Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.171
      1 /* $NetBSD: machdep.c,v 1.171 1999/04/27 02:33:35 cgd Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_bufcache.h"
     68 #include "opt_ddb.h"
     69 #include "opt_multiprocessor.h"
     70 #include "opt_pmap_new.h"
     71 #include "opt_dec_3000_300.h"
     72 #include "opt_dec_3000_500.h"
     73 #include "opt_compat_osf1.h"
     74 #include "opt_compat_netbsd.h"
     75 #include "opt_inet.h"
     76 #include "opt_atalk.h"
     77 #include "opt_ccitt.h"
     78 #include "opt_iso.h"
     79 #include "opt_ns.h"
     80 #include "opt_natm.h"
     81 #include "opt_sysv.h"
     82 
     83 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     84 
     85 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.171 1999/04/27 02:33:35 cgd Exp $");
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/kernel.h>
     91 #include <sys/map.h>
     92 #include <sys/proc.h>
     93 #include <sys/buf.h>
     94 #include <sys/reboot.h>
     95 #include <sys/device.h>
     96 #include <sys/file.h>
     97 #include <sys/callout.h>
     98 #include <sys/malloc.h>
     99 #include <sys/mbuf.h>
    100 #include <sys/mman.h>
    101 #include <sys/msgbuf.h>
    102 #include <sys/ioctl.h>
    103 #include <sys/tty.h>
    104 #include <sys/user.h>
    105 #include <sys/exec.h>
    106 #include <sys/exec_ecoff.h>
    107 #include <vm/vm.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/core.h>
    110 #include <sys/kcore.h>
    111 #include <machine/kcore.h>
    112 #ifdef SYSVMSG
    113 #include <sys/msg.h>
    114 #endif
    115 #ifdef SYSVSEM
    116 #include <sys/sem.h>
    117 #endif
    118 #ifdef SYSVSHM
    119 #include <sys/shm.h>
    120 #endif
    121 
    122 #include <sys/mount.h>
    123 #include <sys/syscallargs.h>
    124 
    125 #include <vm/vm_kern.h>
    126 
    127 #include <uvm/uvm_extern.h>
    128 
    129 #include <dev/cons.h>
    130 
    131 #include <machine/autoconf.h>
    132 #include <machine/cpu.h>
    133 #include <machine/reg.h>
    134 #include <machine/rpb.h>
    135 #include <machine/prom.h>
    136 #include <machine/conf.h>
    137 
    138 #include <alpha/alpha/cpuvar.h>
    139 
    140 #include <net/netisr.h>
    141 #include <net/if.h>
    142 
    143 #ifdef INET
    144 #include <net/route.h>
    145 #include <netinet/in.h>
    146 #include <netinet/ip_var.h>
    147 #include "arp.h"
    148 #if NARP > 0
    149 #include <netinet/if_inarp.h>
    150 #endif
    151 #endif
    152 #ifdef NS
    153 #include <netns/ns_var.h>
    154 #endif
    155 #ifdef ISO
    156 #include <netiso/iso.h>
    157 #include <netiso/clnp.h>
    158 #endif
    159 #ifdef CCITT
    160 #include <netccitt/x25.h>
    161 #include <netccitt/pk.h>
    162 #include <netccitt/pk_extern.h>
    163 #endif
    164 #ifdef NATM
    165 #include <netnatm/natm.h>
    166 #endif
    167 #ifdef NETATALK
    168 #include <netatalk/at_extern.h>
    169 #endif
    170 #include "ppp.h"
    171 #if NPPP > 0
    172 #include <net/ppp_defs.h>
    173 #include <net/if_ppp.h>
    174 #endif
    175 
    176 #ifdef DDB
    177 #include <machine/db_machdep.h>
    178 #include <ddb/db_access.h>
    179 #include <ddb/db_sym.h>
    180 #include <ddb/db_extern.h>
    181 #include <ddb/db_interface.h>
    182 #endif
    183 
    184 #include <machine/alpha.h>
    185 #include <machine/intrcnt.h>
    186 
    187 #include "com.h"
    188 #if NCOM > 0
    189 extern void comsoft __P((void));
    190 #endif
    191 
    192 vm_map_t exec_map = NULL;
    193 vm_map_t mb_map = NULL;
    194 vm_map_t phys_map = NULL;
    195 
    196 /*
    197  * Declare these as initialized data so we can patch them.
    198  */
    199 int	nswbuf = 0;
    200 #ifdef	NBUF
    201 int	nbuf = NBUF;
    202 #else
    203 int	nbuf = 0;
    204 #endif
    205 
    206 #ifndef	BUFPAGES
    207 #define BUFPAGES 0
    208 #endif
    209 #ifndef BUFCACHE
    210 #define BUFCACHE 10
    211 #endif
    212 
    213 int	bufpages = BUFPAGES;	/* optional hardwired count */
    214 int	bufcache = BUFCACHE;	/* % of RAM to use for buffer cache */
    215 
    216 caddr_t msgbufaddr;
    217 
    218 int	maxmem;			/* max memory per process */
    219 
    220 int	totalphysmem;		/* total amount of physical memory in system */
    221 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    222 int	resvmem;		/* amount of memory reserved for PROM */
    223 int	unusedmem;		/* amount of memory for OS that we don't use */
    224 int	unknownmem;		/* amount of memory with an unknown use */
    225 
    226 int	cputype;		/* system type, from the RPB */
    227 
    228 /*
    229  * XXX We need an address to which we can assign things so that they
    230  * won't be optimized away because we didn't use the value.
    231  */
    232 u_int32_t no_optimize;
    233 
    234 /* the following is used externally (sysctl_hw) */
    235 char	machine[] = MACHINE;		/* from <machine/param.h> */
    236 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    237 char	cpu_model[128];
    238 
    239 struct	user *proc0paddr;
    240 
    241 /* Number of machine cycles per microsecond */
    242 u_int64_t	cycles_per_usec;
    243 
    244 /* number of cpus in the box.  really! */
    245 int		ncpus;
    246 
    247 /* machine check info array, valloc()'ed in allocsys() */
    248 
    249 static struct mchkinfo startup_info,
    250 			*mchkinfo_all_cpus;
    251 
    252 struct bootinfo_kernel bootinfo;
    253 
    254 /* For built-in TCDS */
    255 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    256 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    257 #endif
    258 
    259 struct platform platform;
    260 
    261 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    262 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    263 
    264 #ifdef DDB
    265 /* start and end of kernel symbol table */
    266 void	*ksym_start, *ksym_end;
    267 #endif
    268 
    269 /* for cpu_sysctl() */
    270 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    271 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    272 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    273 
    274 /*
    275  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    276  * XXX it should also be larger than it is, because not all of the mddt
    277  * XXX clusters end up being used for VM.
    278  */
    279 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    280 int	mem_cluster_cnt;
    281 
    282 caddr_t	allocsys __P((caddr_t));
    283 int	cpu_dump __P((void));
    284 int	cpu_dumpsize __P((void));
    285 u_long	cpu_dump_mempagecnt __P((void));
    286 void	dumpsys __P((void));
    287 void	identifycpu __P((void));
    288 void	netintr __P((void));
    289 void	printregs __P((struct reg *));
    290 
    291 void
    292 alpha_init(pfn, ptb, bim, bip, biv)
    293 	u_long pfn;		/* first free PFN number */
    294 	u_long ptb;		/* PFN of current level 1 page table */
    295 	u_long bim;		/* bootinfo magic */
    296 	u_long bip;		/* bootinfo pointer */
    297 	u_long biv;		/* bootinfo version */
    298 {
    299 	extern char kernel_text[], _end[];
    300 	struct mddt *mddtp;
    301 	struct mddt_cluster *memc;
    302 	int i, mddtweird;
    303 	struct vm_physseg *vps;
    304 	vaddr_t kernstart, kernend;
    305 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    306 	vsize_t size;
    307 	char *p;
    308 	caddr_t v;
    309 	char *bootinfo_msg;
    310 
    311 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    312 
    313 	/*
    314 	 * Turn off interrupts (not mchecks) and floating point.
    315 	 * Make sure the instruction and data streams are consistent.
    316 	 */
    317 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    318 	alpha_pal_wrfen(0);
    319 	ALPHA_TBIA();
    320 	alpha_pal_imb();
    321 
    322 	/*
    323 	 * Get critical system information (if possible, from the
    324 	 * information provided by the boot program).
    325 	 */
    326 	bootinfo_msg = NULL;
    327 	if (bim == BOOTINFO_MAGIC) {
    328 		if (biv == 0) {		/* backward compat */
    329 			biv = *(u_long *)bip;
    330 			bip += 8;
    331 		}
    332 		switch (biv) {
    333 		case 1: {
    334 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    335 
    336 			bootinfo.ssym = v1p->ssym;
    337 			bootinfo.esym = v1p->esym;
    338 			/* hwrpb may not be provided by boot block in v1 */
    339 			if (v1p->hwrpb != NULL) {
    340 				bootinfo.hwrpb_phys =
    341 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    342 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    343 			} else {
    344 				bootinfo.hwrpb_phys =
    345 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    346 				bootinfo.hwrpb_size =
    347 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    348 			}
    349 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    350 			    min(sizeof v1p->boot_flags,
    351 			      sizeof bootinfo.boot_flags));
    352 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    353 			    min(sizeof v1p->booted_kernel,
    354 			      sizeof bootinfo.booted_kernel));
    355 			/* booted dev not provided in bootinfo */
    356 			init_prom_interface((struct rpb *)
    357 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    358                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    359 			    sizeof bootinfo.booted_dev);
    360 			break;
    361 		}
    362 		default:
    363 			bootinfo_msg = "unknown bootinfo version";
    364 			goto nobootinfo;
    365 		}
    366 	} else {
    367 		bootinfo_msg = "boot program did not pass bootinfo";
    368 nobootinfo:
    369 		bootinfo.ssym = (u_long)_end;
    370 		bootinfo.esym = (u_long)_end;
    371 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    372 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    373 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    374 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    375 		    sizeof bootinfo.boot_flags);
    376 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    377 		    sizeof bootinfo.booted_kernel);
    378 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    379 		    sizeof bootinfo.booted_dev);
    380 	}
    381 
    382 	/*
    383 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    384 	 * lots of things.
    385 	 */
    386 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    387 
    388 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    389 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    390 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    391 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    392 		    sizeof(dec_3000_scsiid));
    393 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    394 		    sizeof(dec_3000_scsifast));
    395 	}
    396 #endif
    397 
    398 	/*
    399 	 * Remember how many cycles there are per microsecond,
    400 	 * so that we can use delay().  Round up, for safety.
    401 	 */
    402 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    403 
    404 	/*
    405 	 * Initalize the (temporary) bootstrap console interface, so
    406 	 * we can use printf until the VM system starts being setup.
    407 	 * The real console is initialized before then.
    408 	 */
    409 	init_bootstrap_console();
    410 
    411 	/* OUTPUT NOW ALLOWED */
    412 
    413 	/* delayed from above */
    414 	if (bootinfo_msg)
    415 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    416 		    bootinfo_msg, bim, bip, biv);
    417 
    418 	/* Initialize the trap vectors on the primary processor. */
    419 	trap_init();
    420 
    421 	/*
    422 	 * Find out what hardware we're on, and do basic initialization.
    423 	 */
    424 	cputype = hwrpb->rpb_type;
    425 	if (cputype < 0) {
    426 		/*
    427 		 * At least some white-box systems have SRM which
    428 		 * reports a systype that's the negative of their
    429 		 * blue-box counterpart.
    430 		 */
    431 		cputype = -cputype;
    432 	}
    433 	if (cputype >= ncpuinit) {
    434 		platform_not_supported();
    435 		/* NOTREACHED */
    436 	}
    437 	(*cpuinit[cputype].init)();
    438 	strcpy(cpu_model, platform.model);
    439 
    440 	/*
    441 	 * Initalize the real console, so the the bootstrap console is
    442 	 * no longer necessary.
    443 	 */
    444 	(*platform.cons_init)();
    445 
    446 #ifdef DIAGNOSTIC
    447 	/* Paranoid sanity checking */
    448 
    449 	/* We should always be running on the the primary. */
    450 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    451 
    452 	/*
    453 	 * On single-CPU systypes, the primary should always be CPU 0,
    454 	 * except on Alpha 8200 systems where the CPU id is related
    455 	 * to the VID, which is related to the Turbo Laser node id.
    456 	 */
    457 	if (cputype != ST_DEC_21000)
    458 		assert(hwrpb->rpb_primary_cpu_id == 0);
    459 #endif
    460 
    461 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    462 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    463 	/*
    464 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    465 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    466 	 */
    467 #endif
    468 
    469 	/*
    470 	 * find out this system's page size
    471 	 */
    472 	PAGE_SIZE = hwrpb->rpb_page_size;
    473 	if (PAGE_SIZE != 8192)
    474 		panic("page size %d != 8192?!", PAGE_SIZE);
    475 
    476 	/*
    477 	 * Initialize PAGE_SIZE-dependent variables.
    478 	 */
    479 	uvm_setpagesize();
    480 
    481 	/*
    482 	 * Find the beginning and end of the kernel (and leave a
    483 	 * bit of space before the beginning for the bootstrap
    484 	 * stack).
    485 	 */
    486 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    487 #ifdef DDB
    488 	ksym_start = (void *)bootinfo.ssym;
    489 	ksym_end   = (void *)bootinfo.esym;
    490 	kernend = (vaddr_t)round_page(ksym_end);
    491 #else
    492 	kernend = (vaddr_t)round_page(_end);
    493 #endif
    494 
    495 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    496 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    497 
    498 	/*
    499 	 * Find out how much memory is available, by looking at
    500 	 * the memory cluster descriptors.  This also tries to do
    501 	 * its best to detect things things that have never been seen
    502 	 * before...
    503 	 */
    504 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    505 
    506 	/* MDDT SANITY CHECKING */
    507 	mddtweird = 0;
    508 	if (mddtp->mddt_cluster_cnt < 2) {
    509 		mddtweird = 1;
    510 		printf("WARNING: weird number of mem clusters: %lu\n",
    511 		    mddtp->mddt_cluster_cnt);
    512 	}
    513 
    514 #if 0
    515 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    516 #endif
    517 
    518 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    519 		memc = &mddtp->mddt_clusters[i];
    520 #if 0
    521 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    522 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    523 #endif
    524 		totalphysmem += memc->mddt_pg_cnt;
    525 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    526 			mem_clusters[mem_cluster_cnt].start =
    527 			    ptoa(memc->mddt_pfn);
    528 			mem_clusters[mem_cluster_cnt].size =
    529 			    ptoa(memc->mddt_pg_cnt);
    530 			if (memc->mddt_usage & MDDT_mbz ||
    531 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    532 			    memc->mddt_usage & MDDT_PALCODE)
    533 				mem_clusters[mem_cluster_cnt].size |=
    534 				    PROT_READ;
    535 			else
    536 				mem_clusters[mem_cluster_cnt].size |=
    537 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    538 			mem_cluster_cnt++;
    539 		}
    540 
    541 		if (memc->mddt_usage & MDDT_mbz) {
    542 			mddtweird = 1;
    543 			printf("WARNING: mem cluster %d has weird "
    544 			    "usage 0x%lx\n", i, memc->mddt_usage);
    545 			unknownmem += memc->mddt_pg_cnt;
    546 			continue;
    547 		}
    548 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    549 			/* XXX should handle these... */
    550 			printf("WARNING: skipping non-volatile mem "
    551 			    "cluster %d\n", i);
    552 			unusedmem += memc->mddt_pg_cnt;
    553 			continue;
    554 		}
    555 		if (memc->mddt_usage & MDDT_PALCODE) {
    556 			resvmem += memc->mddt_pg_cnt;
    557 			continue;
    558 		}
    559 
    560 		/*
    561 		 * We have a memory cluster available for system
    562 		 * software use.  We must determine if this cluster
    563 		 * holds the kernel.
    564 		 */
    565 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    566 		/*
    567 		 * XXX If the kernel uses the PROM console, we only use the
    568 		 * XXX memory after the kernel in the first system segment,
    569 		 * XXX to avoid clobbering prom mapping, data, etc.
    570 		 */
    571 	    if (!pmap_uses_prom_console() || physmem == 0) {
    572 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    573 		physmem += memc->mddt_pg_cnt;
    574 		pfn0 = memc->mddt_pfn;
    575 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    576 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    577 			/*
    578 			 * Must compute the location of the kernel
    579 			 * within the segment.
    580 			 */
    581 #if 0
    582 			printf("Cluster %d contains kernel\n", i);
    583 #endif
    584 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    585 		    if (!pmap_uses_prom_console()) {
    586 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    587 			if (pfn0 < kernstartpfn) {
    588 				/*
    589 				 * There is a chunk before the kernel.
    590 				 */
    591 #if 0
    592 				printf("Loading chunk before kernel: "
    593 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    594 #endif
    595 				uvm_page_physload(pfn0, kernstartpfn,
    596 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    597 			}
    598 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    599 		    }
    600 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    601 			if (kernendpfn < pfn1) {
    602 				/*
    603 				 * There is a chunk after the kernel.
    604 				 */
    605 #if 0
    606 				printf("Loading chunk after kernel: "
    607 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    608 #endif
    609 				uvm_page_physload(kernendpfn, pfn1,
    610 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    611 			}
    612 		} else {
    613 			/*
    614 			 * Just load this cluster as one chunk.
    615 			 */
    616 #if 0
    617 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    618 			    pfn0, pfn1);
    619 #endif
    620 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    621 			    VM_FREELIST_DEFAULT);
    622 		}
    623 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    624 	    }
    625 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    626 	}
    627 
    628 	/*
    629 	 * Dump out the MDDT if it looks odd...
    630 	 */
    631 	if (mddtweird) {
    632 		printf("\n");
    633 		printf("complete memory cluster information:\n");
    634 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    635 			printf("mddt %d:\n", i);
    636 			printf("\tpfn %lx\n",
    637 			    mddtp->mddt_clusters[i].mddt_pfn);
    638 			printf("\tcnt %lx\n",
    639 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    640 			printf("\ttest %lx\n",
    641 			    mddtp->mddt_clusters[i].mddt_pg_test);
    642 			printf("\tbva %lx\n",
    643 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    644 			printf("\tbpa %lx\n",
    645 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    646 			printf("\tbcksum %lx\n",
    647 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    648 			printf("\tusage %lx\n",
    649 			    mddtp->mddt_clusters[i].mddt_usage);
    650 		}
    651 		printf("\n");
    652 	}
    653 
    654 	if (totalphysmem == 0)
    655 		panic("can't happen: system seems to have no memory!");
    656 
    657 #ifdef LIMITMEM
    658 	/*
    659 	 * XXX Kludge so we can run on machines with memory larger
    660 	 * XXX than 1G until all device drivers are converted to
    661 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    662 	 * XXX sorted in order of increasing addresses.)
    663 	 */
    664 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    665 
    666 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    667 		    LIMITMEM);
    668 
    669 		do {
    670 			u_long ovf;
    671 
    672 			vps = &vm_physmem[vm_nphysseg - 1];
    673 
    674 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    675 				/*
    676 				 * If the start is too high, just drop
    677 				 * the whole segment.
    678 				 *
    679 				 * XXX can start != avail_start in this
    680 				 * XXX case?  wouldn't that mean that
    681 				 * XXX some memory was stolen above the
    682 				 * XXX limit?  What to do?
    683 				 */
    684 				ovf = vps->end - vps->start;
    685 				vm_nphysseg--;
    686 			} else {
    687 				/*
    688 				 * If the start is OK, calculate how much
    689 				 * to drop and drop it.
    690 				 */
    691 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    692 				vps->end -= ovf;
    693 				vps->avail_end -= ovf;
    694 			}
    695 			physmem -= ovf;
    696 			unusedmem += ovf;
    697 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    698 	}
    699 #endif /* LIMITMEM */
    700 
    701 	maxmem = physmem;
    702 
    703 #if 0
    704 	printf("totalphysmem = %d\n", totalphysmem);
    705 	printf("physmem = %d\n", physmem);
    706 	printf("resvmem = %d\n", resvmem);
    707 	printf("unusedmem = %d\n", unusedmem);
    708 	printf("unknownmem = %d\n", unknownmem);
    709 #endif
    710 
    711 	/*
    712 	 * Adjust some parameters if the amount of physmem
    713 	 * available would cause us to croak. This is completely
    714 	 * eyeballed and isn't meant to be the final answer.
    715 	 * vm_phys_size is probably the only one to really worry
    716 	 * about.
    717  	 *
    718 	 * It's for booting a GENERIC kernel on a large memory platform.
    719 	 */
    720 	if (physmem >= atop(128 * 1024 * 1024)) {
    721 		vm_kmem_size <<= 3;
    722 		vm_phys_size <<= 2;
    723 	}
    724 
    725 	/*
    726 	 * Initialize error message buffer (at end of core).
    727 	 */
    728 	{
    729 		size_t sz = round_page(MSGBUFSIZE);
    730 
    731 		vps = &vm_physmem[vm_nphysseg - 1];
    732 
    733 		/* shrink so that it'll fit in the last segment */
    734 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    735 			sz = ptoa(vps->avail_end - vps->avail_start);
    736 
    737 		vps->end -= atop(sz);
    738 		vps->avail_end -= atop(sz);
    739 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    740 		initmsgbuf(msgbufaddr, sz);
    741 
    742 		/* Remove the last segment if it now has no pages. */
    743 		if (vps->start == vps->end)
    744 			vm_nphysseg--;
    745 
    746 		/* warn if the message buffer had to be shrunk */
    747 		if (sz != round_page(MSGBUFSIZE))
    748 			printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
    749 			    round_page(MSGBUFSIZE), sz);
    750 
    751 	}
    752 
    753 	/*
    754 	 * Init mapping for u page(s) for proc 0
    755 	 */
    756 	proc0.p_addr = proc0paddr =
    757 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    758 
    759 	/*
    760 	 * Allocate space for system data structures.  These data structures
    761 	 * are allocated here instead of cpu_startup() because physical
    762 	 * memory is directly addressable.  We don't have to map these into
    763 	 * virtual address space.
    764 	 */
    765 	size = (vsize_t)allocsys(0);
    766 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    767 	if ((allocsys(v) - v) != size)
    768 		panic("alpha_init: table size inconsistency");
    769 
    770 	/*
    771 	 * Initialize the virtual memory system, and set the
    772 	 * page table base register in proc 0's PCB.
    773 	 */
    774 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    775 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    776 
    777 	/*
    778 	 * Initialize the rest of proc 0's PCB, and cache its physical
    779 	 * address.
    780 	 */
    781 	proc0.p_md.md_pcbpaddr =
    782 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    783 
    784 	/*
    785 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    786 	 * and make proc0's trapframe pointer point to it for sanity.
    787 	 */
    788 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    789 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    790 	proc0.p_md.md_tf =
    791 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    792 
    793 	/*
    794 	 * Look at arguments passed to us and compute boothowto.
    795 	 */
    796 
    797 	boothowto = RB_SINGLE;
    798 #ifdef KADB
    799 	boothowto |= RB_KDB;
    800 #endif
    801 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    802 		/*
    803 		 * Note that we'd really like to differentiate case here,
    804 		 * but the Alpha AXP Architecture Reference Manual
    805 		 * says that we shouldn't.
    806 		 */
    807 		switch (*p) {
    808 		case 'a': /* autoboot */
    809 		case 'A':
    810 			boothowto &= ~RB_SINGLE;
    811 			break;
    812 
    813 #ifdef DEBUG
    814 		case 'c': /* crash dump immediately after autoconfig */
    815 		case 'C':
    816 			boothowto |= RB_DUMP;
    817 			break;
    818 #endif
    819 
    820 #if defined(KGDB) || defined(DDB)
    821 		case 'd': /* break into the kernel debugger ASAP */
    822 		case 'D':
    823 			boothowto |= RB_KDB;
    824 			break;
    825 #endif
    826 
    827 		case 'h': /* always halt, never reboot */
    828 		case 'H':
    829 			boothowto |= RB_HALT;
    830 			break;
    831 
    832 #if 0
    833 		case 'm': /* mini root present in memory */
    834 		case 'M':
    835 			boothowto |= RB_MINIROOT;
    836 			break;
    837 #endif
    838 
    839 		case 'n': /* askname */
    840 		case 'N':
    841 			boothowto |= RB_ASKNAME;
    842 			break;
    843 
    844 		case 's': /* single-user (default, supported for sanity) */
    845 		case 'S':
    846 			boothowto |= RB_SINGLE;
    847 			break;
    848 
    849 		case '-':
    850 			/*
    851 			 * Just ignore this.  It's not required, but it's
    852 			 * common for it to be passed regardless.
    853 			 */
    854 			break;
    855 
    856 		default:
    857 			printf("Unrecognized boot flag '%c'.\n", *p);
    858 			break;
    859 		}
    860 	}
    861 
    862 
    863 	/*
    864 	 * Figure out the number of cpus in the box, from RPB fields.
    865 	 * Really.  We mean it.
    866 	 */
    867 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    868 		struct pcs *pcsp;
    869 
    870 		pcsp = LOCATE_PCS(hwrpb, i);
    871 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    872 			ncpus++;
    873 	}
    874 
    875 	/*
    876 	 * Initialize debuggers, and break into them if appropriate.
    877 	 */
    878 #ifdef DDB
    879 	db_machine_init();
    880 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    881 	    ksym_start, ksym_end);
    882 	if (boothowto & RB_KDB)
    883 		Debugger();
    884 #endif
    885 #ifdef KGDB
    886 	if (boothowto & RB_KDB)
    887 		kgdb_connect(0);
    888 #endif
    889 	/*
    890 	 * Figure out our clock frequency, from RPB fields.
    891 	 */
    892 	hz = hwrpb->rpb_intr_freq >> 12;
    893 	if (!(60 <= hz && hz <= 10240)) {
    894 		hz = 1024;
    895 #ifdef DIAGNOSTIC
    896 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    897 			hwrpb->rpb_intr_freq, hz);
    898 #endif
    899 	}
    900 }
    901 
    902 /*
    903  * Allocate space for system data structures.  We are given
    904  * a starting virtual address and we return a final virtual
    905  * address; along the way we set each data structure pointer.
    906  *
    907  * We call allocsys() with 0 to find out how much space we want,
    908  * allocate that much and fill it with zeroes, and the call
    909  * allocsys() again with the correct base virtual address.
    910  */
    911 caddr_t
    912 allocsys(v)
    913 	caddr_t v;
    914 {
    915 
    916 #define valloc(name, type, num) \
    917 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    918 
    919 	valloc(callout, struct callout, ncallout);
    920 #ifdef SYSVSHM
    921 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    922 #endif
    923 #ifdef SYSVSEM
    924 	valloc(sema, struct semid_ds, seminfo.semmni);
    925 	valloc(sem, struct sem, seminfo.semmns);
    926 	/* This is pretty disgusting! */
    927 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    928 #endif
    929 #ifdef SYSVMSG
    930 	valloc(msgpool, char, msginfo.msgmax);
    931 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    932 	valloc(msghdrs, struct msg, msginfo.msgtql);
    933 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    934 #endif
    935 
    936 	/*
    937 	 * Determine how many buffers to allocate.
    938 	 * We allocate bufcache % of memory for buffer space.  Insure a
    939 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    940 	 * headers as file i/o buffers.
    941 	 */
    942 	if (bufpages == 0)
    943 		bufpages = physmem / CLSIZE * bufcache / 100;
    944 	if (nbuf == 0) {
    945 		nbuf = bufpages;
    946 		if (nbuf < 16)
    947 			nbuf = 16;
    948 	}
    949 	if (nswbuf == 0) {
    950 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    951 		if (nswbuf > 256)
    952 			nswbuf = 256;		/* sanity */
    953 	}
    954 	valloc(buf, struct buf, nbuf);
    955 
    956 	/*
    957 	 * There appears to be a correlation between the number
    958 	 * of processor slots defined in the HWRPB and the whami
    959 	 * value that can be returned.
    960 	 */
    961 	valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
    962 
    963 	return (v);
    964 #undef valloc
    965 }
    966 
    967 void
    968 consinit()
    969 {
    970 
    971 	/*
    972 	 * Everything related to console initialization is done
    973 	 * in alpha_init().
    974 	 */
    975 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    976 	printf("consinit: %susing prom console\n",
    977 	    pmap_uses_prom_console() ? "" : "not ");
    978 #endif
    979 }
    980 
    981 #include "pckbc.h"
    982 #include "pckbd.h"
    983 #if (NPCKBC > 0) && (NPCKBD == 0)
    984 
    985 #include <dev/isa/pckbcvar.h>
    986 
    987 /*
    988  * This is called by the pbkbc driver if no pckbd is configured.
    989  * On the i386, it is used to glue in the old, deprecated console
    990  * code.  On the Alpha, it does nothing.
    991  */
    992 int
    993 pckbc_machdep_cnattach(kbctag, kbcslot)
    994 	pckbc_tag_t kbctag;
    995 	pckbc_slot_t kbcslot;
    996 {
    997 
    998 	return (ENXIO);
    999 }
   1000 #endif /* NPCKBC > 0 && NPCKBD == 0 */
   1001 
   1002 void
   1003 cpu_startup()
   1004 {
   1005 	register unsigned i;
   1006 	int base, residual;
   1007 	vaddr_t minaddr, maxaddr;
   1008 	vsize_t size;
   1009 #if defined(DEBUG)
   1010 	extern int pmapdebug;
   1011 	int opmapdebug = pmapdebug;
   1012 
   1013 	pmapdebug = 0;
   1014 #endif
   1015 
   1016 	/*
   1017 	 * Good {morning,afternoon,evening,night}.
   1018 	 */
   1019 	printf(version);
   1020 	identifycpu();
   1021 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
   1022 	    ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
   1023 	    ptoa(resvmem), ptoa(physmem));
   1024 	if (unusedmem)
   1025 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
   1026 	if (unknownmem)
   1027 		printf("WARNING: %d bytes of memory with unknown purpose\n",
   1028 		    ctob(unknownmem));
   1029 
   1030 	/*
   1031 	 * Allocate virtual address space for file I/O buffers.
   1032 	 * Note they are different than the array of headers, 'buf',
   1033 	 * and usually occupy more virtual memory than physical.
   1034 	 */
   1035 	size = MAXBSIZE * nbuf;
   1036 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
   1037 		    NULL, UVM_UNKNOWN_OFFSET,
   1038 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1039 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1040 		panic("startup: cannot allocate VM for buffers");
   1041 	base = bufpages / nbuf;
   1042 	residual = bufpages % nbuf;
   1043 	for (i = 0; i < nbuf; i++) {
   1044 		vsize_t curbufsize;
   1045 		vaddr_t curbuf;
   1046 		struct vm_page *pg;
   1047 
   1048 		/*
   1049 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1050 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1051 		 * for the first "residual" buffers, and then we allocate
   1052 		 * "base" pages for the rest.
   1053 		 */
   1054 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
   1055 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1056 
   1057 		while (curbufsize) {
   1058 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
   1059 			if (pg == NULL)
   1060 				panic("cpu_startup: not enough memory for "
   1061 				    "buffer cache");
   1062 #if defined(PMAP_NEW)
   1063 			pmap_kenter_pgs(curbuf, &pg, 1);
   1064 #else
   1065 			pmap_enter(kernel_map->pmap, curbuf,
   1066 			    VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
   1067 			    TRUE, VM_PROT_READ|VM_PROT_WRITE);
   1068 #endif
   1069 			curbuf += PAGE_SIZE;
   1070 			curbufsize -= PAGE_SIZE;
   1071 		}
   1072 	}
   1073 	/*
   1074 	 * Allocate a submap for exec arguments.  This map effectively
   1075 	 * limits the number of processes exec'ing at any time.
   1076 	 */
   1077 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1078 				   16 * NCARGS, TRUE, FALSE, NULL);
   1079 
   1080 	/*
   1081 	 * Allocate a submap for physio
   1082 	 */
   1083 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1084 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1085 
   1086 	/*
   1087 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
   1088 	 * are allocated via the pool allocator, and we use K0SEG to
   1089 	 * map those pages.
   1090 	 */
   1091 
   1092 	/*
   1093 	 * Initialize callouts
   1094 	 */
   1095 	callfree = callout;
   1096 	for (i = 1; i < ncallout; i++)
   1097 		callout[i-1].c_next = &callout[i];
   1098 	callout[i-1].c_next = NULL;
   1099 
   1100 #if defined(DEBUG)
   1101 	pmapdebug = opmapdebug;
   1102 #endif
   1103 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1104 #if 0
   1105 	{
   1106 		extern u_long pmap_pages_stolen;
   1107 		printf("stolen memory for VM structures = %ld bytes\n",
   1108 		    pmap_pages_stolen * PAGE_SIZE);
   1109 	}
   1110 #endif
   1111 	printf("using %ld buffers containing %ld bytes of memory\n",
   1112 		(long)nbuf, (long)(bufpages * CLBYTES));
   1113 
   1114 	/*
   1115 	 * Set up buffers, so they can be used to read disk labels.
   1116 	 */
   1117 	bufinit();
   1118 
   1119 	/*
   1120 	 * Set up the HWPCB so that it's safe to configure secondary
   1121 	 * CPUs.
   1122 	 */
   1123 	hwrpb_primary_init();
   1124 }
   1125 
   1126 /*
   1127  * Retrieve the platform name from the DSR.
   1128  */
   1129 const char *
   1130 alpha_dsr_sysname()
   1131 {
   1132 	struct dsrdb *dsr;
   1133 	const char *sysname;
   1134 
   1135 	/*
   1136 	 * DSR does not exist on early HWRPB versions.
   1137 	 */
   1138 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1139 		return (NULL);
   1140 
   1141 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1142 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1143 	    sizeof(u_int64_t)));
   1144 	return (sysname);
   1145 }
   1146 
   1147 /*
   1148  * Lookup the system specified system variation in the provided table,
   1149  * returning the model string on match.
   1150  */
   1151 const char *
   1152 alpha_variation_name(variation, avtp)
   1153 	u_int64_t variation;
   1154 	const struct alpha_variation_table *avtp;
   1155 {
   1156 	int i;
   1157 
   1158 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1159 		if (avtp[i].avt_variation == variation)
   1160 			return (avtp[i].avt_model);
   1161 	return (NULL);
   1162 }
   1163 
   1164 /*
   1165  * Generate a default platform name based for unknown system variations.
   1166  */
   1167 const char *
   1168 alpha_unknown_sysname()
   1169 {
   1170 	static char s[128];		/* safe size */
   1171 
   1172 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1173 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1174 	return ((const char *)s);
   1175 }
   1176 
   1177 void
   1178 identifycpu()
   1179 {
   1180 
   1181 	/*
   1182 	 * print out CPU identification information.
   1183 	 */
   1184 	printf("%s, %ldMHz\n", cpu_model,
   1185 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1186 	printf("%ld byte page size, %d processor%s.\n",
   1187 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1188 #if 0
   1189 	/* this isn't defined for any systems that we run on? */
   1190 	printf("serial number 0x%lx 0x%lx\n",
   1191 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1192 
   1193 	/* and these aren't particularly useful! */
   1194 	printf("variation: 0x%lx, revision 0x%lx\n",
   1195 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1196 #endif
   1197 }
   1198 
   1199 int	waittime = -1;
   1200 struct pcb dumppcb;
   1201 
   1202 void
   1203 cpu_reboot(howto, bootstr)
   1204 	int howto;
   1205 	char *bootstr;
   1206 {
   1207 	extern int cold;
   1208 #if defined(MULTIPROCESSOR)
   1209 #if 0 /* XXX See below. */
   1210 	u_long cpu_id;
   1211 #endif
   1212 #endif
   1213 
   1214 #if defined(MULTIPROCESSOR)
   1215 	/* We must be running on the primary CPU. */
   1216 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1217 		panic("cpu_reboot: not on primary CPU!");
   1218 #endif
   1219 
   1220 	/* If system is cold, just halt. */
   1221 	if (cold) {
   1222 		howto |= RB_HALT;
   1223 		goto haltsys;
   1224 	}
   1225 
   1226 	/* If "always halt" was specified as a boot flag, obey. */
   1227 	if ((boothowto & RB_HALT) != 0)
   1228 		howto |= RB_HALT;
   1229 
   1230 	boothowto = howto;
   1231 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1232 		waittime = 0;
   1233 		vfs_shutdown();
   1234 		/*
   1235 		 * If we've been adjusting the clock, the todr
   1236 		 * will be out of synch; adjust it now.
   1237 		 */
   1238 		resettodr();
   1239 	}
   1240 
   1241 	/* Disable interrupts. */
   1242 	splhigh();
   1243 
   1244 	/* If rebooting and a dump is requested do it. */
   1245 #if 0
   1246 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1247 #else
   1248 	if (howto & RB_DUMP)
   1249 #endif
   1250 		dumpsys();
   1251 
   1252 haltsys:
   1253 
   1254 	/* run any shutdown hooks */
   1255 	doshutdownhooks();
   1256 
   1257 #if defined(MULTIPROCESSOR)
   1258 #if 0 /* XXX doesn't work when called from here?! */
   1259 	/* Kill off any secondary CPUs. */
   1260 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1261 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1262 		    cpu_info[cpu_id].ci_softc == NULL)
   1263 			continue;
   1264 		cpu_halt_secondary(cpu_id);
   1265 	}
   1266 #endif
   1267 #endif
   1268 
   1269 #ifdef BOOTKEY
   1270 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1271 	cnpollc(1);	/* for proper keyboard command handling */
   1272 	cngetc();
   1273 	cnpollc(0);
   1274 	printf("\n");
   1275 #endif
   1276 
   1277 	/* Finally, powerdown/halt/reboot the system. */
   1278 	if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
   1279 	    platform.powerdown != NULL) {
   1280 		(*platform.powerdown)();
   1281 		printf("WARNING: powerdown failed!\n");
   1282 	}
   1283 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1284 	prom_halt(howto & RB_HALT);
   1285 	/*NOTREACHED*/
   1286 }
   1287 
   1288 /*
   1289  * These variables are needed by /sbin/savecore
   1290  */
   1291 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1292 int 	dumpsize = 0;		/* pages */
   1293 long	dumplo = 0; 		/* blocks */
   1294 
   1295 /*
   1296  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1297  */
   1298 int
   1299 cpu_dumpsize()
   1300 {
   1301 	int size;
   1302 
   1303 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1304 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1305 	if (roundup(size, dbtob(1)) != dbtob(1))
   1306 		return -1;
   1307 
   1308 	return (1);
   1309 }
   1310 
   1311 /*
   1312  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1313  */
   1314 u_long
   1315 cpu_dump_mempagecnt()
   1316 {
   1317 	u_long i, n;
   1318 
   1319 	n = 0;
   1320 	for (i = 0; i < mem_cluster_cnt; i++)
   1321 		n += atop(mem_clusters[i].size);
   1322 	return (n);
   1323 }
   1324 
   1325 /*
   1326  * cpu_dump: dump machine-dependent kernel core dump headers.
   1327  */
   1328 int
   1329 cpu_dump()
   1330 {
   1331 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1332 	char buf[dbtob(1)];
   1333 	kcore_seg_t *segp;
   1334 	cpu_kcore_hdr_t *cpuhdrp;
   1335 	phys_ram_seg_t *memsegp;
   1336 	int i;
   1337 
   1338 	dump = bdevsw[major(dumpdev)].d_dump;
   1339 
   1340 	bzero(buf, sizeof buf);
   1341 	segp = (kcore_seg_t *)buf;
   1342 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1343 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1344 	    ALIGN(sizeof(*cpuhdrp))];
   1345 
   1346 	/*
   1347 	 * Generate a segment header.
   1348 	 */
   1349 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1350 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1351 
   1352 	/*
   1353 	 * Add the machine-dependent header info.
   1354 	 */
   1355 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1356 	cpuhdrp->page_size = PAGE_SIZE;
   1357 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1358 
   1359 	/*
   1360 	 * Fill in the memory segment descriptors.
   1361 	 */
   1362 	for (i = 0; i < mem_cluster_cnt; i++) {
   1363 		memsegp[i].start = mem_clusters[i].start;
   1364 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1365 	}
   1366 
   1367 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1368 }
   1369 
   1370 /*
   1371  * This is called by main to set dumplo and dumpsize.
   1372  * Dumps always skip the first CLBYTES of disk space
   1373  * in case there might be a disk label stored there.
   1374  * If there is extra space, put dump at the end to
   1375  * reduce the chance that swapping trashes it.
   1376  */
   1377 void
   1378 cpu_dumpconf()
   1379 {
   1380 	int nblks, dumpblks;	/* size of dump area */
   1381 	int maj;
   1382 
   1383 	if (dumpdev == NODEV)
   1384 		goto bad;
   1385 	maj = major(dumpdev);
   1386 	if (maj < 0 || maj >= nblkdev)
   1387 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1388 	if (bdevsw[maj].d_psize == NULL)
   1389 		goto bad;
   1390 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1391 	if (nblks <= ctod(1))
   1392 		goto bad;
   1393 
   1394 	dumpblks = cpu_dumpsize();
   1395 	if (dumpblks < 0)
   1396 		goto bad;
   1397 	dumpblks += ctod(cpu_dump_mempagecnt());
   1398 
   1399 	/* If dump won't fit (incl. room for possible label), punt. */
   1400 	if (dumpblks > (nblks - ctod(1)))
   1401 		goto bad;
   1402 
   1403 	/* Put dump at end of partition */
   1404 	dumplo = nblks - dumpblks;
   1405 
   1406 	/* dumpsize is in page units, and doesn't include headers. */
   1407 	dumpsize = cpu_dump_mempagecnt();
   1408 	return;
   1409 
   1410 bad:
   1411 	dumpsize = 0;
   1412 	return;
   1413 }
   1414 
   1415 /*
   1416  * Dump the kernel's image to the swap partition.
   1417  */
   1418 #define	BYTES_PER_DUMP	NBPG
   1419 
   1420 void
   1421 dumpsys()
   1422 {
   1423 	u_long totalbytesleft, bytes, i, n, memcl;
   1424 	u_long maddr;
   1425 	int psize;
   1426 	daddr_t blkno;
   1427 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1428 	int error;
   1429 
   1430 	/* Save registers. */
   1431 	savectx(&dumppcb);
   1432 
   1433 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1434 	if (dumpdev == NODEV)
   1435 		return;
   1436 
   1437 	/*
   1438 	 * For dumps during autoconfiguration,
   1439 	 * if dump device has already configured...
   1440 	 */
   1441 	if (dumpsize == 0)
   1442 		cpu_dumpconf();
   1443 	if (dumplo <= 0) {
   1444 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1445 		    minor(dumpdev));
   1446 		return;
   1447 	}
   1448 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1449 	    minor(dumpdev), dumplo);
   1450 
   1451 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1452 	printf("dump ");
   1453 	if (psize == -1) {
   1454 		printf("area unavailable\n");
   1455 		return;
   1456 	}
   1457 
   1458 	/* XXX should purge all outstanding keystrokes. */
   1459 
   1460 	if ((error = cpu_dump()) != 0)
   1461 		goto err;
   1462 
   1463 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1464 	blkno = dumplo + cpu_dumpsize();
   1465 	dump = bdevsw[major(dumpdev)].d_dump;
   1466 	error = 0;
   1467 
   1468 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1469 		maddr = mem_clusters[memcl].start;
   1470 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1471 
   1472 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1473 
   1474 			/* Print out how many MBs we to go. */
   1475 			if ((totalbytesleft % (1024*1024)) == 0)
   1476 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1477 
   1478 			/* Limit size for next transfer. */
   1479 			n = bytes - i;
   1480 			if (n > BYTES_PER_DUMP)
   1481 				n =  BYTES_PER_DUMP;
   1482 
   1483 			error = (*dump)(dumpdev, blkno,
   1484 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1485 			if (error)
   1486 				goto err;
   1487 			maddr += n;
   1488 			blkno += btodb(n);			/* XXX? */
   1489 
   1490 			/* XXX should look for keystrokes, to cancel. */
   1491 		}
   1492 	}
   1493 
   1494 err:
   1495 	switch (error) {
   1496 
   1497 	case ENXIO:
   1498 		printf("device bad\n");
   1499 		break;
   1500 
   1501 	case EFAULT:
   1502 		printf("device not ready\n");
   1503 		break;
   1504 
   1505 	case EINVAL:
   1506 		printf("area improper\n");
   1507 		break;
   1508 
   1509 	case EIO:
   1510 		printf("i/o error\n");
   1511 		break;
   1512 
   1513 	case EINTR:
   1514 		printf("aborted from console\n");
   1515 		break;
   1516 
   1517 	case 0:
   1518 		printf("succeeded\n");
   1519 		break;
   1520 
   1521 	default:
   1522 		printf("error %d\n", error);
   1523 		break;
   1524 	}
   1525 	printf("\n\n");
   1526 	delay(1000);
   1527 }
   1528 
   1529 void
   1530 frametoreg(framep, regp)
   1531 	struct trapframe *framep;
   1532 	struct reg *regp;
   1533 {
   1534 
   1535 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1536 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1537 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1538 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1539 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1540 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1541 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1542 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1543 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1544 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1545 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1546 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1547 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1548 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1549 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1550 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1551 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1552 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1553 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1554 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1555 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1556 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1557 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1558 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1559 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1560 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1561 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1562 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1563 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1564 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1565 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1566 	regp->r_regs[R_ZERO] = 0;
   1567 }
   1568 
   1569 void
   1570 regtoframe(regp, framep)
   1571 	struct reg *regp;
   1572 	struct trapframe *framep;
   1573 {
   1574 
   1575 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1576 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1577 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1578 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1579 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1580 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1581 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1582 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1583 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1584 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1585 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1586 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1587 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1588 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1589 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1590 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1591 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1592 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1593 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1594 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1595 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1596 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1597 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1598 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1599 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1600 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1601 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1602 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1603 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1604 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1605 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1606 	/* ??? = regp->r_regs[R_ZERO]; */
   1607 }
   1608 
   1609 void
   1610 printregs(regp)
   1611 	struct reg *regp;
   1612 {
   1613 	int i;
   1614 
   1615 	for (i = 0; i < 32; i++)
   1616 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1617 		   i & 1 ? "\n" : "\t");
   1618 }
   1619 
   1620 void
   1621 regdump(framep)
   1622 	struct trapframe *framep;
   1623 {
   1624 	struct reg reg;
   1625 
   1626 	frametoreg(framep, &reg);
   1627 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1628 
   1629 	printf("REGISTERS:\n");
   1630 	printregs(&reg);
   1631 }
   1632 
   1633 #ifdef DEBUG
   1634 int sigdebug = 0;
   1635 int sigpid = 0;
   1636 #define	SDB_FOLLOW	0x01
   1637 #define	SDB_KSTACK	0x02
   1638 #endif
   1639 
   1640 /*
   1641  * Send an interrupt to process.
   1642  */
   1643 void
   1644 sendsig(catcher, sig, mask, code)
   1645 	sig_t catcher;
   1646 	int sig;
   1647 	sigset_t *mask;
   1648 	u_long code;
   1649 {
   1650 	struct proc *p = curproc;
   1651 	struct sigcontext *scp, ksc;
   1652 	struct trapframe *frame;
   1653 	struct sigacts *psp = p->p_sigacts;
   1654 	int onstack, fsize, rndfsize;
   1655 
   1656 	frame = p->p_md.md_tf;
   1657 
   1658 	/* Do we need to jump onto the signal stack? */
   1659 	onstack =
   1660 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1661 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1662 
   1663 	/* Allocate space for the signal handler context. */
   1664 	fsize = sizeof(ksc);
   1665 	rndfsize = ((fsize + 15) / 16) * 16;
   1666 
   1667 	if (onstack)
   1668 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1669 						     psp->ps_sigstk.ss_size);
   1670 	else
   1671 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1672 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1673 
   1674 #ifdef DEBUG
   1675 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1676 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1677 		    sig, &onstack, scp);
   1678 #endif
   1679 
   1680 	/* Build stack frame for signal trampoline. */
   1681 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1682 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1683 
   1684 	/* Save register context. */
   1685 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1686 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1687 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1688 
   1689 	/* save the floating-point state, if necessary, then copy it. */
   1690 	if (p == fpcurproc) {
   1691 		alpha_pal_wrfen(1);
   1692 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1693 		alpha_pal_wrfen(0);
   1694 		fpcurproc = NULL;
   1695 	}
   1696 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1697 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1698 	    sizeof(struct fpreg));
   1699 	ksc.sc_fp_control = 0;					/* XXX ? */
   1700 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1701 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1702 
   1703 	/* Save signal stack. */
   1704 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1705 
   1706 	/* Save signal mask. */
   1707 	ksc.sc_mask = *mask;
   1708 
   1709 #ifdef COMPAT_13
   1710 	/*
   1711 	 * XXX We always have to save an old style signal mask because
   1712 	 * XXX we might be delivering a signal to a process which will
   1713 	 * XXX escape from the signal in a non-standard way and invoke
   1714 	 * XXX sigreturn() directly.
   1715 	 */
   1716 	{
   1717 		/* Note: it's a long in the stack frame. */
   1718 		sigset13_t mask13;
   1719 
   1720 		native_sigset_to_sigset13(mask, &mask13);
   1721 		ksc.__sc_mask13 = mask13;
   1722 	}
   1723 #endif
   1724 
   1725 #ifdef COMPAT_OSF1
   1726 	/*
   1727 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1728 	 */
   1729 #endif
   1730 
   1731 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1732 		/*
   1733 		 * Process has trashed its stack; give it an illegal
   1734 		 * instruction to halt it in its tracks.
   1735 		 */
   1736 #ifdef DEBUG
   1737 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1738 			printf("sendsig(%d): copyout failed on sig %d\n",
   1739 			    p->p_pid, sig);
   1740 #endif
   1741 		sigexit(p, SIGILL);
   1742 		/* NOTREACHED */
   1743 	}
   1744 #ifdef DEBUG
   1745 	if (sigdebug & SDB_FOLLOW)
   1746 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1747 		    scp, code);
   1748 #endif
   1749 
   1750 	/* Set up the registers to return to sigcode. */
   1751 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1752 	frame->tf_regs[FRAME_A0] = sig;
   1753 	frame->tf_regs[FRAME_A1] = code;
   1754 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1755 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1756 	alpha_pal_wrusp((unsigned long)scp);
   1757 
   1758 	/* Remember that we're now on the signal stack. */
   1759 	if (onstack)
   1760 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1761 
   1762 #ifdef DEBUG
   1763 	if (sigdebug & SDB_FOLLOW)
   1764 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1765 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1766 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1767 		printf("sendsig(%d): sig %d returns\n",
   1768 		    p->p_pid, sig);
   1769 #endif
   1770 }
   1771 
   1772 /*
   1773  * System call to cleanup state after a signal
   1774  * has been taken.  Reset signal mask and
   1775  * stack state from context left by sendsig (above).
   1776  * Return to previous pc and psl as specified by
   1777  * context left by sendsig. Check carefully to
   1778  * make sure that the user has not modified the
   1779  * psl to gain improper priviledges or to cause
   1780  * a machine fault.
   1781  */
   1782 /* ARGSUSED */
   1783 int
   1784 sys___sigreturn14(p, v, retval)
   1785 	struct proc *p;
   1786 	void *v;
   1787 	register_t *retval;
   1788 {
   1789 	struct sys___sigreturn14_args /* {
   1790 		syscallarg(struct sigcontext *) sigcntxp;
   1791 	} */ *uap = v;
   1792 	struct sigcontext *scp, ksc;
   1793 
   1794 	/*
   1795 	 * The trampoline code hands us the context.
   1796 	 * It is unsafe to keep track of it ourselves, in the event that a
   1797 	 * program jumps out of a signal handler.
   1798 	 */
   1799 	scp = SCARG(uap, sigcntxp);
   1800 #ifdef DEBUG
   1801 	if (sigdebug & SDB_FOLLOW)
   1802 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1803 #endif
   1804 	if (ALIGN(scp) != (u_int64_t)scp)
   1805 		return (EINVAL);
   1806 
   1807 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1808 		return (EFAULT);
   1809 
   1810 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1811 		return (EINVAL);
   1812 
   1813 	/* Restore register context. */
   1814 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1815 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1816 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1817 
   1818 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1819 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1820 
   1821 	/* XXX ksc.sc_ownedfp ? */
   1822 	if (p == fpcurproc)
   1823 		fpcurproc = NULL;
   1824 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1825 	    sizeof(struct fpreg));
   1826 	/* XXX ksc.sc_fp_control ? */
   1827 
   1828 	/* Restore signal stack. */
   1829 	if (ksc.sc_onstack & SS_ONSTACK)
   1830 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1831 	else
   1832 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1833 
   1834 	/* Restore signal mask. */
   1835 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1836 
   1837 #ifdef DEBUG
   1838 	if (sigdebug & SDB_FOLLOW)
   1839 		printf("sigreturn(%d): returns\n", p->p_pid);
   1840 #endif
   1841 	return (EJUSTRETURN);
   1842 }
   1843 
   1844 /*
   1845  * machine dependent system variables.
   1846  */
   1847 int
   1848 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1849 	int *name;
   1850 	u_int namelen;
   1851 	void *oldp;
   1852 	size_t *oldlenp;
   1853 	void *newp;
   1854 	size_t newlen;
   1855 	struct proc *p;
   1856 {
   1857 	dev_t consdev;
   1858 
   1859 	/* all sysctl names at this level are terminal */
   1860 	if (namelen != 1)
   1861 		return (ENOTDIR);		/* overloaded */
   1862 
   1863 	switch (name[0]) {
   1864 	case CPU_CONSDEV:
   1865 		if (cn_tab != NULL)
   1866 			consdev = cn_tab->cn_dev;
   1867 		else
   1868 			consdev = NODEV;
   1869 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1870 			sizeof consdev));
   1871 
   1872 	case CPU_ROOT_DEVICE:
   1873 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1874 		    root_device->dv_xname));
   1875 
   1876 	case CPU_UNALIGNED_PRINT:
   1877 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1878 		    &alpha_unaligned_print));
   1879 
   1880 	case CPU_UNALIGNED_FIX:
   1881 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1882 		    &alpha_unaligned_fix));
   1883 
   1884 	case CPU_UNALIGNED_SIGBUS:
   1885 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1886 		    &alpha_unaligned_sigbus));
   1887 
   1888 	case CPU_BOOTED_KERNEL:
   1889 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1890 		    bootinfo.booted_kernel));
   1891 
   1892 	default:
   1893 		return (EOPNOTSUPP);
   1894 	}
   1895 	/* NOTREACHED */
   1896 }
   1897 
   1898 /*
   1899  * Set registers on exec.
   1900  */
   1901 void
   1902 setregs(p, pack, stack)
   1903 	register struct proc *p;
   1904 	struct exec_package *pack;
   1905 	u_long stack;
   1906 {
   1907 	struct trapframe *tfp = p->p_md.md_tf;
   1908 #ifdef DEBUG
   1909 	int i;
   1910 #endif
   1911 
   1912 #ifdef DEBUG
   1913 	/*
   1914 	 * Crash and dump, if the user requested it.
   1915 	 */
   1916 	if (boothowto & RB_DUMP)
   1917 		panic("crash requested by boot flags");
   1918 #endif
   1919 
   1920 #ifdef DEBUG
   1921 	for (i = 0; i < FRAME_SIZE; i++)
   1922 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1923 #else
   1924 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1925 #endif
   1926 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1927 #define FP_RN 2 /* XXX */
   1928 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1929 	alpha_pal_wrusp(stack);
   1930 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1931 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1932 
   1933 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1934 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1935 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1936 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1937 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1938 
   1939 	p->p_md.md_flags &= ~MDP_FPUSED;
   1940 	if (fpcurproc == p)
   1941 		fpcurproc = NULL;
   1942 }
   1943 
   1944 void
   1945 netintr()
   1946 {
   1947 	int n, s;
   1948 
   1949 	s = splhigh();
   1950 	n = netisr;
   1951 	netisr = 0;
   1952 	splx(s);
   1953 
   1954 #define	DONETISR(bit, fn)						\
   1955 	do {								\
   1956 		if (n & (1 << (bit)))					\
   1957 			fn;						\
   1958 	} while (0)
   1959 
   1960 #ifdef INET
   1961 #if NARP > 0
   1962 	DONETISR(NETISR_ARP, arpintr());
   1963 #endif
   1964 	DONETISR(NETISR_IP, ipintr());
   1965 #endif
   1966 #ifdef NETATALK
   1967 	DONETISR(NETISR_ATALK, atintr());
   1968 #endif
   1969 #ifdef NS
   1970 	DONETISR(NETISR_NS, nsintr());
   1971 #endif
   1972 #ifdef ISO
   1973 	DONETISR(NETISR_ISO, clnlintr());
   1974 #endif
   1975 #ifdef CCITT
   1976 	DONETISR(NETISR_CCITT, ccittintr());
   1977 #endif
   1978 #ifdef NATM
   1979 	DONETISR(NETISR_NATM, natmintr());
   1980 #endif
   1981 #if NPPP > 1
   1982 	DONETISR(NETISR_PPP, pppintr());
   1983 #endif
   1984 
   1985 #undef DONETISR
   1986 }
   1987 
   1988 void
   1989 do_sir()
   1990 {
   1991 	u_int64_t n;
   1992 
   1993 	do {
   1994 		(void)splhigh();
   1995 		n = ssir;
   1996 		ssir = 0;
   1997 		splsoft();		/* don't recurse through spl0() */
   1998 
   1999 #define	COUNT_SOFT	uvmexp.softs++
   2000 
   2001 #define	DO_SIR(bit, fn)							\
   2002 		do {							\
   2003 			if (n & (bit)) {				\
   2004 				COUNT_SOFT;				\
   2005 				fn;					\
   2006 			}						\
   2007 		} while (0)
   2008 
   2009 		DO_SIR(SIR_NET, netintr());
   2010 		DO_SIR(SIR_CLOCK, softclock());
   2011 #if NCOM > 0
   2012 		DO_SIR(SIR_SERIAL, comsoft());
   2013 #endif
   2014 
   2015 #undef COUNT_SOFT
   2016 #undef DO_SIR
   2017 	} while (ssir != 0);
   2018 }
   2019 
   2020 int
   2021 spl0()
   2022 {
   2023 
   2024 	if (ssir)
   2025 		do_sir();		/* it lowers the IPL itself */
   2026 
   2027 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2028 }
   2029 
   2030 /*
   2031  * The following primitives manipulate the run queues.  _whichqs tells which
   2032  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2033  * into queues, Remrunqueue removes them from queues.  The running process is
   2034  * on no queue, other processes are on a queue related to p->p_priority,
   2035  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2036  * available queues.
   2037  */
   2038 /*
   2039  * setrunqueue(p)
   2040  *	proc *p;
   2041  *
   2042  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2043  */
   2044 
   2045 void
   2046 setrunqueue(p)
   2047 	struct proc *p;
   2048 {
   2049 	int bit;
   2050 
   2051 	/* firewall: p->p_back must be NULL */
   2052 	if (p->p_back != NULL)
   2053 		panic("setrunqueue");
   2054 
   2055 	bit = p->p_priority >> 2;
   2056 	whichqs |= (1 << bit);
   2057 	p->p_forw = (struct proc *)&qs[bit];
   2058 	p->p_back = qs[bit].ph_rlink;
   2059 	p->p_back->p_forw = p;
   2060 	qs[bit].ph_rlink = p;
   2061 }
   2062 
   2063 /*
   2064  * remrunqueue(p)
   2065  *
   2066  * Call should be made at splclock().
   2067  */
   2068 void
   2069 remrunqueue(p)
   2070 	struct proc *p;
   2071 {
   2072 	int bit;
   2073 
   2074 	bit = p->p_priority >> 2;
   2075 	if ((whichqs & (1 << bit)) == 0)
   2076 		panic("remrunqueue");
   2077 
   2078 	p->p_back->p_forw = p->p_forw;
   2079 	p->p_forw->p_back = p->p_back;
   2080 	p->p_back = NULL;	/* for firewall checking. */
   2081 
   2082 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2083 		whichqs &= ~(1 << bit);
   2084 }
   2085 
   2086 /*
   2087  * Return the best possible estimate of the time in the timeval
   2088  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2089  * We guarantee that the time will be greater than the value obtained by a
   2090  * previous call.
   2091  */
   2092 void
   2093 microtime(tvp)
   2094 	register struct timeval *tvp;
   2095 {
   2096 	int s = splclock();
   2097 	static struct timeval lasttime;
   2098 
   2099 	*tvp = time;
   2100 #ifdef notdef
   2101 	tvp->tv_usec += clkread();
   2102 	while (tvp->tv_usec > 1000000) {
   2103 		tvp->tv_sec++;
   2104 		tvp->tv_usec -= 1000000;
   2105 	}
   2106 #endif
   2107 	if (tvp->tv_sec == lasttime.tv_sec &&
   2108 	    tvp->tv_usec <= lasttime.tv_usec &&
   2109 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2110 		tvp->tv_sec++;
   2111 		tvp->tv_usec -= 1000000;
   2112 	}
   2113 	lasttime = *tvp;
   2114 	splx(s);
   2115 }
   2116 
   2117 /*
   2118  * Wait "n" microseconds.
   2119  */
   2120 void
   2121 delay(n)
   2122 	unsigned long n;
   2123 {
   2124 	long N = cycles_per_usec * (n);
   2125 
   2126 	while (N > 0)				/* XXX */
   2127 		N -= 3;				/* XXX */
   2128 }
   2129 
   2130 #if defined(COMPAT_OSF1) || 1		/* XXX */
   2131 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2132 	    u_long));
   2133 
   2134 void
   2135 cpu_exec_ecoff_setregs(p, epp, stack)
   2136 	struct proc *p;
   2137 	struct exec_package *epp;
   2138 	u_long stack;
   2139 {
   2140 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2141 
   2142 	setregs(p, epp, stack);
   2143 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2144 }
   2145 
   2146 /*
   2147  * cpu_exec_ecoff_hook():
   2148  *	cpu-dependent ECOFF format hook for execve().
   2149  *
   2150  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2151  *
   2152  */
   2153 int
   2154 cpu_exec_ecoff_hook(p, epp)
   2155 	struct proc *p;
   2156 	struct exec_package *epp;
   2157 {
   2158 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2159 	extern struct emul emul_netbsd;
   2160 	int error;
   2161 	extern int osf1_exec_ecoff_hook(struct proc *p,
   2162 					struct exec_package *epp);
   2163 
   2164 	switch (execp->f.f_magic) {
   2165 #ifdef COMPAT_OSF1
   2166 	case ECOFF_MAGIC_ALPHA:
   2167 		error = osf1_exec_ecoff_hook(p, epp);
   2168 		break;
   2169 #endif
   2170 
   2171 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2172 		epp->ep_emul = &emul_netbsd;
   2173 		error = 0;
   2174 		break;
   2175 
   2176 	default:
   2177 		error = ENOEXEC;
   2178 	}
   2179 	return (error);
   2180 }
   2181 #endif
   2182 
   2183 int
   2184 alpha_pa_access(pa)
   2185 	u_long pa;
   2186 {
   2187 	int i;
   2188 
   2189 	for (i = 0; i < mem_cluster_cnt; i++) {
   2190 		if (pa < mem_clusters[i].start)
   2191 			continue;
   2192 		if ((pa - mem_clusters[i].start) >=
   2193 		    (mem_clusters[i].size & ~PAGE_MASK))
   2194 			continue;
   2195 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2196 	}
   2197 	return (PROT_NONE);
   2198 }
   2199 
   2200 /* XXX XXX BEGIN XXX XXX */
   2201 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2202 								/* XXX */
   2203 paddr_t								/* XXX */
   2204 alpha_XXX_dmamap(v)						/* XXX */
   2205 	vaddr_t v;						/* XXX */
   2206 {								/* XXX */
   2207 								/* XXX */
   2208 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2209 }								/* XXX */
   2210 /* XXX XXX END XXX XXX */
   2211 
   2212 struct mchkinfo *
   2213 cpu_mchkinfo()
   2214 {
   2215 	if (mchkinfo_all_cpus == NULL)
   2216 		return &startup_info;
   2217 	return mchkinfo_all_cpus + alpha_pal_whami();
   2218 }
   2219