machdep.c revision 1.195 1 /* $NetBSD: machdep.c,v 1.195 2000/02/21 20:38:46 erh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.195 2000/02/21 20:38:46 erh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #include <sys/malloc.h>
95 #include <sys/mbuf.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <sys/user.h>
101 #include <sys/exec.h>
102 #include <sys/exec_ecoff.h>
103 #include <vm/vm.h>
104 #include <sys/sysctl.h>
105 #include <sys/core.h>
106 #include <sys/kcore.h>
107 #include <machine/kcore.h>
108
109 #include <sys/mount.h>
110 #include <sys/syscallargs.h>
111
112 #include <vm/vm_kern.h>
113
114 #include <uvm/uvm_extern.h>
115
116 #include <dev/cons.h>
117
118 #include <machine/autoconf.h>
119 #include <machine/cpu.h>
120 #include <machine/reg.h>
121 #include <machine/rpb.h>
122 #include <machine/prom.h>
123 #include <machine/conf.h>
124 #include <machine/ieeefp.h>
125
126 #include <net/netisr.h>
127 #include <net/if.h>
128
129 #ifdef INET
130 #include <net/route.h>
131 #include <netinet/in.h>
132 #include <netinet/ip_var.h>
133 #include "arp.h"
134 #if NARP > 0
135 #include <netinet/if_inarp.h>
136 #endif
137 #endif
138 #ifdef INET6
139 # ifndef INET
140 # include <netinet/in.h>
141 # endif
142 #include <netinet/ip6.h>
143 #include <netinet6/ip6_var.h>
144 #endif
145 #ifdef NS
146 #include <netns/ns_var.h>
147 #endif
148 #ifdef ISO
149 #include <netiso/iso.h>
150 #include <netiso/clnp.h>
151 #endif
152 #ifdef CCITT
153 #include <netccitt/x25.h>
154 #include <netccitt/pk.h>
155 #include <netccitt/pk_extern.h>
156 #endif
157 #ifdef NATM
158 #include <netnatm/natm.h>
159 #endif
160 #ifdef NETATALK
161 #include <netatalk/at_extern.h>
162 #endif
163 #include "ppp.h"
164 #if NPPP > 0
165 #include <net/ppp_defs.h>
166 #include <net/if_ppp.h>
167 #endif
168
169 #ifdef DDB
170 #include <machine/db_machdep.h>
171 #include <ddb/db_access.h>
172 #include <ddb/db_sym.h>
173 #include <ddb/db_extern.h>
174 #include <ddb/db_interface.h>
175 #endif
176
177 #include <machine/alpha.h>
178 #include <machine/intrcnt.h>
179
180 #include "com.h"
181 #if NCOM > 0
182 extern void comsoft __P((void));
183 #endif
184
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188
189 caddr_t msgbufaddr;
190
191 int maxmem; /* max memory per process */
192
193 int totalphysmem; /* total amount of physical memory in system */
194 int physmem; /* physical memory used by NetBSD + some rsvd */
195 int resvmem; /* amount of memory reserved for PROM */
196 int unusedmem; /* amount of memory for OS that we don't use */
197 int unknownmem; /* amount of memory with an unknown use */
198
199 int cputype; /* system type, from the RPB */
200
201 /*
202 * XXX We need an address to which we can assign things so that they
203 * won't be optimized away because we didn't use the value.
204 */
205 u_int32_t no_optimize;
206
207 /* the following is used externally (sysctl_hw) */
208 char machine[] = MACHINE; /* from <machine/param.h> */
209 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
210 char cpu_model[128];
211
212 struct user *proc0paddr;
213
214 /* Number of machine cycles per microsecond */
215 u_int64_t cycles_per_usec;
216
217 /* number of cpus in the box. really! */
218 int ncpus;
219
220 /* machine check info array, valloc()'ed in mdallocsys() */
221
222 static struct mchkinfo startup_info,
223 *mchkinfo_all_cpus;
224
225 struct bootinfo_kernel bootinfo;
226
227 /* For built-in TCDS */
228 #if defined(DEC_3000_300) || defined(DEC_3000_500)
229 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
230 #endif
231
232 struct platform platform;
233
234 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
235
236 #ifdef DDB
237 /* start and end of kernel symbol table */
238 void *ksym_start, *ksym_end;
239 #endif
240
241 /* for cpu_sysctl() */
242 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
243 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
244 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
245
246 /*
247 * XXX This should be dynamically sized, but we have the chicken-egg problem!
248 * XXX it should also be larger than it is, because not all of the mddt
249 * XXX clusters end up being used for VM.
250 */
251 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
252 int mem_cluster_cnt;
253
254 int cpu_dump __P((void));
255 int cpu_dumpsize __P((void));
256 u_long cpu_dump_mempagecnt __P((void));
257 void dumpsys __P((void));
258 void identifycpu __P((void));
259 caddr_t mdallocsys __P((caddr_t));
260 void netintr __P((void));
261 void printregs __P((struct reg *));
262
263 void
264 alpha_init(pfn, ptb, bim, bip, biv)
265 u_long pfn; /* first free PFN number */
266 u_long ptb; /* PFN of current level 1 page table */
267 u_long bim; /* bootinfo magic */
268 u_long bip; /* bootinfo pointer */
269 u_long biv; /* bootinfo version */
270 {
271 extern char kernel_text[], _end[];
272 struct mddt *mddtp;
273 struct mddt_cluster *memc;
274 int i, mddtweird;
275 struct vm_physseg *vps;
276 vaddr_t kernstart, kernend;
277 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
278 vsize_t size;
279 char *p;
280 caddr_t v;
281 char *bootinfo_msg;
282
283 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
284
285 /*
286 * Turn off interrupts (not mchecks) and floating point.
287 * Make sure the instruction and data streams are consistent.
288 */
289 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
290 alpha_pal_wrfen(0);
291 ALPHA_TBIA();
292 alpha_pal_imb();
293
294 #if defined(MULTIPROCESSOR)
295 /*
296 * Set our SysValue to the address of our cpu_info structure.
297 * Secondary processors do this in their spinup trampoline.
298 */
299 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
300 #endif
301
302 /*
303 * Get critical system information (if possible, from the
304 * information provided by the boot program).
305 */
306 bootinfo_msg = NULL;
307 if (bim == BOOTINFO_MAGIC) {
308 if (biv == 0) { /* backward compat */
309 biv = *(u_long *)bip;
310 bip += 8;
311 }
312 switch (biv) {
313 case 1: {
314 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
315
316 bootinfo.ssym = v1p->ssym;
317 bootinfo.esym = v1p->esym;
318 /* hwrpb may not be provided by boot block in v1 */
319 if (v1p->hwrpb != NULL) {
320 bootinfo.hwrpb_phys =
321 ((struct rpb *)v1p->hwrpb)->rpb_phys;
322 bootinfo.hwrpb_size = v1p->hwrpbsize;
323 } else {
324 bootinfo.hwrpb_phys =
325 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
326 bootinfo.hwrpb_size =
327 ((struct rpb *)HWRPB_ADDR)->rpb_size;
328 }
329 bcopy(v1p->boot_flags, bootinfo.boot_flags,
330 min(sizeof v1p->boot_flags,
331 sizeof bootinfo.boot_flags));
332 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
333 min(sizeof v1p->booted_kernel,
334 sizeof bootinfo.booted_kernel));
335 /* booted dev not provided in bootinfo */
336 init_prom_interface((struct rpb *)
337 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
338 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
339 sizeof bootinfo.booted_dev);
340 break;
341 }
342 default:
343 bootinfo_msg = "unknown bootinfo version";
344 goto nobootinfo;
345 }
346 } else {
347 bootinfo_msg = "boot program did not pass bootinfo";
348 nobootinfo:
349 bootinfo.ssym = (u_long)_end;
350 bootinfo.esym = (u_long)_end;
351 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
352 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
353 init_prom_interface((struct rpb *)HWRPB_ADDR);
354 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
355 sizeof bootinfo.boot_flags);
356 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
357 sizeof bootinfo.booted_kernel);
358 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
359 sizeof bootinfo.booted_dev);
360 }
361
362 /*
363 * Initialize the kernel's mapping of the RPB. It's needed for
364 * lots of things.
365 */
366 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
367
368 #if defined(DEC_3000_300) || defined(DEC_3000_500)
369 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
370 hwrpb->rpb_type == ST_DEC_3000_500) {
371 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
372 sizeof(dec_3000_scsiid));
373 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
374 sizeof(dec_3000_scsifast));
375 }
376 #endif
377
378 /*
379 * Remember how many cycles there are per microsecond,
380 * so that we can use delay(). Round up, for safety.
381 */
382 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
383
384 /*
385 * Initalize the (temporary) bootstrap console interface, so
386 * we can use printf until the VM system starts being setup.
387 * The real console is initialized before then.
388 */
389 init_bootstrap_console();
390
391 /* OUTPUT NOW ALLOWED */
392
393 /* delayed from above */
394 if (bootinfo_msg)
395 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
396 bootinfo_msg, bim, bip, biv);
397
398 /* Initialize the trap vectors on the primary processor. */
399 trap_init();
400
401 /*
402 * Find out what hardware we're on, and do basic initialization.
403 */
404 cputype = hwrpb->rpb_type;
405 if (cputype < 0) {
406 /*
407 * At least some white-box systems have SRM which
408 * reports a systype that's the negative of their
409 * blue-box counterpart.
410 */
411 cputype = -cputype;
412 }
413 if (cputype >= ncpuinit) {
414 platform_not_supported();
415 /* NOTREACHED */
416 }
417 (*cpuinit[cputype].init)();
418 strcpy(cpu_model, platform.model);
419
420 /*
421 * Initalize the real console, so the the bootstrap console is
422 * no longer necessary.
423 */
424 (*platform.cons_init)();
425
426 #ifdef DIAGNOSTIC
427 /* Paranoid sanity checking */
428
429 /* We should always be running on the the primary. */
430 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
431
432 /*
433 * On single-CPU systypes, the primary should always be CPU 0,
434 * except on Alpha 8200 systems where the CPU id is related
435 * to the VID, which is related to the Turbo Laser node id.
436 */
437 if (cputype != ST_DEC_21000)
438 assert(hwrpb->rpb_primary_cpu_id == 0);
439 #endif
440
441 /* NO MORE FIRMWARE ACCESS ALLOWED */
442 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
443 /*
444 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
445 * XXX pmap_uses_prom_console() evaluates to non-zero.)
446 */
447 #endif
448
449 /*
450 * find out this system's page size
451 */
452 PAGE_SIZE = hwrpb->rpb_page_size;
453 if (PAGE_SIZE != 8192)
454 panic("page size %d != 8192?!", PAGE_SIZE);
455
456 /*
457 * Initialize PAGE_SIZE-dependent variables.
458 */
459 uvm_setpagesize();
460
461 /*
462 * Find the beginning and end of the kernel (and leave a
463 * bit of space before the beginning for the bootstrap
464 * stack).
465 */
466 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
467 #ifdef DDB
468 ksym_start = (void *)bootinfo.ssym;
469 ksym_end = (void *)bootinfo.esym;
470 kernend = (vaddr_t)round_page(ksym_end);
471 #else
472 kernend = (vaddr_t)round_page(_end);
473 #endif
474
475 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
476 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
477
478 /*
479 * Find out how much memory is available, by looking at
480 * the memory cluster descriptors. This also tries to do
481 * its best to detect things things that have never been seen
482 * before...
483 */
484 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
485
486 /* MDDT SANITY CHECKING */
487 mddtweird = 0;
488 if (mddtp->mddt_cluster_cnt < 2) {
489 mddtweird = 1;
490 printf("WARNING: weird number of mem clusters: %lu\n",
491 mddtp->mddt_cluster_cnt);
492 }
493
494 #if 0
495 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
496 #endif
497
498 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
499 memc = &mddtp->mddt_clusters[i];
500 #if 0
501 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
502 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
503 #endif
504 totalphysmem += memc->mddt_pg_cnt;
505 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
506 mem_clusters[mem_cluster_cnt].start =
507 ptoa(memc->mddt_pfn);
508 mem_clusters[mem_cluster_cnt].size =
509 ptoa(memc->mddt_pg_cnt);
510 if (memc->mddt_usage & MDDT_mbz ||
511 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
512 memc->mddt_usage & MDDT_PALCODE)
513 mem_clusters[mem_cluster_cnt].size |=
514 PROT_READ;
515 else
516 mem_clusters[mem_cluster_cnt].size |=
517 PROT_READ | PROT_WRITE | PROT_EXEC;
518 mem_cluster_cnt++;
519 }
520
521 if (memc->mddt_usage & MDDT_mbz) {
522 mddtweird = 1;
523 printf("WARNING: mem cluster %d has weird "
524 "usage 0x%lx\n", i, memc->mddt_usage);
525 unknownmem += memc->mddt_pg_cnt;
526 continue;
527 }
528 if (memc->mddt_usage & MDDT_NONVOLATILE) {
529 /* XXX should handle these... */
530 printf("WARNING: skipping non-volatile mem "
531 "cluster %d\n", i);
532 unusedmem += memc->mddt_pg_cnt;
533 continue;
534 }
535 if (memc->mddt_usage & MDDT_PALCODE) {
536 resvmem += memc->mddt_pg_cnt;
537 continue;
538 }
539
540 /*
541 * We have a memory cluster available for system
542 * software use. We must determine if this cluster
543 * holds the kernel.
544 */
545 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
546 /*
547 * XXX If the kernel uses the PROM console, we only use the
548 * XXX memory after the kernel in the first system segment,
549 * XXX to avoid clobbering prom mapping, data, etc.
550 */
551 if (!pmap_uses_prom_console() || physmem == 0) {
552 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
553 physmem += memc->mddt_pg_cnt;
554 pfn0 = memc->mddt_pfn;
555 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
556 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
557 /*
558 * Must compute the location of the kernel
559 * within the segment.
560 */
561 #if 0
562 printf("Cluster %d contains kernel\n", i);
563 #endif
564 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
565 if (!pmap_uses_prom_console()) {
566 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
567 if (pfn0 < kernstartpfn) {
568 /*
569 * There is a chunk before the kernel.
570 */
571 #if 0
572 printf("Loading chunk before kernel: "
573 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
574 #endif
575 uvm_page_physload(pfn0, kernstartpfn,
576 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
577 }
578 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
579 }
580 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
581 if (kernendpfn < pfn1) {
582 /*
583 * There is a chunk after the kernel.
584 */
585 #if 0
586 printf("Loading chunk after kernel: "
587 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
588 #endif
589 uvm_page_physload(kernendpfn, pfn1,
590 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
591 }
592 } else {
593 /*
594 * Just load this cluster as one chunk.
595 */
596 #if 0
597 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
598 pfn0, pfn1);
599 #endif
600 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
601 VM_FREELIST_DEFAULT);
602 }
603 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
604 }
605 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
606 }
607
608 /*
609 * Dump out the MDDT if it looks odd...
610 */
611 if (mddtweird) {
612 printf("\n");
613 printf("complete memory cluster information:\n");
614 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
615 printf("mddt %d:\n", i);
616 printf("\tpfn %lx\n",
617 mddtp->mddt_clusters[i].mddt_pfn);
618 printf("\tcnt %lx\n",
619 mddtp->mddt_clusters[i].mddt_pg_cnt);
620 printf("\ttest %lx\n",
621 mddtp->mddt_clusters[i].mddt_pg_test);
622 printf("\tbva %lx\n",
623 mddtp->mddt_clusters[i].mddt_v_bitaddr);
624 printf("\tbpa %lx\n",
625 mddtp->mddt_clusters[i].mddt_p_bitaddr);
626 printf("\tbcksum %lx\n",
627 mddtp->mddt_clusters[i].mddt_bit_cksum);
628 printf("\tusage %lx\n",
629 mddtp->mddt_clusters[i].mddt_usage);
630 }
631 printf("\n");
632 }
633
634 if (totalphysmem == 0)
635 panic("can't happen: system seems to have no memory!");
636 maxmem = physmem;
637 #if 0
638 printf("totalphysmem = %d\n", totalphysmem);
639 printf("physmem = %d\n", physmem);
640 printf("resvmem = %d\n", resvmem);
641 printf("unusedmem = %d\n", unusedmem);
642 printf("unknownmem = %d\n", unknownmem);
643 #endif
644
645 /*
646 * Adjust some parameters if the amount of physmem
647 * available would cause us to croak. This is completely
648 * eyeballed and isn't meant to be the final answer.
649 * vm_phys_size is probably the only one to really worry
650 * about.
651 *
652 * It's for booting a GENERIC kernel on a large memory platform.
653 */
654 if (physmem >= atop(128 * 1024 * 1024))
655 vm_phys_size <<= 2;
656
657 /*
658 * Initialize error message buffer (at end of core).
659 */
660 {
661 size_t sz = round_page(MSGBUFSIZE);
662
663 vps = &vm_physmem[vm_nphysseg - 1];
664
665 /* shrink so that it'll fit in the last segment */
666 if ((vps->avail_end - vps->avail_start) < atop(sz))
667 sz = ptoa(vps->avail_end - vps->avail_start);
668
669 vps->end -= atop(sz);
670 vps->avail_end -= atop(sz);
671 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
672 initmsgbuf(msgbufaddr, sz);
673
674 /* Remove the last segment if it now has no pages. */
675 if (vps->start == vps->end)
676 vm_nphysseg--;
677
678 /* warn if the message buffer had to be shrunk */
679 if (sz != round_page(MSGBUFSIZE))
680 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
681 round_page(MSGBUFSIZE), sz);
682
683 }
684
685 /*
686 * Init mapping for u page(s) for proc 0
687 */
688 proc0.p_addr = proc0paddr =
689 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
690
691 /*
692 * Allocate space for system data structures. These data structures
693 * are allocated here instead of cpu_startup() because physical
694 * memory is directly addressable. We don't have to map these into
695 * virtual address space.
696 */
697 size = (vsize_t)allocsys(NULL, mdallocsys);
698 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
699 if ((allocsys(v, mdallocsys) - v) != size)
700 panic("alpha_init: table size inconsistency");
701
702 /*
703 * Initialize the virtual memory system, and set the
704 * page table base register in proc 0's PCB.
705 */
706 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
707 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
708
709 /*
710 * Initialize the rest of proc 0's PCB, and cache its physical
711 * address.
712 */
713 proc0.p_md.md_pcbpaddr =
714 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
715
716 /*
717 * Set the kernel sp, reserving space for an (empty) trapframe,
718 * and make proc0's trapframe pointer point to it for sanity.
719 */
720 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
721 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
722 proc0.p_md.md_tf =
723 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
724
725 #if defined(MULTIPROCESSOR)
726 /*
727 * Initialize the primary CPU's idle PCB to proc0's, until
728 * autoconfiguration runs (it will get its own idle PCB there).
729 */
730 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
731 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
732 #endif
733
734 /*
735 * Look at arguments passed to us and compute boothowto.
736 */
737
738 boothowto = RB_SINGLE;
739 #ifdef KADB
740 boothowto |= RB_KDB;
741 #endif
742 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
743 /*
744 * Note that we'd really like to differentiate case here,
745 * but the Alpha AXP Architecture Reference Manual
746 * says that we shouldn't.
747 */
748 switch (*p) {
749 case 'a': /* autoboot */
750 case 'A':
751 boothowto &= ~RB_SINGLE;
752 break;
753
754 #ifdef DEBUG
755 case 'c': /* crash dump immediately after autoconfig */
756 case 'C':
757 boothowto |= RB_DUMP;
758 break;
759 #endif
760
761 #if defined(KGDB) || defined(DDB)
762 case 'd': /* break into the kernel debugger ASAP */
763 case 'D':
764 boothowto |= RB_KDB;
765 break;
766 #endif
767
768 case 'h': /* always halt, never reboot */
769 case 'H':
770 boothowto |= RB_HALT;
771 break;
772
773 #if 0
774 case 'm': /* mini root present in memory */
775 case 'M':
776 boothowto |= RB_MINIROOT;
777 break;
778 #endif
779
780 case 'n': /* askname */
781 case 'N':
782 boothowto |= RB_ASKNAME;
783 break;
784
785 case 's': /* single-user (default, supported for sanity) */
786 case 'S':
787 boothowto |= RB_SINGLE;
788 break;
789
790 case '-':
791 /*
792 * Just ignore this. It's not required, but it's
793 * common for it to be passed regardless.
794 */
795 break;
796
797 default:
798 printf("Unrecognized boot flag '%c'.\n", *p);
799 break;
800 }
801 }
802
803
804 /*
805 * Figure out the number of cpus in the box, from RPB fields.
806 * Really. We mean it.
807 */
808 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
809 struct pcs *pcsp;
810
811 pcsp = LOCATE_PCS(hwrpb, i);
812 if ((pcsp->pcs_flags & PCS_PP) != 0)
813 ncpus++;
814 }
815
816 /*
817 * Initialize debuggers, and break into them if appropriate.
818 */
819 #ifdef DDB
820 db_machine_init();
821 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
822 ksym_start, ksym_end);
823 if (boothowto & RB_KDB)
824 Debugger();
825 #endif
826 #ifdef KGDB
827 if (boothowto & RB_KDB)
828 kgdb_connect(0);
829 #endif
830 /*
831 * Figure out our clock frequency, from RPB fields.
832 */
833 hz = hwrpb->rpb_intr_freq >> 12;
834 if (!(60 <= hz && hz <= 10240)) {
835 hz = 1024;
836 #ifdef DIAGNOSTIC
837 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
838 hwrpb->rpb_intr_freq, hz);
839 #endif
840 }
841 }
842
843 caddr_t
844 mdallocsys(v)
845 caddr_t v;
846 {
847 /*
848 * There appears to be a correlation between the number
849 * of processor slots defined in the HWRPB and the whami
850 * value that can be returned.
851 */
852 ALLOCSYS(v, mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
853 return (v);
854 }
855
856 void
857 consinit()
858 {
859
860 /*
861 * Everything related to console initialization is done
862 * in alpha_init().
863 */
864 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
865 printf("consinit: %susing prom console\n",
866 pmap_uses_prom_console() ? "" : "not ");
867 #endif
868 }
869
870 #include "pckbc.h"
871 #include "pckbd.h"
872 #if (NPCKBC > 0) && (NPCKBD == 0)
873
874 #include <dev/ic/pckbcvar.h>
875
876 /*
877 * This is called by the pbkbc driver if no pckbd is configured.
878 * On the i386, it is used to glue in the old, deprecated console
879 * code. On the Alpha, it does nothing.
880 */
881 int
882 pckbc_machdep_cnattach(kbctag, kbcslot)
883 pckbc_tag_t kbctag;
884 pckbc_slot_t kbcslot;
885 {
886
887 return (ENXIO);
888 }
889 #endif /* NPCKBC > 0 && NPCKBD == 0 */
890
891 void
892 cpu_startup()
893 {
894 register unsigned i;
895 int base, residual;
896 vaddr_t minaddr, maxaddr;
897 vsize_t size;
898 char pbuf[9];
899 #if defined(DEBUG)
900 extern int pmapdebug;
901 int opmapdebug = pmapdebug;
902
903 pmapdebug = 0;
904 #endif
905
906 /*
907 * Good {morning,afternoon,evening,night}.
908 */
909 printf(version);
910 identifycpu();
911 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
912 printf("total memory = %s\n", pbuf);
913 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
914 printf("(%s reserved for PROM, ", pbuf);
915 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
916 printf("%s used by NetBSD)\n", pbuf);
917 if (unusedmem) {
918 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
919 printf("WARNING: unused memory = %s\n", pbuf);
920 }
921 if (unknownmem) {
922 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
923 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
924 }
925
926 /*
927 * Allocate virtual address space for file I/O buffers.
928 * Note they are different than the array of headers, 'buf',
929 * and usually occupy more virtual memory than physical.
930 */
931 size = MAXBSIZE * nbuf;
932 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
933 NULL, UVM_UNKNOWN_OFFSET,
934 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
935 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
936 panic("startup: cannot allocate VM for buffers");
937 base = bufpages / nbuf;
938 residual = bufpages % nbuf;
939 for (i = 0; i < nbuf; i++) {
940 vsize_t curbufsize;
941 vaddr_t curbuf;
942 struct vm_page *pg;
943
944 /*
945 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
946 * that MAXBSIZE space, we allocate and map (base+1) pages
947 * for the first "residual" buffers, and then we allocate
948 * "base" pages for the rest.
949 */
950 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
951 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
952
953 while (curbufsize) {
954 pg = uvm_pagealloc(NULL, 0, NULL, 0);
955 if (pg == NULL)
956 panic("cpu_startup: not enough memory for "
957 "buffer cache");
958 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
959 VM_PROT_READ|VM_PROT_WRITE);
960 curbuf += PAGE_SIZE;
961 curbufsize -= PAGE_SIZE;
962 }
963 }
964 /*
965 * Allocate a submap for exec arguments. This map effectively
966 * limits the number of processes exec'ing at any time.
967 */
968 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
969 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
970
971 /*
972 * Allocate a submap for physio
973 */
974 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
975 VM_PHYS_SIZE, 0, FALSE, NULL);
976
977 /*
978 * No need to allocate an mbuf cluster submap. Mbuf clusters
979 * are allocated via the pool allocator, and we use K0SEG to
980 * map those pages.
981 */
982
983 #if defined(DEBUG)
984 pmapdebug = opmapdebug;
985 #endif
986 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
987 printf("avail memory = %s\n", pbuf);
988 #if 0
989 {
990 extern u_long pmap_pages_stolen;
991
992 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
993 printf("stolen memory for VM structures = %s\n", pbuf);
994 }
995 #endif
996 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
997 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
998
999 /*
1000 * Set up buffers, so they can be used to read disk labels.
1001 */
1002 bufinit();
1003
1004 /*
1005 * Set up the HWPCB so that it's safe to configure secondary
1006 * CPUs.
1007 */
1008 hwrpb_primary_init();
1009 }
1010
1011 /*
1012 * Retrieve the platform name from the DSR.
1013 */
1014 const char *
1015 alpha_dsr_sysname()
1016 {
1017 struct dsrdb *dsr;
1018 const char *sysname;
1019
1020 /*
1021 * DSR does not exist on early HWRPB versions.
1022 */
1023 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1024 return (NULL);
1025
1026 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1027 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1028 sizeof(u_int64_t)));
1029 return (sysname);
1030 }
1031
1032 /*
1033 * Lookup the system specified system variation in the provided table,
1034 * returning the model string on match.
1035 */
1036 const char *
1037 alpha_variation_name(variation, avtp)
1038 u_int64_t variation;
1039 const struct alpha_variation_table *avtp;
1040 {
1041 int i;
1042
1043 for (i = 0; avtp[i].avt_model != NULL; i++)
1044 if (avtp[i].avt_variation == variation)
1045 return (avtp[i].avt_model);
1046 return (NULL);
1047 }
1048
1049 /*
1050 * Generate a default platform name based for unknown system variations.
1051 */
1052 const char *
1053 alpha_unknown_sysname()
1054 {
1055 static char s[128]; /* safe size */
1056
1057 sprintf(s, "%s family, unknown model variation 0x%lx",
1058 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1059 return ((const char *)s);
1060 }
1061
1062 void
1063 identifycpu()
1064 {
1065 char *s;
1066
1067 /*
1068 * print out CPU identification information.
1069 */
1070 printf("%s", cpu_model);
1071 for(s = cpu_model; *s; ++s)
1072 if(strncasecmp(s, "MHz", 3) == 0)
1073 goto skipMHz;
1074 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1075 skipMHz:
1076 printf("\n");
1077 printf("%ld byte page size, %d processor%s.\n",
1078 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1079 #if 0
1080 /* this isn't defined for any systems that we run on? */
1081 printf("serial number 0x%lx 0x%lx\n",
1082 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1083
1084 /* and these aren't particularly useful! */
1085 printf("variation: 0x%lx, revision 0x%lx\n",
1086 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1087 #endif
1088 }
1089
1090 int waittime = -1;
1091 struct pcb dumppcb;
1092
1093 void
1094 cpu_reboot(howto, bootstr)
1095 int howto;
1096 char *bootstr;
1097 {
1098 #if defined(MULTIPROCESSOR)
1099 #if 0 /* XXX See below. */
1100 u_long cpu_id;
1101 #endif
1102 #endif
1103
1104 #if defined(MULTIPROCESSOR)
1105 /* We must be running on the primary CPU. */
1106 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1107 panic("cpu_reboot: not on primary CPU!");
1108 #endif
1109
1110 /* If system is cold, just halt. */
1111 if (cold) {
1112 howto |= RB_HALT;
1113 goto haltsys;
1114 }
1115
1116 /* If "always halt" was specified as a boot flag, obey. */
1117 if ((boothowto & RB_HALT) != 0)
1118 howto |= RB_HALT;
1119
1120 boothowto = howto;
1121 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1122 waittime = 0;
1123 vfs_shutdown();
1124 /*
1125 * If we've been adjusting the clock, the todr
1126 * will be out of synch; adjust it now.
1127 */
1128 resettodr();
1129 }
1130
1131 /* Disable interrupts. */
1132 splhigh();
1133
1134 /* If rebooting and a dump is requested do it. */
1135 #if 0
1136 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1137 #else
1138 if (howto & RB_DUMP)
1139 #endif
1140 dumpsys();
1141
1142 haltsys:
1143
1144 /* run any shutdown hooks */
1145 doshutdownhooks();
1146
1147 #if defined(MULTIPROCESSOR)
1148 #if 0 /* XXX doesn't work when called from here?! */
1149 /* Kill off any secondary CPUs. */
1150 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1151 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1152 cpu_info[cpu_id].ci_softc == NULL)
1153 continue;
1154 cpu_halt_secondary(cpu_id);
1155 }
1156 #endif
1157 #endif
1158
1159 #ifdef BOOTKEY
1160 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1161 cnpollc(1); /* for proper keyboard command handling */
1162 cngetc();
1163 cnpollc(0);
1164 printf("\n");
1165 #endif
1166
1167 /* Finally, powerdown/halt/reboot the system. */
1168 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1169 platform.powerdown != NULL) {
1170 (*platform.powerdown)();
1171 printf("WARNING: powerdown failed!\n");
1172 }
1173 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1174 prom_halt(howto & RB_HALT);
1175 /*NOTREACHED*/
1176 }
1177
1178 /*
1179 * These variables are needed by /sbin/savecore
1180 */
1181 u_long dumpmag = 0x8fca0101; /* magic number */
1182 int dumpsize = 0; /* pages */
1183 long dumplo = 0; /* blocks */
1184
1185 /*
1186 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1187 */
1188 int
1189 cpu_dumpsize()
1190 {
1191 int size;
1192
1193 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1194 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1195 if (roundup(size, dbtob(1)) != dbtob(1))
1196 return -1;
1197
1198 return (1);
1199 }
1200
1201 /*
1202 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1203 */
1204 u_long
1205 cpu_dump_mempagecnt()
1206 {
1207 u_long i, n;
1208
1209 n = 0;
1210 for (i = 0; i < mem_cluster_cnt; i++)
1211 n += atop(mem_clusters[i].size);
1212 return (n);
1213 }
1214
1215 /*
1216 * cpu_dump: dump machine-dependent kernel core dump headers.
1217 */
1218 int
1219 cpu_dump()
1220 {
1221 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1222 char buf[dbtob(1)];
1223 kcore_seg_t *segp;
1224 cpu_kcore_hdr_t *cpuhdrp;
1225 phys_ram_seg_t *memsegp;
1226 int i;
1227
1228 dump = bdevsw[major(dumpdev)].d_dump;
1229
1230 bzero(buf, sizeof buf);
1231 segp = (kcore_seg_t *)buf;
1232 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1233 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1234 ALIGN(sizeof(*cpuhdrp))];
1235
1236 /*
1237 * Generate a segment header.
1238 */
1239 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1240 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1241
1242 /*
1243 * Add the machine-dependent header info.
1244 */
1245 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1246 cpuhdrp->page_size = PAGE_SIZE;
1247 cpuhdrp->nmemsegs = mem_cluster_cnt;
1248
1249 /*
1250 * Fill in the memory segment descriptors.
1251 */
1252 for (i = 0; i < mem_cluster_cnt; i++) {
1253 memsegp[i].start = mem_clusters[i].start;
1254 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1255 }
1256
1257 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1258 }
1259
1260 /*
1261 * This is called by main to set dumplo and dumpsize.
1262 * Dumps always skip the first NBPG of disk space
1263 * in case there might be a disk label stored there.
1264 * If there is extra space, put dump at the end to
1265 * reduce the chance that swapping trashes it.
1266 */
1267 void
1268 cpu_dumpconf()
1269 {
1270 int nblks, dumpblks; /* size of dump area */
1271 int maj;
1272
1273 if (dumpdev == NODEV)
1274 goto bad;
1275 maj = major(dumpdev);
1276 if (maj < 0 || maj >= nblkdev)
1277 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1278 if (bdevsw[maj].d_psize == NULL)
1279 goto bad;
1280 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1281 if (nblks <= ctod(1))
1282 goto bad;
1283
1284 dumpblks = cpu_dumpsize();
1285 if (dumpblks < 0)
1286 goto bad;
1287 dumpblks += ctod(cpu_dump_mempagecnt());
1288
1289 /* If dump won't fit (incl. room for possible label), punt. */
1290 if (dumpblks > (nblks - ctod(1)))
1291 goto bad;
1292
1293 /* Put dump at end of partition */
1294 dumplo = nblks - dumpblks;
1295
1296 /* dumpsize is in page units, and doesn't include headers. */
1297 dumpsize = cpu_dump_mempagecnt();
1298 return;
1299
1300 bad:
1301 dumpsize = 0;
1302 return;
1303 }
1304
1305 /*
1306 * Dump the kernel's image to the swap partition.
1307 */
1308 #define BYTES_PER_DUMP NBPG
1309
1310 void
1311 dumpsys()
1312 {
1313 u_long totalbytesleft, bytes, i, n, memcl;
1314 u_long maddr;
1315 int psize;
1316 daddr_t blkno;
1317 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1318 int error;
1319
1320 /* Save registers. */
1321 savectx(&dumppcb);
1322
1323 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1324 if (dumpdev == NODEV)
1325 return;
1326
1327 /*
1328 * For dumps during autoconfiguration,
1329 * if dump device has already configured...
1330 */
1331 if (dumpsize == 0)
1332 cpu_dumpconf();
1333 if (dumplo <= 0) {
1334 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1335 minor(dumpdev));
1336 return;
1337 }
1338 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1339 minor(dumpdev), dumplo);
1340
1341 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1342 printf("dump ");
1343 if (psize == -1) {
1344 printf("area unavailable\n");
1345 return;
1346 }
1347
1348 /* XXX should purge all outstanding keystrokes. */
1349
1350 if ((error = cpu_dump()) != 0)
1351 goto err;
1352
1353 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1354 blkno = dumplo + cpu_dumpsize();
1355 dump = bdevsw[major(dumpdev)].d_dump;
1356 error = 0;
1357
1358 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1359 maddr = mem_clusters[memcl].start;
1360 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1361
1362 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1363
1364 /* Print out how many MBs we to go. */
1365 if ((totalbytesleft % (1024*1024)) == 0)
1366 printf("%ld ", totalbytesleft / (1024 * 1024));
1367
1368 /* Limit size for next transfer. */
1369 n = bytes - i;
1370 if (n > BYTES_PER_DUMP)
1371 n = BYTES_PER_DUMP;
1372
1373 error = (*dump)(dumpdev, blkno,
1374 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1375 if (error)
1376 goto err;
1377 maddr += n;
1378 blkno += btodb(n); /* XXX? */
1379
1380 /* XXX should look for keystrokes, to cancel. */
1381 }
1382 }
1383
1384 err:
1385 switch (error) {
1386
1387 case ENXIO:
1388 printf("device bad\n");
1389 break;
1390
1391 case EFAULT:
1392 printf("device not ready\n");
1393 break;
1394
1395 case EINVAL:
1396 printf("area improper\n");
1397 break;
1398
1399 case EIO:
1400 printf("i/o error\n");
1401 break;
1402
1403 case EINTR:
1404 printf("aborted from console\n");
1405 break;
1406
1407 case 0:
1408 printf("succeeded\n");
1409 break;
1410
1411 default:
1412 printf("error %d\n", error);
1413 break;
1414 }
1415 printf("\n\n");
1416 delay(1000);
1417 }
1418
1419 void
1420 frametoreg(framep, regp)
1421 struct trapframe *framep;
1422 struct reg *regp;
1423 {
1424
1425 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1426 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1427 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1428 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1429 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1430 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1431 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1432 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1433 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1434 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1435 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1436 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1437 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1438 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1439 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1440 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1441 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1442 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1443 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1444 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1445 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1446 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1447 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1448 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1449 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1450 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1451 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1452 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1453 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1454 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1455 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1456 regp->r_regs[R_ZERO] = 0;
1457 }
1458
1459 void
1460 regtoframe(regp, framep)
1461 struct reg *regp;
1462 struct trapframe *framep;
1463 {
1464
1465 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1466 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1467 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1468 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1469 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1470 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1471 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1472 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1473 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1474 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1475 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1476 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1477 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1478 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1479 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1480 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1481 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1482 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1483 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1484 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1485 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1486 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1487 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1488 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1489 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1490 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1491 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1492 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1493 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1494 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1495 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1496 /* ??? = regp->r_regs[R_ZERO]; */
1497 }
1498
1499 void
1500 printregs(regp)
1501 struct reg *regp;
1502 {
1503 int i;
1504
1505 for (i = 0; i < 32; i++)
1506 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1507 i & 1 ? "\n" : "\t");
1508 }
1509
1510 void
1511 regdump(framep)
1512 struct trapframe *framep;
1513 {
1514 struct reg reg;
1515
1516 frametoreg(framep, ®);
1517 reg.r_regs[R_SP] = alpha_pal_rdusp();
1518
1519 printf("REGISTERS:\n");
1520 printregs(®);
1521 }
1522
1523 #ifdef DEBUG
1524 int sigdebug = 0;
1525 int sigpid = 0;
1526 #define SDB_FOLLOW 0x01
1527 #define SDB_KSTACK 0x02
1528 #endif
1529
1530 /*
1531 * Send an interrupt to process.
1532 */
1533 void
1534 sendsig(catcher, sig, mask, code)
1535 sig_t catcher;
1536 int sig;
1537 sigset_t *mask;
1538 u_long code;
1539 {
1540 struct proc *p = curproc;
1541 struct sigcontext *scp, ksc;
1542 struct trapframe *frame;
1543 struct sigacts *psp = p->p_sigacts;
1544 int onstack, fsize, rndfsize;
1545
1546 frame = p->p_md.md_tf;
1547
1548 /* Do we need to jump onto the signal stack? */
1549 onstack =
1550 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1551 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1552
1553 /* Allocate space for the signal handler context. */
1554 fsize = sizeof(ksc);
1555 rndfsize = ((fsize + 15) / 16) * 16;
1556
1557 if (onstack)
1558 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1559 psp->ps_sigstk.ss_size);
1560 else
1561 scp = (struct sigcontext *)(alpha_pal_rdusp());
1562 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1563
1564 #ifdef DEBUG
1565 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1566 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1567 sig, &onstack, scp);
1568 #endif
1569
1570 /* Build stack frame for signal trampoline. */
1571 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1572 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1573
1574 /* Save register context. */
1575 frametoreg(frame, (struct reg *)ksc.sc_regs);
1576 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1577 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1578
1579 /* save the floating-point state, if necessary, then copy it. */
1580 if (p == fpcurproc) {
1581 alpha_pal_wrfen(1);
1582 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1583 alpha_pal_wrfen(0);
1584 fpcurproc = NULL;
1585 }
1586 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1587 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1588 sizeof(struct fpreg));
1589 ksc.sc_fp_control = 0; /* XXX ? */
1590 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1591 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1592
1593 /* Save signal stack. */
1594 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1595
1596 /* Save signal mask. */
1597 ksc.sc_mask = *mask;
1598
1599 #ifdef COMPAT_13
1600 /*
1601 * XXX We always have to save an old style signal mask because
1602 * XXX we might be delivering a signal to a process which will
1603 * XXX escape from the signal in a non-standard way and invoke
1604 * XXX sigreturn() directly.
1605 */
1606 {
1607 /* Note: it's a long in the stack frame. */
1608 sigset13_t mask13;
1609
1610 native_sigset_to_sigset13(mask, &mask13);
1611 ksc.__sc_mask13 = mask13;
1612 }
1613 #endif
1614
1615 #ifdef COMPAT_OSF1
1616 /*
1617 * XXX Create an OSF/1-style sigcontext and associated goo.
1618 */
1619 #endif
1620
1621 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1622 /*
1623 * Process has trashed its stack; give it an illegal
1624 * instruction to halt it in its tracks.
1625 */
1626 #ifdef DEBUG
1627 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1628 printf("sendsig(%d): copyout failed on sig %d\n",
1629 p->p_pid, sig);
1630 #endif
1631 sigexit(p, SIGILL);
1632 /* NOTREACHED */
1633 }
1634 #ifdef DEBUG
1635 if (sigdebug & SDB_FOLLOW)
1636 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1637 scp, code);
1638 #endif
1639
1640 /* Set up the registers to return to sigcode. */
1641 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1642 frame->tf_regs[FRAME_A0] = sig;
1643 frame->tf_regs[FRAME_A1] = code;
1644 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1645 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1646 alpha_pal_wrusp((unsigned long)scp);
1647
1648 /* Remember that we're now on the signal stack. */
1649 if (onstack)
1650 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1651
1652 #ifdef DEBUG
1653 if (sigdebug & SDB_FOLLOW)
1654 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1655 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1656 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1657 printf("sendsig(%d): sig %d returns\n",
1658 p->p_pid, sig);
1659 #endif
1660 }
1661
1662 /*
1663 * System call to cleanup state after a signal
1664 * has been taken. Reset signal mask and
1665 * stack state from context left by sendsig (above).
1666 * Return to previous pc and psl as specified by
1667 * context left by sendsig. Check carefully to
1668 * make sure that the user has not modified the
1669 * psl to gain improper privileges or to cause
1670 * a machine fault.
1671 */
1672 /* ARGSUSED */
1673 int
1674 sys___sigreturn14(p, v, retval)
1675 struct proc *p;
1676 void *v;
1677 register_t *retval;
1678 {
1679 struct sys___sigreturn14_args /* {
1680 syscallarg(struct sigcontext *) sigcntxp;
1681 } */ *uap = v;
1682 struct sigcontext *scp, ksc;
1683
1684 /*
1685 * The trampoline code hands us the context.
1686 * It is unsafe to keep track of it ourselves, in the event that a
1687 * program jumps out of a signal handler.
1688 */
1689 scp = SCARG(uap, sigcntxp);
1690 #ifdef DEBUG
1691 if (sigdebug & SDB_FOLLOW)
1692 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1693 #endif
1694 if (ALIGN(scp) != (u_int64_t)scp)
1695 return (EINVAL);
1696
1697 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1698 return (EFAULT);
1699
1700 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1701 return (EINVAL);
1702
1703 /* Restore register context. */
1704 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1705 p->p_md.md_tf->tf_regs[FRAME_PS] =
1706 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1707
1708 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1709 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1710
1711 /* XXX ksc.sc_ownedfp ? */
1712 if (p == fpcurproc)
1713 fpcurproc = NULL;
1714 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1715 sizeof(struct fpreg));
1716 /* XXX ksc.sc_fp_control ? */
1717
1718 /* Restore signal stack. */
1719 if (ksc.sc_onstack & SS_ONSTACK)
1720 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1721 else
1722 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1723
1724 /* Restore signal mask. */
1725 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1726
1727 #ifdef DEBUG
1728 if (sigdebug & SDB_FOLLOW)
1729 printf("sigreturn(%d): returns\n", p->p_pid);
1730 #endif
1731 return (EJUSTRETURN);
1732 }
1733
1734 /*
1735 * machine dependent system variables.
1736 */
1737 int
1738 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1739 int *name;
1740 u_int namelen;
1741 void *oldp;
1742 size_t *oldlenp;
1743 void *newp;
1744 size_t newlen;
1745 struct proc *p;
1746 {
1747 dev_t consdev;
1748
1749 /* all sysctl names at this level are terminal */
1750 if (namelen != 1)
1751 return (ENOTDIR); /* overloaded */
1752
1753 switch (name[0]) {
1754 case CPU_CONSDEV:
1755 if (cn_tab != NULL)
1756 consdev = cn_tab->cn_dev;
1757 else
1758 consdev = NODEV;
1759 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1760 sizeof consdev));
1761
1762 case CPU_ROOT_DEVICE:
1763 return (sysctl_rdstring(oldp, oldlenp, newp,
1764 root_device->dv_xname));
1765
1766 case CPU_UNALIGNED_PRINT:
1767 return (sysctl_int(oldp, oldlenp, newp, newlen,
1768 &alpha_unaligned_print));
1769
1770 case CPU_UNALIGNED_FIX:
1771 return (sysctl_int(oldp, oldlenp, newp, newlen,
1772 &alpha_unaligned_fix));
1773
1774 case CPU_UNALIGNED_SIGBUS:
1775 return (sysctl_int(oldp, oldlenp, newp, newlen,
1776 &alpha_unaligned_sigbus));
1777
1778 case CPU_BOOTED_KERNEL:
1779 return (sysctl_rdstring(oldp, oldlenp, newp,
1780 bootinfo.booted_kernel));
1781
1782 default:
1783 return (EOPNOTSUPP);
1784 }
1785 /* NOTREACHED */
1786 }
1787
1788 /*
1789 * Set registers on exec.
1790 */
1791 void
1792 setregs(p, pack, stack)
1793 register struct proc *p;
1794 struct exec_package *pack;
1795 u_long stack;
1796 {
1797 struct trapframe *tfp = p->p_md.md_tf;
1798 #ifdef DEBUG
1799 int i;
1800 #endif
1801
1802 #ifdef DEBUG
1803 /*
1804 * Crash and dump, if the user requested it.
1805 */
1806 if (boothowto & RB_DUMP)
1807 panic("crash requested by boot flags");
1808 #endif
1809
1810 #ifdef DEBUG
1811 for (i = 0; i < FRAME_SIZE; i++)
1812 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1813 #else
1814 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1815 #endif
1816 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1817 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1818 | FPCR_UNFD
1819 | FPCR_UNDZ
1820 | FPCR_DYN(FP_RN)
1821 | FPCR_OVFD
1822 | FPCR_DZED
1823 | FPCR_INVD
1824 | FPCR_DNZ;
1825 alpha_pal_wrusp(stack);
1826 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1827 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1828
1829 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1830 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1831 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1832 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1833 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1834
1835 p->p_md.md_flags &= ~MDP_FPUSED;
1836 if (fpcurproc == p)
1837 fpcurproc = NULL;
1838 }
1839
1840 void
1841 netintr()
1842 {
1843 int n, s;
1844
1845 s = splhigh();
1846 n = netisr;
1847 netisr = 0;
1848 splx(s);
1849
1850 #define DONETISR(bit, fn) \
1851 do { \
1852 if (n & (1 << (bit))) \
1853 fn; \
1854 } while (0)
1855
1856 #include <net/netisr_dispatch.h>
1857
1858 #undef DONETISR
1859 }
1860
1861 void
1862 do_sir()
1863 {
1864 u_int64_t n;
1865
1866 while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
1867 #define COUNT_SOFT uvmexp.softs++
1868
1869 #define DO_SIR(bit, fn) \
1870 do { \
1871 if (n & (bit)) { \
1872 COUNT_SOFT; \
1873 fn; \
1874 } \
1875 } while (0)
1876
1877 DO_SIR(SIR_NET, netintr());
1878 DO_SIR(SIR_CLOCK, softclock());
1879 #if NCOM > 0
1880 DO_SIR(SIR_SERIAL, comsoft());
1881 #endif
1882
1883 #undef COUNT_SOFT
1884 #undef DO_SIR
1885 }
1886 }
1887
1888 int
1889 spl0()
1890 {
1891
1892 if (ssir) {
1893 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1894 do_sir();
1895 }
1896
1897 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1898 }
1899
1900 /*
1901 * The following primitives manipulate the run queues. _whichqs tells which
1902 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1903 * into queues, Remrunqueue removes them from queues. The running process is
1904 * on no queue, other processes are on a queue related to p->p_priority,
1905 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1906 * available queues.
1907 */
1908 /*
1909 * setrunqueue(p)
1910 * proc *p;
1911 *
1912 * Call should be made at splclock(), and p->p_stat should be SRUN.
1913 */
1914
1915 void
1916 setrunqueue(p)
1917 struct proc *p;
1918 {
1919 int bit;
1920
1921 /* firewall: p->p_back must be NULL */
1922 if (p->p_back != NULL)
1923 panic("setrunqueue");
1924
1925 bit = p->p_priority >> 2;
1926 whichqs |= (1 << bit);
1927 p->p_forw = (struct proc *)&qs[bit];
1928 p->p_back = qs[bit].ph_rlink;
1929 p->p_back->p_forw = p;
1930 qs[bit].ph_rlink = p;
1931 }
1932
1933 /*
1934 * remrunqueue(p)
1935 *
1936 * Call should be made at splclock().
1937 */
1938 void
1939 remrunqueue(p)
1940 struct proc *p;
1941 {
1942 int bit;
1943
1944 bit = p->p_priority >> 2;
1945 if ((whichqs & (1 << bit)) == 0)
1946 panic("remrunqueue");
1947
1948 p->p_back->p_forw = p->p_forw;
1949 p->p_forw->p_back = p->p_back;
1950 p->p_back = NULL; /* for firewall checking. */
1951
1952 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1953 whichqs &= ~(1 << bit);
1954 }
1955
1956 /*
1957 * Return the best possible estimate of the time in the timeval
1958 * to which tvp points. Unfortunately, we can't read the hardware registers.
1959 * We guarantee that the time will be greater than the value obtained by a
1960 * previous call.
1961 */
1962 void
1963 microtime(tvp)
1964 register struct timeval *tvp;
1965 {
1966 int s = splclock();
1967 static struct timeval lasttime;
1968
1969 *tvp = time;
1970 #ifdef notdef
1971 tvp->tv_usec += clkread();
1972 while (tvp->tv_usec >= 1000000) {
1973 tvp->tv_sec++;
1974 tvp->tv_usec -= 1000000;
1975 }
1976 #endif
1977 if (tvp->tv_sec == lasttime.tv_sec &&
1978 tvp->tv_usec <= lasttime.tv_usec &&
1979 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1980 tvp->tv_sec++;
1981 tvp->tv_usec -= 1000000;
1982 }
1983 lasttime = *tvp;
1984 splx(s);
1985 }
1986
1987 /*
1988 * Wait "n" microseconds.
1989 */
1990 void
1991 delay(n)
1992 unsigned long n;
1993 {
1994 long N = cycles_per_usec * (n);
1995
1996 /*
1997 * XXX Should be written to use RPCC?
1998 */
1999
2000 __asm __volatile(
2001 "# The 2 corresponds to the insn count\n"
2002 "1: subq %2, %1, %0 \n"
2003 " bgt %0, 1b"
2004 : "=r" (N)
2005 : "i" (2), "0" (N));
2006 }
2007
2008 #if defined(COMPAT_OSF1) || 1 /* XXX */
2009 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2010 u_long));
2011
2012 void
2013 cpu_exec_ecoff_setregs(p, epp, stack)
2014 struct proc *p;
2015 struct exec_package *epp;
2016 u_long stack;
2017 {
2018 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2019
2020 setregs(p, epp, stack);
2021 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2022 }
2023
2024 /*
2025 * cpu_exec_ecoff_hook():
2026 * cpu-dependent ECOFF format hook for execve().
2027 *
2028 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2029 *
2030 */
2031 int
2032 cpu_exec_ecoff_hook(p, epp)
2033 struct proc *p;
2034 struct exec_package *epp;
2035 {
2036 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2037 extern struct emul emul_netbsd;
2038 int error;
2039 extern int osf1_exec_ecoff_hook(struct proc *p,
2040 struct exec_package *epp);
2041
2042 switch (execp->f.f_magic) {
2043 #ifdef COMPAT_OSF1
2044 case ECOFF_MAGIC_ALPHA:
2045 error = osf1_exec_ecoff_hook(p, epp);
2046 break;
2047 #endif
2048
2049 case ECOFF_MAGIC_NETBSD_ALPHA:
2050 epp->ep_emul = &emul_netbsd;
2051 error = 0;
2052 break;
2053
2054 default:
2055 error = ENOEXEC;
2056 }
2057 return (error);
2058 }
2059 #endif
2060
2061 int
2062 alpha_pa_access(pa)
2063 u_long pa;
2064 {
2065 int i;
2066
2067 for (i = 0; i < mem_cluster_cnt; i++) {
2068 if (pa < mem_clusters[i].start)
2069 continue;
2070 if ((pa - mem_clusters[i].start) >=
2071 (mem_clusters[i].size & ~PAGE_MASK))
2072 continue;
2073 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2074 }
2075 return (PROT_NONE);
2076 }
2077
2078 /* XXX XXX BEGIN XXX XXX */
2079 paddr_t alpha_XXX_dmamap_or; /* XXX */
2080 /* XXX */
2081 paddr_t /* XXX */
2082 alpha_XXX_dmamap(v) /* XXX */
2083 vaddr_t v; /* XXX */
2084 { /* XXX */
2085 /* XXX */
2086 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2087 } /* XXX */
2088 /* XXX XXX END XXX XXX */
2089
2090 struct mchkinfo *
2091 cpu_mchkinfo()
2092 {
2093 if (mchkinfo_all_cpus == NULL)
2094 return &startup_info;
2095 return mchkinfo_all_cpus + alpha_pal_whami();
2096 }
2097
2098 char *
2099 dot_conv(x)
2100 unsigned long x;
2101 {
2102 int i;
2103 char *xc;
2104 static int next;
2105 static char space[2][20];
2106
2107 xc = space[next ^= 1] + sizeof space[0];
2108 *--xc = '\0';
2109 for (i = 0;; ++i) {
2110 if (i && (i & 3) == 0)
2111 *--xc = '.';
2112 *--xc = "0123456789abcdef"[x & 0xf];
2113 x >>= 4;
2114 if (x == 0)
2115 break;
2116 }
2117 return xc;
2118 }
2119