machdep.c revision 1.193 1 /* $NetBSD: machdep.c,v 1.193 2000/02/09 05:48:26 shin Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.193 2000/02/09 05:48:26 shin Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #include <sys/malloc.h>
95 #include <sys/mbuf.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <sys/user.h>
101 #include <sys/exec.h>
102 #include <sys/exec_ecoff.h>
103 #include <vm/vm.h>
104 #include <sys/sysctl.h>
105 #include <sys/core.h>
106 #include <sys/kcore.h>
107 #include <machine/kcore.h>
108
109 #include <sys/mount.h>
110 #include <sys/syscallargs.h>
111
112 #include <vm/vm_kern.h>
113
114 #include <uvm/uvm_extern.h>
115
116 #include <dev/cons.h>
117
118 #include <machine/autoconf.h>
119 #include <machine/cpu.h>
120 #include <machine/reg.h>
121 #include <machine/rpb.h>
122 #include <machine/prom.h>
123 #include <machine/conf.h>
124 #include <machine/ieeefp.h>
125
126 #include <net/netisr.h>
127 #include <net/if.h>
128
129 #ifdef INET
130 #include <net/route.h>
131 #include <netinet/in.h>
132 #include <netinet/ip_var.h>
133 #include "arp.h"
134 #if NARP > 0
135 #include <netinet/if_inarp.h>
136 #endif
137 #endif
138 #ifdef INET6
139 # ifndef INET
140 # include <netinet/in.h>
141 # endif
142 #include <netinet/ip6.h>
143 #include <netinet6/ip6_var.h>
144 #endif
145 #ifdef NS
146 #include <netns/ns_var.h>
147 #endif
148 #ifdef ISO
149 #include <netiso/iso.h>
150 #include <netiso/clnp.h>
151 #endif
152 #ifdef CCITT
153 #include <netccitt/x25.h>
154 #include <netccitt/pk.h>
155 #include <netccitt/pk_extern.h>
156 #endif
157 #ifdef NATM
158 #include <netnatm/natm.h>
159 #endif
160 #ifdef NETATALK
161 #include <netatalk/at_extern.h>
162 #endif
163 #include "ppp.h"
164 #if NPPP > 0
165 #include <net/ppp_defs.h>
166 #include <net/if_ppp.h>
167 #endif
168
169 #ifdef DDB
170 #include <machine/db_machdep.h>
171 #include <ddb/db_access.h>
172 #include <ddb/db_sym.h>
173 #include <ddb/db_extern.h>
174 #include <ddb/db_interface.h>
175 #endif
176
177 #include <machine/alpha.h>
178 #include <machine/intrcnt.h>
179
180 #include "com.h"
181 #if NCOM > 0
182 extern void comsoft __P((void));
183 #endif
184
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188
189 caddr_t msgbufaddr;
190
191 int maxmem; /* max memory per process */
192
193 int totalphysmem; /* total amount of physical memory in system */
194 int physmem; /* physical memory used by NetBSD + some rsvd */
195 int resvmem; /* amount of memory reserved for PROM */
196 int unusedmem; /* amount of memory for OS that we don't use */
197 int unknownmem; /* amount of memory with an unknown use */
198
199 int cputype; /* system type, from the RPB */
200
201 /*
202 * XXX We need an address to which we can assign things so that they
203 * won't be optimized away because we didn't use the value.
204 */
205 u_int32_t no_optimize;
206
207 /* the following is used externally (sysctl_hw) */
208 char machine[] = MACHINE; /* from <machine/param.h> */
209 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
210 char cpu_model[128];
211
212 struct user *proc0paddr;
213
214 /* Number of machine cycles per microsecond */
215 u_int64_t cycles_per_usec;
216
217 /* number of cpus in the box. really! */
218 int ncpus;
219
220 /* machine check info array, valloc()'ed in mdallocsys() */
221
222 static struct mchkinfo startup_info,
223 *mchkinfo_all_cpus;
224
225 struct bootinfo_kernel bootinfo;
226
227 /* For built-in TCDS */
228 #if defined(DEC_3000_300) || defined(DEC_3000_500)
229 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
230 #endif
231
232 struct platform platform;
233
234 u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
235 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
236
237 #ifdef DDB
238 /* start and end of kernel symbol table */
239 void *ksym_start, *ksym_end;
240 #endif
241
242 /* for cpu_sysctl() */
243 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
244 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
245 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
246
247 /*
248 * XXX This should be dynamically sized, but we have the chicken-egg problem!
249 * XXX it should also be larger than it is, because not all of the mddt
250 * XXX clusters end up being used for VM.
251 */
252 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
253 int mem_cluster_cnt;
254
255 int cpu_dump __P((void));
256 int cpu_dumpsize __P((void));
257 u_long cpu_dump_mempagecnt __P((void));
258 void dumpsys __P((void));
259 void identifycpu __P((void));
260 caddr_t mdallocsys __P((caddr_t));
261 void netintr __P((void));
262 void printregs __P((struct reg *));
263
264 void
265 alpha_init(pfn, ptb, bim, bip, biv)
266 u_long pfn; /* first free PFN number */
267 u_long ptb; /* PFN of current level 1 page table */
268 u_long bim; /* bootinfo magic */
269 u_long bip; /* bootinfo pointer */
270 u_long biv; /* bootinfo version */
271 {
272 extern char kernel_text[], _end[];
273 struct mddt *mddtp;
274 struct mddt_cluster *memc;
275 int i, mddtweird;
276 struct vm_physseg *vps;
277 vaddr_t kernstart, kernend;
278 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
279 vsize_t size;
280 char *p;
281 caddr_t v;
282 char *bootinfo_msg;
283
284 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
285
286 /*
287 * Turn off interrupts (not mchecks) and floating point.
288 * Make sure the instruction and data streams are consistent.
289 */
290 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
291 alpha_pal_wrfen(0);
292 ALPHA_TBIA();
293 alpha_pal_imb();
294
295 #if defined(MULTIPROCESSOR)
296 /*
297 * Set our SysValue to the address of our cpu_info structure.
298 * Secondary processors do this in their spinup trampoline.
299 */
300 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
301 #endif
302
303 /*
304 * Get critical system information (if possible, from the
305 * information provided by the boot program).
306 */
307 bootinfo_msg = NULL;
308 if (bim == BOOTINFO_MAGIC) {
309 if (biv == 0) { /* backward compat */
310 biv = *(u_long *)bip;
311 bip += 8;
312 }
313 switch (biv) {
314 case 1: {
315 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
316
317 bootinfo.ssym = v1p->ssym;
318 bootinfo.esym = v1p->esym;
319 /* hwrpb may not be provided by boot block in v1 */
320 if (v1p->hwrpb != NULL) {
321 bootinfo.hwrpb_phys =
322 ((struct rpb *)v1p->hwrpb)->rpb_phys;
323 bootinfo.hwrpb_size = v1p->hwrpbsize;
324 } else {
325 bootinfo.hwrpb_phys =
326 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
327 bootinfo.hwrpb_size =
328 ((struct rpb *)HWRPB_ADDR)->rpb_size;
329 }
330 bcopy(v1p->boot_flags, bootinfo.boot_flags,
331 min(sizeof v1p->boot_flags,
332 sizeof bootinfo.boot_flags));
333 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
334 min(sizeof v1p->booted_kernel,
335 sizeof bootinfo.booted_kernel));
336 /* booted dev not provided in bootinfo */
337 init_prom_interface((struct rpb *)
338 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
339 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
340 sizeof bootinfo.booted_dev);
341 break;
342 }
343 default:
344 bootinfo_msg = "unknown bootinfo version";
345 goto nobootinfo;
346 }
347 } else {
348 bootinfo_msg = "boot program did not pass bootinfo";
349 nobootinfo:
350 bootinfo.ssym = (u_long)_end;
351 bootinfo.esym = (u_long)_end;
352 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
353 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
354 init_prom_interface((struct rpb *)HWRPB_ADDR);
355 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
356 sizeof bootinfo.boot_flags);
357 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
358 sizeof bootinfo.booted_kernel);
359 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
360 sizeof bootinfo.booted_dev);
361 }
362
363 /*
364 * Initialize the kernel's mapping of the RPB. It's needed for
365 * lots of things.
366 */
367 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
368
369 #if defined(DEC_3000_300) || defined(DEC_3000_500)
370 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
371 hwrpb->rpb_type == ST_DEC_3000_500) {
372 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
373 sizeof(dec_3000_scsiid));
374 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
375 sizeof(dec_3000_scsifast));
376 }
377 #endif
378
379 /*
380 * Remember how many cycles there are per microsecond,
381 * so that we can use delay(). Round up, for safety.
382 */
383 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
384
385 /*
386 * Initalize the (temporary) bootstrap console interface, so
387 * we can use printf until the VM system starts being setup.
388 * The real console is initialized before then.
389 */
390 init_bootstrap_console();
391
392 /* OUTPUT NOW ALLOWED */
393
394 /* delayed from above */
395 if (bootinfo_msg)
396 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
397 bootinfo_msg, bim, bip, biv);
398
399 /* Initialize the trap vectors on the primary processor. */
400 trap_init();
401
402 /*
403 * Find out what hardware we're on, and do basic initialization.
404 */
405 cputype = hwrpb->rpb_type;
406 if (cputype < 0) {
407 /*
408 * At least some white-box systems have SRM which
409 * reports a systype that's the negative of their
410 * blue-box counterpart.
411 */
412 cputype = -cputype;
413 }
414 if (cputype >= ncpuinit) {
415 platform_not_supported();
416 /* NOTREACHED */
417 }
418 (*cpuinit[cputype].init)();
419 strcpy(cpu_model, platform.model);
420
421 /*
422 * Initalize the real console, so the the bootstrap console is
423 * no longer necessary.
424 */
425 (*platform.cons_init)();
426
427 #ifdef DIAGNOSTIC
428 /* Paranoid sanity checking */
429
430 /* We should always be running on the the primary. */
431 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
432
433 /*
434 * On single-CPU systypes, the primary should always be CPU 0,
435 * except on Alpha 8200 systems where the CPU id is related
436 * to the VID, which is related to the Turbo Laser node id.
437 */
438 if (cputype != ST_DEC_21000)
439 assert(hwrpb->rpb_primary_cpu_id == 0);
440 #endif
441
442 /* NO MORE FIRMWARE ACCESS ALLOWED */
443 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
444 /*
445 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
446 * XXX pmap_uses_prom_console() evaluates to non-zero.)
447 */
448 #endif
449
450 /*
451 * find out this system's page size
452 */
453 PAGE_SIZE = hwrpb->rpb_page_size;
454 if (PAGE_SIZE != 8192)
455 panic("page size %d != 8192?!", PAGE_SIZE);
456
457 /*
458 * Initialize PAGE_SIZE-dependent variables.
459 */
460 uvm_setpagesize();
461
462 /*
463 * Find the beginning and end of the kernel (and leave a
464 * bit of space before the beginning for the bootstrap
465 * stack).
466 */
467 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
468 #ifdef DDB
469 ksym_start = (void *)bootinfo.ssym;
470 ksym_end = (void *)bootinfo.esym;
471 kernend = (vaddr_t)round_page(ksym_end);
472 #else
473 kernend = (vaddr_t)round_page(_end);
474 #endif
475
476 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
477 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
478
479 /*
480 * Find out how much memory is available, by looking at
481 * the memory cluster descriptors. This also tries to do
482 * its best to detect things things that have never been seen
483 * before...
484 */
485 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
486
487 /* MDDT SANITY CHECKING */
488 mddtweird = 0;
489 if (mddtp->mddt_cluster_cnt < 2) {
490 mddtweird = 1;
491 printf("WARNING: weird number of mem clusters: %lu\n",
492 mddtp->mddt_cluster_cnt);
493 }
494
495 #if 0
496 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
497 #endif
498
499 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
500 memc = &mddtp->mddt_clusters[i];
501 #if 0
502 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
503 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
504 #endif
505 totalphysmem += memc->mddt_pg_cnt;
506 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
507 mem_clusters[mem_cluster_cnt].start =
508 ptoa(memc->mddt_pfn);
509 mem_clusters[mem_cluster_cnt].size =
510 ptoa(memc->mddt_pg_cnt);
511 if (memc->mddt_usage & MDDT_mbz ||
512 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
513 memc->mddt_usage & MDDT_PALCODE)
514 mem_clusters[mem_cluster_cnt].size |=
515 PROT_READ;
516 else
517 mem_clusters[mem_cluster_cnt].size |=
518 PROT_READ | PROT_WRITE | PROT_EXEC;
519 mem_cluster_cnt++;
520 }
521
522 if (memc->mddt_usage & MDDT_mbz) {
523 mddtweird = 1;
524 printf("WARNING: mem cluster %d has weird "
525 "usage 0x%lx\n", i, memc->mddt_usage);
526 unknownmem += memc->mddt_pg_cnt;
527 continue;
528 }
529 if (memc->mddt_usage & MDDT_NONVOLATILE) {
530 /* XXX should handle these... */
531 printf("WARNING: skipping non-volatile mem "
532 "cluster %d\n", i);
533 unusedmem += memc->mddt_pg_cnt;
534 continue;
535 }
536 if (memc->mddt_usage & MDDT_PALCODE) {
537 resvmem += memc->mddt_pg_cnt;
538 continue;
539 }
540
541 /*
542 * We have a memory cluster available for system
543 * software use. We must determine if this cluster
544 * holds the kernel.
545 */
546 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
547 /*
548 * XXX If the kernel uses the PROM console, we only use the
549 * XXX memory after the kernel in the first system segment,
550 * XXX to avoid clobbering prom mapping, data, etc.
551 */
552 if (!pmap_uses_prom_console() || physmem == 0) {
553 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
554 physmem += memc->mddt_pg_cnt;
555 pfn0 = memc->mddt_pfn;
556 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
557 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
558 /*
559 * Must compute the location of the kernel
560 * within the segment.
561 */
562 #if 0
563 printf("Cluster %d contains kernel\n", i);
564 #endif
565 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
566 if (!pmap_uses_prom_console()) {
567 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
568 if (pfn0 < kernstartpfn) {
569 /*
570 * There is a chunk before the kernel.
571 */
572 #if 0
573 printf("Loading chunk before kernel: "
574 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
575 #endif
576 uvm_page_physload(pfn0, kernstartpfn,
577 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
578 }
579 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
580 }
581 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
582 if (kernendpfn < pfn1) {
583 /*
584 * There is a chunk after the kernel.
585 */
586 #if 0
587 printf("Loading chunk after kernel: "
588 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
589 #endif
590 uvm_page_physload(kernendpfn, pfn1,
591 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
592 }
593 } else {
594 /*
595 * Just load this cluster as one chunk.
596 */
597 #if 0
598 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
599 pfn0, pfn1);
600 #endif
601 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
602 VM_FREELIST_DEFAULT);
603 }
604 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
605 }
606 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
607 }
608
609 /*
610 * Dump out the MDDT if it looks odd...
611 */
612 if (mddtweird) {
613 printf("\n");
614 printf("complete memory cluster information:\n");
615 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
616 printf("mddt %d:\n", i);
617 printf("\tpfn %lx\n",
618 mddtp->mddt_clusters[i].mddt_pfn);
619 printf("\tcnt %lx\n",
620 mddtp->mddt_clusters[i].mddt_pg_cnt);
621 printf("\ttest %lx\n",
622 mddtp->mddt_clusters[i].mddt_pg_test);
623 printf("\tbva %lx\n",
624 mddtp->mddt_clusters[i].mddt_v_bitaddr);
625 printf("\tbpa %lx\n",
626 mddtp->mddt_clusters[i].mddt_p_bitaddr);
627 printf("\tbcksum %lx\n",
628 mddtp->mddt_clusters[i].mddt_bit_cksum);
629 printf("\tusage %lx\n",
630 mddtp->mddt_clusters[i].mddt_usage);
631 }
632 printf("\n");
633 }
634
635 if (totalphysmem == 0)
636 panic("can't happen: system seems to have no memory!");
637 maxmem = physmem;
638 #if 0
639 printf("totalphysmem = %d\n", totalphysmem);
640 printf("physmem = %d\n", physmem);
641 printf("resvmem = %d\n", resvmem);
642 printf("unusedmem = %d\n", unusedmem);
643 printf("unknownmem = %d\n", unknownmem);
644 #endif
645
646 /*
647 * Adjust some parameters if the amount of physmem
648 * available would cause us to croak. This is completely
649 * eyeballed and isn't meant to be the final answer.
650 * vm_phys_size is probably the only one to really worry
651 * about.
652 *
653 * It's for booting a GENERIC kernel on a large memory platform.
654 */
655 if (physmem >= atop(128 * 1024 * 1024)) {
656 vm_kmem_size <<= 3;
657 vm_phys_size <<= 2;
658 }
659
660 /*
661 * Initialize error message buffer (at end of core).
662 */
663 {
664 size_t sz = round_page(MSGBUFSIZE);
665
666 vps = &vm_physmem[vm_nphysseg - 1];
667
668 /* shrink so that it'll fit in the last segment */
669 if ((vps->avail_end - vps->avail_start) < atop(sz))
670 sz = ptoa(vps->avail_end - vps->avail_start);
671
672 vps->end -= atop(sz);
673 vps->avail_end -= atop(sz);
674 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
675 initmsgbuf(msgbufaddr, sz);
676
677 /* Remove the last segment if it now has no pages. */
678 if (vps->start == vps->end)
679 vm_nphysseg--;
680
681 /* warn if the message buffer had to be shrunk */
682 if (sz != round_page(MSGBUFSIZE))
683 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
684 round_page(MSGBUFSIZE), sz);
685
686 }
687
688 /*
689 * Init mapping for u page(s) for proc 0
690 */
691 proc0.p_addr = proc0paddr =
692 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
693
694 /*
695 * Allocate space for system data structures. These data structures
696 * are allocated here instead of cpu_startup() because physical
697 * memory is directly addressable. We don't have to map these into
698 * virtual address space.
699 */
700 size = (vsize_t)allocsys(NULL, mdallocsys);
701 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
702 if ((allocsys(v, mdallocsys) - v) != size)
703 panic("alpha_init: table size inconsistency");
704
705 /*
706 * Initialize the virtual memory system, and set the
707 * page table base register in proc 0's PCB.
708 */
709 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
710 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
711
712 /*
713 * Initialize the rest of proc 0's PCB, and cache its physical
714 * address.
715 */
716 proc0.p_md.md_pcbpaddr =
717 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
718
719 /*
720 * Set the kernel sp, reserving space for an (empty) trapframe,
721 * and make proc0's trapframe pointer point to it for sanity.
722 */
723 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
724 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
725 proc0.p_md.md_tf =
726 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
727
728 #if defined(MULTIPROCESSOR)
729 /*
730 * Initialize the primary CPU's idle PCB to proc0's, until
731 * autoconfiguration runs (it will get its own idle PCB there).
732 */
733 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
734 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
735 #endif
736
737 /*
738 * Look at arguments passed to us and compute boothowto.
739 */
740
741 boothowto = RB_SINGLE;
742 #ifdef KADB
743 boothowto |= RB_KDB;
744 #endif
745 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
746 /*
747 * Note that we'd really like to differentiate case here,
748 * but the Alpha AXP Architecture Reference Manual
749 * says that we shouldn't.
750 */
751 switch (*p) {
752 case 'a': /* autoboot */
753 case 'A':
754 boothowto &= ~RB_SINGLE;
755 break;
756
757 #ifdef DEBUG
758 case 'c': /* crash dump immediately after autoconfig */
759 case 'C':
760 boothowto |= RB_DUMP;
761 break;
762 #endif
763
764 #if defined(KGDB) || defined(DDB)
765 case 'd': /* break into the kernel debugger ASAP */
766 case 'D':
767 boothowto |= RB_KDB;
768 break;
769 #endif
770
771 case 'h': /* always halt, never reboot */
772 case 'H':
773 boothowto |= RB_HALT;
774 break;
775
776 #if 0
777 case 'm': /* mini root present in memory */
778 case 'M':
779 boothowto |= RB_MINIROOT;
780 break;
781 #endif
782
783 case 'n': /* askname */
784 case 'N':
785 boothowto |= RB_ASKNAME;
786 break;
787
788 case 's': /* single-user (default, supported for sanity) */
789 case 'S':
790 boothowto |= RB_SINGLE;
791 break;
792
793 case '-':
794 /*
795 * Just ignore this. It's not required, but it's
796 * common for it to be passed regardless.
797 */
798 break;
799
800 default:
801 printf("Unrecognized boot flag '%c'.\n", *p);
802 break;
803 }
804 }
805
806
807 /*
808 * Figure out the number of cpus in the box, from RPB fields.
809 * Really. We mean it.
810 */
811 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
812 struct pcs *pcsp;
813
814 pcsp = LOCATE_PCS(hwrpb, i);
815 if ((pcsp->pcs_flags & PCS_PP) != 0)
816 ncpus++;
817 }
818
819 /*
820 * Initialize debuggers, and break into them if appropriate.
821 */
822 #ifdef DDB
823 db_machine_init();
824 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
825 ksym_start, ksym_end);
826 if (boothowto & RB_KDB)
827 Debugger();
828 #endif
829 #ifdef KGDB
830 if (boothowto & RB_KDB)
831 kgdb_connect(0);
832 #endif
833 /*
834 * Figure out our clock frequency, from RPB fields.
835 */
836 hz = hwrpb->rpb_intr_freq >> 12;
837 if (!(60 <= hz && hz <= 10240)) {
838 hz = 1024;
839 #ifdef DIAGNOSTIC
840 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
841 hwrpb->rpb_intr_freq, hz);
842 #endif
843 }
844 }
845
846 caddr_t
847 mdallocsys(v)
848 caddr_t v;
849 {
850 /*
851 * There appears to be a correlation between the number
852 * of processor slots defined in the HWRPB and the whami
853 * value that can be returned.
854 */
855 ALLOCSYS(v, mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
856 return (v);
857 }
858
859 void
860 consinit()
861 {
862
863 /*
864 * Everything related to console initialization is done
865 * in alpha_init().
866 */
867 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
868 printf("consinit: %susing prom console\n",
869 pmap_uses_prom_console() ? "" : "not ");
870 #endif
871 }
872
873 #include "pckbc.h"
874 #include "pckbd.h"
875 #if (NPCKBC > 0) && (NPCKBD == 0)
876
877 #include <dev/ic/pckbcvar.h>
878
879 /*
880 * This is called by the pbkbc driver if no pckbd is configured.
881 * On the i386, it is used to glue in the old, deprecated console
882 * code. On the Alpha, it does nothing.
883 */
884 int
885 pckbc_machdep_cnattach(kbctag, kbcslot)
886 pckbc_tag_t kbctag;
887 pckbc_slot_t kbcslot;
888 {
889
890 return (ENXIO);
891 }
892 #endif /* NPCKBC > 0 && NPCKBD == 0 */
893
894 void
895 cpu_startup()
896 {
897 register unsigned i;
898 int base, residual;
899 vaddr_t minaddr, maxaddr;
900 vsize_t size;
901 char pbuf[9];
902 #if defined(DEBUG)
903 extern int pmapdebug;
904 int opmapdebug = pmapdebug;
905
906 pmapdebug = 0;
907 #endif
908
909 /*
910 * Good {morning,afternoon,evening,night}.
911 */
912 printf(version);
913 identifycpu();
914 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
915 printf("total memory = %s\n", pbuf);
916 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
917 printf("(%s reserved for PROM, ", pbuf);
918 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
919 printf("%s used by NetBSD)\n", pbuf);
920 if (unusedmem) {
921 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
922 printf("WARNING: unused memory = %s\n", pbuf);
923 }
924 if (unknownmem) {
925 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
926 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
927 }
928
929 /*
930 * Allocate virtual address space for file I/O buffers.
931 * Note they are different than the array of headers, 'buf',
932 * and usually occupy more virtual memory than physical.
933 */
934 size = MAXBSIZE * nbuf;
935 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
936 NULL, UVM_UNKNOWN_OFFSET,
937 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
938 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
939 panic("startup: cannot allocate VM for buffers");
940 base = bufpages / nbuf;
941 residual = bufpages % nbuf;
942 for (i = 0; i < nbuf; i++) {
943 vsize_t curbufsize;
944 vaddr_t curbuf;
945 struct vm_page *pg;
946
947 /*
948 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
949 * that MAXBSIZE space, we allocate and map (base+1) pages
950 * for the first "residual" buffers, and then we allocate
951 * "base" pages for the rest.
952 */
953 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
954 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
955
956 while (curbufsize) {
957 pg = uvm_pagealloc(NULL, 0, NULL, 0);
958 if (pg == NULL)
959 panic("cpu_startup: not enough memory for "
960 "buffer cache");
961 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
962 VM_PROT_READ|VM_PROT_WRITE);
963 curbuf += PAGE_SIZE;
964 curbufsize -= PAGE_SIZE;
965 }
966 }
967 /*
968 * Allocate a submap for exec arguments. This map effectively
969 * limits the number of processes exec'ing at any time.
970 */
971 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
972 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
973
974 /*
975 * Allocate a submap for physio
976 */
977 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
978 VM_PHYS_SIZE, 0, FALSE, NULL);
979
980 /*
981 * No need to allocate an mbuf cluster submap. Mbuf clusters
982 * are allocated via the pool allocator, and we use K0SEG to
983 * map those pages.
984 */
985
986 #if defined(DEBUG)
987 pmapdebug = opmapdebug;
988 #endif
989 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
990 printf("avail memory = %s\n", pbuf);
991 #if 0
992 {
993 extern u_long pmap_pages_stolen;
994
995 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
996 printf("stolen memory for VM structures = %s\n", pbuf);
997 }
998 #endif
999 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
1000 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
1001
1002 /*
1003 * Set up buffers, so they can be used to read disk labels.
1004 */
1005 bufinit();
1006
1007 /*
1008 * Set up the HWPCB so that it's safe to configure secondary
1009 * CPUs.
1010 */
1011 hwrpb_primary_init();
1012 }
1013
1014 /*
1015 * Retrieve the platform name from the DSR.
1016 */
1017 const char *
1018 alpha_dsr_sysname()
1019 {
1020 struct dsrdb *dsr;
1021 const char *sysname;
1022
1023 /*
1024 * DSR does not exist on early HWRPB versions.
1025 */
1026 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1027 return (NULL);
1028
1029 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1030 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1031 sizeof(u_int64_t)));
1032 return (sysname);
1033 }
1034
1035 /*
1036 * Lookup the system specified system variation in the provided table,
1037 * returning the model string on match.
1038 */
1039 const char *
1040 alpha_variation_name(variation, avtp)
1041 u_int64_t variation;
1042 const struct alpha_variation_table *avtp;
1043 {
1044 int i;
1045
1046 for (i = 0; avtp[i].avt_model != NULL; i++)
1047 if (avtp[i].avt_variation == variation)
1048 return (avtp[i].avt_model);
1049 return (NULL);
1050 }
1051
1052 /*
1053 * Generate a default platform name based for unknown system variations.
1054 */
1055 const char *
1056 alpha_unknown_sysname()
1057 {
1058 static char s[128]; /* safe size */
1059
1060 sprintf(s, "%s family, unknown model variation 0x%lx",
1061 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1062 return ((const char *)s);
1063 }
1064
1065 void
1066 identifycpu()
1067 {
1068 char *s;
1069
1070 /*
1071 * print out CPU identification information.
1072 */
1073 printf("%s", cpu_model);
1074 for(s = cpu_model; *s; ++s)
1075 if(strncasecmp(s, "MHz", 3) == 0)
1076 goto skipMHz;
1077 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1078 skipMHz:
1079 printf("\n");
1080 printf("%ld byte page size, %d processor%s.\n",
1081 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1082 #if 0
1083 /* this isn't defined for any systems that we run on? */
1084 printf("serial number 0x%lx 0x%lx\n",
1085 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1086
1087 /* and these aren't particularly useful! */
1088 printf("variation: 0x%lx, revision 0x%lx\n",
1089 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1090 #endif
1091 }
1092
1093 int waittime = -1;
1094 struct pcb dumppcb;
1095
1096 void
1097 cpu_reboot(howto, bootstr)
1098 int howto;
1099 char *bootstr;
1100 {
1101 #if defined(MULTIPROCESSOR)
1102 #if 0 /* XXX See below. */
1103 u_long cpu_id;
1104 #endif
1105 #endif
1106
1107 #if defined(MULTIPROCESSOR)
1108 /* We must be running on the primary CPU. */
1109 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1110 panic("cpu_reboot: not on primary CPU!");
1111 #endif
1112
1113 /* If system is cold, just halt. */
1114 if (cold) {
1115 howto |= RB_HALT;
1116 goto haltsys;
1117 }
1118
1119 /* If "always halt" was specified as a boot flag, obey. */
1120 if ((boothowto & RB_HALT) != 0)
1121 howto |= RB_HALT;
1122
1123 boothowto = howto;
1124 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1125 waittime = 0;
1126 vfs_shutdown();
1127 /*
1128 * If we've been adjusting the clock, the todr
1129 * will be out of synch; adjust it now.
1130 */
1131 resettodr();
1132 }
1133
1134 /* Disable interrupts. */
1135 splhigh();
1136
1137 /* If rebooting and a dump is requested do it. */
1138 #if 0
1139 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1140 #else
1141 if (howto & RB_DUMP)
1142 #endif
1143 dumpsys();
1144
1145 haltsys:
1146
1147 /* run any shutdown hooks */
1148 doshutdownhooks();
1149
1150 #if defined(MULTIPROCESSOR)
1151 #if 0 /* XXX doesn't work when called from here?! */
1152 /* Kill off any secondary CPUs. */
1153 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1154 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1155 cpu_info[cpu_id].ci_softc == NULL)
1156 continue;
1157 cpu_halt_secondary(cpu_id);
1158 }
1159 #endif
1160 #endif
1161
1162 #ifdef BOOTKEY
1163 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1164 cnpollc(1); /* for proper keyboard command handling */
1165 cngetc();
1166 cnpollc(0);
1167 printf("\n");
1168 #endif
1169
1170 /* Finally, powerdown/halt/reboot the system. */
1171 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1172 platform.powerdown != NULL) {
1173 (*platform.powerdown)();
1174 printf("WARNING: powerdown failed!\n");
1175 }
1176 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1177 prom_halt(howto & RB_HALT);
1178 /*NOTREACHED*/
1179 }
1180
1181 /*
1182 * These variables are needed by /sbin/savecore
1183 */
1184 u_long dumpmag = 0x8fca0101; /* magic number */
1185 int dumpsize = 0; /* pages */
1186 long dumplo = 0; /* blocks */
1187
1188 /*
1189 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1190 */
1191 int
1192 cpu_dumpsize()
1193 {
1194 int size;
1195
1196 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1197 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1198 if (roundup(size, dbtob(1)) != dbtob(1))
1199 return -1;
1200
1201 return (1);
1202 }
1203
1204 /*
1205 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1206 */
1207 u_long
1208 cpu_dump_mempagecnt()
1209 {
1210 u_long i, n;
1211
1212 n = 0;
1213 for (i = 0; i < mem_cluster_cnt; i++)
1214 n += atop(mem_clusters[i].size);
1215 return (n);
1216 }
1217
1218 /*
1219 * cpu_dump: dump machine-dependent kernel core dump headers.
1220 */
1221 int
1222 cpu_dump()
1223 {
1224 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1225 char buf[dbtob(1)];
1226 kcore_seg_t *segp;
1227 cpu_kcore_hdr_t *cpuhdrp;
1228 phys_ram_seg_t *memsegp;
1229 int i;
1230
1231 dump = bdevsw[major(dumpdev)].d_dump;
1232
1233 bzero(buf, sizeof buf);
1234 segp = (kcore_seg_t *)buf;
1235 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1236 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1237 ALIGN(sizeof(*cpuhdrp))];
1238
1239 /*
1240 * Generate a segment header.
1241 */
1242 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1243 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1244
1245 /*
1246 * Add the machine-dependent header info.
1247 */
1248 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1249 cpuhdrp->page_size = PAGE_SIZE;
1250 cpuhdrp->nmemsegs = mem_cluster_cnt;
1251
1252 /*
1253 * Fill in the memory segment descriptors.
1254 */
1255 for (i = 0; i < mem_cluster_cnt; i++) {
1256 memsegp[i].start = mem_clusters[i].start;
1257 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1258 }
1259
1260 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1261 }
1262
1263 /*
1264 * This is called by main to set dumplo and dumpsize.
1265 * Dumps always skip the first NBPG of disk space
1266 * in case there might be a disk label stored there.
1267 * If there is extra space, put dump at the end to
1268 * reduce the chance that swapping trashes it.
1269 */
1270 void
1271 cpu_dumpconf()
1272 {
1273 int nblks, dumpblks; /* size of dump area */
1274 int maj;
1275
1276 if (dumpdev == NODEV)
1277 goto bad;
1278 maj = major(dumpdev);
1279 if (maj < 0 || maj >= nblkdev)
1280 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1281 if (bdevsw[maj].d_psize == NULL)
1282 goto bad;
1283 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1284 if (nblks <= ctod(1))
1285 goto bad;
1286
1287 dumpblks = cpu_dumpsize();
1288 if (dumpblks < 0)
1289 goto bad;
1290 dumpblks += ctod(cpu_dump_mempagecnt());
1291
1292 /* If dump won't fit (incl. room for possible label), punt. */
1293 if (dumpblks > (nblks - ctod(1)))
1294 goto bad;
1295
1296 /* Put dump at end of partition */
1297 dumplo = nblks - dumpblks;
1298
1299 /* dumpsize is in page units, and doesn't include headers. */
1300 dumpsize = cpu_dump_mempagecnt();
1301 return;
1302
1303 bad:
1304 dumpsize = 0;
1305 return;
1306 }
1307
1308 /*
1309 * Dump the kernel's image to the swap partition.
1310 */
1311 #define BYTES_PER_DUMP NBPG
1312
1313 void
1314 dumpsys()
1315 {
1316 u_long totalbytesleft, bytes, i, n, memcl;
1317 u_long maddr;
1318 int psize;
1319 daddr_t blkno;
1320 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1321 int error;
1322
1323 /* Save registers. */
1324 savectx(&dumppcb);
1325
1326 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1327 if (dumpdev == NODEV)
1328 return;
1329
1330 /*
1331 * For dumps during autoconfiguration,
1332 * if dump device has already configured...
1333 */
1334 if (dumpsize == 0)
1335 cpu_dumpconf();
1336 if (dumplo <= 0) {
1337 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1338 minor(dumpdev));
1339 return;
1340 }
1341 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1342 minor(dumpdev), dumplo);
1343
1344 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1345 printf("dump ");
1346 if (psize == -1) {
1347 printf("area unavailable\n");
1348 return;
1349 }
1350
1351 /* XXX should purge all outstanding keystrokes. */
1352
1353 if ((error = cpu_dump()) != 0)
1354 goto err;
1355
1356 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1357 blkno = dumplo + cpu_dumpsize();
1358 dump = bdevsw[major(dumpdev)].d_dump;
1359 error = 0;
1360
1361 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1362 maddr = mem_clusters[memcl].start;
1363 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1364
1365 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1366
1367 /* Print out how many MBs we to go. */
1368 if ((totalbytesleft % (1024*1024)) == 0)
1369 printf("%ld ", totalbytesleft / (1024 * 1024));
1370
1371 /* Limit size for next transfer. */
1372 n = bytes - i;
1373 if (n > BYTES_PER_DUMP)
1374 n = BYTES_PER_DUMP;
1375
1376 error = (*dump)(dumpdev, blkno,
1377 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1378 if (error)
1379 goto err;
1380 maddr += n;
1381 blkno += btodb(n); /* XXX? */
1382
1383 /* XXX should look for keystrokes, to cancel. */
1384 }
1385 }
1386
1387 err:
1388 switch (error) {
1389
1390 case ENXIO:
1391 printf("device bad\n");
1392 break;
1393
1394 case EFAULT:
1395 printf("device not ready\n");
1396 break;
1397
1398 case EINVAL:
1399 printf("area improper\n");
1400 break;
1401
1402 case EIO:
1403 printf("i/o error\n");
1404 break;
1405
1406 case EINTR:
1407 printf("aborted from console\n");
1408 break;
1409
1410 case 0:
1411 printf("succeeded\n");
1412 break;
1413
1414 default:
1415 printf("error %d\n", error);
1416 break;
1417 }
1418 printf("\n\n");
1419 delay(1000);
1420 }
1421
1422 void
1423 frametoreg(framep, regp)
1424 struct trapframe *framep;
1425 struct reg *regp;
1426 {
1427
1428 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1429 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1430 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1431 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1432 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1433 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1434 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1435 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1436 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1437 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1438 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1439 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1440 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1441 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1442 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1443 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1444 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1445 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1446 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1447 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1448 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1449 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1450 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1451 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1452 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1453 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1454 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1455 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1456 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1457 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1458 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1459 regp->r_regs[R_ZERO] = 0;
1460 }
1461
1462 void
1463 regtoframe(regp, framep)
1464 struct reg *regp;
1465 struct trapframe *framep;
1466 {
1467
1468 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1469 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1470 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1471 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1472 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1473 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1474 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1475 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1476 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1477 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1478 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1479 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1480 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1481 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1482 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1483 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1484 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1485 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1486 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1487 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1488 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1489 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1490 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1491 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1492 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1493 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1494 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1495 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1496 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1497 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1498 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1499 /* ??? = regp->r_regs[R_ZERO]; */
1500 }
1501
1502 void
1503 printregs(regp)
1504 struct reg *regp;
1505 {
1506 int i;
1507
1508 for (i = 0; i < 32; i++)
1509 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1510 i & 1 ? "\n" : "\t");
1511 }
1512
1513 void
1514 regdump(framep)
1515 struct trapframe *framep;
1516 {
1517 struct reg reg;
1518
1519 frametoreg(framep, ®);
1520 reg.r_regs[R_SP] = alpha_pal_rdusp();
1521
1522 printf("REGISTERS:\n");
1523 printregs(®);
1524 }
1525
1526 #ifdef DEBUG
1527 int sigdebug = 0;
1528 int sigpid = 0;
1529 #define SDB_FOLLOW 0x01
1530 #define SDB_KSTACK 0x02
1531 #endif
1532
1533 /*
1534 * Send an interrupt to process.
1535 */
1536 void
1537 sendsig(catcher, sig, mask, code)
1538 sig_t catcher;
1539 int sig;
1540 sigset_t *mask;
1541 u_long code;
1542 {
1543 struct proc *p = curproc;
1544 struct sigcontext *scp, ksc;
1545 struct trapframe *frame;
1546 struct sigacts *psp = p->p_sigacts;
1547 int onstack, fsize, rndfsize;
1548
1549 frame = p->p_md.md_tf;
1550
1551 /* Do we need to jump onto the signal stack? */
1552 onstack =
1553 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1554 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1555
1556 /* Allocate space for the signal handler context. */
1557 fsize = sizeof(ksc);
1558 rndfsize = ((fsize + 15) / 16) * 16;
1559
1560 if (onstack)
1561 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1562 psp->ps_sigstk.ss_size);
1563 else
1564 scp = (struct sigcontext *)(alpha_pal_rdusp());
1565 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1566
1567 #ifdef DEBUG
1568 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1569 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1570 sig, &onstack, scp);
1571 #endif
1572
1573 /* Build stack frame for signal trampoline. */
1574 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1575 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1576
1577 /* Save register context. */
1578 frametoreg(frame, (struct reg *)ksc.sc_regs);
1579 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1580 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1581
1582 /* save the floating-point state, if necessary, then copy it. */
1583 if (p == fpcurproc) {
1584 alpha_pal_wrfen(1);
1585 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1586 alpha_pal_wrfen(0);
1587 fpcurproc = NULL;
1588 }
1589 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1590 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1591 sizeof(struct fpreg));
1592 ksc.sc_fp_control = 0; /* XXX ? */
1593 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1594 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1595
1596 /* Save signal stack. */
1597 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1598
1599 /* Save signal mask. */
1600 ksc.sc_mask = *mask;
1601
1602 #ifdef COMPAT_13
1603 /*
1604 * XXX We always have to save an old style signal mask because
1605 * XXX we might be delivering a signal to a process which will
1606 * XXX escape from the signal in a non-standard way and invoke
1607 * XXX sigreturn() directly.
1608 */
1609 {
1610 /* Note: it's a long in the stack frame. */
1611 sigset13_t mask13;
1612
1613 native_sigset_to_sigset13(mask, &mask13);
1614 ksc.__sc_mask13 = mask13;
1615 }
1616 #endif
1617
1618 #ifdef COMPAT_OSF1
1619 /*
1620 * XXX Create an OSF/1-style sigcontext and associated goo.
1621 */
1622 #endif
1623
1624 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1625 /*
1626 * Process has trashed its stack; give it an illegal
1627 * instruction to halt it in its tracks.
1628 */
1629 #ifdef DEBUG
1630 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1631 printf("sendsig(%d): copyout failed on sig %d\n",
1632 p->p_pid, sig);
1633 #endif
1634 sigexit(p, SIGILL);
1635 /* NOTREACHED */
1636 }
1637 #ifdef DEBUG
1638 if (sigdebug & SDB_FOLLOW)
1639 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1640 scp, code);
1641 #endif
1642
1643 /* Set up the registers to return to sigcode. */
1644 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1645 frame->tf_regs[FRAME_A0] = sig;
1646 frame->tf_regs[FRAME_A1] = code;
1647 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1648 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1649 alpha_pal_wrusp((unsigned long)scp);
1650
1651 /* Remember that we're now on the signal stack. */
1652 if (onstack)
1653 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1654
1655 #ifdef DEBUG
1656 if (sigdebug & SDB_FOLLOW)
1657 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1658 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1659 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1660 printf("sendsig(%d): sig %d returns\n",
1661 p->p_pid, sig);
1662 #endif
1663 }
1664
1665 /*
1666 * System call to cleanup state after a signal
1667 * has been taken. Reset signal mask and
1668 * stack state from context left by sendsig (above).
1669 * Return to previous pc and psl as specified by
1670 * context left by sendsig. Check carefully to
1671 * make sure that the user has not modified the
1672 * psl to gain improper privileges or to cause
1673 * a machine fault.
1674 */
1675 /* ARGSUSED */
1676 int
1677 sys___sigreturn14(p, v, retval)
1678 struct proc *p;
1679 void *v;
1680 register_t *retval;
1681 {
1682 struct sys___sigreturn14_args /* {
1683 syscallarg(struct sigcontext *) sigcntxp;
1684 } */ *uap = v;
1685 struct sigcontext *scp, ksc;
1686
1687 /*
1688 * The trampoline code hands us the context.
1689 * It is unsafe to keep track of it ourselves, in the event that a
1690 * program jumps out of a signal handler.
1691 */
1692 scp = SCARG(uap, sigcntxp);
1693 #ifdef DEBUG
1694 if (sigdebug & SDB_FOLLOW)
1695 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1696 #endif
1697 if (ALIGN(scp) != (u_int64_t)scp)
1698 return (EINVAL);
1699
1700 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1701 return (EFAULT);
1702
1703 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1704 return (EINVAL);
1705
1706 /* Restore register context. */
1707 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1708 p->p_md.md_tf->tf_regs[FRAME_PS] =
1709 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1710
1711 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1712 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1713
1714 /* XXX ksc.sc_ownedfp ? */
1715 if (p == fpcurproc)
1716 fpcurproc = NULL;
1717 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1718 sizeof(struct fpreg));
1719 /* XXX ksc.sc_fp_control ? */
1720
1721 /* Restore signal stack. */
1722 if (ksc.sc_onstack & SS_ONSTACK)
1723 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1724 else
1725 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1726
1727 /* Restore signal mask. */
1728 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1729
1730 #ifdef DEBUG
1731 if (sigdebug & SDB_FOLLOW)
1732 printf("sigreturn(%d): returns\n", p->p_pid);
1733 #endif
1734 return (EJUSTRETURN);
1735 }
1736
1737 /*
1738 * machine dependent system variables.
1739 */
1740 int
1741 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1742 int *name;
1743 u_int namelen;
1744 void *oldp;
1745 size_t *oldlenp;
1746 void *newp;
1747 size_t newlen;
1748 struct proc *p;
1749 {
1750 dev_t consdev;
1751
1752 /* all sysctl names at this level are terminal */
1753 if (namelen != 1)
1754 return (ENOTDIR); /* overloaded */
1755
1756 switch (name[0]) {
1757 case CPU_CONSDEV:
1758 if (cn_tab != NULL)
1759 consdev = cn_tab->cn_dev;
1760 else
1761 consdev = NODEV;
1762 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1763 sizeof consdev));
1764
1765 case CPU_ROOT_DEVICE:
1766 return (sysctl_rdstring(oldp, oldlenp, newp,
1767 root_device->dv_xname));
1768
1769 case CPU_UNALIGNED_PRINT:
1770 return (sysctl_int(oldp, oldlenp, newp, newlen,
1771 &alpha_unaligned_print));
1772
1773 case CPU_UNALIGNED_FIX:
1774 return (sysctl_int(oldp, oldlenp, newp, newlen,
1775 &alpha_unaligned_fix));
1776
1777 case CPU_UNALIGNED_SIGBUS:
1778 return (sysctl_int(oldp, oldlenp, newp, newlen,
1779 &alpha_unaligned_sigbus));
1780
1781 case CPU_BOOTED_KERNEL:
1782 return (sysctl_rdstring(oldp, oldlenp, newp,
1783 bootinfo.booted_kernel));
1784
1785 default:
1786 return (EOPNOTSUPP);
1787 }
1788 /* NOTREACHED */
1789 }
1790
1791 /*
1792 * Set registers on exec.
1793 */
1794 void
1795 setregs(p, pack, stack)
1796 register struct proc *p;
1797 struct exec_package *pack;
1798 u_long stack;
1799 {
1800 struct trapframe *tfp = p->p_md.md_tf;
1801 #ifdef DEBUG
1802 int i;
1803 #endif
1804
1805 #ifdef DEBUG
1806 /*
1807 * Crash and dump, if the user requested it.
1808 */
1809 if (boothowto & RB_DUMP)
1810 panic("crash requested by boot flags");
1811 #endif
1812
1813 #ifdef DEBUG
1814 for (i = 0; i < FRAME_SIZE; i++)
1815 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1816 #else
1817 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1818 #endif
1819 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1820 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1821 | FPCR_UNFD
1822 | FPCR_UNDZ
1823 | FPCR_DYN(FP_RN)
1824 | FPCR_OVFD
1825 | FPCR_DZED
1826 | FPCR_INVD
1827 | FPCR_DNZ;
1828 alpha_pal_wrusp(stack);
1829 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1830 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1831
1832 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1833 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1834 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1835 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1836 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1837
1838 p->p_md.md_flags &= ~MDP_FPUSED;
1839 if (fpcurproc == p)
1840 fpcurproc = NULL;
1841 }
1842
1843 void
1844 netintr()
1845 {
1846 int n, s;
1847
1848 s = splhigh();
1849 n = netisr;
1850 netisr = 0;
1851 splx(s);
1852
1853 #define DONETISR(bit, fn) \
1854 do { \
1855 if (n & (1 << (bit))) \
1856 fn; \
1857 } while (0)
1858
1859 #ifdef INET
1860 #if NARP > 0
1861 DONETISR(NETISR_ARP, arpintr());
1862 #endif
1863 DONETISR(NETISR_IP, ipintr());
1864 #endif
1865 #ifdef INET6
1866 DONETISR(NETISR_IPV6, ip6intr());
1867 #endif
1868 #ifdef NETATALK
1869 DONETISR(NETISR_ATALK, atintr());
1870 #endif
1871 #ifdef NS
1872 DONETISR(NETISR_NS, nsintr());
1873 #endif
1874 #ifdef ISO
1875 DONETISR(NETISR_ISO, clnlintr());
1876 #endif
1877 #ifdef CCITT
1878 DONETISR(NETISR_CCITT, ccittintr());
1879 #endif
1880 #ifdef NATM
1881 DONETISR(NETISR_NATM, natmintr());
1882 #endif
1883 #if NPPP > 0
1884 DONETISR(NETISR_PPP, pppintr());
1885 #endif
1886
1887 #undef DONETISR
1888 }
1889
1890 void
1891 do_sir()
1892 {
1893 u_int64_t n;
1894
1895 while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
1896 #define COUNT_SOFT uvmexp.softs++
1897
1898 #define DO_SIR(bit, fn) \
1899 do { \
1900 if (n & (bit)) { \
1901 COUNT_SOFT; \
1902 fn; \
1903 } \
1904 } while (0)
1905
1906 DO_SIR(SIR_NET, netintr());
1907 DO_SIR(SIR_CLOCK, softclock());
1908 #if NCOM > 0
1909 DO_SIR(SIR_SERIAL, comsoft());
1910 #endif
1911
1912 #undef COUNT_SOFT
1913 #undef DO_SIR
1914 }
1915 }
1916
1917 int
1918 spl0()
1919 {
1920
1921 if (ssir) {
1922 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1923 do_sir();
1924 }
1925
1926 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1927 }
1928
1929 /*
1930 * The following primitives manipulate the run queues. _whichqs tells which
1931 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1932 * into queues, Remrunqueue removes them from queues. The running process is
1933 * on no queue, other processes are on a queue related to p->p_priority,
1934 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1935 * available queues.
1936 */
1937 /*
1938 * setrunqueue(p)
1939 * proc *p;
1940 *
1941 * Call should be made at splclock(), and p->p_stat should be SRUN.
1942 */
1943
1944 void
1945 setrunqueue(p)
1946 struct proc *p;
1947 {
1948 int bit;
1949
1950 /* firewall: p->p_back must be NULL */
1951 if (p->p_back != NULL)
1952 panic("setrunqueue");
1953
1954 bit = p->p_priority >> 2;
1955 whichqs |= (1 << bit);
1956 p->p_forw = (struct proc *)&qs[bit];
1957 p->p_back = qs[bit].ph_rlink;
1958 p->p_back->p_forw = p;
1959 qs[bit].ph_rlink = p;
1960 }
1961
1962 /*
1963 * remrunqueue(p)
1964 *
1965 * Call should be made at splclock().
1966 */
1967 void
1968 remrunqueue(p)
1969 struct proc *p;
1970 {
1971 int bit;
1972
1973 bit = p->p_priority >> 2;
1974 if ((whichqs & (1 << bit)) == 0)
1975 panic("remrunqueue");
1976
1977 p->p_back->p_forw = p->p_forw;
1978 p->p_forw->p_back = p->p_back;
1979 p->p_back = NULL; /* for firewall checking. */
1980
1981 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1982 whichqs &= ~(1 << bit);
1983 }
1984
1985 /*
1986 * Return the best possible estimate of the time in the timeval
1987 * to which tvp points. Unfortunately, we can't read the hardware registers.
1988 * We guarantee that the time will be greater than the value obtained by a
1989 * previous call.
1990 */
1991 void
1992 microtime(tvp)
1993 register struct timeval *tvp;
1994 {
1995 int s = splclock();
1996 static struct timeval lasttime;
1997
1998 *tvp = time;
1999 #ifdef notdef
2000 tvp->tv_usec += clkread();
2001 while (tvp->tv_usec >= 1000000) {
2002 tvp->tv_sec++;
2003 tvp->tv_usec -= 1000000;
2004 }
2005 #endif
2006 if (tvp->tv_sec == lasttime.tv_sec &&
2007 tvp->tv_usec <= lasttime.tv_usec &&
2008 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
2009 tvp->tv_sec++;
2010 tvp->tv_usec -= 1000000;
2011 }
2012 lasttime = *tvp;
2013 splx(s);
2014 }
2015
2016 /*
2017 * Wait "n" microseconds.
2018 */
2019 void
2020 delay(n)
2021 unsigned long n;
2022 {
2023 long N = cycles_per_usec * (n);
2024
2025 /*
2026 * XXX Should be written to use RPCC?
2027 */
2028
2029 __asm __volatile(
2030 "# The 2 corresponds to the insn count\n"
2031 "1: subq %2, %1, %0 \n"
2032 " bgt %0, 1b"
2033 : "=r" (N)
2034 : "i" (2), "0" (N));
2035 }
2036
2037 #if defined(COMPAT_OSF1) || 1 /* XXX */
2038 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2039 u_long));
2040
2041 void
2042 cpu_exec_ecoff_setregs(p, epp, stack)
2043 struct proc *p;
2044 struct exec_package *epp;
2045 u_long stack;
2046 {
2047 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2048
2049 setregs(p, epp, stack);
2050 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2051 }
2052
2053 /*
2054 * cpu_exec_ecoff_hook():
2055 * cpu-dependent ECOFF format hook for execve().
2056 *
2057 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2058 *
2059 */
2060 int
2061 cpu_exec_ecoff_hook(p, epp)
2062 struct proc *p;
2063 struct exec_package *epp;
2064 {
2065 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2066 extern struct emul emul_netbsd;
2067 int error;
2068 extern int osf1_exec_ecoff_hook(struct proc *p,
2069 struct exec_package *epp);
2070
2071 switch (execp->f.f_magic) {
2072 #ifdef COMPAT_OSF1
2073 case ECOFF_MAGIC_ALPHA:
2074 error = osf1_exec_ecoff_hook(p, epp);
2075 break;
2076 #endif
2077
2078 case ECOFF_MAGIC_NETBSD_ALPHA:
2079 epp->ep_emul = &emul_netbsd;
2080 error = 0;
2081 break;
2082
2083 default:
2084 error = ENOEXEC;
2085 }
2086 return (error);
2087 }
2088 #endif
2089
2090 int
2091 alpha_pa_access(pa)
2092 u_long pa;
2093 {
2094 int i;
2095
2096 for (i = 0; i < mem_cluster_cnt; i++) {
2097 if (pa < mem_clusters[i].start)
2098 continue;
2099 if ((pa - mem_clusters[i].start) >=
2100 (mem_clusters[i].size & ~PAGE_MASK))
2101 continue;
2102 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2103 }
2104 return (PROT_NONE);
2105 }
2106
2107 /* XXX XXX BEGIN XXX XXX */
2108 paddr_t alpha_XXX_dmamap_or; /* XXX */
2109 /* XXX */
2110 paddr_t /* XXX */
2111 alpha_XXX_dmamap(v) /* XXX */
2112 vaddr_t v; /* XXX */
2113 { /* XXX */
2114 /* XXX */
2115 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2116 } /* XXX */
2117 /* XXX XXX END XXX XXX */
2118
2119 struct mchkinfo *
2120 cpu_mchkinfo()
2121 {
2122 if (mchkinfo_all_cpus == NULL)
2123 return &startup_info;
2124 return mchkinfo_all_cpus + alpha_pal_whami();
2125 }
2126
2127 char *
2128 dot_conv(x)
2129 unsigned long x;
2130 {
2131 int i;
2132 char *xc;
2133 static int next;
2134 static char space[2][20];
2135
2136 xc = space[next ^= 1] + sizeof space[0];
2137 *--xc = '\0';
2138 for (i = 0;; ++i) {
2139 if (i && (i & 3) == 0)
2140 *--xc = '.';
2141 *--xc = "0123456789abcdef"[x & 0xf];
2142 x >>= 4;
2143 if (x == 0)
2144 break;
2145 }
2146 return xc;
2147 }
2148