machdep.c revision 1.169 1 /* $NetBSD: machdep.c,v 1.169 1999/04/15 22:15:05 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_bufcache.h"
68 #include "opt_ddb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_pmap_new.h"
71 #include "opt_dec_3000_300.h"
72 #include "opt_dec_3000_500.h"
73 #include "opt_compat_osf1.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_inet.h"
76 #include "opt_atalk.h"
77 #include "opt_ccitt.h"
78 #include "opt_iso.h"
79 #include "opt_ns.h"
80 #include "opt_natm.h"
81 #include "opt_sysv.h"
82
83 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84
85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.169 1999/04/15 22:15:05 thorpej Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/signalvar.h>
90 #include <sys/kernel.h>
91 #include <sys/map.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <sys/reboot.h>
95 #include <sys/device.h>
96 #include <sys/file.h>
97 #ifdef REAL_CLISTS
98 #include <sys/clist.h>
99 #endif
100 #include <sys/callout.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/mman.h>
104 #include <sys/msgbuf.h>
105 #include <sys/ioctl.h>
106 #include <sys/tty.h>
107 #include <sys/user.h>
108 #include <sys/exec.h>
109 #include <sys/exec_ecoff.h>
110 #include <vm/vm.h>
111 #include <sys/sysctl.h>
112 #include <sys/core.h>
113 #include <sys/kcore.h>
114 #include <machine/kcore.h>
115 #ifdef SYSVMSG
116 #include <sys/msg.h>
117 #endif
118 #ifdef SYSVSEM
119 #include <sys/sem.h>
120 #endif
121 #ifdef SYSVSHM
122 #include <sys/shm.h>
123 #endif
124
125 #include <sys/mount.h>
126 #include <sys/syscallargs.h>
127
128 #include <vm/vm_kern.h>
129
130 #include <uvm/uvm_extern.h>
131
132 #include <dev/cons.h>
133
134 #include <machine/autoconf.h>
135 #include <machine/cpu.h>
136 #include <machine/reg.h>
137 #include <machine/rpb.h>
138 #include <machine/prom.h>
139 #include <machine/conf.h>
140
141 #include <alpha/alpha/cpuvar.h>
142
143 #include <net/netisr.h>
144 #include <net/if.h>
145
146 #ifdef INET
147 #include <net/route.h>
148 #include <netinet/in.h>
149 #include <netinet/ip_var.h>
150 #include "arp.h"
151 #if NARP > 0
152 #include <netinet/if_inarp.h>
153 #endif
154 #endif
155 #ifdef NS
156 #include <netns/ns_var.h>
157 #endif
158 #ifdef ISO
159 #include <netiso/iso.h>
160 #include <netiso/clnp.h>
161 #endif
162 #ifdef CCITT
163 #include <netccitt/x25.h>
164 #include <netccitt/pk.h>
165 #include <netccitt/pk_extern.h>
166 #endif
167 #ifdef NATM
168 #include <netnatm/natm.h>
169 #endif
170 #ifdef NETATALK
171 #include <netatalk/at_extern.h>
172 #endif
173 #include "ppp.h"
174 #if NPPP > 0
175 #include <net/ppp_defs.h>
176 #include <net/if_ppp.h>
177 #endif
178
179 #ifdef DDB
180 #include <machine/db_machdep.h>
181 #include <ddb/db_access.h>
182 #include <ddb/db_sym.h>
183 #include <ddb/db_extern.h>
184 #include <ddb/db_interface.h>
185 #endif
186
187 #include <machine/alpha.h>
188 #include <machine/intrcnt.h>
189
190 #include "com.h"
191 #if NCOM > 0
192 extern void comsoft __P((void));
193 #endif
194
195 vm_map_t exec_map = NULL;
196 vm_map_t mb_map = NULL;
197 vm_map_t phys_map = NULL;
198
199 /*
200 * Declare these as initialized data so we can patch them.
201 */
202 int nswbuf = 0;
203 #ifdef NBUF
204 int nbuf = NBUF;
205 #else
206 int nbuf = 0;
207 #endif
208
209 #ifndef BUFPAGES
210 #define BUFPAGES 0
211 #endif
212 #ifndef BUFCACHE
213 #define BUFCACHE 10
214 #endif
215
216 int bufpages = BUFPAGES; /* optional hardwired count */
217 int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
218
219 caddr_t msgbufaddr;
220
221 int maxmem; /* max memory per process */
222
223 int totalphysmem; /* total amount of physical memory in system */
224 int physmem; /* physical memory used by NetBSD + some rsvd */
225 int resvmem; /* amount of memory reserved for PROM */
226 int unusedmem; /* amount of memory for OS that we don't use */
227 int unknownmem; /* amount of memory with an unknown use */
228
229 int cputype; /* system type, from the RPB */
230
231 /*
232 * XXX We need an address to which we can assign things so that they
233 * won't be optimized away because we didn't use the value.
234 */
235 u_int32_t no_optimize;
236
237 /* the following is used externally (sysctl_hw) */
238 char machine[] = MACHINE; /* from <machine/param.h> */
239 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
240 char cpu_model[128];
241
242 struct user *proc0paddr;
243
244 /* Number of machine cycles per microsecond */
245 u_int64_t cycles_per_usec;
246
247 /* number of cpus in the box. really! */
248 int ncpus;
249
250 /* machine check info array, valloc()'ed in allocsys() */
251
252 static struct mchkinfo startup_info,
253 *mchkinfo_all_cpus;
254
255 struct bootinfo_kernel bootinfo;
256
257 /* For built-in TCDS */
258 #if defined(DEC_3000_300) || defined(DEC_3000_500)
259 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
260 #endif
261
262 struct platform platform;
263
264 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
265 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
266
267 #ifdef DDB
268 /* start and end of kernel symbol table */
269 void *ksym_start, *ksym_end;
270 #endif
271
272 /* for cpu_sysctl() */
273 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
274 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
275 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
276
277 /*
278 * XXX This should be dynamically sized, but we have the chicken-egg problem!
279 * XXX it should also be larger than it is, because not all of the mddt
280 * XXX clusters end up being used for VM.
281 */
282 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
283 int mem_cluster_cnt;
284
285 caddr_t allocsys __P((caddr_t));
286 int cpu_dump __P((void));
287 int cpu_dumpsize __P((void));
288 u_long cpu_dump_mempagecnt __P((void));
289 void dumpsys __P((void));
290 void identifycpu __P((void));
291 void netintr __P((void));
292 void printregs __P((struct reg *));
293
294 void
295 alpha_init(pfn, ptb, bim, bip, biv)
296 u_long pfn; /* first free PFN number */
297 u_long ptb; /* PFN of current level 1 page table */
298 u_long bim; /* bootinfo magic */
299 u_long bip; /* bootinfo pointer */
300 u_long biv; /* bootinfo version */
301 {
302 extern char kernel_text[], _end[];
303 struct mddt *mddtp;
304 struct mddt_cluster *memc;
305 int i, mddtweird;
306 struct vm_physseg *vps;
307 vaddr_t kernstart, kernend;
308 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
309 vsize_t size;
310 char *p;
311 caddr_t v;
312 char *bootinfo_msg;
313
314 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
315
316 /*
317 * Turn off interrupts (not mchecks) and floating point.
318 * Make sure the instruction and data streams are consistent.
319 */
320 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
321 alpha_pal_wrfen(0);
322 ALPHA_TBIA();
323 alpha_pal_imb();
324
325 /*
326 * Get critical system information (if possible, from the
327 * information provided by the boot program).
328 */
329 bootinfo_msg = NULL;
330 if (bim == BOOTINFO_MAGIC) {
331 if (biv == 0) { /* backward compat */
332 biv = *(u_long *)bip;
333 bip += 8;
334 }
335 switch (biv) {
336 case 1: {
337 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
338
339 bootinfo.ssym = v1p->ssym;
340 bootinfo.esym = v1p->esym;
341 /* hwrpb may not be provided by boot block in v1 */
342 if (v1p->hwrpb != NULL) {
343 bootinfo.hwrpb_phys =
344 ((struct rpb *)v1p->hwrpb)->rpb_phys;
345 bootinfo.hwrpb_size = v1p->hwrpbsize;
346 } else {
347 bootinfo.hwrpb_phys =
348 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
349 bootinfo.hwrpb_size =
350 ((struct rpb *)HWRPB_ADDR)->rpb_size;
351 }
352 bcopy(v1p->boot_flags, bootinfo.boot_flags,
353 min(sizeof v1p->boot_flags,
354 sizeof bootinfo.boot_flags));
355 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
356 min(sizeof v1p->booted_kernel,
357 sizeof bootinfo.booted_kernel));
358 /* booted dev not provided in bootinfo */
359 init_prom_interface((struct rpb *)
360 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
361 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
362 sizeof bootinfo.booted_dev);
363 break;
364 }
365 default:
366 bootinfo_msg = "unknown bootinfo version";
367 goto nobootinfo;
368 }
369 } else {
370 bootinfo_msg = "boot program did not pass bootinfo";
371 nobootinfo:
372 bootinfo.ssym = (u_long)_end;
373 bootinfo.esym = (u_long)_end;
374 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
375 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
376 init_prom_interface((struct rpb *)HWRPB_ADDR);
377 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
378 sizeof bootinfo.boot_flags);
379 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
380 sizeof bootinfo.booted_kernel);
381 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
382 sizeof bootinfo.booted_dev);
383 }
384
385 /*
386 * Initialize the kernel's mapping of the RPB. It's needed for
387 * lots of things.
388 */
389 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
390
391 #if defined(DEC_3000_300) || defined(DEC_3000_500)
392 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
393 hwrpb->rpb_type == ST_DEC_3000_500) {
394 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
395 sizeof(dec_3000_scsiid));
396 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
397 sizeof(dec_3000_scsifast));
398 }
399 #endif
400
401 /*
402 * Remember how many cycles there are per microsecond,
403 * so that we can use delay(). Round up, for safety.
404 */
405 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
406
407 /*
408 * Initalize the (temporary) bootstrap console interface, so
409 * we can use printf until the VM system starts being setup.
410 * The real console is initialized before then.
411 */
412 init_bootstrap_console();
413
414 /* OUTPUT NOW ALLOWED */
415
416 /* delayed from above */
417 if (bootinfo_msg)
418 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
419 bootinfo_msg, bim, bip, biv);
420
421 /* Initialize the trap vectors on the primary processor. */
422 trap_init();
423
424 /*
425 * Find out what hardware we're on, and do basic initialization.
426 */
427 cputype = hwrpb->rpb_type;
428 if (cputype < 0) {
429 /*
430 * At least some white-box systems have SRM which
431 * reports a systype that's the negative of their
432 * blue-box counterpart.
433 */
434 cputype = -cputype;
435 }
436 if (cputype >= ncpuinit) {
437 platform_not_supported();
438 /* NOTREACHED */
439 }
440 (*cpuinit[cputype].init)();
441 strcpy(cpu_model, platform.model);
442
443 /*
444 * Initalize the real console, so the the bootstrap console is
445 * no longer necessary.
446 */
447 (*platform.cons_init)();
448
449 #ifdef DIAGNOSTIC
450 /* Paranoid sanity checking */
451
452 /* We should always be running on the the primary. */
453 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
454
455 /*
456 * On single-CPU systypes, the primary should always be CPU 0,
457 * except on Alpha 8200 systems where the CPU id is related
458 * to the VID, which is related to the Turbo Laser node id.
459 */
460 if (cputype != ST_DEC_21000)
461 assert(hwrpb->rpb_primary_cpu_id == 0);
462 #endif
463
464 /* NO MORE FIRMWARE ACCESS ALLOWED */
465 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
466 /*
467 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
468 * XXX pmap_uses_prom_console() evaluates to non-zero.)
469 */
470 #endif
471
472 /*
473 * find out this system's page size
474 */
475 PAGE_SIZE = hwrpb->rpb_page_size;
476 if (PAGE_SIZE != 8192)
477 panic("page size %d != 8192?!", PAGE_SIZE);
478
479 /*
480 * Initialize PAGE_SIZE-dependent variables.
481 */
482 uvm_setpagesize();
483
484 /*
485 * Find the beginning and end of the kernel (and leave a
486 * bit of space before the beginning for the bootstrap
487 * stack).
488 */
489 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
490 #ifdef DDB
491 ksym_start = (void *)bootinfo.ssym;
492 ksym_end = (void *)bootinfo.esym;
493 kernend = (vaddr_t)round_page(ksym_end);
494 #else
495 kernend = (vaddr_t)round_page(_end);
496 #endif
497
498 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
499 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
500
501 /*
502 * Find out how much memory is available, by looking at
503 * the memory cluster descriptors. This also tries to do
504 * its best to detect things things that have never been seen
505 * before...
506 */
507 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
508
509 /* MDDT SANITY CHECKING */
510 mddtweird = 0;
511 if (mddtp->mddt_cluster_cnt < 2) {
512 mddtweird = 1;
513 printf("WARNING: weird number of mem clusters: %lu\n",
514 mddtp->mddt_cluster_cnt);
515 }
516
517 #if 0
518 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
519 #endif
520
521 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
522 memc = &mddtp->mddt_clusters[i];
523 #if 0
524 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
525 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
526 #endif
527 totalphysmem += memc->mddt_pg_cnt;
528 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
529 mem_clusters[mem_cluster_cnt].start =
530 ptoa(memc->mddt_pfn);
531 mem_clusters[mem_cluster_cnt].size =
532 ptoa(memc->mddt_pg_cnt);
533 if (memc->mddt_usage & MDDT_mbz ||
534 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
535 memc->mddt_usage & MDDT_PALCODE)
536 mem_clusters[mem_cluster_cnt].size |=
537 PROT_READ;
538 else
539 mem_clusters[mem_cluster_cnt].size |=
540 PROT_READ | PROT_WRITE | PROT_EXEC;
541 mem_cluster_cnt++;
542 }
543
544 if (memc->mddt_usage & MDDT_mbz) {
545 mddtweird = 1;
546 printf("WARNING: mem cluster %d has weird "
547 "usage 0x%lx\n", i, memc->mddt_usage);
548 unknownmem += memc->mddt_pg_cnt;
549 continue;
550 }
551 if (memc->mddt_usage & MDDT_NONVOLATILE) {
552 /* XXX should handle these... */
553 printf("WARNING: skipping non-volatile mem "
554 "cluster %d\n", i);
555 unusedmem += memc->mddt_pg_cnt;
556 continue;
557 }
558 if (memc->mddt_usage & MDDT_PALCODE) {
559 resvmem += memc->mddt_pg_cnt;
560 continue;
561 }
562
563 /*
564 * We have a memory cluster available for system
565 * software use. We must determine if this cluster
566 * holds the kernel.
567 */
568 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
569 /*
570 * XXX If the kernel uses the PROM console, we only use the
571 * XXX memory after the kernel in the first system segment,
572 * XXX to avoid clobbering prom mapping, data, etc.
573 */
574 if (!pmap_uses_prom_console() || physmem == 0) {
575 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
576 physmem += memc->mddt_pg_cnt;
577 pfn0 = memc->mddt_pfn;
578 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
579 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
580 /*
581 * Must compute the location of the kernel
582 * within the segment.
583 */
584 #if 0
585 printf("Cluster %d contains kernel\n", i);
586 #endif
587 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
588 if (!pmap_uses_prom_console()) {
589 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
590 if (pfn0 < kernstartpfn) {
591 /*
592 * There is a chunk before the kernel.
593 */
594 #if 0
595 printf("Loading chunk before kernel: "
596 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
597 #endif
598 uvm_page_physload(pfn0, kernstartpfn,
599 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
600 }
601 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
602 }
603 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
604 if (kernendpfn < pfn1) {
605 /*
606 * There is a chunk after the kernel.
607 */
608 #if 0
609 printf("Loading chunk after kernel: "
610 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
611 #endif
612 uvm_page_physload(kernendpfn, pfn1,
613 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
614 }
615 } else {
616 /*
617 * Just load this cluster as one chunk.
618 */
619 #if 0
620 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
621 pfn0, pfn1);
622 #endif
623 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
624 VM_FREELIST_DEFAULT);
625 }
626 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
627 }
628 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
629 }
630
631 /*
632 * Dump out the MDDT if it looks odd...
633 */
634 if (mddtweird) {
635 printf("\n");
636 printf("complete memory cluster information:\n");
637 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
638 printf("mddt %d:\n", i);
639 printf("\tpfn %lx\n",
640 mddtp->mddt_clusters[i].mddt_pfn);
641 printf("\tcnt %lx\n",
642 mddtp->mddt_clusters[i].mddt_pg_cnt);
643 printf("\ttest %lx\n",
644 mddtp->mddt_clusters[i].mddt_pg_test);
645 printf("\tbva %lx\n",
646 mddtp->mddt_clusters[i].mddt_v_bitaddr);
647 printf("\tbpa %lx\n",
648 mddtp->mddt_clusters[i].mddt_p_bitaddr);
649 printf("\tbcksum %lx\n",
650 mddtp->mddt_clusters[i].mddt_bit_cksum);
651 printf("\tusage %lx\n",
652 mddtp->mddt_clusters[i].mddt_usage);
653 }
654 printf("\n");
655 }
656
657 if (totalphysmem == 0)
658 panic("can't happen: system seems to have no memory!");
659
660 #ifdef LIMITMEM
661 /*
662 * XXX Kludge so we can run on machines with memory larger
663 * XXX than 1G until all device drivers are converted to
664 * XXX use bus_dma. (Relies on the fact that vm_physmem
665 * XXX sorted in order of increasing addresses.)
666 */
667 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
668
669 printf("******** LIMITING MEMORY TO %dMB **********\n",
670 LIMITMEM);
671
672 do {
673 u_long ovf;
674
675 vps = &vm_physmem[vm_nphysseg - 1];
676
677 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
678 /*
679 * If the start is too high, just drop
680 * the whole segment.
681 *
682 * XXX can start != avail_start in this
683 * XXX case? wouldn't that mean that
684 * XXX some memory was stolen above the
685 * XXX limit? What to do?
686 */
687 ovf = vps->end - vps->start;
688 vm_nphysseg--;
689 } else {
690 /*
691 * If the start is OK, calculate how much
692 * to drop and drop it.
693 */
694 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
695 vps->end -= ovf;
696 vps->avail_end -= ovf;
697 }
698 physmem -= ovf;
699 unusedmem += ovf;
700 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
701 }
702 #endif /* LIMITMEM */
703
704 maxmem = physmem;
705
706 #if 0
707 printf("totalphysmem = %d\n", totalphysmem);
708 printf("physmem = %d\n", physmem);
709 printf("resvmem = %d\n", resvmem);
710 printf("unusedmem = %d\n", unusedmem);
711 printf("unknownmem = %d\n", unknownmem);
712 #endif
713
714 /*
715 * Adjust some parameters if the amount of physmem
716 * available would cause us to croak. This is completely
717 * eyeballed and isn't meant to be the final answer.
718 * vm_phys_size is probably the only one to really worry
719 * about.
720 *
721 * It's for booting a GENERIC kernel on a large memory platform.
722 */
723 if (physmem >= atop(128 * 1024 * 1024)) {
724 vm_kmem_size <<= 3;
725 vm_phys_size <<= 2;
726 }
727
728 /*
729 * Initialize error message buffer (at end of core).
730 */
731 {
732 size_t sz = round_page(MSGBUFSIZE);
733
734 vps = &vm_physmem[vm_nphysseg - 1];
735
736 /* shrink so that it'll fit in the last segment */
737 if ((vps->avail_end - vps->avail_start) < atop(sz))
738 sz = ptoa(vps->avail_end - vps->avail_start);
739
740 vps->end -= atop(sz);
741 vps->avail_end -= atop(sz);
742 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
743 initmsgbuf(msgbufaddr, sz);
744
745 /* Remove the last segment if it now has no pages. */
746 if (vps->start == vps->end)
747 vm_nphysseg--;
748
749 /* warn if the message buffer had to be shrunk */
750 if (sz != round_page(MSGBUFSIZE))
751 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
752 round_page(MSGBUFSIZE), sz);
753
754 }
755
756 /*
757 * Init mapping for u page(s) for proc 0
758 */
759 proc0.p_addr = proc0paddr =
760 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
761
762 /*
763 * Allocate space for system data structures. These data structures
764 * are allocated here instead of cpu_startup() because physical
765 * memory is directly addressable. We don't have to map these into
766 * virtual address space.
767 */
768 size = (vsize_t)allocsys(0);
769 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
770 if ((allocsys(v) - v) != size)
771 panic("alpha_init: table size inconsistency");
772
773 /*
774 * Initialize the virtual memory system, and set the
775 * page table base register in proc 0's PCB.
776 */
777 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
778 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
779
780 /*
781 * Initialize the rest of proc 0's PCB, and cache its physical
782 * address.
783 */
784 proc0.p_md.md_pcbpaddr =
785 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
786
787 /*
788 * Set the kernel sp, reserving space for an (empty) trapframe,
789 * and make proc0's trapframe pointer point to it for sanity.
790 */
791 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
792 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
793 proc0.p_md.md_tf =
794 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
795
796 /*
797 * Look at arguments passed to us and compute boothowto.
798 */
799
800 boothowto = RB_SINGLE;
801 #ifdef KADB
802 boothowto |= RB_KDB;
803 #endif
804 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
805 /*
806 * Note that we'd really like to differentiate case here,
807 * but the Alpha AXP Architecture Reference Manual
808 * says that we shouldn't.
809 */
810 switch (*p) {
811 case 'a': /* autoboot */
812 case 'A':
813 boothowto &= ~RB_SINGLE;
814 break;
815
816 #ifdef DEBUG
817 case 'c': /* crash dump immediately after autoconfig */
818 case 'C':
819 boothowto |= RB_DUMP;
820 break;
821 #endif
822
823 #if defined(KGDB) || defined(DDB)
824 case 'd': /* break into the kernel debugger ASAP */
825 case 'D':
826 boothowto |= RB_KDB;
827 break;
828 #endif
829
830 case 'h': /* always halt, never reboot */
831 case 'H':
832 boothowto |= RB_HALT;
833 break;
834
835 #if 0
836 case 'm': /* mini root present in memory */
837 case 'M':
838 boothowto |= RB_MINIROOT;
839 break;
840 #endif
841
842 case 'n': /* askname */
843 case 'N':
844 boothowto |= RB_ASKNAME;
845 break;
846
847 case 's': /* single-user (default, supported for sanity) */
848 case 'S':
849 boothowto |= RB_SINGLE;
850 break;
851
852 case '-':
853 /*
854 * Just ignore this. It's not required, but it's
855 * common for it to be passed regardless.
856 */
857 break;
858
859 default:
860 printf("Unrecognized boot flag '%c'.\n", *p);
861 break;
862 }
863 }
864
865
866 /*
867 * Figure out the number of cpus in the box, from RPB fields.
868 * Really. We mean it.
869 */
870 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
871 struct pcs *pcsp;
872
873 pcsp = LOCATE_PCS(hwrpb, i);
874 if ((pcsp->pcs_flags & PCS_PP) != 0)
875 ncpus++;
876 }
877
878 /*
879 * Initialize debuggers, and break into them if appropriate.
880 */
881 #ifdef DDB
882 db_machine_init();
883 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
884 ksym_start, ksym_end);
885 if (boothowto & RB_KDB)
886 Debugger();
887 #endif
888 #ifdef KGDB
889 if (boothowto & RB_KDB)
890 kgdb_connect(0);
891 #endif
892 /*
893 * Figure out our clock frequency, from RPB fields.
894 */
895 hz = hwrpb->rpb_intr_freq >> 12;
896 if (!(60 <= hz && hz <= 10240)) {
897 hz = 1024;
898 #ifdef DIAGNOSTIC
899 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
900 hwrpb->rpb_intr_freq, hz);
901 #endif
902 }
903 }
904
905 /*
906 * Allocate space for system data structures. We are given
907 * a starting virtual address and we return a final virtual
908 * address; along the way we set each data structure pointer.
909 *
910 * We call allocsys() with 0 to find out how much space we want,
911 * allocate that much and fill it with zeroes, and the call
912 * allocsys() again with the correct base virtual address.
913 */
914 caddr_t
915 allocsys(v)
916 caddr_t v;
917 {
918
919 #define valloc(name, type, num) \
920 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
921
922 #ifdef REAL_CLISTS
923 valloc(cfree, struct cblock, nclist);
924 #endif
925 valloc(callout, struct callout, ncallout);
926 #ifdef SYSVSHM
927 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
928 #endif
929 #ifdef SYSVSEM
930 valloc(sema, struct semid_ds, seminfo.semmni);
931 valloc(sem, struct sem, seminfo.semmns);
932 /* This is pretty disgusting! */
933 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
934 #endif
935 #ifdef SYSVMSG
936 valloc(msgpool, char, msginfo.msgmax);
937 valloc(msgmaps, struct msgmap, msginfo.msgseg);
938 valloc(msghdrs, struct msg, msginfo.msgtql);
939 valloc(msqids, struct msqid_ds, msginfo.msgmni);
940 #endif
941
942 /*
943 * Determine how many buffers to allocate.
944 * We allocate bufcache % of memory for buffer space. Insure a
945 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
946 * headers as file i/o buffers.
947 */
948 if (bufpages == 0)
949 bufpages = physmem / CLSIZE * bufcache / 100;
950 if (nbuf == 0) {
951 nbuf = bufpages;
952 if (nbuf < 16)
953 nbuf = 16;
954 }
955 if (nswbuf == 0) {
956 nswbuf = (nbuf / 2) &~ 1; /* force even */
957 if (nswbuf > 256)
958 nswbuf = 256; /* sanity */
959 }
960 valloc(buf, struct buf, nbuf);
961
962 /*
963 * There appears to be a correlation between the number
964 * of processor slots defined in the HWRPB and the whami
965 * value that can be returned.
966 */
967 valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
968
969 return (v);
970 #undef valloc
971 }
972
973 void
974 consinit()
975 {
976
977 /*
978 * Everything related to console initialization is done
979 * in alpha_init().
980 */
981 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
982 printf("consinit: %susing prom console\n",
983 pmap_uses_prom_console() ? "" : "not ");
984 #endif
985 }
986
987 #include "pckbc.h"
988 #include "pckbd.h"
989 #if (NPCKBC > 0) && (NPCKBD == 0)
990
991 #include <dev/isa/pckbcvar.h>
992
993 /*
994 * This is called by the pbkbc driver if no pckbd is configured.
995 * On the i386, it is used to glue in the old, deprecated console
996 * code. On the Alpha, it does nothing.
997 */
998 int
999 pckbc_machdep_cnattach(kbctag, kbcslot)
1000 pckbc_tag_t kbctag;
1001 pckbc_slot_t kbcslot;
1002 {
1003
1004 return (ENXIO);
1005 }
1006 #endif /* NPCKBC > 0 && NPCKBD == 0 */
1007
1008 void
1009 cpu_startup()
1010 {
1011 register unsigned i;
1012 int base, residual;
1013 vaddr_t minaddr, maxaddr;
1014 vsize_t size;
1015 #if defined(DEBUG)
1016 extern int pmapdebug;
1017 int opmapdebug = pmapdebug;
1018
1019 pmapdebug = 0;
1020 #endif
1021
1022 /*
1023 * Good {morning,afternoon,evening,night}.
1024 */
1025 printf(version);
1026 identifycpu();
1027 printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1028 ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1029 ptoa(resvmem), ptoa(physmem));
1030 if (unusedmem)
1031 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1032 if (unknownmem)
1033 printf("WARNING: %d bytes of memory with unknown purpose\n",
1034 ctob(unknownmem));
1035
1036 /*
1037 * Allocate virtual address space for file I/O buffers.
1038 * Note they are different than the array of headers, 'buf',
1039 * and usually occupy more virtual memory than physical.
1040 */
1041 size = MAXBSIZE * nbuf;
1042 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1043 NULL, UVM_UNKNOWN_OFFSET,
1044 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1045 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1046 panic("startup: cannot allocate VM for buffers");
1047 base = bufpages / nbuf;
1048 residual = bufpages % nbuf;
1049 for (i = 0; i < nbuf; i++) {
1050 vsize_t curbufsize;
1051 vaddr_t curbuf;
1052 struct vm_page *pg;
1053
1054 /*
1055 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1056 * that MAXBSIZE space, we allocate and map (base+1) pages
1057 * for the first "residual" buffers, and then we allocate
1058 * "base" pages for the rest.
1059 */
1060 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1061 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1062
1063 while (curbufsize) {
1064 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1065 if (pg == NULL)
1066 panic("cpu_startup: not enough memory for "
1067 "buffer cache");
1068 #if defined(PMAP_NEW)
1069 pmap_kenter_pgs(curbuf, &pg, 1);
1070 #else
1071 pmap_enter(kernel_map->pmap, curbuf,
1072 VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
1073 TRUE, VM_PROT_READ|VM_PROT_WRITE);
1074 #endif
1075 curbuf += PAGE_SIZE;
1076 curbufsize -= PAGE_SIZE;
1077 }
1078 }
1079 /*
1080 * Allocate a submap for exec arguments. This map effectively
1081 * limits the number of processes exec'ing at any time.
1082 */
1083 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1084 16 * NCARGS, TRUE, FALSE, NULL);
1085
1086 /*
1087 * Allocate a submap for physio
1088 */
1089 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1090 VM_PHYS_SIZE, TRUE, FALSE, NULL);
1091
1092 /*
1093 * No need to allocate an mbuf cluster submap. Mbuf clusters
1094 * are allocated via the pool allocator, and we use K0SEG to
1095 * map those pages.
1096 */
1097
1098 /*
1099 * Initialize callouts
1100 */
1101 callfree = callout;
1102 for (i = 1; i < ncallout; i++)
1103 callout[i-1].c_next = &callout[i];
1104 callout[i-1].c_next = NULL;
1105
1106 #if defined(DEBUG)
1107 pmapdebug = opmapdebug;
1108 #endif
1109 printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1110 #if 0
1111 {
1112 extern u_long pmap_pages_stolen;
1113 printf("stolen memory for VM structures = %ld bytes\n",
1114 pmap_pages_stolen * PAGE_SIZE);
1115 }
1116 #endif
1117 printf("using %ld buffers containing %ld bytes of memory\n",
1118 (long)nbuf, (long)(bufpages * CLBYTES));
1119
1120 /*
1121 * Set up buffers, so they can be used to read disk labels.
1122 */
1123 bufinit();
1124
1125 /*
1126 * Set up the HWPCB so that it's safe to configure secondary
1127 * CPUs.
1128 */
1129 hwrpb_primary_init();
1130 }
1131
1132 /*
1133 * Retrieve the platform name from the DSR.
1134 */
1135 const char *
1136 alpha_dsr_sysname()
1137 {
1138 struct dsrdb *dsr;
1139 const char *sysname;
1140
1141 /*
1142 * DSR does not exist on early HWRPB versions.
1143 */
1144 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1145 return (NULL);
1146
1147 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1148 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1149 sizeof(u_int64_t)));
1150 return (sysname);
1151 }
1152
1153 /*
1154 * Lookup the system specified system variation in the provided table,
1155 * returning the model string on match.
1156 */
1157 const char *
1158 alpha_variation_name(variation, avtp)
1159 u_int64_t variation;
1160 const struct alpha_variation_table *avtp;
1161 {
1162 int i;
1163
1164 for (i = 0; avtp[i].avt_model != NULL; i++)
1165 if (avtp[i].avt_variation == variation)
1166 return (avtp[i].avt_model);
1167 return (NULL);
1168 }
1169
1170 /*
1171 * Generate a default platform name based for unknown system variations.
1172 */
1173 const char *
1174 alpha_unknown_sysname()
1175 {
1176 static char s[128]; /* safe size */
1177
1178 sprintf(s, "%s family, unknown model variation 0x%lx",
1179 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1180 return ((const char *)s);
1181 }
1182
1183 void
1184 identifycpu()
1185 {
1186
1187 /*
1188 * print out CPU identification information.
1189 */
1190 printf("%s, %ldMHz\n", cpu_model,
1191 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1192 printf("%ld byte page size, %d processor%s.\n",
1193 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1194 #if 0
1195 /* this isn't defined for any systems that we run on? */
1196 printf("serial number 0x%lx 0x%lx\n",
1197 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1198
1199 /* and these aren't particularly useful! */
1200 printf("variation: 0x%lx, revision 0x%lx\n",
1201 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1202 #endif
1203 }
1204
1205 int waittime = -1;
1206 struct pcb dumppcb;
1207
1208 void
1209 cpu_reboot(howto, bootstr)
1210 int howto;
1211 char *bootstr;
1212 {
1213 extern int cold;
1214 #if defined(MULTIPROCESSOR)
1215 #if 0 /* XXX See below. */
1216 u_long cpu_id;
1217 #endif
1218 #endif
1219
1220 #if defined(MULTIPROCESSOR)
1221 /* We must be running on the primary CPU. */
1222 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1223 panic("cpu_reboot: not on primary CPU!");
1224 #endif
1225
1226 /* If system is cold, just halt. */
1227 if (cold) {
1228 howto |= RB_HALT;
1229 goto haltsys;
1230 }
1231
1232 /* If "always halt" was specified as a boot flag, obey. */
1233 if ((boothowto & RB_HALT) != 0)
1234 howto |= RB_HALT;
1235
1236 boothowto = howto;
1237 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1238 waittime = 0;
1239 vfs_shutdown();
1240 /*
1241 * If we've been adjusting the clock, the todr
1242 * will be out of synch; adjust it now.
1243 */
1244 resettodr();
1245 }
1246
1247 /* Disable interrupts. */
1248 splhigh();
1249
1250 /* If rebooting and a dump is requested do it. */
1251 #if 0
1252 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1253 #else
1254 if (howto & RB_DUMP)
1255 #endif
1256 dumpsys();
1257
1258 haltsys:
1259
1260 /* run any shutdown hooks */
1261 doshutdownhooks();
1262
1263 #if defined(MULTIPROCESSOR)
1264 #if 0 /* XXX doesn't work when called from here?! */
1265 /* Kill off any secondary CPUs. */
1266 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1267 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1268 cpu_info[cpu_id].ci_softc == NULL)
1269 continue;
1270 cpu_halt_secondary(cpu_id);
1271 }
1272 #endif
1273 #endif
1274
1275 #ifdef BOOTKEY
1276 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1277 cnpollc(1); /* for proper keyboard command handling */
1278 cngetc();
1279 cnpollc(0);
1280 printf("\n");
1281 #endif
1282
1283 /* Finally, powerdown/halt/reboot the system. */
1284 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1285 platform.powerdown != NULL) {
1286 (*platform.powerdown)();
1287 printf("WARNING: powerdown failed!\n");
1288 }
1289 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1290 prom_halt(howto & RB_HALT);
1291 /*NOTREACHED*/
1292 }
1293
1294 /*
1295 * These variables are needed by /sbin/savecore
1296 */
1297 u_long dumpmag = 0x8fca0101; /* magic number */
1298 int dumpsize = 0; /* pages */
1299 long dumplo = 0; /* blocks */
1300
1301 /*
1302 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1303 */
1304 int
1305 cpu_dumpsize()
1306 {
1307 int size;
1308
1309 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1310 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1311 if (roundup(size, dbtob(1)) != dbtob(1))
1312 return -1;
1313
1314 return (1);
1315 }
1316
1317 /*
1318 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1319 */
1320 u_long
1321 cpu_dump_mempagecnt()
1322 {
1323 u_long i, n;
1324
1325 n = 0;
1326 for (i = 0; i < mem_cluster_cnt; i++)
1327 n += atop(mem_clusters[i].size);
1328 return (n);
1329 }
1330
1331 /*
1332 * cpu_dump: dump machine-dependent kernel core dump headers.
1333 */
1334 int
1335 cpu_dump()
1336 {
1337 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1338 char buf[dbtob(1)];
1339 kcore_seg_t *segp;
1340 cpu_kcore_hdr_t *cpuhdrp;
1341 phys_ram_seg_t *memsegp;
1342 int i;
1343
1344 dump = bdevsw[major(dumpdev)].d_dump;
1345
1346 bzero(buf, sizeof buf);
1347 segp = (kcore_seg_t *)buf;
1348 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1349 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1350 ALIGN(sizeof(*cpuhdrp))];
1351
1352 /*
1353 * Generate a segment header.
1354 */
1355 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1356 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1357
1358 /*
1359 * Add the machine-dependent header info.
1360 */
1361 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1362 cpuhdrp->page_size = PAGE_SIZE;
1363 cpuhdrp->nmemsegs = mem_cluster_cnt;
1364
1365 /*
1366 * Fill in the memory segment descriptors.
1367 */
1368 for (i = 0; i < mem_cluster_cnt; i++) {
1369 memsegp[i].start = mem_clusters[i].start;
1370 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1371 }
1372
1373 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1374 }
1375
1376 /*
1377 * This is called by main to set dumplo and dumpsize.
1378 * Dumps always skip the first CLBYTES of disk space
1379 * in case there might be a disk label stored there.
1380 * If there is extra space, put dump at the end to
1381 * reduce the chance that swapping trashes it.
1382 */
1383 void
1384 cpu_dumpconf()
1385 {
1386 int nblks, dumpblks; /* size of dump area */
1387 int maj;
1388
1389 if (dumpdev == NODEV)
1390 goto bad;
1391 maj = major(dumpdev);
1392 if (maj < 0 || maj >= nblkdev)
1393 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1394 if (bdevsw[maj].d_psize == NULL)
1395 goto bad;
1396 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1397 if (nblks <= ctod(1))
1398 goto bad;
1399
1400 dumpblks = cpu_dumpsize();
1401 if (dumpblks < 0)
1402 goto bad;
1403 dumpblks += ctod(cpu_dump_mempagecnt());
1404
1405 /* If dump won't fit (incl. room for possible label), punt. */
1406 if (dumpblks > (nblks - ctod(1)))
1407 goto bad;
1408
1409 /* Put dump at end of partition */
1410 dumplo = nblks - dumpblks;
1411
1412 /* dumpsize is in page units, and doesn't include headers. */
1413 dumpsize = cpu_dump_mempagecnt();
1414 return;
1415
1416 bad:
1417 dumpsize = 0;
1418 return;
1419 }
1420
1421 /*
1422 * Dump the kernel's image to the swap partition.
1423 */
1424 #define BYTES_PER_DUMP NBPG
1425
1426 void
1427 dumpsys()
1428 {
1429 u_long totalbytesleft, bytes, i, n, memcl;
1430 u_long maddr;
1431 int psize;
1432 daddr_t blkno;
1433 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1434 int error;
1435
1436 /* Save registers. */
1437 savectx(&dumppcb);
1438
1439 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1440 if (dumpdev == NODEV)
1441 return;
1442
1443 /*
1444 * For dumps during autoconfiguration,
1445 * if dump device has already configured...
1446 */
1447 if (dumpsize == 0)
1448 cpu_dumpconf();
1449 if (dumplo <= 0) {
1450 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1451 minor(dumpdev));
1452 return;
1453 }
1454 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1455 minor(dumpdev), dumplo);
1456
1457 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1458 printf("dump ");
1459 if (psize == -1) {
1460 printf("area unavailable\n");
1461 return;
1462 }
1463
1464 /* XXX should purge all outstanding keystrokes. */
1465
1466 if ((error = cpu_dump()) != 0)
1467 goto err;
1468
1469 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1470 blkno = dumplo + cpu_dumpsize();
1471 dump = bdevsw[major(dumpdev)].d_dump;
1472 error = 0;
1473
1474 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1475 maddr = mem_clusters[memcl].start;
1476 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1477
1478 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1479
1480 /* Print out how many MBs we to go. */
1481 if ((totalbytesleft % (1024*1024)) == 0)
1482 printf("%ld ", totalbytesleft / (1024 * 1024));
1483
1484 /* Limit size for next transfer. */
1485 n = bytes - i;
1486 if (n > BYTES_PER_DUMP)
1487 n = BYTES_PER_DUMP;
1488
1489 error = (*dump)(dumpdev, blkno,
1490 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1491 if (error)
1492 goto err;
1493 maddr += n;
1494 blkno += btodb(n); /* XXX? */
1495
1496 /* XXX should look for keystrokes, to cancel. */
1497 }
1498 }
1499
1500 err:
1501 switch (error) {
1502
1503 case ENXIO:
1504 printf("device bad\n");
1505 break;
1506
1507 case EFAULT:
1508 printf("device not ready\n");
1509 break;
1510
1511 case EINVAL:
1512 printf("area improper\n");
1513 break;
1514
1515 case EIO:
1516 printf("i/o error\n");
1517 break;
1518
1519 case EINTR:
1520 printf("aborted from console\n");
1521 break;
1522
1523 case 0:
1524 printf("succeeded\n");
1525 break;
1526
1527 default:
1528 printf("error %d\n", error);
1529 break;
1530 }
1531 printf("\n\n");
1532 delay(1000);
1533 }
1534
1535 void
1536 frametoreg(framep, regp)
1537 struct trapframe *framep;
1538 struct reg *regp;
1539 {
1540
1541 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1542 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1543 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1544 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1545 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1546 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1547 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1548 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1549 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1550 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1551 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1552 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1553 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1554 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1555 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1556 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1557 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1558 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1559 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1560 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1561 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1562 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1563 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1564 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1565 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1566 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1567 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1568 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1569 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1570 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1571 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1572 regp->r_regs[R_ZERO] = 0;
1573 }
1574
1575 void
1576 regtoframe(regp, framep)
1577 struct reg *regp;
1578 struct trapframe *framep;
1579 {
1580
1581 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1582 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1583 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1584 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1585 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1586 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1587 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1588 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1589 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1590 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1591 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1592 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1593 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1594 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1595 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1596 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1597 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1598 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1599 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1600 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1601 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1602 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1603 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1604 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1605 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1606 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1607 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1608 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1609 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1610 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1611 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1612 /* ??? = regp->r_regs[R_ZERO]; */
1613 }
1614
1615 void
1616 printregs(regp)
1617 struct reg *regp;
1618 {
1619 int i;
1620
1621 for (i = 0; i < 32; i++)
1622 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1623 i & 1 ? "\n" : "\t");
1624 }
1625
1626 void
1627 regdump(framep)
1628 struct trapframe *framep;
1629 {
1630 struct reg reg;
1631
1632 frametoreg(framep, ®);
1633 reg.r_regs[R_SP] = alpha_pal_rdusp();
1634
1635 printf("REGISTERS:\n");
1636 printregs(®);
1637 }
1638
1639 #ifdef DEBUG
1640 int sigdebug = 0;
1641 int sigpid = 0;
1642 #define SDB_FOLLOW 0x01
1643 #define SDB_KSTACK 0x02
1644 #endif
1645
1646 /*
1647 * Send an interrupt to process.
1648 */
1649 void
1650 sendsig(catcher, sig, mask, code)
1651 sig_t catcher;
1652 int sig;
1653 sigset_t *mask;
1654 u_long code;
1655 {
1656 struct proc *p = curproc;
1657 struct sigcontext *scp, ksc;
1658 struct trapframe *frame;
1659 struct sigacts *psp = p->p_sigacts;
1660 int onstack, fsize, rndfsize;
1661
1662 frame = p->p_md.md_tf;
1663
1664 /* Do we need to jump onto the signal stack? */
1665 onstack =
1666 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1667 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1668
1669 /* Allocate space for the signal handler context. */
1670 fsize = sizeof(ksc);
1671 rndfsize = ((fsize + 15) / 16) * 16;
1672
1673 if (onstack)
1674 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1675 psp->ps_sigstk.ss_size);
1676 else
1677 scp = (struct sigcontext *)(alpha_pal_rdusp());
1678 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1679
1680 #ifdef DEBUG
1681 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1682 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1683 sig, &onstack, scp);
1684 #endif
1685
1686 /* Build stack frame for signal trampoline. */
1687 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1688 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1689
1690 /* Save register context. */
1691 frametoreg(frame, (struct reg *)ksc.sc_regs);
1692 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1693 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1694
1695 /* save the floating-point state, if necessary, then copy it. */
1696 if (p == fpcurproc) {
1697 alpha_pal_wrfen(1);
1698 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1699 alpha_pal_wrfen(0);
1700 fpcurproc = NULL;
1701 }
1702 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1703 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1704 sizeof(struct fpreg));
1705 ksc.sc_fp_control = 0; /* XXX ? */
1706 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1707 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1708
1709 /* Save signal stack. */
1710 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1711
1712 /* Save signal mask. */
1713 ksc.sc_mask = *mask;
1714
1715 #ifdef COMPAT_13
1716 /*
1717 * XXX We always have to save an old style signal mask because
1718 * XXX we might be delivering a signal to a process which will
1719 * XXX escape from the signal in a non-standard way and invoke
1720 * XXX sigreturn() directly.
1721 */
1722 {
1723 /* Note: it's a long in the stack frame. */
1724 sigset13_t mask13;
1725
1726 native_sigset_to_sigset13(mask, &mask13);
1727 ksc.__sc_mask13 = mask13;
1728 }
1729 #endif
1730
1731 #ifdef COMPAT_OSF1
1732 /*
1733 * XXX Create an OSF/1-style sigcontext and associated goo.
1734 */
1735 #endif
1736
1737 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1738 /*
1739 * Process has trashed its stack; give it an illegal
1740 * instruction to halt it in its tracks.
1741 */
1742 #ifdef DEBUG
1743 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1744 printf("sendsig(%d): copyout failed on sig %d\n",
1745 p->p_pid, sig);
1746 #endif
1747 sigexit(p, SIGILL);
1748 /* NOTREACHED */
1749 }
1750 #ifdef DEBUG
1751 if (sigdebug & SDB_FOLLOW)
1752 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1753 scp, code);
1754 #endif
1755
1756 /* Set up the registers to return to sigcode. */
1757 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1758 frame->tf_regs[FRAME_A0] = sig;
1759 frame->tf_regs[FRAME_A1] = code;
1760 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1761 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1762 alpha_pal_wrusp((unsigned long)scp);
1763
1764 /* Remember that we're now on the signal stack. */
1765 if (onstack)
1766 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1767
1768 #ifdef DEBUG
1769 if (sigdebug & SDB_FOLLOW)
1770 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1771 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1772 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1773 printf("sendsig(%d): sig %d returns\n",
1774 p->p_pid, sig);
1775 #endif
1776 }
1777
1778 /*
1779 * System call to cleanup state after a signal
1780 * has been taken. Reset signal mask and
1781 * stack state from context left by sendsig (above).
1782 * Return to previous pc and psl as specified by
1783 * context left by sendsig. Check carefully to
1784 * make sure that the user has not modified the
1785 * psl to gain improper priviledges or to cause
1786 * a machine fault.
1787 */
1788 /* ARGSUSED */
1789 int
1790 sys___sigreturn14(p, v, retval)
1791 struct proc *p;
1792 void *v;
1793 register_t *retval;
1794 {
1795 struct sys___sigreturn14_args /* {
1796 syscallarg(struct sigcontext *) sigcntxp;
1797 } */ *uap = v;
1798 struct sigcontext *scp, ksc;
1799
1800 /*
1801 * The trampoline code hands us the context.
1802 * It is unsafe to keep track of it ourselves, in the event that a
1803 * program jumps out of a signal handler.
1804 */
1805 scp = SCARG(uap, sigcntxp);
1806 #ifdef DEBUG
1807 if (sigdebug & SDB_FOLLOW)
1808 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1809 #endif
1810 if (ALIGN(scp) != (u_int64_t)scp)
1811 return (EINVAL);
1812
1813 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1814 return (EFAULT);
1815
1816 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1817 return (EINVAL);
1818
1819 /* Restore register context. */
1820 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1821 p->p_md.md_tf->tf_regs[FRAME_PS] =
1822 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1823
1824 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1825 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1826
1827 /* XXX ksc.sc_ownedfp ? */
1828 if (p == fpcurproc)
1829 fpcurproc = NULL;
1830 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1831 sizeof(struct fpreg));
1832 /* XXX ksc.sc_fp_control ? */
1833
1834 /* Restore signal stack. */
1835 if (ksc.sc_onstack & SS_ONSTACK)
1836 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1837 else
1838 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1839
1840 /* Restore signal mask. */
1841 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1842
1843 #ifdef DEBUG
1844 if (sigdebug & SDB_FOLLOW)
1845 printf("sigreturn(%d): returns\n", p->p_pid);
1846 #endif
1847 return (EJUSTRETURN);
1848 }
1849
1850 /*
1851 * machine dependent system variables.
1852 */
1853 int
1854 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1855 int *name;
1856 u_int namelen;
1857 void *oldp;
1858 size_t *oldlenp;
1859 void *newp;
1860 size_t newlen;
1861 struct proc *p;
1862 {
1863 dev_t consdev;
1864
1865 /* all sysctl names at this level are terminal */
1866 if (namelen != 1)
1867 return (ENOTDIR); /* overloaded */
1868
1869 switch (name[0]) {
1870 case CPU_CONSDEV:
1871 if (cn_tab != NULL)
1872 consdev = cn_tab->cn_dev;
1873 else
1874 consdev = NODEV;
1875 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1876 sizeof consdev));
1877
1878 case CPU_ROOT_DEVICE:
1879 return (sysctl_rdstring(oldp, oldlenp, newp,
1880 root_device->dv_xname));
1881
1882 case CPU_UNALIGNED_PRINT:
1883 return (sysctl_int(oldp, oldlenp, newp, newlen,
1884 &alpha_unaligned_print));
1885
1886 case CPU_UNALIGNED_FIX:
1887 return (sysctl_int(oldp, oldlenp, newp, newlen,
1888 &alpha_unaligned_fix));
1889
1890 case CPU_UNALIGNED_SIGBUS:
1891 return (sysctl_int(oldp, oldlenp, newp, newlen,
1892 &alpha_unaligned_sigbus));
1893
1894 case CPU_BOOTED_KERNEL:
1895 return (sysctl_rdstring(oldp, oldlenp, newp,
1896 bootinfo.booted_kernel));
1897
1898 default:
1899 return (EOPNOTSUPP);
1900 }
1901 /* NOTREACHED */
1902 }
1903
1904 /*
1905 * Set registers on exec.
1906 */
1907 void
1908 setregs(p, pack, stack)
1909 register struct proc *p;
1910 struct exec_package *pack;
1911 u_long stack;
1912 {
1913 struct trapframe *tfp = p->p_md.md_tf;
1914 #ifdef DEBUG
1915 int i;
1916 #endif
1917
1918 #ifdef DEBUG
1919 /*
1920 * Crash and dump, if the user requested it.
1921 */
1922 if (boothowto & RB_DUMP)
1923 panic("crash requested by boot flags");
1924 #endif
1925
1926 #ifdef DEBUG
1927 for (i = 0; i < FRAME_SIZE; i++)
1928 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1929 #else
1930 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1931 #endif
1932 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1933 #define FP_RN 2 /* XXX */
1934 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1935 alpha_pal_wrusp(stack);
1936 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1937 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1938
1939 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1940 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1941 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1942 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1943 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1944
1945 p->p_md.md_flags &= ~MDP_FPUSED;
1946 if (fpcurproc == p)
1947 fpcurproc = NULL;
1948 }
1949
1950 void
1951 netintr()
1952 {
1953 int n, s;
1954
1955 s = splhigh();
1956 n = netisr;
1957 netisr = 0;
1958 splx(s);
1959
1960 #define DONETISR(bit, fn) \
1961 do { \
1962 if (n & (1 << (bit))) \
1963 fn; \
1964 } while (0)
1965
1966 #ifdef INET
1967 #if NARP > 0
1968 DONETISR(NETISR_ARP, arpintr());
1969 #endif
1970 DONETISR(NETISR_IP, ipintr());
1971 #endif
1972 #ifdef NETATALK
1973 DONETISR(NETISR_ATALK, atintr());
1974 #endif
1975 #ifdef NS
1976 DONETISR(NETISR_NS, nsintr());
1977 #endif
1978 #ifdef ISO
1979 DONETISR(NETISR_ISO, clnlintr());
1980 #endif
1981 #ifdef CCITT
1982 DONETISR(NETISR_CCITT, ccittintr());
1983 #endif
1984 #ifdef NATM
1985 DONETISR(NETISR_NATM, natmintr());
1986 #endif
1987 #if NPPP > 1
1988 DONETISR(NETISR_PPP, pppintr());
1989 #endif
1990
1991 #undef DONETISR
1992 }
1993
1994 void
1995 do_sir()
1996 {
1997 u_int64_t n;
1998
1999 do {
2000 (void)splhigh();
2001 n = ssir;
2002 ssir = 0;
2003 splsoft(); /* don't recurse through spl0() */
2004
2005 #define COUNT_SOFT uvmexp.softs++
2006
2007 #define DO_SIR(bit, fn) \
2008 do { \
2009 if (n & (bit)) { \
2010 COUNT_SOFT; \
2011 fn; \
2012 } \
2013 } while (0)
2014
2015 DO_SIR(SIR_NET, netintr());
2016 DO_SIR(SIR_CLOCK, softclock());
2017 #if NCOM > 0
2018 DO_SIR(SIR_SERIAL, comsoft());
2019 #endif
2020
2021 #undef COUNT_SOFT
2022 #undef DO_SIR
2023 } while (ssir != 0);
2024 }
2025
2026 int
2027 spl0()
2028 {
2029
2030 if (ssir)
2031 do_sir(); /* it lowers the IPL itself */
2032
2033 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2034 }
2035
2036 /*
2037 * The following primitives manipulate the run queues. _whichqs tells which
2038 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2039 * into queues, Remrunqueue removes them from queues. The running process is
2040 * on no queue, other processes are on a queue related to p->p_priority,
2041 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2042 * available queues.
2043 */
2044 /*
2045 * setrunqueue(p)
2046 * proc *p;
2047 *
2048 * Call should be made at splclock(), and p->p_stat should be SRUN.
2049 */
2050
2051 void
2052 setrunqueue(p)
2053 struct proc *p;
2054 {
2055 int bit;
2056
2057 /* firewall: p->p_back must be NULL */
2058 if (p->p_back != NULL)
2059 panic("setrunqueue");
2060
2061 bit = p->p_priority >> 2;
2062 whichqs |= (1 << bit);
2063 p->p_forw = (struct proc *)&qs[bit];
2064 p->p_back = qs[bit].ph_rlink;
2065 p->p_back->p_forw = p;
2066 qs[bit].ph_rlink = p;
2067 }
2068
2069 /*
2070 * remrunqueue(p)
2071 *
2072 * Call should be made at splclock().
2073 */
2074 void
2075 remrunqueue(p)
2076 struct proc *p;
2077 {
2078 int bit;
2079
2080 bit = p->p_priority >> 2;
2081 if ((whichqs & (1 << bit)) == 0)
2082 panic("remrunqueue");
2083
2084 p->p_back->p_forw = p->p_forw;
2085 p->p_forw->p_back = p->p_back;
2086 p->p_back = NULL; /* for firewall checking. */
2087
2088 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2089 whichqs &= ~(1 << bit);
2090 }
2091
2092 /*
2093 * Return the best possible estimate of the time in the timeval
2094 * to which tvp points. Unfortunately, we can't read the hardware registers.
2095 * We guarantee that the time will be greater than the value obtained by a
2096 * previous call.
2097 */
2098 void
2099 microtime(tvp)
2100 register struct timeval *tvp;
2101 {
2102 int s = splclock();
2103 static struct timeval lasttime;
2104
2105 *tvp = time;
2106 #ifdef notdef
2107 tvp->tv_usec += clkread();
2108 while (tvp->tv_usec > 1000000) {
2109 tvp->tv_sec++;
2110 tvp->tv_usec -= 1000000;
2111 }
2112 #endif
2113 if (tvp->tv_sec == lasttime.tv_sec &&
2114 tvp->tv_usec <= lasttime.tv_usec &&
2115 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2116 tvp->tv_sec++;
2117 tvp->tv_usec -= 1000000;
2118 }
2119 lasttime = *tvp;
2120 splx(s);
2121 }
2122
2123 /*
2124 * Wait "n" microseconds.
2125 */
2126 void
2127 delay(n)
2128 unsigned long n;
2129 {
2130 long N = cycles_per_usec * (n);
2131
2132 while (N > 0) /* XXX */
2133 N -= 3; /* XXX */
2134 }
2135
2136 #if defined(COMPAT_OSF1) || 1 /* XXX */
2137 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2138 u_long));
2139
2140 void
2141 cpu_exec_ecoff_setregs(p, epp, stack)
2142 struct proc *p;
2143 struct exec_package *epp;
2144 u_long stack;
2145 {
2146 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2147
2148 setregs(p, epp, stack);
2149 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2150 }
2151
2152 /*
2153 * cpu_exec_ecoff_hook():
2154 * cpu-dependent ECOFF format hook for execve().
2155 *
2156 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2157 *
2158 */
2159 int
2160 cpu_exec_ecoff_hook(p, epp)
2161 struct proc *p;
2162 struct exec_package *epp;
2163 {
2164 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2165 extern struct emul emul_netbsd;
2166 #ifdef COMPAT_OSF1
2167 extern struct emul emul_osf1;
2168 #endif
2169
2170 switch (execp->f.f_magic) {
2171 #ifdef COMPAT_OSF1
2172 case ECOFF_MAGIC_ALPHA:
2173 epp->ep_emul = &emul_osf1;
2174 break;
2175 #endif
2176
2177 case ECOFF_MAGIC_NETBSD_ALPHA:
2178 epp->ep_emul = &emul_netbsd;
2179 break;
2180
2181 default:
2182 return ENOEXEC;
2183 }
2184 return 0;
2185 }
2186 #endif
2187
2188 int
2189 alpha_pa_access(pa)
2190 u_long pa;
2191 {
2192 int i;
2193
2194 for (i = 0; i < mem_cluster_cnt; i++) {
2195 if (pa < mem_clusters[i].start)
2196 continue;
2197 if ((pa - mem_clusters[i].start) >=
2198 (mem_clusters[i].size & ~PAGE_MASK))
2199 continue;
2200 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2201 }
2202 return (PROT_NONE);
2203 }
2204
2205 /* XXX XXX BEGIN XXX XXX */
2206 paddr_t alpha_XXX_dmamap_or; /* XXX */
2207 /* XXX */
2208 paddr_t /* XXX */
2209 alpha_XXX_dmamap(v) /* XXX */
2210 vaddr_t v; /* XXX */
2211 { /* XXX */
2212 /* XXX */
2213 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2214 } /* XXX */
2215 /* XXX XXX END XXX XXX */
2216
2217 struct mchkinfo *
2218 cpu_mchkinfo()
2219 {
2220 if (mchkinfo_all_cpus == NULL)
2221 return &startup_info;
2222 return mchkinfo_all_cpus + alpha_pal_whami();
2223 }
2224