machdep.c revision 1.180 1 /* $NetBSD: machdep.c,v 1.180 1999/08/16 02:59:22 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_pmap_new.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_inet.h"
75 #include "opt_atalk.h"
76 #include "opt_ccitt.h"
77 #include "opt_iso.h"
78 #include "opt_ns.h"
79 #include "opt_natm.h"
80
81 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
82
83 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.180 1999/08/16 02:59:22 simonb Exp $");
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/signalvar.h>
88 #include <sys/kernel.h>
89 #include <sys/map.h>
90 #include <sys/proc.h>
91 #include <sys/buf.h>
92 #include <sys/reboot.h>
93 #include <sys/device.h>
94 #include <sys/file.h>
95 #include <sys/callout.h>
96 #include <sys/malloc.h>
97 #include <sys/mbuf.h>
98 #include <sys/mman.h>
99 #include <sys/msgbuf.h>
100 #include <sys/ioctl.h>
101 #include <sys/tty.h>
102 #include <sys/user.h>
103 #include <sys/exec.h>
104 #include <sys/exec_ecoff.h>
105 #include <vm/vm.h>
106 #include <sys/sysctl.h>
107 #include <sys/core.h>
108 #include <sys/kcore.h>
109 #include <machine/kcore.h>
110
111 #include <sys/mount.h>
112 #include <sys/syscallargs.h>
113
114 #include <vm/vm_kern.h>
115
116 #include <uvm/uvm_extern.h>
117
118 #include <dev/cons.h>
119
120 #include <machine/autoconf.h>
121 #include <machine/cpu.h>
122 #include <machine/reg.h>
123 #include <machine/rpb.h>
124 #include <machine/prom.h>
125 #include <machine/conf.h>
126 #include <machine/ieeefp.h>
127
128 #include <net/netisr.h>
129 #include <net/if.h>
130
131 #ifdef INET
132 #include <net/route.h>
133 #include <netinet/in.h>
134 #include <netinet/ip_var.h>
135 #include "arp.h"
136 #if NARP > 0
137 #include <netinet/if_inarp.h>
138 #endif
139 #endif
140 #ifdef INET6
141 # ifndef INET
142 # include <netinet/in.h>
143 # endif
144 #include <netinet6/ip6.h>
145 #include <netinet6/ip6_var.h>
146 #endif
147 #ifdef NS
148 #include <netns/ns_var.h>
149 #endif
150 #ifdef ISO
151 #include <netiso/iso.h>
152 #include <netiso/clnp.h>
153 #endif
154 #ifdef CCITT
155 #include <netccitt/x25.h>
156 #include <netccitt/pk.h>
157 #include <netccitt/pk_extern.h>
158 #endif
159 #ifdef NATM
160 #include <netnatm/natm.h>
161 #endif
162 #ifdef NETATALK
163 #include <netatalk/at_extern.h>
164 #endif
165 #include "ppp.h"
166 #if NPPP > 0
167 #include <net/ppp_defs.h>
168 #include <net/if_ppp.h>
169 #endif
170
171 #ifdef DDB
172 #include <machine/db_machdep.h>
173 #include <ddb/db_access.h>
174 #include <ddb/db_sym.h>
175 #include <ddb/db_extern.h>
176 #include <ddb/db_interface.h>
177 #endif
178
179 #include <machine/alpha.h>
180 #include <machine/intrcnt.h>
181
182 #include "com.h"
183 #if NCOM > 0
184 extern void comsoft __P((void));
185 #endif
186
187 vm_map_t exec_map = NULL;
188 vm_map_t mb_map = NULL;
189 vm_map_t phys_map = NULL;
190
191 caddr_t msgbufaddr;
192
193 int maxmem; /* max memory per process */
194
195 int totalphysmem; /* total amount of physical memory in system */
196 int physmem; /* physical memory used by NetBSD + some rsvd */
197 int resvmem; /* amount of memory reserved for PROM */
198 int unusedmem; /* amount of memory for OS that we don't use */
199 int unknownmem; /* amount of memory with an unknown use */
200
201 int cputype; /* system type, from the RPB */
202
203 /*
204 * XXX We need an address to which we can assign things so that they
205 * won't be optimized away because we didn't use the value.
206 */
207 u_int32_t no_optimize;
208
209 /* the following is used externally (sysctl_hw) */
210 char machine[] = MACHINE; /* from <machine/param.h> */
211 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
212 char cpu_model[128];
213
214 struct user *proc0paddr;
215
216 /* Number of machine cycles per microsecond */
217 u_int64_t cycles_per_usec;
218
219 /* number of cpus in the box. really! */
220 int ncpus;
221
222 /* machine check info array, valloc()'ed in mdallocsys() */
223
224 static struct mchkinfo startup_info,
225 *mchkinfo_all_cpus;
226
227 struct bootinfo_kernel bootinfo;
228
229 /* For built-in TCDS */
230 #if defined(DEC_3000_300) || defined(DEC_3000_500)
231 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
232 #endif
233
234 struct platform platform;
235
236 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
237 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
238
239 #ifdef DDB
240 /* start and end of kernel symbol table */
241 void *ksym_start, *ksym_end;
242 #endif
243
244 /* for cpu_sysctl() */
245 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
246 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
247 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
248
249 /*
250 * XXX This should be dynamically sized, but we have the chicken-egg problem!
251 * XXX it should also be larger than it is, because not all of the mddt
252 * XXX clusters end up being used for VM.
253 */
254 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
255 int mem_cluster_cnt;
256
257 int cpu_dump __P((void));
258 int cpu_dumpsize __P((void));
259 u_long cpu_dump_mempagecnt __P((void));
260 void dumpsys __P((void));
261 void identifycpu __P((void));
262 caddr_t mdallocsys __P((caddr_t));
263 void netintr __P((void));
264 void printregs __P((struct reg *));
265
266 void
267 alpha_init(pfn, ptb, bim, bip, biv)
268 u_long pfn; /* first free PFN number */
269 u_long ptb; /* PFN of current level 1 page table */
270 u_long bim; /* bootinfo magic */
271 u_long bip; /* bootinfo pointer */
272 u_long biv; /* bootinfo version */
273 {
274 extern char kernel_text[], _end[];
275 struct mddt *mddtp;
276 struct mddt_cluster *memc;
277 int i, mddtweird;
278 struct vm_physseg *vps;
279 vaddr_t kernstart, kernend;
280 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
281 vsize_t size;
282 char *p;
283 caddr_t v;
284 char *bootinfo_msg;
285
286 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
287
288 /*
289 * Turn off interrupts (not mchecks) and floating point.
290 * Make sure the instruction and data streams are consistent.
291 */
292 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
293 alpha_pal_wrfen(0);
294 ALPHA_TBIA();
295 alpha_pal_imb();
296
297 /*
298 * Get critical system information (if possible, from the
299 * information provided by the boot program).
300 */
301 bootinfo_msg = NULL;
302 if (bim == BOOTINFO_MAGIC) {
303 if (biv == 0) { /* backward compat */
304 biv = *(u_long *)bip;
305 bip += 8;
306 }
307 switch (biv) {
308 case 1: {
309 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
310
311 bootinfo.ssym = v1p->ssym;
312 bootinfo.esym = v1p->esym;
313 /* hwrpb may not be provided by boot block in v1 */
314 if (v1p->hwrpb != NULL) {
315 bootinfo.hwrpb_phys =
316 ((struct rpb *)v1p->hwrpb)->rpb_phys;
317 bootinfo.hwrpb_size = v1p->hwrpbsize;
318 } else {
319 bootinfo.hwrpb_phys =
320 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
321 bootinfo.hwrpb_size =
322 ((struct rpb *)HWRPB_ADDR)->rpb_size;
323 }
324 bcopy(v1p->boot_flags, bootinfo.boot_flags,
325 min(sizeof v1p->boot_flags,
326 sizeof bootinfo.boot_flags));
327 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
328 min(sizeof v1p->booted_kernel,
329 sizeof bootinfo.booted_kernel));
330 /* booted dev not provided in bootinfo */
331 init_prom_interface((struct rpb *)
332 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
333 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
334 sizeof bootinfo.booted_dev);
335 break;
336 }
337 default:
338 bootinfo_msg = "unknown bootinfo version";
339 goto nobootinfo;
340 }
341 } else {
342 bootinfo_msg = "boot program did not pass bootinfo";
343 nobootinfo:
344 bootinfo.ssym = (u_long)_end;
345 bootinfo.esym = (u_long)_end;
346 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
347 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
348 init_prom_interface((struct rpb *)HWRPB_ADDR);
349 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
350 sizeof bootinfo.boot_flags);
351 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
352 sizeof bootinfo.booted_kernel);
353 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
354 sizeof bootinfo.booted_dev);
355 }
356
357 /*
358 * Initialize the kernel's mapping of the RPB. It's needed for
359 * lots of things.
360 */
361 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
362
363 #if defined(DEC_3000_300) || defined(DEC_3000_500)
364 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
365 hwrpb->rpb_type == ST_DEC_3000_500) {
366 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
367 sizeof(dec_3000_scsiid));
368 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
369 sizeof(dec_3000_scsifast));
370 }
371 #endif
372
373 /*
374 * Remember how many cycles there are per microsecond,
375 * so that we can use delay(). Round up, for safety.
376 */
377 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
378
379 /*
380 * Initalize the (temporary) bootstrap console interface, so
381 * we can use printf until the VM system starts being setup.
382 * The real console is initialized before then.
383 */
384 init_bootstrap_console();
385
386 /* OUTPUT NOW ALLOWED */
387
388 /* delayed from above */
389 if (bootinfo_msg)
390 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
391 bootinfo_msg, bim, bip, biv);
392
393 /* Initialize the trap vectors on the primary processor. */
394 trap_init();
395
396 /*
397 * Find out what hardware we're on, and do basic initialization.
398 */
399 cputype = hwrpb->rpb_type;
400 if (cputype < 0) {
401 /*
402 * At least some white-box systems have SRM which
403 * reports a systype that's the negative of their
404 * blue-box counterpart.
405 */
406 cputype = -cputype;
407 }
408 if (cputype >= ncpuinit) {
409 platform_not_supported();
410 /* NOTREACHED */
411 }
412 (*cpuinit[cputype].init)();
413 strcpy(cpu_model, platform.model);
414
415 /*
416 * Initalize the real console, so the the bootstrap console is
417 * no longer necessary.
418 */
419 (*platform.cons_init)();
420
421 #ifdef DIAGNOSTIC
422 /* Paranoid sanity checking */
423
424 /* We should always be running on the the primary. */
425 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
426
427 /*
428 * On single-CPU systypes, the primary should always be CPU 0,
429 * except on Alpha 8200 systems where the CPU id is related
430 * to the VID, which is related to the Turbo Laser node id.
431 */
432 if (cputype != ST_DEC_21000)
433 assert(hwrpb->rpb_primary_cpu_id == 0);
434 #endif
435
436 /* NO MORE FIRMWARE ACCESS ALLOWED */
437 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
438 /*
439 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
440 * XXX pmap_uses_prom_console() evaluates to non-zero.)
441 */
442 #endif
443
444 /*
445 * find out this system's page size
446 */
447 PAGE_SIZE = hwrpb->rpb_page_size;
448 if (PAGE_SIZE != 8192)
449 panic("page size %d != 8192?!", PAGE_SIZE);
450
451 /*
452 * Initialize PAGE_SIZE-dependent variables.
453 */
454 uvm_setpagesize();
455
456 /*
457 * Find the beginning and end of the kernel (and leave a
458 * bit of space before the beginning for the bootstrap
459 * stack).
460 */
461 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
462 #ifdef DDB
463 ksym_start = (void *)bootinfo.ssym;
464 ksym_end = (void *)bootinfo.esym;
465 kernend = (vaddr_t)round_page(ksym_end);
466 #else
467 kernend = (vaddr_t)round_page(_end);
468 #endif
469
470 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
471 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
472
473 /*
474 * Find out how much memory is available, by looking at
475 * the memory cluster descriptors. This also tries to do
476 * its best to detect things things that have never been seen
477 * before...
478 */
479 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
480
481 /* MDDT SANITY CHECKING */
482 mddtweird = 0;
483 if (mddtp->mddt_cluster_cnt < 2) {
484 mddtweird = 1;
485 printf("WARNING: weird number of mem clusters: %lu\n",
486 mddtp->mddt_cluster_cnt);
487 }
488
489 #if 0
490 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
491 #endif
492
493 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
494 memc = &mddtp->mddt_clusters[i];
495 #if 0
496 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
497 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
498 #endif
499 totalphysmem += memc->mddt_pg_cnt;
500 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
501 mem_clusters[mem_cluster_cnt].start =
502 ptoa(memc->mddt_pfn);
503 mem_clusters[mem_cluster_cnt].size =
504 ptoa(memc->mddt_pg_cnt);
505 if (memc->mddt_usage & MDDT_mbz ||
506 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
507 memc->mddt_usage & MDDT_PALCODE)
508 mem_clusters[mem_cluster_cnt].size |=
509 PROT_READ;
510 else
511 mem_clusters[mem_cluster_cnt].size |=
512 PROT_READ | PROT_WRITE | PROT_EXEC;
513 mem_cluster_cnt++;
514 }
515
516 if (memc->mddt_usage & MDDT_mbz) {
517 mddtweird = 1;
518 printf("WARNING: mem cluster %d has weird "
519 "usage 0x%lx\n", i, memc->mddt_usage);
520 unknownmem += memc->mddt_pg_cnt;
521 continue;
522 }
523 if (memc->mddt_usage & MDDT_NONVOLATILE) {
524 /* XXX should handle these... */
525 printf("WARNING: skipping non-volatile mem "
526 "cluster %d\n", i);
527 unusedmem += memc->mddt_pg_cnt;
528 continue;
529 }
530 if (memc->mddt_usage & MDDT_PALCODE) {
531 resvmem += memc->mddt_pg_cnt;
532 continue;
533 }
534
535 /*
536 * We have a memory cluster available for system
537 * software use. We must determine if this cluster
538 * holds the kernel.
539 */
540 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
541 /*
542 * XXX If the kernel uses the PROM console, we only use the
543 * XXX memory after the kernel in the first system segment,
544 * XXX to avoid clobbering prom mapping, data, etc.
545 */
546 if (!pmap_uses_prom_console() || physmem == 0) {
547 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
548 physmem += memc->mddt_pg_cnt;
549 pfn0 = memc->mddt_pfn;
550 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
551 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
552 /*
553 * Must compute the location of the kernel
554 * within the segment.
555 */
556 #if 0
557 printf("Cluster %d contains kernel\n", i);
558 #endif
559 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
560 if (!pmap_uses_prom_console()) {
561 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
562 if (pfn0 < kernstartpfn) {
563 /*
564 * There is a chunk before the kernel.
565 */
566 #if 0
567 printf("Loading chunk before kernel: "
568 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
569 #endif
570 uvm_page_physload(pfn0, kernstartpfn,
571 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
572 }
573 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
574 }
575 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
576 if (kernendpfn < pfn1) {
577 /*
578 * There is a chunk after the kernel.
579 */
580 #if 0
581 printf("Loading chunk after kernel: "
582 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
583 #endif
584 uvm_page_physload(kernendpfn, pfn1,
585 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
586 }
587 } else {
588 /*
589 * Just load this cluster as one chunk.
590 */
591 #if 0
592 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
593 pfn0, pfn1);
594 #endif
595 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
596 VM_FREELIST_DEFAULT);
597 }
598 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
599 }
600 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
601 }
602
603 /*
604 * Dump out the MDDT if it looks odd...
605 */
606 if (mddtweird) {
607 printf("\n");
608 printf("complete memory cluster information:\n");
609 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
610 printf("mddt %d:\n", i);
611 printf("\tpfn %lx\n",
612 mddtp->mddt_clusters[i].mddt_pfn);
613 printf("\tcnt %lx\n",
614 mddtp->mddt_clusters[i].mddt_pg_cnt);
615 printf("\ttest %lx\n",
616 mddtp->mddt_clusters[i].mddt_pg_test);
617 printf("\tbva %lx\n",
618 mddtp->mddt_clusters[i].mddt_v_bitaddr);
619 printf("\tbpa %lx\n",
620 mddtp->mddt_clusters[i].mddt_p_bitaddr);
621 printf("\tbcksum %lx\n",
622 mddtp->mddt_clusters[i].mddt_bit_cksum);
623 printf("\tusage %lx\n",
624 mddtp->mddt_clusters[i].mddt_usage);
625 }
626 printf("\n");
627 }
628
629 if (totalphysmem == 0)
630 panic("can't happen: system seems to have no memory!");
631
632 #ifdef LIMITMEM
633 /*
634 * XXX Kludge so we can run on machines with memory larger
635 * XXX than 1G until all device drivers are converted to
636 * XXX use bus_dma. (Relies on the fact that vm_physmem
637 * XXX sorted in order of increasing addresses.)
638 */
639 if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
640
641 printf("******** LIMITING MEMORY TO %dMB **********\n",
642 LIMITMEM);
643
644 do {
645 u_long ovf;
646
647 vps = &vm_physmem[vm_nphysseg - 1];
648
649 if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
650 /*
651 * If the start is too high, just drop
652 * the whole segment.
653 *
654 * XXX can start != avail_start in this
655 * XXX case? wouldn't that mean that
656 * XXX some memory was stolen above the
657 * XXX limit? What to do?
658 */
659 ovf = vps->end - vps->start;
660 vm_nphysseg--;
661 } else {
662 /*
663 * If the start is OK, calculate how much
664 * to drop and drop it.
665 */
666 ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
667 vps->end -= ovf;
668 vps->avail_end -= ovf;
669 }
670 physmem -= ovf;
671 unusedmem += ovf;
672 } while (vps->end > atop(LIMITMEM * 1024 * 1024));
673 }
674 #endif /* LIMITMEM */
675
676 maxmem = physmem;
677
678 #if 0
679 printf("totalphysmem = %d\n", totalphysmem);
680 printf("physmem = %d\n", physmem);
681 printf("resvmem = %d\n", resvmem);
682 printf("unusedmem = %d\n", unusedmem);
683 printf("unknownmem = %d\n", unknownmem);
684 #endif
685
686 /*
687 * Adjust some parameters if the amount of physmem
688 * available would cause us to croak. This is completely
689 * eyeballed and isn't meant to be the final answer.
690 * vm_phys_size is probably the only one to really worry
691 * about.
692 *
693 * It's for booting a GENERIC kernel on a large memory platform.
694 */
695 if (physmem >= atop(128 * 1024 * 1024)) {
696 vm_kmem_size <<= 3;
697 vm_phys_size <<= 2;
698 }
699
700 /*
701 * Initialize error message buffer (at end of core).
702 */
703 {
704 size_t sz = round_page(MSGBUFSIZE);
705
706 vps = &vm_physmem[vm_nphysseg - 1];
707
708 /* shrink so that it'll fit in the last segment */
709 if ((vps->avail_end - vps->avail_start) < atop(sz))
710 sz = ptoa(vps->avail_end - vps->avail_start);
711
712 vps->end -= atop(sz);
713 vps->avail_end -= atop(sz);
714 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
715 initmsgbuf(msgbufaddr, sz);
716
717 /* Remove the last segment if it now has no pages. */
718 if (vps->start == vps->end)
719 vm_nphysseg--;
720
721 /* warn if the message buffer had to be shrunk */
722 if (sz != round_page(MSGBUFSIZE))
723 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
724 round_page(MSGBUFSIZE), sz);
725
726 }
727
728 /*
729 * Init mapping for u page(s) for proc 0
730 */
731 proc0.p_addr = proc0paddr =
732 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
733
734 /*
735 * Allocate space for system data structures. These data structures
736 * are allocated here instead of cpu_startup() because physical
737 * memory is directly addressable. We don't have to map these into
738 * virtual address space.
739 */
740 size = (vsize_t)allocsys(NULL, mdallocsys);
741 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
742 if ((allocsys(v, mdallocsys) - v) != size)
743 panic("alpha_init: table size inconsistency");
744
745 /*
746 * Initialize the virtual memory system, and set the
747 * page table base register in proc 0's PCB.
748 */
749 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
750 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
751
752 /*
753 * Initialize the rest of proc 0's PCB, and cache its physical
754 * address.
755 */
756 proc0.p_md.md_pcbpaddr =
757 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
758
759 /*
760 * Set the kernel sp, reserving space for an (empty) trapframe,
761 * and make proc0's trapframe pointer point to it for sanity.
762 */
763 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
764 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
765 proc0.p_md.md_tf =
766 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
767
768 /*
769 * Look at arguments passed to us and compute boothowto.
770 */
771
772 boothowto = RB_SINGLE;
773 #ifdef KADB
774 boothowto |= RB_KDB;
775 #endif
776 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
777 /*
778 * Note that we'd really like to differentiate case here,
779 * but the Alpha AXP Architecture Reference Manual
780 * says that we shouldn't.
781 */
782 switch (*p) {
783 case 'a': /* autoboot */
784 case 'A':
785 boothowto &= ~RB_SINGLE;
786 break;
787
788 #ifdef DEBUG
789 case 'c': /* crash dump immediately after autoconfig */
790 case 'C':
791 boothowto |= RB_DUMP;
792 break;
793 #endif
794
795 #if defined(KGDB) || defined(DDB)
796 case 'd': /* break into the kernel debugger ASAP */
797 case 'D':
798 boothowto |= RB_KDB;
799 break;
800 #endif
801
802 case 'h': /* always halt, never reboot */
803 case 'H':
804 boothowto |= RB_HALT;
805 break;
806
807 #if 0
808 case 'm': /* mini root present in memory */
809 case 'M':
810 boothowto |= RB_MINIROOT;
811 break;
812 #endif
813
814 case 'n': /* askname */
815 case 'N':
816 boothowto |= RB_ASKNAME;
817 break;
818
819 case 's': /* single-user (default, supported for sanity) */
820 case 'S':
821 boothowto |= RB_SINGLE;
822 break;
823
824 case '-':
825 /*
826 * Just ignore this. It's not required, but it's
827 * common for it to be passed regardless.
828 */
829 break;
830
831 default:
832 printf("Unrecognized boot flag '%c'.\n", *p);
833 break;
834 }
835 }
836
837
838 /*
839 * Figure out the number of cpus in the box, from RPB fields.
840 * Really. We mean it.
841 */
842 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
843 struct pcs *pcsp;
844
845 pcsp = LOCATE_PCS(hwrpb, i);
846 if ((pcsp->pcs_flags & PCS_PP) != 0)
847 ncpus++;
848 }
849
850 /*
851 * Initialize debuggers, and break into them if appropriate.
852 */
853 #ifdef DDB
854 db_machine_init();
855 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
856 ksym_start, ksym_end);
857 if (boothowto & RB_KDB)
858 Debugger();
859 #endif
860 #ifdef KGDB
861 if (boothowto & RB_KDB)
862 kgdb_connect(0);
863 #endif
864 /*
865 * Figure out our clock frequency, from RPB fields.
866 */
867 hz = hwrpb->rpb_intr_freq >> 12;
868 if (!(60 <= hz && hz <= 10240)) {
869 hz = 1024;
870 #ifdef DIAGNOSTIC
871 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
872 hwrpb->rpb_intr_freq, hz);
873 #endif
874 }
875 }
876
877 caddr_t
878 mdallocsys(v)
879 caddr_t v;
880 {
881 /*
882 * There appears to be a correlation between the number
883 * of processor slots defined in the HWRPB and the whami
884 * value that can be returned.
885 */
886 ALLOCSYS(v, mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
887 return (v);
888 }
889
890 void
891 consinit()
892 {
893
894 /*
895 * Everything related to console initialization is done
896 * in alpha_init().
897 */
898 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
899 printf("consinit: %susing prom console\n",
900 pmap_uses_prom_console() ? "" : "not ");
901 #endif
902 }
903
904 #include "pckbc.h"
905 #include "pckbd.h"
906 #if (NPCKBC > 0) && (NPCKBD == 0)
907
908 #include <dev/isa/pckbcvar.h>
909
910 /*
911 * This is called by the pbkbc driver if no pckbd is configured.
912 * On the i386, it is used to glue in the old, deprecated console
913 * code. On the Alpha, it does nothing.
914 */
915 int
916 pckbc_machdep_cnattach(kbctag, kbcslot)
917 pckbc_tag_t kbctag;
918 pckbc_slot_t kbcslot;
919 {
920
921 return (ENXIO);
922 }
923 #endif /* NPCKBC > 0 && NPCKBD == 0 */
924
925 void
926 cpu_startup()
927 {
928 register unsigned i;
929 int base, residual;
930 vaddr_t minaddr, maxaddr;
931 vsize_t size;
932 char pbuf[9];
933 #if defined(DEBUG)
934 extern int pmapdebug;
935 int opmapdebug = pmapdebug;
936
937 pmapdebug = 0;
938 #endif
939
940 /*
941 * Good {morning,afternoon,evening,night}.
942 */
943 printf(version);
944 identifycpu();
945 format_bytes(pbuf, sizeof(pbuf), totalphysmem << PAGE_SHIFT);
946 printf("total memory = %s\n", pbuf);
947 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
948 printf("(%s reserved for PROM, ", pbuf);
949 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
950 printf("%s used by NetBSD)\n", pbuf);
951 if (unusedmem) {
952 format_bytes(pbuf, sizeof(pbuf), ctob(unusedmem));
953 printf("WARNING: unused memory = %s\n", pbuf);
954 }
955 if (unknownmem) {
956 format_bytes(pbuf, sizeof(pbuf), ctob(unknownmem));
957 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
958 }
959
960 /*
961 * Allocate virtual address space for file I/O buffers.
962 * Note they are different than the array of headers, 'buf',
963 * and usually occupy more virtual memory than physical.
964 */
965 size = MAXBSIZE * nbuf;
966 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
967 NULL, UVM_UNKNOWN_OFFSET,
968 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
969 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
970 panic("startup: cannot allocate VM for buffers");
971 base = bufpages / nbuf;
972 residual = bufpages % nbuf;
973 for (i = 0; i < nbuf; i++) {
974 vsize_t curbufsize;
975 vaddr_t curbuf;
976 struct vm_page *pg;
977
978 /*
979 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
980 * that MAXBSIZE space, we allocate and map (base+1) pages
981 * for the first "residual" buffers, and then we allocate
982 * "base" pages for the rest.
983 */
984 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
985 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
986
987 while (curbufsize) {
988 pg = uvm_pagealloc(NULL, 0, NULL, 0);
989 if (pg == NULL)
990 panic("cpu_startup: not enough memory for "
991 "buffer cache");
992 #if defined(PMAP_NEW)
993 pmap_kenter_pgs(curbuf, &pg, 1);
994 #else
995 pmap_enter(kernel_map->pmap, curbuf,
996 VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
997 TRUE, VM_PROT_READ|VM_PROT_WRITE);
998 #endif
999 curbuf += PAGE_SIZE;
1000 curbufsize -= PAGE_SIZE;
1001 }
1002 }
1003 /*
1004 * Allocate a submap for exec arguments. This map effectively
1005 * limits the number of processes exec'ing at any time.
1006 */
1007 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1008 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
1009
1010 /*
1011 * Allocate a submap for physio
1012 */
1013 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1014 VM_PHYS_SIZE, 0, FALSE, NULL);
1015
1016 /*
1017 * No need to allocate an mbuf cluster submap. Mbuf clusters
1018 * are allocated via the pool allocator, and we use K0SEG to
1019 * map those pages.
1020 */
1021
1022 /*
1023 * Initialize callouts
1024 */
1025 callfree = callout;
1026 for (i = 1; i < ncallout; i++)
1027 callout[i-1].c_next = &callout[i];
1028 callout[i-1].c_next = NULL;
1029
1030 #if defined(DEBUG)
1031 pmapdebug = opmapdebug;
1032 #endif
1033 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
1034 printf("avail memory = %s\n", pbuf);
1035 #if 0
1036 {
1037 extern u_long pmap_pages_stolen;
1038
1039 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
1040 printf("stolen memory for VM structures = %s\n", pbuf);
1041 }
1042 #endif
1043 format_bytes(pbuf, sizeof(pbuf), bufpages * CLBYTES);
1044 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
1045
1046 /*
1047 * Set up buffers, so they can be used to read disk labels.
1048 */
1049 bufinit();
1050
1051 /*
1052 * Set up the HWPCB so that it's safe to configure secondary
1053 * CPUs.
1054 */
1055 hwrpb_primary_init();
1056 }
1057
1058 /*
1059 * Retrieve the platform name from the DSR.
1060 */
1061 const char *
1062 alpha_dsr_sysname()
1063 {
1064 struct dsrdb *dsr;
1065 const char *sysname;
1066
1067 /*
1068 * DSR does not exist on early HWRPB versions.
1069 */
1070 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1071 return (NULL);
1072
1073 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1074 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1075 sizeof(u_int64_t)));
1076 return (sysname);
1077 }
1078
1079 /*
1080 * Lookup the system specified system variation in the provided table,
1081 * returning the model string on match.
1082 */
1083 const char *
1084 alpha_variation_name(variation, avtp)
1085 u_int64_t variation;
1086 const struct alpha_variation_table *avtp;
1087 {
1088 int i;
1089
1090 for (i = 0; avtp[i].avt_model != NULL; i++)
1091 if (avtp[i].avt_variation == variation)
1092 return (avtp[i].avt_model);
1093 return (NULL);
1094 }
1095
1096 /*
1097 * Generate a default platform name based for unknown system variations.
1098 */
1099 const char *
1100 alpha_unknown_sysname()
1101 {
1102 static char s[128]; /* safe size */
1103
1104 sprintf(s, "%s family, unknown model variation 0x%lx",
1105 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1106 return ((const char *)s);
1107 }
1108
1109 void
1110 identifycpu()
1111 {
1112 char *s;
1113
1114 /*
1115 * print out CPU identification information.
1116 */
1117 printf("%s", cpu_model);
1118 for(s = cpu_model; *s; ++s)
1119 if(strncasecmp(s, "MHz", 3) == 0)
1120 goto skipMHz;
1121 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1122 skipMHz:
1123 printf("\n");
1124 printf("%ld byte page size, %d processor%s.\n",
1125 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1126 #if 0
1127 /* this isn't defined for any systems that we run on? */
1128 printf("serial number 0x%lx 0x%lx\n",
1129 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1130
1131 /* and these aren't particularly useful! */
1132 printf("variation: 0x%lx, revision 0x%lx\n",
1133 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1134 #endif
1135 }
1136
1137 int waittime = -1;
1138 struct pcb dumppcb;
1139
1140 void
1141 cpu_reboot(howto, bootstr)
1142 int howto;
1143 char *bootstr;
1144 {
1145 extern int cold;
1146 #if defined(MULTIPROCESSOR)
1147 #if 0 /* XXX See below. */
1148 u_long cpu_id;
1149 #endif
1150 #endif
1151
1152 #if defined(MULTIPROCESSOR)
1153 /* We must be running on the primary CPU. */
1154 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1155 panic("cpu_reboot: not on primary CPU!");
1156 #endif
1157
1158 /* If system is cold, just halt. */
1159 if (cold) {
1160 howto |= RB_HALT;
1161 goto haltsys;
1162 }
1163
1164 /* If "always halt" was specified as a boot flag, obey. */
1165 if ((boothowto & RB_HALT) != 0)
1166 howto |= RB_HALT;
1167
1168 boothowto = howto;
1169 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1170 waittime = 0;
1171 vfs_shutdown();
1172 /*
1173 * If we've been adjusting the clock, the todr
1174 * will be out of synch; adjust it now.
1175 */
1176 resettodr();
1177 }
1178
1179 /* Disable interrupts. */
1180 splhigh();
1181
1182 /* If rebooting and a dump is requested do it. */
1183 #if 0
1184 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1185 #else
1186 if (howto & RB_DUMP)
1187 #endif
1188 dumpsys();
1189
1190 haltsys:
1191
1192 /* run any shutdown hooks */
1193 doshutdownhooks();
1194
1195 #if defined(MULTIPROCESSOR)
1196 #if 0 /* XXX doesn't work when called from here?! */
1197 /* Kill off any secondary CPUs. */
1198 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1199 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1200 cpu_info[cpu_id].ci_softc == NULL)
1201 continue;
1202 cpu_halt_secondary(cpu_id);
1203 }
1204 #endif
1205 #endif
1206
1207 #ifdef BOOTKEY
1208 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1209 cnpollc(1); /* for proper keyboard command handling */
1210 cngetc();
1211 cnpollc(0);
1212 printf("\n");
1213 #endif
1214
1215 /* Finally, powerdown/halt/reboot the system. */
1216 if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1217 platform.powerdown != NULL) {
1218 (*platform.powerdown)();
1219 printf("WARNING: powerdown failed!\n");
1220 }
1221 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1222 prom_halt(howto & RB_HALT);
1223 /*NOTREACHED*/
1224 }
1225
1226 /*
1227 * These variables are needed by /sbin/savecore
1228 */
1229 u_long dumpmag = 0x8fca0101; /* magic number */
1230 int dumpsize = 0; /* pages */
1231 long dumplo = 0; /* blocks */
1232
1233 /*
1234 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1235 */
1236 int
1237 cpu_dumpsize()
1238 {
1239 int size;
1240
1241 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1242 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1243 if (roundup(size, dbtob(1)) != dbtob(1))
1244 return -1;
1245
1246 return (1);
1247 }
1248
1249 /*
1250 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1251 */
1252 u_long
1253 cpu_dump_mempagecnt()
1254 {
1255 u_long i, n;
1256
1257 n = 0;
1258 for (i = 0; i < mem_cluster_cnt; i++)
1259 n += atop(mem_clusters[i].size);
1260 return (n);
1261 }
1262
1263 /*
1264 * cpu_dump: dump machine-dependent kernel core dump headers.
1265 */
1266 int
1267 cpu_dump()
1268 {
1269 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1270 char buf[dbtob(1)];
1271 kcore_seg_t *segp;
1272 cpu_kcore_hdr_t *cpuhdrp;
1273 phys_ram_seg_t *memsegp;
1274 int i;
1275
1276 dump = bdevsw[major(dumpdev)].d_dump;
1277
1278 bzero(buf, sizeof buf);
1279 segp = (kcore_seg_t *)buf;
1280 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1281 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1282 ALIGN(sizeof(*cpuhdrp))];
1283
1284 /*
1285 * Generate a segment header.
1286 */
1287 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1288 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1289
1290 /*
1291 * Add the machine-dependent header info.
1292 */
1293 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1294 cpuhdrp->page_size = PAGE_SIZE;
1295 cpuhdrp->nmemsegs = mem_cluster_cnt;
1296
1297 /*
1298 * Fill in the memory segment descriptors.
1299 */
1300 for (i = 0; i < mem_cluster_cnt; i++) {
1301 memsegp[i].start = mem_clusters[i].start;
1302 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1303 }
1304
1305 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1306 }
1307
1308 /*
1309 * This is called by main to set dumplo and dumpsize.
1310 * Dumps always skip the first CLBYTES of disk space
1311 * in case there might be a disk label stored there.
1312 * If there is extra space, put dump at the end to
1313 * reduce the chance that swapping trashes it.
1314 */
1315 void
1316 cpu_dumpconf()
1317 {
1318 int nblks, dumpblks; /* size of dump area */
1319 int maj;
1320
1321 if (dumpdev == NODEV)
1322 goto bad;
1323 maj = major(dumpdev);
1324 if (maj < 0 || maj >= nblkdev)
1325 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1326 if (bdevsw[maj].d_psize == NULL)
1327 goto bad;
1328 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1329 if (nblks <= ctod(1))
1330 goto bad;
1331
1332 dumpblks = cpu_dumpsize();
1333 if (dumpblks < 0)
1334 goto bad;
1335 dumpblks += ctod(cpu_dump_mempagecnt());
1336
1337 /* If dump won't fit (incl. room for possible label), punt. */
1338 if (dumpblks > (nblks - ctod(1)))
1339 goto bad;
1340
1341 /* Put dump at end of partition */
1342 dumplo = nblks - dumpblks;
1343
1344 /* dumpsize is in page units, and doesn't include headers. */
1345 dumpsize = cpu_dump_mempagecnt();
1346 return;
1347
1348 bad:
1349 dumpsize = 0;
1350 return;
1351 }
1352
1353 /*
1354 * Dump the kernel's image to the swap partition.
1355 */
1356 #define BYTES_PER_DUMP NBPG
1357
1358 void
1359 dumpsys()
1360 {
1361 u_long totalbytesleft, bytes, i, n, memcl;
1362 u_long maddr;
1363 int psize;
1364 daddr_t blkno;
1365 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1366 int error;
1367
1368 /* Save registers. */
1369 savectx(&dumppcb);
1370
1371 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1372 if (dumpdev == NODEV)
1373 return;
1374
1375 /*
1376 * For dumps during autoconfiguration,
1377 * if dump device has already configured...
1378 */
1379 if (dumpsize == 0)
1380 cpu_dumpconf();
1381 if (dumplo <= 0) {
1382 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1383 minor(dumpdev));
1384 return;
1385 }
1386 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1387 minor(dumpdev), dumplo);
1388
1389 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1390 printf("dump ");
1391 if (psize == -1) {
1392 printf("area unavailable\n");
1393 return;
1394 }
1395
1396 /* XXX should purge all outstanding keystrokes. */
1397
1398 if ((error = cpu_dump()) != 0)
1399 goto err;
1400
1401 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1402 blkno = dumplo + cpu_dumpsize();
1403 dump = bdevsw[major(dumpdev)].d_dump;
1404 error = 0;
1405
1406 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1407 maddr = mem_clusters[memcl].start;
1408 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1409
1410 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1411
1412 /* Print out how many MBs we to go. */
1413 if ((totalbytesleft % (1024*1024)) == 0)
1414 printf("%ld ", totalbytesleft / (1024 * 1024));
1415
1416 /* Limit size for next transfer. */
1417 n = bytes - i;
1418 if (n > BYTES_PER_DUMP)
1419 n = BYTES_PER_DUMP;
1420
1421 error = (*dump)(dumpdev, blkno,
1422 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1423 if (error)
1424 goto err;
1425 maddr += n;
1426 blkno += btodb(n); /* XXX? */
1427
1428 /* XXX should look for keystrokes, to cancel. */
1429 }
1430 }
1431
1432 err:
1433 switch (error) {
1434
1435 case ENXIO:
1436 printf("device bad\n");
1437 break;
1438
1439 case EFAULT:
1440 printf("device not ready\n");
1441 break;
1442
1443 case EINVAL:
1444 printf("area improper\n");
1445 break;
1446
1447 case EIO:
1448 printf("i/o error\n");
1449 break;
1450
1451 case EINTR:
1452 printf("aborted from console\n");
1453 break;
1454
1455 case 0:
1456 printf("succeeded\n");
1457 break;
1458
1459 default:
1460 printf("error %d\n", error);
1461 break;
1462 }
1463 printf("\n\n");
1464 delay(1000);
1465 }
1466
1467 void
1468 frametoreg(framep, regp)
1469 struct trapframe *framep;
1470 struct reg *regp;
1471 {
1472
1473 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1474 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1475 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1476 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1477 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1478 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1479 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1480 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1481 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1482 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1483 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1484 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1485 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1486 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1487 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1488 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1489 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1490 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1491 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1492 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1493 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1494 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1495 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1496 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1497 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1498 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1499 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1500 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1501 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1502 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1503 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1504 regp->r_regs[R_ZERO] = 0;
1505 }
1506
1507 void
1508 regtoframe(regp, framep)
1509 struct reg *regp;
1510 struct trapframe *framep;
1511 {
1512
1513 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1514 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1515 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1516 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1517 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1518 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1519 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1520 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1521 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1522 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1523 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1524 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1525 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1526 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1527 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1528 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1529 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1530 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1531 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1532 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1533 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1534 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1535 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1536 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1537 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1538 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1539 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1540 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1541 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1542 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1543 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1544 /* ??? = regp->r_regs[R_ZERO]; */
1545 }
1546
1547 void
1548 printregs(regp)
1549 struct reg *regp;
1550 {
1551 int i;
1552
1553 for (i = 0; i < 32; i++)
1554 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1555 i & 1 ? "\n" : "\t");
1556 }
1557
1558 void
1559 regdump(framep)
1560 struct trapframe *framep;
1561 {
1562 struct reg reg;
1563
1564 frametoreg(framep, ®);
1565 reg.r_regs[R_SP] = alpha_pal_rdusp();
1566
1567 printf("REGISTERS:\n");
1568 printregs(®);
1569 }
1570
1571 #ifdef DEBUG
1572 int sigdebug = 0;
1573 int sigpid = 0;
1574 #define SDB_FOLLOW 0x01
1575 #define SDB_KSTACK 0x02
1576 #endif
1577
1578 /*
1579 * Send an interrupt to process.
1580 */
1581 void
1582 sendsig(catcher, sig, mask, code)
1583 sig_t catcher;
1584 int sig;
1585 sigset_t *mask;
1586 u_long code;
1587 {
1588 struct proc *p = curproc;
1589 struct sigcontext *scp, ksc;
1590 struct trapframe *frame;
1591 struct sigacts *psp = p->p_sigacts;
1592 int onstack, fsize, rndfsize;
1593
1594 frame = p->p_md.md_tf;
1595
1596 /* Do we need to jump onto the signal stack? */
1597 onstack =
1598 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1599 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1600
1601 /* Allocate space for the signal handler context. */
1602 fsize = sizeof(ksc);
1603 rndfsize = ((fsize + 15) / 16) * 16;
1604
1605 if (onstack)
1606 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1607 psp->ps_sigstk.ss_size);
1608 else
1609 scp = (struct sigcontext *)(alpha_pal_rdusp());
1610 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1611
1612 #ifdef DEBUG
1613 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1614 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1615 sig, &onstack, scp);
1616 #endif
1617
1618 /* Build stack frame for signal trampoline. */
1619 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1620 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1621
1622 /* Save register context. */
1623 frametoreg(frame, (struct reg *)ksc.sc_regs);
1624 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1625 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1626
1627 /* save the floating-point state, if necessary, then copy it. */
1628 if (p == fpcurproc) {
1629 alpha_pal_wrfen(1);
1630 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1631 alpha_pal_wrfen(0);
1632 fpcurproc = NULL;
1633 }
1634 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1635 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1636 sizeof(struct fpreg));
1637 ksc.sc_fp_control = 0; /* XXX ? */
1638 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1639 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1640
1641 /* Save signal stack. */
1642 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1643
1644 /* Save signal mask. */
1645 ksc.sc_mask = *mask;
1646
1647 #ifdef COMPAT_13
1648 /*
1649 * XXX We always have to save an old style signal mask because
1650 * XXX we might be delivering a signal to a process which will
1651 * XXX escape from the signal in a non-standard way and invoke
1652 * XXX sigreturn() directly.
1653 */
1654 {
1655 /* Note: it's a long in the stack frame. */
1656 sigset13_t mask13;
1657
1658 native_sigset_to_sigset13(mask, &mask13);
1659 ksc.__sc_mask13 = mask13;
1660 }
1661 #endif
1662
1663 #ifdef COMPAT_OSF1
1664 /*
1665 * XXX Create an OSF/1-style sigcontext and associated goo.
1666 */
1667 #endif
1668
1669 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1670 /*
1671 * Process has trashed its stack; give it an illegal
1672 * instruction to halt it in its tracks.
1673 */
1674 #ifdef DEBUG
1675 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1676 printf("sendsig(%d): copyout failed on sig %d\n",
1677 p->p_pid, sig);
1678 #endif
1679 sigexit(p, SIGILL);
1680 /* NOTREACHED */
1681 }
1682 #ifdef DEBUG
1683 if (sigdebug & SDB_FOLLOW)
1684 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1685 scp, code);
1686 #endif
1687
1688 /* Set up the registers to return to sigcode. */
1689 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1690 frame->tf_regs[FRAME_A0] = sig;
1691 frame->tf_regs[FRAME_A1] = code;
1692 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1693 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1694 alpha_pal_wrusp((unsigned long)scp);
1695
1696 /* Remember that we're now on the signal stack. */
1697 if (onstack)
1698 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1699
1700 #ifdef DEBUG
1701 if (sigdebug & SDB_FOLLOW)
1702 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1703 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1704 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1705 printf("sendsig(%d): sig %d returns\n",
1706 p->p_pid, sig);
1707 #endif
1708 }
1709
1710 /*
1711 * System call to cleanup state after a signal
1712 * has been taken. Reset signal mask and
1713 * stack state from context left by sendsig (above).
1714 * Return to previous pc and psl as specified by
1715 * context left by sendsig. Check carefully to
1716 * make sure that the user has not modified the
1717 * psl to gain improper privileges or to cause
1718 * a machine fault.
1719 */
1720 /* ARGSUSED */
1721 int
1722 sys___sigreturn14(p, v, retval)
1723 struct proc *p;
1724 void *v;
1725 register_t *retval;
1726 {
1727 struct sys___sigreturn14_args /* {
1728 syscallarg(struct sigcontext *) sigcntxp;
1729 } */ *uap = v;
1730 struct sigcontext *scp, ksc;
1731
1732 /*
1733 * The trampoline code hands us the context.
1734 * It is unsafe to keep track of it ourselves, in the event that a
1735 * program jumps out of a signal handler.
1736 */
1737 scp = SCARG(uap, sigcntxp);
1738 #ifdef DEBUG
1739 if (sigdebug & SDB_FOLLOW)
1740 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1741 #endif
1742 if (ALIGN(scp) != (u_int64_t)scp)
1743 return (EINVAL);
1744
1745 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1746 return (EFAULT);
1747
1748 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1749 return (EINVAL);
1750
1751 /* Restore register context. */
1752 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1753 p->p_md.md_tf->tf_regs[FRAME_PS] =
1754 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1755
1756 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1757 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1758
1759 /* XXX ksc.sc_ownedfp ? */
1760 if (p == fpcurproc)
1761 fpcurproc = NULL;
1762 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1763 sizeof(struct fpreg));
1764 /* XXX ksc.sc_fp_control ? */
1765
1766 /* Restore signal stack. */
1767 if (ksc.sc_onstack & SS_ONSTACK)
1768 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1769 else
1770 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1771
1772 /* Restore signal mask. */
1773 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1774
1775 #ifdef DEBUG
1776 if (sigdebug & SDB_FOLLOW)
1777 printf("sigreturn(%d): returns\n", p->p_pid);
1778 #endif
1779 return (EJUSTRETURN);
1780 }
1781
1782 /*
1783 * machine dependent system variables.
1784 */
1785 int
1786 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1787 int *name;
1788 u_int namelen;
1789 void *oldp;
1790 size_t *oldlenp;
1791 void *newp;
1792 size_t newlen;
1793 struct proc *p;
1794 {
1795 dev_t consdev;
1796
1797 /* all sysctl names at this level are terminal */
1798 if (namelen != 1)
1799 return (ENOTDIR); /* overloaded */
1800
1801 switch (name[0]) {
1802 case CPU_CONSDEV:
1803 if (cn_tab != NULL)
1804 consdev = cn_tab->cn_dev;
1805 else
1806 consdev = NODEV;
1807 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1808 sizeof consdev));
1809
1810 case CPU_ROOT_DEVICE:
1811 return (sysctl_rdstring(oldp, oldlenp, newp,
1812 root_device->dv_xname));
1813
1814 case CPU_UNALIGNED_PRINT:
1815 return (sysctl_int(oldp, oldlenp, newp, newlen,
1816 &alpha_unaligned_print));
1817
1818 case CPU_UNALIGNED_FIX:
1819 return (sysctl_int(oldp, oldlenp, newp, newlen,
1820 &alpha_unaligned_fix));
1821
1822 case CPU_UNALIGNED_SIGBUS:
1823 return (sysctl_int(oldp, oldlenp, newp, newlen,
1824 &alpha_unaligned_sigbus));
1825
1826 case CPU_BOOTED_KERNEL:
1827 return (sysctl_rdstring(oldp, oldlenp, newp,
1828 bootinfo.booted_kernel));
1829
1830 default:
1831 return (EOPNOTSUPP);
1832 }
1833 /* NOTREACHED */
1834 }
1835
1836 /*
1837 * Set registers on exec.
1838 */
1839 void
1840 setregs(p, pack, stack)
1841 register struct proc *p;
1842 struct exec_package *pack;
1843 u_long stack;
1844 {
1845 struct trapframe *tfp = p->p_md.md_tf;
1846 #ifdef DEBUG
1847 int i;
1848 #endif
1849
1850 #ifdef DEBUG
1851 /*
1852 * Crash and dump, if the user requested it.
1853 */
1854 if (boothowto & RB_DUMP)
1855 panic("crash requested by boot flags");
1856 #endif
1857
1858 #ifdef DEBUG
1859 for (i = 0; i < FRAME_SIZE; i++)
1860 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1861 #else
1862 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1863 #endif
1864 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1865 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1866 | FPCR_UNFD
1867 | FPCR_UNDZ
1868 | FPCR_DYN(FP_RN)
1869 | FPCR_OVFD
1870 | FPCR_DZED
1871 | FPCR_INVD
1872 | FPCR_DNZ;
1873 alpha_pal_wrusp(stack);
1874 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1875 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1876
1877 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1878 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1879 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1880 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1881 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1882
1883 p->p_md.md_flags &= ~MDP_FPUSED;
1884 if (fpcurproc == p)
1885 fpcurproc = NULL;
1886 }
1887
1888 void
1889 netintr()
1890 {
1891 int n, s;
1892
1893 s = splhigh();
1894 n = netisr;
1895 netisr = 0;
1896 splx(s);
1897
1898 #define DONETISR(bit, fn) \
1899 do { \
1900 if (n & (1 << (bit))) \
1901 fn; \
1902 } while (0)
1903
1904 #ifdef INET
1905 #if NARP > 0
1906 DONETISR(NETISR_ARP, arpintr());
1907 #endif
1908 DONETISR(NETISR_IP, ipintr());
1909 #endif
1910 #ifdef INET6
1911 DONETISR(NETISR_IPV6, ip6intr());
1912 #endif
1913 #ifdef NETATALK
1914 DONETISR(NETISR_ATALK, atintr());
1915 #endif
1916 #ifdef NS
1917 DONETISR(NETISR_NS, nsintr());
1918 #endif
1919 #ifdef ISO
1920 DONETISR(NETISR_ISO, clnlintr());
1921 #endif
1922 #ifdef CCITT
1923 DONETISR(NETISR_CCITT, ccittintr());
1924 #endif
1925 #ifdef NATM
1926 DONETISR(NETISR_NATM, natmintr());
1927 #endif
1928 #if NPPP > 1
1929 DONETISR(NETISR_PPP, pppintr());
1930 #endif
1931
1932 #undef DONETISR
1933 }
1934
1935 void
1936 do_sir()
1937 {
1938 u_int64_t n;
1939
1940 while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
1941 #define COUNT_SOFT uvmexp.softs++
1942
1943 #define DO_SIR(bit, fn) \
1944 do { \
1945 if (n & (bit)) { \
1946 COUNT_SOFT; \
1947 fn; \
1948 } \
1949 } while (0)
1950
1951 DO_SIR(SIR_NET, netintr());
1952 DO_SIR(SIR_CLOCK, softclock());
1953 #if NCOM > 0
1954 DO_SIR(SIR_SERIAL, comsoft());
1955 #endif
1956
1957 #undef COUNT_SOFT
1958 #undef DO_SIR
1959 }
1960 }
1961
1962 int
1963 spl0()
1964 {
1965
1966 if (ssir) {
1967 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1968 do_sir();
1969 }
1970
1971 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1972 }
1973
1974 /*
1975 * The following primitives manipulate the run queues. _whichqs tells which
1976 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1977 * into queues, Remrunqueue removes them from queues. The running process is
1978 * on no queue, other processes are on a queue related to p->p_priority,
1979 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1980 * available queues.
1981 */
1982 /*
1983 * setrunqueue(p)
1984 * proc *p;
1985 *
1986 * Call should be made at splclock(), and p->p_stat should be SRUN.
1987 */
1988
1989 void
1990 setrunqueue(p)
1991 struct proc *p;
1992 {
1993 int bit;
1994
1995 /* firewall: p->p_back must be NULL */
1996 if (p->p_back != NULL)
1997 panic("setrunqueue");
1998
1999 bit = p->p_priority >> 2;
2000 whichqs |= (1 << bit);
2001 p->p_forw = (struct proc *)&qs[bit];
2002 p->p_back = qs[bit].ph_rlink;
2003 p->p_back->p_forw = p;
2004 qs[bit].ph_rlink = p;
2005 }
2006
2007 /*
2008 * remrunqueue(p)
2009 *
2010 * Call should be made at splclock().
2011 */
2012 void
2013 remrunqueue(p)
2014 struct proc *p;
2015 {
2016 int bit;
2017
2018 bit = p->p_priority >> 2;
2019 if ((whichqs & (1 << bit)) == 0)
2020 panic("remrunqueue");
2021
2022 p->p_back->p_forw = p->p_forw;
2023 p->p_forw->p_back = p->p_back;
2024 p->p_back = NULL; /* for firewall checking. */
2025
2026 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2027 whichqs &= ~(1 << bit);
2028 }
2029
2030 /*
2031 * Return the best possible estimate of the time in the timeval
2032 * to which tvp points. Unfortunately, we can't read the hardware registers.
2033 * We guarantee that the time will be greater than the value obtained by a
2034 * previous call.
2035 */
2036 void
2037 microtime(tvp)
2038 register struct timeval *tvp;
2039 {
2040 int s = splclock();
2041 static struct timeval lasttime;
2042
2043 *tvp = time;
2044 #ifdef notdef
2045 tvp->tv_usec += clkread();
2046 while (tvp->tv_usec > 1000000) {
2047 tvp->tv_sec++;
2048 tvp->tv_usec -= 1000000;
2049 }
2050 #endif
2051 if (tvp->tv_sec == lasttime.tv_sec &&
2052 tvp->tv_usec <= lasttime.tv_usec &&
2053 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2054 tvp->tv_sec++;
2055 tvp->tv_usec -= 1000000;
2056 }
2057 lasttime = *tvp;
2058 splx(s);
2059 }
2060
2061 /*
2062 * Wait "n" microseconds.
2063 */
2064 void
2065 delay(n)
2066 unsigned long n;
2067 {
2068 long N = cycles_per_usec * (n);
2069
2070 while (N > 0) /* XXX */
2071 N -= 3; /* XXX */
2072 }
2073
2074 #if defined(COMPAT_OSF1) || 1 /* XXX */
2075 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2076 u_long));
2077
2078 void
2079 cpu_exec_ecoff_setregs(p, epp, stack)
2080 struct proc *p;
2081 struct exec_package *epp;
2082 u_long stack;
2083 {
2084 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2085
2086 setregs(p, epp, stack);
2087 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2088 }
2089
2090 /*
2091 * cpu_exec_ecoff_hook():
2092 * cpu-dependent ECOFF format hook for execve().
2093 *
2094 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2095 *
2096 */
2097 int
2098 cpu_exec_ecoff_hook(p, epp)
2099 struct proc *p;
2100 struct exec_package *epp;
2101 {
2102 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2103 extern struct emul emul_netbsd;
2104 int error;
2105 extern int osf1_exec_ecoff_hook(struct proc *p,
2106 struct exec_package *epp);
2107
2108 switch (execp->f.f_magic) {
2109 #ifdef COMPAT_OSF1
2110 case ECOFF_MAGIC_ALPHA:
2111 error = osf1_exec_ecoff_hook(p, epp);
2112 break;
2113 #endif
2114
2115 case ECOFF_MAGIC_NETBSD_ALPHA:
2116 epp->ep_emul = &emul_netbsd;
2117 error = 0;
2118 break;
2119
2120 default:
2121 error = ENOEXEC;
2122 }
2123 return (error);
2124 }
2125 #endif
2126
2127 int
2128 alpha_pa_access(pa)
2129 u_long pa;
2130 {
2131 int i;
2132
2133 for (i = 0; i < mem_cluster_cnt; i++) {
2134 if (pa < mem_clusters[i].start)
2135 continue;
2136 if ((pa - mem_clusters[i].start) >=
2137 (mem_clusters[i].size & ~PAGE_MASK))
2138 continue;
2139 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2140 }
2141 return (PROT_NONE);
2142 }
2143
2144 /* XXX XXX BEGIN XXX XXX */
2145 paddr_t alpha_XXX_dmamap_or; /* XXX */
2146 /* XXX */
2147 paddr_t /* XXX */
2148 alpha_XXX_dmamap(v) /* XXX */
2149 vaddr_t v; /* XXX */
2150 { /* XXX */
2151 /* XXX */
2152 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2153 } /* XXX */
2154 /* XXX XXX END XXX XXX */
2155
2156 struct mchkinfo *
2157 cpu_mchkinfo()
2158 {
2159 if (mchkinfo_all_cpus == NULL)
2160 return &startup_info;
2161 return mchkinfo_all_cpus + alpha_pal_whami();
2162 }
2163
2164 char *
2165 dot_conv(x)
2166 unsigned long x;
2167 {
2168 int i;
2169 char *xc;
2170 static int next;
2171 static char space[2][20];
2172
2173 xc = space[next ^= 1] + sizeof space[0];
2174 *--xc = '\0';
2175 for (i = 0;; ++i) {
2176 if (i && (i & 3) == 0)
2177 *--xc = '.';
2178 *--xc = "0123456789abcdef"[x & 0xf];
2179 x >>= 4;
2180 if (x == 0)
2181 break;
2182 }
2183 return xc;
2184 }
2185