machdep.c revision 1.185 1 /* $NetBSD: machdep.c,v 1.185 1999/11/30 19:31:56 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.185 1999/11/30 19:31:56 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #include <sys/callout.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/mman.h>
98 #include <sys/msgbuf.h>
99 #include <sys/ioctl.h>
100 #include <sys/tty.h>
101 #include <sys/user.h>
102 #include <sys/exec.h>
103 #include <sys/exec_ecoff.h>
104 #include <vm/vm.h>
105 #include <sys/sysctl.h>
106 #include <sys/core.h>
107 #include <sys/kcore.h>
108 #include <machine/kcore.h>
109
110 #include <sys/mount.h>
111 #include <sys/syscallargs.h>
112
113 #include <vm/vm_kern.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/conf.h>
125 #include <machine/ieeefp.h>
126
127 #include <net/netisr.h>
128 #include <net/if.h>
129
130 #ifdef INET
131 #include <net/route.h>
132 #include <netinet/in.h>
133 #include <netinet/ip_var.h>
134 #include "arp.h"
135 #if NARP > 0
136 #include <netinet/if_inarp.h>
137 #endif
138 #endif
139 #ifdef INET6
140 # ifndef INET
141 # include <netinet/in.h>
142 # endif
143 #include <netinet6/ip6.h>
144 #include <netinet6/ip6_var.h>
145 #endif
146 #ifdef NS
147 #include <netns/ns_var.h>
148 #endif
149 #ifdef ISO
150 #include <netiso/iso.h>
151 #include <netiso/clnp.h>
152 #endif
153 #ifdef CCITT
154 #include <netccitt/x25.h>
155 #include <netccitt/pk.h>
156 #include <netccitt/pk_extern.h>
157 #endif
158 #ifdef NATM
159 #include <netnatm/natm.h>
160 #endif
161 #ifdef NETATALK
162 #include <netatalk/at_extern.h>
163 #endif
164 #include "ppp.h"
165 #if NPPP > 0
166 #include <net/ppp_defs.h>
167 #include <net/if_ppp.h>
168 #endif
169
170 #ifdef DDB
171 #include <machine/db_machdep.h>
172 #include <ddb/db_access.h>
173 #include <ddb/db_sym.h>
174 #include <ddb/db_extern.h>
175 #include <ddb/db_interface.h>
176 #endif
177
178 #include <machine/alpha.h>
179 #include <machine/intrcnt.h>
180
181 #include "com.h"
182 #if NCOM > 0
183 extern void comsoft __P((void));
184 #endif
185
186 vm_map_t exec_map = NULL;
187 vm_map_t mb_map = NULL;
188 vm_map_t phys_map = NULL;
189
190 caddr_t msgbufaddr;
191
192 int maxmem; /* max memory per process */
193
194 int totalphysmem; /* total amount of physical memory in system */
195 int physmem; /* physical memory used by NetBSD + some rsvd */
196 int resvmem; /* amount of memory reserved for PROM */
197 int unusedmem; /* amount of memory for OS that we don't use */
198 int unknownmem; /* amount of memory with an unknown use */
199
200 int cputype; /* system type, from the RPB */
201
202 /*
203 * XXX We need an address to which we can assign things so that they
204 * won't be optimized away because we didn't use the value.
205 */
206 u_int32_t no_optimize;
207
208 /* the following is used externally (sysctl_hw) */
209 char machine[] = MACHINE; /* from <machine/param.h> */
210 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
211 char cpu_model[128];
212
213 struct user *proc0paddr;
214
215 /* Number of machine cycles per microsecond */
216 u_int64_t cycles_per_usec;
217
218 /* number of cpus in the box. really! */
219 int ncpus;
220
221 /* machine check info array, valloc()'ed in mdallocsys() */
222
223 static struct mchkinfo startup_info,
224 *mchkinfo_all_cpus;
225
226 struct bootinfo_kernel bootinfo;
227
228 /* For built-in TCDS */
229 #if defined(DEC_3000_300) || defined(DEC_3000_500)
230 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
231 #endif
232
233 struct platform platform;
234
235 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
236 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
237
238 #ifdef DDB
239 /* start and end of kernel symbol table */
240 void *ksym_start, *ksym_end;
241 #endif
242
243 /* for cpu_sysctl() */
244 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
245 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
246 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
247
248 /*
249 * XXX This should be dynamically sized, but we have the chicken-egg problem!
250 * XXX it should also be larger than it is, because not all of the mddt
251 * XXX clusters end up being used for VM.
252 */
253 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
254 int mem_cluster_cnt;
255
256 int cpu_dump __P((void));
257 int cpu_dumpsize __P((void));
258 u_long cpu_dump_mempagecnt __P((void));
259 void dumpsys __P((void));
260 void identifycpu __P((void));
261 caddr_t mdallocsys __P((caddr_t));
262 void netintr __P((void));
263 void printregs __P((struct reg *));
264
265 void
266 alpha_init(pfn, ptb, bim, bip, biv)
267 u_long pfn; /* first free PFN number */
268 u_long ptb; /* PFN of current level 1 page table */
269 u_long bim; /* bootinfo magic */
270 u_long bip; /* bootinfo pointer */
271 u_long biv; /* bootinfo version */
272 {
273 extern char kernel_text[], _end[];
274 struct mddt *mddtp;
275 struct mddt_cluster *memc;
276 int i, mddtweird;
277 struct vm_physseg *vps;
278 vaddr_t kernstart, kernend;
279 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
280 vsize_t size;
281 char *p;
282 caddr_t v;
283 char *bootinfo_msg;
284
285 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
286
287 /*
288 * Turn off interrupts (not mchecks) and floating point.
289 * Make sure the instruction and data streams are consistent.
290 */
291 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
292 alpha_pal_wrfen(0);
293 ALPHA_TBIA();
294 alpha_pal_imb();
295
296 /*
297 * Get critical system information (if possible, from the
298 * information provided by the boot program).
299 */
300 bootinfo_msg = NULL;
301 if (bim == BOOTINFO_MAGIC) {
302 if (biv == 0) { /* backward compat */
303 biv = *(u_long *)bip;
304 bip += 8;
305 }
306 switch (biv) {
307 case 1: {
308 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
309
310 bootinfo.ssym = v1p->ssym;
311 bootinfo.esym = v1p->esym;
312 /* hwrpb may not be provided by boot block in v1 */
313 if (v1p->hwrpb != NULL) {
314 bootinfo.hwrpb_phys =
315 ((struct rpb *)v1p->hwrpb)->rpb_phys;
316 bootinfo.hwrpb_size = v1p->hwrpbsize;
317 } else {
318 bootinfo.hwrpb_phys =
319 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
320 bootinfo.hwrpb_size =
321 ((struct rpb *)HWRPB_ADDR)->rpb_size;
322 }
323 bcopy(v1p->boot_flags, bootinfo.boot_flags,
324 min(sizeof v1p->boot_flags,
325 sizeof bootinfo.boot_flags));
326 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
327 min(sizeof v1p->booted_kernel,
328 sizeof bootinfo.booted_kernel));
329 /* booted dev not provided in bootinfo */
330 init_prom_interface((struct rpb *)
331 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
332 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
333 sizeof bootinfo.booted_dev);
334 break;
335 }
336 default:
337 bootinfo_msg = "unknown bootinfo version";
338 goto nobootinfo;
339 }
340 } else {
341 bootinfo_msg = "boot program did not pass bootinfo";
342 nobootinfo:
343 bootinfo.ssym = (u_long)_end;
344 bootinfo.esym = (u_long)_end;
345 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
346 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
347 init_prom_interface((struct rpb *)HWRPB_ADDR);
348 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
349 sizeof bootinfo.boot_flags);
350 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
351 sizeof bootinfo.booted_kernel);
352 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
353 sizeof bootinfo.booted_dev);
354 }
355
356 /*
357 * Initialize the kernel's mapping of the RPB. It's needed for
358 * lots of things.
359 */
360 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
361
362 #if defined(DEC_3000_300) || defined(DEC_3000_500)
363 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
364 hwrpb->rpb_type == ST_DEC_3000_500) {
365 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
366 sizeof(dec_3000_scsiid));
367 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
368 sizeof(dec_3000_scsifast));
369 }
370 #endif
371
372 /*
373 * Remember how many cycles there are per microsecond,
374 * so that we can use delay(). Round up, for safety.
375 */
376 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
377
378 /*
379 * Initalize the (temporary) bootstrap console interface, so
380 * we can use printf until the VM system starts being setup.
381 * The real console is initialized before then.
382 */
383 init_bootstrap_console();
384
385 /* OUTPUT NOW ALLOWED */
386
387 /* delayed from above */
388 if (bootinfo_msg)
389 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
390 bootinfo_msg, bim, bip, biv);
391
392 /* Initialize the trap vectors on the primary processor. */
393 trap_init();
394
395 /*
396 * Find out what hardware we're on, and do basic initialization.
397 */
398 cputype = hwrpb->rpb_type;
399 if (cputype < 0) {
400 /*
401 * At least some white-box systems have SRM which
402 * reports a systype that's the negative of their
403 * blue-box counterpart.
404 */
405 cputype = -cputype;
406 }
407 if (cputype >= ncpuinit) {
408 platform_not_supported();
409 /* NOTREACHED */
410 }
411 (*cpuinit[cputype].init)();
412 strcpy(cpu_model, platform.model);
413
414 /*
415 * Initalize the real console, so the the bootstrap console is
416 * no longer necessary.
417 */
418 (*platform.cons_init)();
419
420 #ifdef DIAGNOSTIC
421 /* Paranoid sanity checking */
422
423 /* We should always be running on the the primary. */
424 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
425
426 /*
427 * On single-CPU systypes, the primary should always be CPU 0,
428 * except on Alpha 8200 systems where the CPU id is related
429 * to the VID, which is related to the Turbo Laser node id.
430 */
431 if (cputype != ST_DEC_21000)
432 assert(hwrpb->rpb_primary_cpu_id == 0);
433 #endif
434
435 /* NO MORE FIRMWARE ACCESS ALLOWED */
436 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
437 /*
438 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
439 * XXX pmap_uses_prom_console() evaluates to non-zero.)
440 */
441 #endif
442
443 /*
444 * find out this system's page size
445 */
446 PAGE_SIZE = hwrpb->rpb_page_size;
447 if (PAGE_SIZE != 8192)
448 panic("page size %d != 8192?!", PAGE_SIZE);
449
450 /*
451 * Initialize PAGE_SIZE-dependent variables.
452 */
453 uvm_setpagesize();
454
455 /*
456 * Find the beginning and end of the kernel (and leave a
457 * bit of space before the beginning for the bootstrap
458 * stack).
459 */
460 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
461 #ifdef DDB
462 ksym_start = (void *)bootinfo.ssym;
463 ksym_end = (void *)bootinfo.esym;
464 kernend = (vaddr_t)round_page(ksym_end);
465 #else
466 kernend = (vaddr_t)round_page(_end);
467 #endif
468
469 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
470 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
471
472 /*
473 * Find out how much memory is available, by looking at
474 * the memory cluster descriptors. This also tries to do
475 * its best to detect things things that have never been seen
476 * before...
477 */
478 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
479
480 /* MDDT SANITY CHECKING */
481 mddtweird = 0;
482 if (mddtp->mddt_cluster_cnt < 2) {
483 mddtweird = 1;
484 printf("WARNING: weird number of mem clusters: %lu\n",
485 mddtp->mddt_cluster_cnt);
486 }
487
488 #if 0
489 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
490 #endif
491
492 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
493 memc = &mddtp->mddt_clusters[i];
494 #if 0
495 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
496 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
497 #endif
498 totalphysmem += memc->mddt_pg_cnt;
499 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
500 mem_clusters[mem_cluster_cnt].start =
501 ptoa(memc->mddt_pfn);
502 mem_clusters[mem_cluster_cnt].size =
503 ptoa(memc->mddt_pg_cnt);
504 if (memc->mddt_usage & MDDT_mbz ||
505 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
506 memc->mddt_usage & MDDT_PALCODE)
507 mem_clusters[mem_cluster_cnt].size |=
508 PROT_READ;
509 else
510 mem_clusters[mem_cluster_cnt].size |=
511 PROT_READ | PROT_WRITE | PROT_EXEC;
512 mem_cluster_cnt++;
513 }
514
515 if (memc->mddt_usage & MDDT_mbz) {
516 mddtweird = 1;
517 printf("WARNING: mem cluster %d has weird "
518 "usage 0x%lx\n", i, memc->mddt_usage);
519 unknownmem += memc->mddt_pg_cnt;
520 continue;
521 }
522 if (memc->mddt_usage & MDDT_NONVOLATILE) {
523 /* XXX should handle these... */
524 printf("WARNING: skipping non-volatile mem "
525 "cluster %d\n", i);
526 unusedmem += memc->mddt_pg_cnt;
527 continue;
528 }
529 if (memc->mddt_usage & MDDT_PALCODE) {
530 resvmem += memc->mddt_pg_cnt;
531 continue;
532 }
533
534 /*
535 * We have a memory cluster available for system
536 * software use. We must determine if this cluster
537 * holds the kernel.
538 */
539 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
540 /*
541 * XXX If the kernel uses the PROM console, we only use the
542 * XXX memory after the kernel in the first system segment,
543 * XXX to avoid clobbering prom mapping, data, etc.
544 */
545 if (!pmap_uses_prom_console() || physmem == 0) {
546 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
547 physmem += memc->mddt_pg_cnt;
548 pfn0 = memc->mddt_pfn;
549 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
550 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
551 /*
552 * Must compute the location of the kernel
553 * within the segment.
554 */
555 #if 0
556 printf("Cluster %d contains kernel\n", i);
557 #endif
558 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
559 if (!pmap_uses_prom_console()) {
560 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
561 if (pfn0 < kernstartpfn) {
562 /*
563 * There is a chunk before the kernel.
564 */
565 #if 0
566 printf("Loading chunk before kernel: "
567 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
568 #endif
569 uvm_page_physload(pfn0, kernstartpfn,
570 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
571 }
572 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
573 }
574 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
575 if (kernendpfn < pfn1) {
576 /*
577 * There is a chunk after the kernel.
578 */
579 #if 0
580 printf("Loading chunk after kernel: "
581 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
582 #endif
583 uvm_page_physload(kernendpfn, pfn1,
584 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
585 }
586 } else {
587 /*
588 * Just load this cluster as one chunk.
589 */
590 #if 0
591 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
592 pfn0, pfn1);
593 #endif
594 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
595 VM_FREELIST_DEFAULT);
596 }
597 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
598 }
599 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
600 }
601
602 /*
603 * Dump out the MDDT if it looks odd...
604 */
605 if (mddtweird) {
606 printf("\n");
607 printf("complete memory cluster information:\n");
608 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
609 printf("mddt %d:\n", i);
610 printf("\tpfn %lx\n",
611 mddtp->mddt_clusters[i].mddt_pfn);
612 printf("\tcnt %lx\n",
613 mddtp->mddt_clusters[i].mddt_pg_cnt);
614 printf("\ttest %lx\n",
615 mddtp->mddt_clusters[i].mddt_pg_test);
616 printf("\tbva %lx\n",
617 mddtp->mddt_clusters[i].mddt_v_bitaddr);
618 printf("\tbpa %lx\n",
619 mddtp->mddt_clusters[i].mddt_p_bitaddr);
620 printf("\tbcksum %lx\n",
621 mddtp->mddt_clusters[i].mddt_bit_cksum);
622 printf("\tusage %lx\n",
623 mddtp->mddt_clusters[i].mddt_usage);
624 }
625 printf("\n");
626 }
627
628 if (totalphysmem == 0)
629 panic("can't happen: system seems to have no memory!");
630 maxmem = physmem;
631 #if 0
632 printf("totalphysmem = %d\n", totalphysmem);
633 printf("physmem = %d\n", physmem);
634 printf("resvmem = %d\n", resvmem);
635 printf("unusedmem = %d\n", unusedmem);
636 printf("unknownmem = %d\n", unknownmem);
637 #endif
638
639 /*
640 * Adjust some parameters if the amount of physmem
641 * available would cause us to croak. This is completely
642 * eyeballed and isn't meant to be the final answer.
643 * vm_phys_size is probably the only one to really worry
644 * about.
645 *
646 * It's for booting a GENERIC kernel on a large memory platform.
647 */
648 if (physmem >= atop(128 * 1024 * 1024)) {
649 vm_kmem_size <<= 3;
650 vm_phys_size <<= 2;
651 }
652
653 /*
654 * Initialize error message buffer (at end of core).
655 */
656 {
657 size_t sz = round_page(MSGBUFSIZE);
658
659 vps = &vm_physmem[vm_nphysseg - 1];
660
661 /* shrink so that it'll fit in the last segment */
662 if ((vps->avail_end - vps->avail_start) < atop(sz))
663 sz = ptoa(vps->avail_end - vps->avail_start);
664
665 vps->end -= atop(sz);
666 vps->avail_end -= atop(sz);
667 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
668 initmsgbuf(msgbufaddr, sz);
669
670 /* Remove the last segment if it now has no pages. */
671 if (vps->start == vps->end)
672 vm_nphysseg--;
673
674 /* warn if the message buffer had to be shrunk */
675 if (sz != round_page(MSGBUFSIZE))
676 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
677 round_page(MSGBUFSIZE), sz);
678
679 }
680
681 /*
682 * Init mapping for u page(s) for proc 0
683 */
684 proc0.p_addr = proc0paddr =
685 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
686
687 /*
688 * Allocate space for system data structures. These data structures
689 * are allocated here instead of cpu_startup() because physical
690 * memory is directly addressable. We don't have to map these into
691 * virtual address space.
692 */
693 size = (vsize_t)allocsys(NULL, mdallocsys);
694 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
695 if ((allocsys(v, mdallocsys) - v) != size)
696 panic("alpha_init: table size inconsistency");
697
698 /*
699 * Initialize the virtual memory system, and set the
700 * page table base register in proc 0's PCB.
701 */
702 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
703 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
704
705 /*
706 * Initialize the rest of proc 0's PCB, and cache its physical
707 * address.
708 */
709 proc0.p_md.md_pcbpaddr =
710 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
711
712 /*
713 * Set the kernel sp, reserving space for an (empty) trapframe,
714 * and make proc0's trapframe pointer point to it for sanity.
715 */
716 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
717 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
718 proc0.p_md.md_tf =
719 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
720
721 /*
722 * Look at arguments passed to us and compute boothowto.
723 */
724
725 boothowto = RB_SINGLE;
726 #ifdef KADB
727 boothowto |= RB_KDB;
728 #endif
729 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
730 /*
731 * Note that we'd really like to differentiate case here,
732 * but the Alpha AXP Architecture Reference Manual
733 * says that we shouldn't.
734 */
735 switch (*p) {
736 case 'a': /* autoboot */
737 case 'A':
738 boothowto &= ~RB_SINGLE;
739 break;
740
741 #ifdef DEBUG
742 case 'c': /* crash dump immediately after autoconfig */
743 case 'C':
744 boothowto |= RB_DUMP;
745 break;
746 #endif
747
748 #if defined(KGDB) || defined(DDB)
749 case 'd': /* break into the kernel debugger ASAP */
750 case 'D':
751 boothowto |= RB_KDB;
752 break;
753 #endif
754
755 case 'h': /* always halt, never reboot */
756 case 'H':
757 boothowto |= RB_HALT;
758 break;
759
760 #if 0
761 case 'm': /* mini root present in memory */
762 case 'M':
763 boothowto |= RB_MINIROOT;
764 break;
765 #endif
766
767 case 'n': /* askname */
768 case 'N':
769 boothowto |= RB_ASKNAME;
770 break;
771
772 case 's': /* single-user (default, supported for sanity) */
773 case 'S':
774 boothowto |= RB_SINGLE;
775 break;
776
777 case '-':
778 /*
779 * Just ignore this. It's not required, but it's
780 * common for it to be passed regardless.
781 */
782 break;
783
784 default:
785 printf("Unrecognized boot flag '%c'.\n", *p);
786 break;
787 }
788 }
789
790
791 /*
792 * Figure out the number of cpus in the box, from RPB fields.
793 * Really. We mean it.
794 */
795 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
796 struct pcs *pcsp;
797
798 pcsp = LOCATE_PCS(hwrpb, i);
799 if ((pcsp->pcs_flags & PCS_PP) != 0)
800 ncpus++;
801 }
802
803 /*
804 * Initialize debuggers, and break into them if appropriate.
805 */
806 #ifdef DDB
807 db_machine_init();
808 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
809 ksym_start, ksym_end);
810 if (boothowto & RB_KDB)
811 Debugger();
812 #endif
813 #ifdef KGDB
814 if (boothowto & RB_KDB)
815 kgdb_connect(0);
816 #endif
817 /*
818 * Figure out our clock frequency, from RPB fields.
819 */
820 hz = hwrpb->rpb_intr_freq >> 12;
821 if (!(60 <= hz && hz <= 10240)) {
822 hz = 1024;
823 #ifdef DIAGNOSTIC
824 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
825 hwrpb->rpb_intr_freq, hz);
826 #endif
827 }
828 }
829
830 caddr_t
831 mdallocsys(v)
832 caddr_t v;
833 {
834 /*
835 * There appears to be a correlation between the number
836 * of processor slots defined in the HWRPB and the whami
837 * value that can be returned.
838 */
839 ALLOCSYS(v, mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
840 return (v);
841 }
842
843 void
844 consinit()
845 {
846
847 /*
848 * Everything related to console initialization is done
849 * in alpha_init().
850 */
851 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
852 printf("consinit: %susing prom console\n",
853 pmap_uses_prom_console() ? "" : "not ");
854 #endif
855 }
856
857 #include "pckbc.h"
858 #include "pckbd.h"
859 #if (NPCKBC > 0) && (NPCKBD == 0)
860
861 #include <dev/isa/pckbcvar.h>
862
863 /*
864 * This is called by the pbkbc driver if no pckbd is configured.
865 * On the i386, it is used to glue in the old, deprecated console
866 * code. On the Alpha, it does nothing.
867 */
868 int
869 pckbc_machdep_cnattach(kbctag, kbcslot)
870 pckbc_tag_t kbctag;
871 pckbc_slot_t kbcslot;
872 {
873
874 return (ENXIO);
875 }
876 #endif /* NPCKBC > 0 && NPCKBD == 0 */
877
878 void
879 cpu_startup()
880 {
881 register unsigned i;
882 int base, residual;
883 vaddr_t minaddr, maxaddr;
884 vsize_t size;
885 char pbuf[9];
886 #if defined(DEBUG)
887 extern int pmapdebug;
888 int opmapdebug = pmapdebug;
889
890 pmapdebug = 0;
891 #endif
892
893 /*
894 * Good {morning,afternoon,evening,night}.
895 */
896 printf(version);
897 identifycpu();
898 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
899 printf("total memory = %s\n", pbuf);
900 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
901 printf("(%s reserved for PROM, ", pbuf);
902 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
903 printf("%s used by NetBSD)\n", pbuf);
904 if (unusedmem) {
905 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
906 printf("WARNING: unused memory = %s\n", pbuf);
907 }
908 if (unknownmem) {
909 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
910 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
911 }
912
913 /*
914 * Allocate virtual address space for file I/O buffers.
915 * Note they are different than the array of headers, 'buf',
916 * and usually occupy more virtual memory than physical.
917 */
918 size = MAXBSIZE * nbuf;
919 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
920 NULL, UVM_UNKNOWN_OFFSET,
921 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
922 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
923 panic("startup: cannot allocate VM for buffers");
924 base = bufpages / nbuf;
925 residual = bufpages % nbuf;
926 for (i = 0; i < nbuf; i++) {
927 vsize_t curbufsize;
928 vaddr_t curbuf;
929 struct vm_page *pg;
930
931 /*
932 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
933 * that MAXBSIZE space, we allocate and map (base+1) pages
934 * for the first "residual" buffers, and then we allocate
935 * "base" pages for the rest.
936 */
937 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
938 curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
939
940 while (curbufsize) {
941 pg = uvm_pagealloc(NULL, 0, NULL, 0);
942 if (pg == NULL)
943 panic("cpu_startup: not enough memory for "
944 "buffer cache");
945 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
946 VM_PROT_READ|VM_PROT_WRITE);
947 curbuf += PAGE_SIZE;
948 curbufsize -= PAGE_SIZE;
949 }
950 }
951 /*
952 * Allocate a submap for exec arguments. This map effectively
953 * limits the number of processes exec'ing at any time.
954 */
955 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
956 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
957
958 /*
959 * Allocate a submap for physio
960 */
961 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
962 VM_PHYS_SIZE, 0, FALSE, NULL);
963
964 /*
965 * No need to allocate an mbuf cluster submap. Mbuf clusters
966 * are allocated via the pool allocator, and we use K0SEG to
967 * map those pages.
968 */
969
970 /*
971 * Initialize callouts
972 */
973 callfree = callout;
974 for (i = 1; i < ncallout; i++)
975 callout[i-1].c_next = &callout[i];
976 callout[i-1].c_next = NULL;
977
978 #if defined(DEBUG)
979 pmapdebug = opmapdebug;
980 #endif
981 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
982 printf("avail memory = %s\n", pbuf);
983 #if 0
984 {
985 extern u_long pmap_pages_stolen;
986
987 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
988 printf("stolen memory for VM structures = %s\n", pbuf);
989 }
990 #endif
991 format_bytes(pbuf, sizeof(pbuf), bufpages * CLBYTES);
992 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
993
994 /*
995 * Set up buffers, so they can be used to read disk labels.
996 */
997 bufinit();
998
999 /*
1000 * Set up the HWPCB so that it's safe to configure secondary
1001 * CPUs.
1002 */
1003 hwrpb_primary_init();
1004 }
1005
1006 /*
1007 * Retrieve the platform name from the DSR.
1008 */
1009 const char *
1010 alpha_dsr_sysname()
1011 {
1012 struct dsrdb *dsr;
1013 const char *sysname;
1014
1015 /*
1016 * DSR does not exist on early HWRPB versions.
1017 */
1018 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1019 return (NULL);
1020
1021 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1022 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1023 sizeof(u_int64_t)));
1024 return (sysname);
1025 }
1026
1027 /*
1028 * Lookup the system specified system variation in the provided table,
1029 * returning the model string on match.
1030 */
1031 const char *
1032 alpha_variation_name(variation, avtp)
1033 u_int64_t variation;
1034 const struct alpha_variation_table *avtp;
1035 {
1036 int i;
1037
1038 for (i = 0; avtp[i].avt_model != NULL; i++)
1039 if (avtp[i].avt_variation == variation)
1040 return (avtp[i].avt_model);
1041 return (NULL);
1042 }
1043
1044 /*
1045 * Generate a default platform name based for unknown system variations.
1046 */
1047 const char *
1048 alpha_unknown_sysname()
1049 {
1050 static char s[128]; /* safe size */
1051
1052 sprintf(s, "%s family, unknown model variation 0x%lx",
1053 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1054 return ((const char *)s);
1055 }
1056
1057 void
1058 identifycpu()
1059 {
1060 char *s;
1061
1062 /*
1063 * print out CPU identification information.
1064 */
1065 printf("%s", cpu_model);
1066 for(s = cpu_model; *s; ++s)
1067 if(strncasecmp(s, "MHz", 3) == 0)
1068 goto skipMHz;
1069 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1070 skipMHz:
1071 printf("\n");
1072 printf("%ld byte page size, %d processor%s.\n",
1073 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1074 #if 0
1075 /* this isn't defined for any systems that we run on? */
1076 printf("serial number 0x%lx 0x%lx\n",
1077 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1078
1079 /* and these aren't particularly useful! */
1080 printf("variation: 0x%lx, revision 0x%lx\n",
1081 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1082 #endif
1083 }
1084
1085 int waittime = -1;
1086 struct pcb dumppcb;
1087
1088 void
1089 cpu_reboot(howto, bootstr)
1090 int howto;
1091 char *bootstr;
1092 {
1093 #if defined(MULTIPROCESSOR)
1094 #if 0 /* XXX See below. */
1095 u_long cpu_id;
1096 #endif
1097 #endif
1098
1099 #if defined(MULTIPROCESSOR)
1100 /* We must be running on the primary CPU. */
1101 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1102 panic("cpu_reboot: not on primary CPU!");
1103 #endif
1104
1105 /* If system is cold, just halt. */
1106 if (cold) {
1107 howto |= RB_HALT;
1108 goto haltsys;
1109 }
1110
1111 /* If "always halt" was specified as a boot flag, obey. */
1112 if ((boothowto & RB_HALT) != 0)
1113 howto |= RB_HALT;
1114
1115 boothowto = howto;
1116 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1117 waittime = 0;
1118 vfs_shutdown();
1119 /*
1120 * If we've been adjusting the clock, the todr
1121 * will be out of synch; adjust it now.
1122 */
1123 resettodr();
1124 }
1125
1126 /* Disable interrupts. */
1127 splhigh();
1128
1129 /* If rebooting and a dump is requested do it. */
1130 #if 0
1131 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1132 #else
1133 if (howto & RB_DUMP)
1134 #endif
1135 dumpsys();
1136
1137 haltsys:
1138
1139 /* run any shutdown hooks */
1140 doshutdownhooks();
1141
1142 #if defined(MULTIPROCESSOR)
1143 #if 0 /* XXX doesn't work when called from here?! */
1144 /* Kill off any secondary CPUs. */
1145 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1146 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1147 cpu_info[cpu_id].ci_softc == NULL)
1148 continue;
1149 cpu_halt_secondary(cpu_id);
1150 }
1151 #endif
1152 #endif
1153
1154 #ifdef BOOTKEY
1155 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1156 cnpollc(1); /* for proper keyboard command handling */
1157 cngetc();
1158 cnpollc(0);
1159 printf("\n");
1160 #endif
1161
1162 /* Finally, powerdown/halt/reboot the system. */
1163 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1164 platform.powerdown != NULL) {
1165 (*platform.powerdown)();
1166 printf("WARNING: powerdown failed!\n");
1167 }
1168 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1169 prom_halt(howto & RB_HALT);
1170 /*NOTREACHED*/
1171 }
1172
1173 /*
1174 * These variables are needed by /sbin/savecore
1175 */
1176 u_long dumpmag = 0x8fca0101; /* magic number */
1177 int dumpsize = 0; /* pages */
1178 long dumplo = 0; /* blocks */
1179
1180 /*
1181 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1182 */
1183 int
1184 cpu_dumpsize()
1185 {
1186 int size;
1187
1188 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1189 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1190 if (roundup(size, dbtob(1)) != dbtob(1))
1191 return -1;
1192
1193 return (1);
1194 }
1195
1196 /*
1197 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1198 */
1199 u_long
1200 cpu_dump_mempagecnt()
1201 {
1202 u_long i, n;
1203
1204 n = 0;
1205 for (i = 0; i < mem_cluster_cnt; i++)
1206 n += atop(mem_clusters[i].size);
1207 return (n);
1208 }
1209
1210 /*
1211 * cpu_dump: dump machine-dependent kernel core dump headers.
1212 */
1213 int
1214 cpu_dump()
1215 {
1216 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1217 char buf[dbtob(1)];
1218 kcore_seg_t *segp;
1219 cpu_kcore_hdr_t *cpuhdrp;
1220 phys_ram_seg_t *memsegp;
1221 int i;
1222
1223 dump = bdevsw[major(dumpdev)].d_dump;
1224
1225 bzero(buf, sizeof buf);
1226 segp = (kcore_seg_t *)buf;
1227 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1228 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1229 ALIGN(sizeof(*cpuhdrp))];
1230
1231 /*
1232 * Generate a segment header.
1233 */
1234 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1235 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1236
1237 /*
1238 * Add the machine-dependent header info.
1239 */
1240 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1241 cpuhdrp->page_size = PAGE_SIZE;
1242 cpuhdrp->nmemsegs = mem_cluster_cnt;
1243
1244 /*
1245 * Fill in the memory segment descriptors.
1246 */
1247 for (i = 0; i < mem_cluster_cnt; i++) {
1248 memsegp[i].start = mem_clusters[i].start;
1249 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1250 }
1251
1252 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1253 }
1254
1255 /*
1256 * This is called by main to set dumplo and dumpsize.
1257 * Dumps always skip the first CLBYTES of disk space
1258 * in case there might be a disk label stored there.
1259 * If there is extra space, put dump at the end to
1260 * reduce the chance that swapping trashes it.
1261 */
1262 void
1263 cpu_dumpconf()
1264 {
1265 int nblks, dumpblks; /* size of dump area */
1266 int maj;
1267
1268 if (dumpdev == NODEV)
1269 goto bad;
1270 maj = major(dumpdev);
1271 if (maj < 0 || maj >= nblkdev)
1272 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1273 if (bdevsw[maj].d_psize == NULL)
1274 goto bad;
1275 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1276 if (nblks <= ctod(1))
1277 goto bad;
1278
1279 dumpblks = cpu_dumpsize();
1280 if (dumpblks < 0)
1281 goto bad;
1282 dumpblks += ctod(cpu_dump_mempagecnt());
1283
1284 /* If dump won't fit (incl. room for possible label), punt. */
1285 if (dumpblks > (nblks - ctod(1)))
1286 goto bad;
1287
1288 /* Put dump at end of partition */
1289 dumplo = nblks - dumpblks;
1290
1291 /* dumpsize is in page units, and doesn't include headers. */
1292 dumpsize = cpu_dump_mempagecnt();
1293 return;
1294
1295 bad:
1296 dumpsize = 0;
1297 return;
1298 }
1299
1300 /*
1301 * Dump the kernel's image to the swap partition.
1302 */
1303 #define BYTES_PER_DUMP NBPG
1304
1305 void
1306 dumpsys()
1307 {
1308 u_long totalbytesleft, bytes, i, n, memcl;
1309 u_long maddr;
1310 int psize;
1311 daddr_t blkno;
1312 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1313 int error;
1314
1315 /* Save registers. */
1316 savectx(&dumppcb);
1317
1318 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1319 if (dumpdev == NODEV)
1320 return;
1321
1322 /*
1323 * For dumps during autoconfiguration,
1324 * if dump device has already configured...
1325 */
1326 if (dumpsize == 0)
1327 cpu_dumpconf();
1328 if (dumplo <= 0) {
1329 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1330 minor(dumpdev));
1331 return;
1332 }
1333 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1334 minor(dumpdev), dumplo);
1335
1336 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1337 printf("dump ");
1338 if (psize == -1) {
1339 printf("area unavailable\n");
1340 return;
1341 }
1342
1343 /* XXX should purge all outstanding keystrokes. */
1344
1345 if ((error = cpu_dump()) != 0)
1346 goto err;
1347
1348 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1349 blkno = dumplo + cpu_dumpsize();
1350 dump = bdevsw[major(dumpdev)].d_dump;
1351 error = 0;
1352
1353 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1354 maddr = mem_clusters[memcl].start;
1355 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1356
1357 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1358
1359 /* Print out how many MBs we to go. */
1360 if ((totalbytesleft % (1024*1024)) == 0)
1361 printf("%ld ", totalbytesleft / (1024 * 1024));
1362
1363 /* Limit size for next transfer. */
1364 n = bytes - i;
1365 if (n > BYTES_PER_DUMP)
1366 n = BYTES_PER_DUMP;
1367
1368 error = (*dump)(dumpdev, blkno,
1369 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1370 if (error)
1371 goto err;
1372 maddr += n;
1373 blkno += btodb(n); /* XXX? */
1374
1375 /* XXX should look for keystrokes, to cancel. */
1376 }
1377 }
1378
1379 err:
1380 switch (error) {
1381
1382 case ENXIO:
1383 printf("device bad\n");
1384 break;
1385
1386 case EFAULT:
1387 printf("device not ready\n");
1388 break;
1389
1390 case EINVAL:
1391 printf("area improper\n");
1392 break;
1393
1394 case EIO:
1395 printf("i/o error\n");
1396 break;
1397
1398 case EINTR:
1399 printf("aborted from console\n");
1400 break;
1401
1402 case 0:
1403 printf("succeeded\n");
1404 break;
1405
1406 default:
1407 printf("error %d\n", error);
1408 break;
1409 }
1410 printf("\n\n");
1411 delay(1000);
1412 }
1413
1414 void
1415 frametoreg(framep, regp)
1416 struct trapframe *framep;
1417 struct reg *regp;
1418 {
1419
1420 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1421 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1422 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1423 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1424 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1425 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1426 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1427 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1428 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1429 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1430 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1431 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1432 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1433 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1434 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1435 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1436 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1437 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1438 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1439 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1440 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1441 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1442 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1443 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1444 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1445 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1446 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1447 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1448 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1449 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1450 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1451 regp->r_regs[R_ZERO] = 0;
1452 }
1453
1454 void
1455 regtoframe(regp, framep)
1456 struct reg *regp;
1457 struct trapframe *framep;
1458 {
1459
1460 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1461 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1462 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1463 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1464 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1465 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1466 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1467 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1468 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1469 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1470 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1471 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1472 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1473 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1474 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1475 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1476 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1477 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1478 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1479 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1480 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1481 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1482 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1483 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1484 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1485 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1486 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1487 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1488 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1489 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1490 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1491 /* ??? = regp->r_regs[R_ZERO]; */
1492 }
1493
1494 void
1495 printregs(regp)
1496 struct reg *regp;
1497 {
1498 int i;
1499
1500 for (i = 0; i < 32; i++)
1501 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1502 i & 1 ? "\n" : "\t");
1503 }
1504
1505 void
1506 regdump(framep)
1507 struct trapframe *framep;
1508 {
1509 struct reg reg;
1510
1511 frametoreg(framep, ®);
1512 reg.r_regs[R_SP] = alpha_pal_rdusp();
1513
1514 printf("REGISTERS:\n");
1515 printregs(®);
1516 }
1517
1518 #ifdef DEBUG
1519 int sigdebug = 0;
1520 int sigpid = 0;
1521 #define SDB_FOLLOW 0x01
1522 #define SDB_KSTACK 0x02
1523 #endif
1524
1525 /*
1526 * Send an interrupt to process.
1527 */
1528 void
1529 sendsig(catcher, sig, mask, code)
1530 sig_t catcher;
1531 int sig;
1532 sigset_t *mask;
1533 u_long code;
1534 {
1535 struct proc *p = curproc;
1536 struct sigcontext *scp, ksc;
1537 struct trapframe *frame;
1538 struct sigacts *psp = p->p_sigacts;
1539 int onstack, fsize, rndfsize;
1540
1541 frame = p->p_md.md_tf;
1542
1543 /* Do we need to jump onto the signal stack? */
1544 onstack =
1545 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1546 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1547
1548 /* Allocate space for the signal handler context. */
1549 fsize = sizeof(ksc);
1550 rndfsize = ((fsize + 15) / 16) * 16;
1551
1552 if (onstack)
1553 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1554 psp->ps_sigstk.ss_size);
1555 else
1556 scp = (struct sigcontext *)(alpha_pal_rdusp());
1557 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1558
1559 #ifdef DEBUG
1560 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1561 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1562 sig, &onstack, scp);
1563 #endif
1564
1565 /* Build stack frame for signal trampoline. */
1566 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1567 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1568
1569 /* Save register context. */
1570 frametoreg(frame, (struct reg *)ksc.sc_regs);
1571 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1572 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1573
1574 /* save the floating-point state, if necessary, then copy it. */
1575 if (p == fpcurproc) {
1576 alpha_pal_wrfen(1);
1577 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1578 alpha_pal_wrfen(0);
1579 fpcurproc = NULL;
1580 }
1581 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1582 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1583 sizeof(struct fpreg));
1584 ksc.sc_fp_control = 0; /* XXX ? */
1585 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1586 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1587
1588 /* Save signal stack. */
1589 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1590
1591 /* Save signal mask. */
1592 ksc.sc_mask = *mask;
1593
1594 #ifdef COMPAT_13
1595 /*
1596 * XXX We always have to save an old style signal mask because
1597 * XXX we might be delivering a signal to a process which will
1598 * XXX escape from the signal in a non-standard way and invoke
1599 * XXX sigreturn() directly.
1600 */
1601 {
1602 /* Note: it's a long in the stack frame. */
1603 sigset13_t mask13;
1604
1605 native_sigset_to_sigset13(mask, &mask13);
1606 ksc.__sc_mask13 = mask13;
1607 }
1608 #endif
1609
1610 #ifdef COMPAT_OSF1
1611 /*
1612 * XXX Create an OSF/1-style sigcontext and associated goo.
1613 */
1614 #endif
1615
1616 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1617 /*
1618 * Process has trashed its stack; give it an illegal
1619 * instruction to halt it in its tracks.
1620 */
1621 #ifdef DEBUG
1622 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1623 printf("sendsig(%d): copyout failed on sig %d\n",
1624 p->p_pid, sig);
1625 #endif
1626 sigexit(p, SIGILL);
1627 /* NOTREACHED */
1628 }
1629 #ifdef DEBUG
1630 if (sigdebug & SDB_FOLLOW)
1631 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1632 scp, code);
1633 #endif
1634
1635 /* Set up the registers to return to sigcode. */
1636 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1637 frame->tf_regs[FRAME_A0] = sig;
1638 frame->tf_regs[FRAME_A1] = code;
1639 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1640 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1641 alpha_pal_wrusp((unsigned long)scp);
1642
1643 /* Remember that we're now on the signal stack. */
1644 if (onstack)
1645 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1646
1647 #ifdef DEBUG
1648 if (sigdebug & SDB_FOLLOW)
1649 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1650 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1651 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1652 printf("sendsig(%d): sig %d returns\n",
1653 p->p_pid, sig);
1654 #endif
1655 }
1656
1657 /*
1658 * System call to cleanup state after a signal
1659 * has been taken. Reset signal mask and
1660 * stack state from context left by sendsig (above).
1661 * Return to previous pc and psl as specified by
1662 * context left by sendsig. Check carefully to
1663 * make sure that the user has not modified the
1664 * psl to gain improper privileges or to cause
1665 * a machine fault.
1666 */
1667 /* ARGSUSED */
1668 int
1669 sys___sigreturn14(p, v, retval)
1670 struct proc *p;
1671 void *v;
1672 register_t *retval;
1673 {
1674 struct sys___sigreturn14_args /* {
1675 syscallarg(struct sigcontext *) sigcntxp;
1676 } */ *uap = v;
1677 struct sigcontext *scp, ksc;
1678
1679 /*
1680 * The trampoline code hands us the context.
1681 * It is unsafe to keep track of it ourselves, in the event that a
1682 * program jumps out of a signal handler.
1683 */
1684 scp = SCARG(uap, sigcntxp);
1685 #ifdef DEBUG
1686 if (sigdebug & SDB_FOLLOW)
1687 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1688 #endif
1689 if (ALIGN(scp) != (u_int64_t)scp)
1690 return (EINVAL);
1691
1692 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1693 return (EFAULT);
1694
1695 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1696 return (EINVAL);
1697
1698 /* Restore register context. */
1699 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1700 p->p_md.md_tf->tf_regs[FRAME_PS] =
1701 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1702
1703 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1704 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1705
1706 /* XXX ksc.sc_ownedfp ? */
1707 if (p == fpcurproc)
1708 fpcurproc = NULL;
1709 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1710 sizeof(struct fpreg));
1711 /* XXX ksc.sc_fp_control ? */
1712
1713 /* Restore signal stack. */
1714 if (ksc.sc_onstack & SS_ONSTACK)
1715 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1716 else
1717 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1718
1719 /* Restore signal mask. */
1720 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1721
1722 #ifdef DEBUG
1723 if (sigdebug & SDB_FOLLOW)
1724 printf("sigreturn(%d): returns\n", p->p_pid);
1725 #endif
1726 return (EJUSTRETURN);
1727 }
1728
1729 /*
1730 * machine dependent system variables.
1731 */
1732 int
1733 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1734 int *name;
1735 u_int namelen;
1736 void *oldp;
1737 size_t *oldlenp;
1738 void *newp;
1739 size_t newlen;
1740 struct proc *p;
1741 {
1742 dev_t consdev;
1743
1744 /* all sysctl names at this level are terminal */
1745 if (namelen != 1)
1746 return (ENOTDIR); /* overloaded */
1747
1748 switch (name[0]) {
1749 case CPU_CONSDEV:
1750 if (cn_tab != NULL)
1751 consdev = cn_tab->cn_dev;
1752 else
1753 consdev = NODEV;
1754 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1755 sizeof consdev));
1756
1757 case CPU_ROOT_DEVICE:
1758 return (sysctl_rdstring(oldp, oldlenp, newp,
1759 root_device->dv_xname));
1760
1761 case CPU_UNALIGNED_PRINT:
1762 return (sysctl_int(oldp, oldlenp, newp, newlen,
1763 &alpha_unaligned_print));
1764
1765 case CPU_UNALIGNED_FIX:
1766 return (sysctl_int(oldp, oldlenp, newp, newlen,
1767 &alpha_unaligned_fix));
1768
1769 case CPU_UNALIGNED_SIGBUS:
1770 return (sysctl_int(oldp, oldlenp, newp, newlen,
1771 &alpha_unaligned_sigbus));
1772
1773 case CPU_BOOTED_KERNEL:
1774 return (sysctl_rdstring(oldp, oldlenp, newp,
1775 bootinfo.booted_kernel));
1776
1777 default:
1778 return (EOPNOTSUPP);
1779 }
1780 /* NOTREACHED */
1781 }
1782
1783 /*
1784 * Set registers on exec.
1785 */
1786 void
1787 setregs(p, pack, stack)
1788 register struct proc *p;
1789 struct exec_package *pack;
1790 u_long stack;
1791 {
1792 struct trapframe *tfp = p->p_md.md_tf;
1793 #ifdef DEBUG
1794 int i;
1795 #endif
1796
1797 #ifdef DEBUG
1798 /*
1799 * Crash and dump, if the user requested it.
1800 */
1801 if (boothowto & RB_DUMP)
1802 panic("crash requested by boot flags");
1803 #endif
1804
1805 #ifdef DEBUG
1806 for (i = 0; i < FRAME_SIZE; i++)
1807 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1808 #else
1809 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1810 #endif
1811 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1812 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1813 | FPCR_UNFD
1814 | FPCR_UNDZ
1815 | FPCR_DYN(FP_RN)
1816 | FPCR_OVFD
1817 | FPCR_DZED
1818 | FPCR_INVD
1819 | FPCR_DNZ;
1820 alpha_pal_wrusp(stack);
1821 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1822 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1823
1824 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1825 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1826 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1827 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1828 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1829
1830 p->p_md.md_flags &= ~MDP_FPUSED;
1831 if (fpcurproc == p)
1832 fpcurproc = NULL;
1833 }
1834
1835 void
1836 netintr()
1837 {
1838 int n, s;
1839
1840 s = splhigh();
1841 n = netisr;
1842 netisr = 0;
1843 splx(s);
1844
1845 #define DONETISR(bit, fn) \
1846 do { \
1847 if (n & (1 << (bit))) \
1848 fn; \
1849 } while (0)
1850
1851 #ifdef INET
1852 #if NARP > 0
1853 DONETISR(NETISR_ARP, arpintr());
1854 #endif
1855 DONETISR(NETISR_IP, ipintr());
1856 #endif
1857 #ifdef INET6
1858 DONETISR(NETISR_IPV6, ip6intr());
1859 #endif
1860 #ifdef NETATALK
1861 DONETISR(NETISR_ATALK, atintr());
1862 #endif
1863 #ifdef NS
1864 DONETISR(NETISR_NS, nsintr());
1865 #endif
1866 #ifdef ISO
1867 DONETISR(NETISR_ISO, clnlintr());
1868 #endif
1869 #ifdef CCITT
1870 DONETISR(NETISR_CCITT, ccittintr());
1871 #endif
1872 #ifdef NATM
1873 DONETISR(NETISR_NATM, natmintr());
1874 #endif
1875 #if NPPP > 1
1876 DONETISR(NETISR_PPP, pppintr());
1877 #endif
1878
1879 #undef DONETISR
1880 }
1881
1882 void
1883 do_sir()
1884 {
1885 u_int64_t n;
1886
1887 while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
1888 #define COUNT_SOFT uvmexp.softs++
1889
1890 #define DO_SIR(bit, fn) \
1891 do { \
1892 if (n & (bit)) { \
1893 COUNT_SOFT; \
1894 fn; \
1895 } \
1896 } while (0)
1897
1898 DO_SIR(SIR_NET, netintr());
1899 DO_SIR(SIR_CLOCK, softclock());
1900 #if NCOM > 0
1901 DO_SIR(SIR_SERIAL, comsoft());
1902 #endif
1903
1904 #undef COUNT_SOFT
1905 #undef DO_SIR
1906 }
1907 }
1908
1909 int
1910 spl0()
1911 {
1912
1913 if (ssir) {
1914 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1915 do_sir();
1916 }
1917
1918 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1919 }
1920
1921 /*
1922 * The following primitives manipulate the run queues. _whichqs tells which
1923 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1924 * into queues, Remrunqueue removes them from queues. The running process is
1925 * on no queue, other processes are on a queue related to p->p_priority,
1926 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1927 * available queues.
1928 */
1929 /*
1930 * setrunqueue(p)
1931 * proc *p;
1932 *
1933 * Call should be made at splclock(), and p->p_stat should be SRUN.
1934 */
1935
1936 void
1937 setrunqueue(p)
1938 struct proc *p;
1939 {
1940 int bit;
1941
1942 /* firewall: p->p_back must be NULL */
1943 if (p->p_back != NULL)
1944 panic("setrunqueue");
1945
1946 bit = p->p_priority >> 2;
1947 whichqs |= (1 << bit);
1948 p->p_forw = (struct proc *)&qs[bit];
1949 p->p_back = qs[bit].ph_rlink;
1950 p->p_back->p_forw = p;
1951 qs[bit].ph_rlink = p;
1952 }
1953
1954 /*
1955 * remrunqueue(p)
1956 *
1957 * Call should be made at splclock().
1958 */
1959 void
1960 remrunqueue(p)
1961 struct proc *p;
1962 {
1963 int bit;
1964
1965 bit = p->p_priority >> 2;
1966 if ((whichqs & (1 << bit)) == 0)
1967 panic("remrunqueue");
1968
1969 p->p_back->p_forw = p->p_forw;
1970 p->p_forw->p_back = p->p_back;
1971 p->p_back = NULL; /* for firewall checking. */
1972
1973 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1974 whichqs &= ~(1 << bit);
1975 }
1976
1977 /*
1978 * Return the best possible estimate of the time in the timeval
1979 * to which tvp points. Unfortunately, we can't read the hardware registers.
1980 * We guarantee that the time will be greater than the value obtained by a
1981 * previous call.
1982 */
1983 void
1984 microtime(tvp)
1985 register struct timeval *tvp;
1986 {
1987 int s = splclock();
1988 static struct timeval lasttime;
1989
1990 *tvp = time;
1991 #ifdef notdef
1992 tvp->tv_usec += clkread();
1993 while (tvp->tv_usec > 1000000) {
1994 tvp->tv_sec++;
1995 tvp->tv_usec -= 1000000;
1996 }
1997 #endif
1998 if (tvp->tv_sec == lasttime.tv_sec &&
1999 tvp->tv_usec <= lasttime.tv_usec &&
2000 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2001 tvp->tv_sec++;
2002 tvp->tv_usec -= 1000000;
2003 }
2004 lasttime = *tvp;
2005 splx(s);
2006 }
2007
2008 /*
2009 * Wait "n" microseconds.
2010 */
2011 void
2012 delay(n)
2013 unsigned long n;
2014 {
2015 long N = cycles_per_usec * (n);
2016
2017 while (N > 0) /* XXX */
2018 N -= 3; /* XXX */
2019 }
2020
2021 #if defined(COMPAT_OSF1) || 1 /* XXX */
2022 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2023 u_long));
2024
2025 void
2026 cpu_exec_ecoff_setregs(p, epp, stack)
2027 struct proc *p;
2028 struct exec_package *epp;
2029 u_long stack;
2030 {
2031 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2032
2033 setregs(p, epp, stack);
2034 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2035 }
2036
2037 /*
2038 * cpu_exec_ecoff_hook():
2039 * cpu-dependent ECOFF format hook for execve().
2040 *
2041 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2042 *
2043 */
2044 int
2045 cpu_exec_ecoff_hook(p, epp)
2046 struct proc *p;
2047 struct exec_package *epp;
2048 {
2049 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2050 extern struct emul emul_netbsd;
2051 int error;
2052 extern int osf1_exec_ecoff_hook(struct proc *p,
2053 struct exec_package *epp);
2054
2055 switch (execp->f.f_magic) {
2056 #ifdef COMPAT_OSF1
2057 case ECOFF_MAGIC_ALPHA:
2058 error = osf1_exec_ecoff_hook(p, epp);
2059 break;
2060 #endif
2061
2062 case ECOFF_MAGIC_NETBSD_ALPHA:
2063 epp->ep_emul = &emul_netbsd;
2064 error = 0;
2065 break;
2066
2067 default:
2068 error = ENOEXEC;
2069 }
2070 return (error);
2071 }
2072 #endif
2073
2074 int
2075 alpha_pa_access(pa)
2076 u_long pa;
2077 {
2078 int i;
2079
2080 for (i = 0; i < mem_cluster_cnt; i++) {
2081 if (pa < mem_clusters[i].start)
2082 continue;
2083 if ((pa - mem_clusters[i].start) >=
2084 (mem_clusters[i].size & ~PAGE_MASK))
2085 continue;
2086 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2087 }
2088 return (PROT_NONE);
2089 }
2090
2091 /* XXX XXX BEGIN XXX XXX */
2092 paddr_t alpha_XXX_dmamap_or; /* XXX */
2093 /* XXX */
2094 paddr_t /* XXX */
2095 alpha_XXX_dmamap(v) /* XXX */
2096 vaddr_t v; /* XXX */
2097 { /* XXX */
2098 /* XXX */
2099 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2100 } /* XXX */
2101 /* XXX XXX END XXX XXX */
2102
2103 struct mchkinfo *
2104 cpu_mchkinfo()
2105 {
2106 if (mchkinfo_all_cpus == NULL)
2107 return &startup_info;
2108 return mchkinfo_all_cpus + alpha_pal_whami();
2109 }
2110
2111 char *
2112 dot_conv(x)
2113 unsigned long x;
2114 {
2115 int i;
2116 char *xc;
2117 static int next;
2118 static char space[2][20];
2119
2120 xc = space[next ^= 1] + sizeof space[0];
2121 *--xc = '\0';
2122 for (i = 0;; ++i) {
2123 if (i && (i & 3) == 0)
2124 *--xc = '.';
2125 *--xc = "0123456789abcdef"[x & 0xf];
2126 x >>= 4;
2127 if (x == 0)
2128 break;
2129 }
2130 return xc;
2131 }
2132