
2104 {
2105 int s = splclock();
2106 static struct timeval lasttime;
2107
2108 *tvp = time;
2109 #ifdef notdef
2110 tvp->tv_usec += clkread();
2111 while (tvp->tv_usec > 1000000) {
2112 tvp->tv_sec++;
2113 tvp->tv_usec -= 1000000;
2114 }
2115 #endif
2116 if (tvp->tv_sec == lasttime.tv_sec &&
2117 tvp->tv_usec <= lasttime.tv_usec &&
2118 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2119 tvp->tv_sec++;
2120 tvp->tv_usec -= 1000000;
2121 }
2122 lasttime = *tvp;
2123 splx(s);
2124 }
2125
2126 /*
2127 * Wait "n" microseconds.
2128 */
2129 void
2130 delay(n)
2131 unsigned long n;
2132 {
2133 long N = cycles_per_usec * (n);
2134
2135 while (N > 0) /* XXX */
2136 N -= 3; /* XXX */
2137 }
2138
2139 #if defined(COMPAT_OSF1) || 1 /* XXX */
2140 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2141 u_long));
2142
2143 void
2144 cpu_exec_ecoff_setregs(p, epp, stack)
2145 struct proc *p;
2146 struct exec_package *epp;
2147 u_long stack;
2148 {
2149 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2150
2151 setregs(p, epp, stack);
2152 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2153 }
2154
2155 /*
2156 * cpu_exec_ecoff_hook():
2157 * cpu-dependent ECOFF format hook for execve().
2158 *
2159 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2160 *
2161 */
2162 int
2163 cpu_exec_ecoff_hook(p, epp)
2164 struct proc *p;
2165 struct exec_package *epp;
2166 {
2167 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2168 extern struct emul emul_netbsd;
2169 #ifdef COMPAT_OSF1
2170 extern struct emul emul_osf1;
2171 #endif
2172
2173 switch (execp->f.f_magic) {
2174 #ifdef COMPAT_OSF1
2175 case ECOFF_MAGIC_ALPHA:
2176 epp->ep_emul = &emul_osf1;
2177 break;
2178 #endif
2179
2180 case ECOFF_MAGIC_NETBSD_ALPHA:
2181 epp->ep_emul = &emul_netbsd;
2182 break;
2183
2184 default:
2185 return ENOEXEC;
2186 }
2187 return 0;
2188 }
2189 #endif
2190
2191 int
2192 alpha_pa_access(pa)
2193 u_long pa;
2194 {
2195 int i;
2196
2197 for (i = 0; i < mem_cluster_cnt; i++) {
2198 if (pa < mem_clusters[i].start)
2199 continue;
2200 if ((pa - mem_clusters[i].start) >=
2201 (mem_clusters[i].size & ~PAGE_MASK))
2202 continue;
2203 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2204 }
2205 return (PROT_NONE);
2206 }
2207
2208 /* XXX XXX BEGIN XXX XXX */
2209 paddr_t alpha_XXX_dmamap_or; /* XXX */
2210 /* XXX */
2211 paddr_t /* XXX */
2212 alpha_XXX_dmamap(v) /* XXX */
2213 vaddr_t v; /* XXX */
2214 { /* XXX */
2215 /* XXX */
2216 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2217 } /* XXX */
2218 /* XXX XXX END XXX XXX */
2219
2220 struct mchkinfo *
2221 cpu_mchkinfo()
2222 {
2223 if (mchkinfo_all_cpus == NULL)
2224 return &startup_info;
2225 return mchkinfo_all_cpus + alpha_pal_whami();
2226 }
2227