machdep.c revision 1.199 1 /* $NetBSD: machdep.c,v 1.199 2000/03/13 23:52:26 soren Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.199 2000/03/13 23:52:26 soren Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #include <sys/malloc.h>
95 #include <sys/mbuf.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <sys/user.h>
101 #include <sys/exec.h>
102 #include <sys/exec_ecoff.h>
103 #include <vm/vm.h>
104 #include <sys/sysctl.h>
105 #include <sys/core.h>
106 #include <sys/kcore.h>
107 #include <machine/kcore.h>
108
109 #include <sys/mount.h>
110 #include <sys/syscallargs.h>
111
112 #include <vm/vm_kern.h>
113
114 #include <uvm/uvm_extern.h>
115
116 #include <dev/cons.h>
117
118 #include <machine/autoconf.h>
119 #include <machine/cpu.h>
120 #include <machine/reg.h>
121 #include <machine/rpb.h>
122 #include <machine/prom.h>
123 #include <machine/conf.h>
124 #include <machine/ieeefp.h>
125
126 #include <net/netisr.h>
127 #include <net/if.h>
128
129 #ifdef INET
130 #include <net/route.h>
131 #include <netinet/in.h>
132 #include <netinet/ip_var.h>
133 #include "arp.h"
134 #if NARP > 0
135 #include <netinet/if_inarp.h>
136 #endif
137 #endif
138 #ifdef INET6
139 # ifndef INET
140 # include <netinet/in.h>
141 # endif
142 #include <netinet/ip6.h>
143 #include <netinet6/ip6_var.h>
144 #endif
145 #ifdef NS
146 #include <netns/ns_var.h>
147 #endif
148 #ifdef ISO
149 #include <netiso/iso.h>
150 #include <netiso/clnp.h>
151 #endif
152 #ifdef CCITT
153 #include <netccitt/x25.h>
154 #include <netccitt/pk.h>
155 #include <netccitt/pk_extern.h>
156 #endif
157 #ifdef NATM
158 #include <netnatm/natm.h>
159 #endif
160 #ifdef NETATALK
161 #include <netatalk/at_extern.h>
162 #endif
163 #include "ppp.h"
164 #if NPPP > 0
165 #include <net/ppp_defs.h>
166 #include <net/if_ppp.h>
167 #endif
168
169 #ifdef DDB
170 #include <machine/db_machdep.h>
171 #include <ddb/db_access.h>
172 #include <ddb/db_sym.h>
173 #include <ddb/db_extern.h>
174 #include <ddb/db_interface.h>
175 #endif
176
177 #include <machine/alpha.h>
178 #include <machine/intrcnt.h>
179
180 #include "com.h"
181 #if NCOM > 0
182 extern void comsoft __P((void));
183 #endif
184
185 vm_map_t exec_map = NULL;
186 vm_map_t mb_map = NULL;
187 vm_map_t phys_map = NULL;
188
189 caddr_t msgbufaddr;
190
191 int maxmem; /* max memory per process */
192
193 int totalphysmem; /* total amount of physical memory in system */
194 int physmem; /* physical memory used by NetBSD + some rsvd */
195 int resvmem; /* amount of memory reserved for PROM */
196 int unusedmem; /* amount of memory for OS that we don't use */
197 int unknownmem; /* amount of memory with an unknown use */
198
199 int cputype; /* system type, from the RPB */
200
201 /*
202 * XXX We need an address to which we can assign things so that they
203 * won't be optimized away because we didn't use the value.
204 */
205 u_int32_t no_optimize;
206
207 /* the following is used externally (sysctl_hw) */
208 char machine[] = MACHINE; /* from <machine/param.h> */
209 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
210 char cpu_model[128];
211
212 struct user *proc0paddr;
213
214 /* Number of machine cycles per microsecond */
215 u_int64_t cycles_per_usec;
216
217 /* number of cpus in the box. really! */
218 int ncpus;
219
220 #if !defined(MULTIPROCESSOR)
221 /* A single machine check info structure for single CPU configurations. */
222 struct mchkinfo mchkinfo_store;
223 #endif
224
225 struct bootinfo_kernel bootinfo;
226
227 /* For built-in TCDS */
228 #if defined(DEC_3000_300) || defined(DEC_3000_500)
229 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
230 #endif
231
232 struct platform platform;
233
234 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
235
236 #ifdef DDB
237 /* start and end of kernel symbol table */
238 void *ksym_start, *ksym_end;
239 #endif
240
241 /* for cpu_sysctl() */
242 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
243 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
244 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
245
246 /*
247 * XXX This should be dynamically sized, but we have the chicken-egg problem!
248 * XXX it should also be larger than it is, because not all of the mddt
249 * XXX clusters end up being used for VM.
250 */
251 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
252 int mem_cluster_cnt;
253
254 int cpu_dump __P((void));
255 int cpu_dumpsize __P((void));
256 u_long cpu_dump_mempagecnt __P((void));
257 void dumpsys __P((void));
258 void identifycpu __P((void));
259 void netintr __P((void));
260 void printregs __P((struct reg *));
261
262 void
263 alpha_init(pfn, ptb, bim, bip, biv)
264 u_long pfn; /* first free PFN number */
265 u_long ptb; /* PFN of current level 1 page table */
266 u_long bim; /* bootinfo magic */
267 u_long bip; /* bootinfo pointer */
268 u_long biv; /* bootinfo version */
269 {
270 extern char kernel_text[], _end[];
271 struct mddt *mddtp;
272 struct mddt_cluster *memc;
273 int i, mddtweird;
274 struct vm_physseg *vps;
275 vaddr_t kernstart, kernend;
276 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
277 vsize_t size;
278 char *p;
279 caddr_t v;
280 char *bootinfo_msg;
281
282 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
283
284 /*
285 * Turn off interrupts (not mchecks) and floating point.
286 * Make sure the instruction and data streams are consistent.
287 */
288 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
289 alpha_pal_wrfen(0);
290 ALPHA_TBIA();
291 alpha_pal_imb();
292
293 #if defined(MULTIPROCESSOR)
294 /*
295 * Set our SysValue to the address of our cpu_info structure.
296 * Secondary processors do this in their spinup trampoline.
297 */
298 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
299 #endif
300
301 /*
302 * Get critical system information (if possible, from the
303 * information provided by the boot program).
304 */
305 bootinfo_msg = NULL;
306 if (bim == BOOTINFO_MAGIC) {
307 if (biv == 0) { /* backward compat */
308 biv = *(u_long *)bip;
309 bip += 8;
310 }
311 switch (biv) {
312 case 1: {
313 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
314
315 bootinfo.ssym = v1p->ssym;
316 bootinfo.esym = v1p->esym;
317 /* hwrpb may not be provided by boot block in v1 */
318 if (v1p->hwrpb != NULL) {
319 bootinfo.hwrpb_phys =
320 ((struct rpb *)v1p->hwrpb)->rpb_phys;
321 bootinfo.hwrpb_size = v1p->hwrpbsize;
322 } else {
323 bootinfo.hwrpb_phys =
324 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
325 bootinfo.hwrpb_size =
326 ((struct rpb *)HWRPB_ADDR)->rpb_size;
327 }
328 bcopy(v1p->boot_flags, bootinfo.boot_flags,
329 min(sizeof v1p->boot_flags,
330 sizeof bootinfo.boot_flags));
331 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
332 min(sizeof v1p->booted_kernel,
333 sizeof bootinfo.booted_kernel));
334 /* booted dev not provided in bootinfo */
335 init_prom_interface((struct rpb *)
336 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
337 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
338 sizeof bootinfo.booted_dev);
339 break;
340 }
341 default:
342 bootinfo_msg = "unknown bootinfo version";
343 goto nobootinfo;
344 }
345 } else {
346 bootinfo_msg = "boot program did not pass bootinfo";
347 nobootinfo:
348 bootinfo.ssym = (u_long)_end;
349 bootinfo.esym = (u_long)_end;
350 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
351 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
352 init_prom_interface((struct rpb *)HWRPB_ADDR);
353 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
354 sizeof bootinfo.boot_flags);
355 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
356 sizeof bootinfo.booted_kernel);
357 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
358 sizeof bootinfo.booted_dev);
359 }
360
361 /*
362 * Initialize the kernel's mapping of the RPB. It's needed for
363 * lots of things.
364 */
365 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
366
367 #if defined(DEC_3000_300) || defined(DEC_3000_500)
368 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
369 hwrpb->rpb_type == ST_DEC_3000_500) {
370 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
371 sizeof(dec_3000_scsiid));
372 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
373 sizeof(dec_3000_scsifast));
374 }
375 #endif
376
377 /*
378 * Remember how many cycles there are per microsecond,
379 * so that we can use delay(). Round up, for safety.
380 */
381 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
382
383 /*
384 * Initalize the (temporary) bootstrap console interface, so
385 * we can use printf until the VM system starts being setup.
386 * The real console is initialized before then.
387 */
388 init_bootstrap_console();
389
390 /* OUTPUT NOW ALLOWED */
391
392 /* delayed from above */
393 if (bootinfo_msg)
394 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
395 bootinfo_msg, bim, bip, biv);
396
397 /* Initialize the trap vectors on the primary processor. */
398 trap_init();
399
400 /*
401 * Find out what hardware we're on, and do basic initialization.
402 */
403 cputype = hwrpb->rpb_type;
404 if (cputype < 0) {
405 /*
406 * At least some white-box systems have SRM which
407 * reports a systype that's the negative of their
408 * blue-box counterpart.
409 */
410 cputype = -cputype;
411 }
412 if (cputype >= ncpuinit) {
413 platform_not_supported();
414 /* NOTREACHED */
415 }
416 (*cpuinit[cputype].init)();
417 strcpy(cpu_model, platform.model);
418
419 /*
420 * Initalize the real console, so that the bootstrap console is
421 * no longer necessary.
422 */
423 (*platform.cons_init)();
424
425 #ifdef DIAGNOSTIC
426 /* Paranoid sanity checking */
427
428 /* We should always be running on the primary. */
429 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
430
431 /*
432 * On single-CPU systypes, the primary should always be CPU 0,
433 * except on Alpha 8200 systems where the CPU id is related
434 * to the VID, which is related to the Turbo Laser node id.
435 */
436 if (cputype != ST_DEC_21000)
437 assert(hwrpb->rpb_primary_cpu_id == 0);
438 #endif
439
440 /* NO MORE FIRMWARE ACCESS ALLOWED */
441 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
442 /*
443 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
444 * XXX pmap_uses_prom_console() evaluates to non-zero.)
445 */
446 #endif
447
448 /*
449 * find out this system's page size
450 */
451 PAGE_SIZE = hwrpb->rpb_page_size;
452 if (PAGE_SIZE != 8192)
453 panic("page size %d != 8192?!", PAGE_SIZE);
454
455 /*
456 * Initialize PAGE_SIZE-dependent variables.
457 */
458 uvm_setpagesize();
459
460 /*
461 * Find the beginning and end of the kernel (and leave a
462 * bit of space before the beginning for the bootstrap
463 * stack).
464 */
465 kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
466 #ifdef DDB
467 ksym_start = (void *)bootinfo.ssym;
468 ksym_end = (void *)bootinfo.esym;
469 kernend = (vaddr_t)round_page(ksym_end);
470 #else
471 kernend = (vaddr_t)round_page(_end);
472 #endif
473
474 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
475 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
476
477 /*
478 * Find out how much memory is available, by looking at
479 * the memory cluster descriptors. This also tries to do
480 * its best to detect things things that have never been seen
481 * before...
482 */
483 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
484
485 /* MDDT SANITY CHECKING */
486 mddtweird = 0;
487 if (mddtp->mddt_cluster_cnt < 2) {
488 mddtweird = 1;
489 printf("WARNING: weird number of mem clusters: %lu\n",
490 mddtp->mddt_cluster_cnt);
491 }
492
493 #if 0
494 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
495 #endif
496
497 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
498 memc = &mddtp->mddt_clusters[i];
499 #if 0
500 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
501 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
502 #endif
503 totalphysmem += memc->mddt_pg_cnt;
504 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
505 mem_clusters[mem_cluster_cnt].start =
506 ptoa(memc->mddt_pfn);
507 mem_clusters[mem_cluster_cnt].size =
508 ptoa(memc->mddt_pg_cnt);
509 if (memc->mddt_usage & MDDT_mbz ||
510 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
511 memc->mddt_usage & MDDT_PALCODE)
512 mem_clusters[mem_cluster_cnt].size |=
513 PROT_READ;
514 else
515 mem_clusters[mem_cluster_cnt].size |=
516 PROT_READ | PROT_WRITE | PROT_EXEC;
517 mem_cluster_cnt++;
518 }
519
520 if (memc->mddt_usage & MDDT_mbz) {
521 mddtweird = 1;
522 printf("WARNING: mem cluster %d has weird "
523 "usage 0x%lx\n", i, memc->mddt_usage);
524 unknownmem += memc->mddt_pg_cnt;
525 continue;
526 }
527 if (memc->mddt_usage & MDDT_NONVOLATILE) {
528 /* XXX should handle these... */
529 printf("WARNING: skipping non-volatile mem "
530 "cluster %d\n", i);
531 unusedmem += memc->mddt_pg_cnt;
532 continue;
533 }
534 if (memc->mddt_usage & MDDT_PALCODE) {
535 resvmem += memc->mddt_pg_cnt;
536 continue;
537 }
538
539 /*
540 * We have a memory cluster available for system
541 * software use. We must determine if this cluster
542 * holds the kernel.
543 */
544 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
545 /*
546 * XXX If the kernel uses the PROM console, we only use the
547 * XXX memory after the kernel in the first system segment,
548 * XXX to avoid clobbering prom mapping, data, etc.
549 */
550 if (!pmap_uses_prom_console() || physmem == 0) {
551 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
552 physmem += memc->mddt_pg_cnt;
553 pfn0 = memc->mddt_pfn;
554 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
555 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
556 /*
557 * Must compute the location of the kernel
558 * within the segment.
559 */
560 #if 0
561 printf("Cluster %d contains kernel\n", i);
562 #endif
563 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
564 if (!pmap_uses_prom_console()) {
565 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
566 if (pfn0 < kernstartpfn) {
567 /*
568 * There is a chunk before the kernel.
569 */
570 #if 0
571 printf("Loading chunk before kernel: "
572 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
573 #endif
574 uvm_page_physload(pfn0, kernstartpfn,
575 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
576 }
577 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
578 }
579 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
580 if (kernendpfn < pfn1) {
581 /*
582 * There is a chunk after the kernel.
583 */
584 #if 0
585 printf("Loading chunk after kernel: "
586 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
587 #endif
588 uvm_page_physload(kernendpfn, pfn1,
589 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
590 }
591 } else {
592 /*
593 * Just load this cluster as one chunk.
594 */
595 #if 0
596 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
597 pfn0, pfn1);
598 #endif
599 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
600 VM_FREELIST_DEFAULT);
601 }
602 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
603 }
604 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
605 }
606
607 /*
608 * Dump out the MDDT if it looks odd...
609 */
610 if (mddtweird) {
611 printf("\n");
612 printf("complete memory cluster information:\n");
613 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
614 printf("mddt %d:\n", i);
615 printf("\tpfn %lx\n",
616 mddtp->mddt_clusters[i].mddt_pfn);
617 printf("\tcnt %lx\n",
618 mddtp->mddt_clusters[i].mddt_pg_cnt);
619 printf("\ttest %lx\n",
620 mddtp->mddt_clusters[i].mddt_pg_test);
621 printf("\tbva %lx\n",
622 mddtp->mddt_clusters[i].mddt_v_bitaddr);
623 printf("\tbpa %lx\n",
624 mddtp->mddt_clusters[i].mddt_p_bitaddr);
625 printf("\tbcksum %lx\n",
626 mddtp->mddt_clusters[i].mddt_bit_cksum);
627 printf("\tusage %lx\n",
628 mddtp->mddt_clusters[i].mddt_usage);
629 }
630 printf("\n");
631 }
632
633 if (totalphysmem == 0)
634 panic("can't happen: system seems to have no memory!");
635 maxmem = physmem;
636 #if 0
637 printf("totalphysmem = %d\n", totalphysmem);
638 printf("physmem = %d\n", physmem);
639 printf("resvmem = %d\n", resvmem);
640 printf("unusedmem = %d\n", unusedmem);
641 printf("unknownmem = %d\n", unknownmem);
642 #endif
643
644 /*
645 * Adjust some parameters if the amount of physmem
646 * available would cause us to croak. This is completely
647 * eyeballed and isn't meant to be the final answer.
648 * vm_phys_size is probably the only one to really worry
649 * about.
650 *
651 * It's for booting a GENERIC kernel on a large memory platform.
652 */
653 if (physmem >= atop(128 * 1024 * 1024))
654 vm_phys_size <<= 2;
655
656 /*
657 * Initialize error message buffer (at end of core).
658 */
659 {
660 size_t sz = round_page(MSGBUFSIZE);
661
662 vps = &vm_physmem[vm_nphysseg - 1];
663
664 /* shrink so that it'll fit in the last segment */
665 if ((vps->avail_end - vps->avail_start) < atop(sz))
666 sz = ptoa(vps->avail_end - vps->avail_start);
667
668 vps->end -= atop(sz);
669 vps->avail_end -= atop(sz);
670 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
671 initmsgbuf(msgbufaddr, sz);
672
673 /* Remove the last segment if it now has no pages. */
674 if (vps->start == vps->end)
675 vm_nphysseg--;
676
677 /* warn if the message buffer had to be shrunk */
678 if (sz != round_page(MSGBUFSIZE))
679 printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
680 round_page(MSGBUFSIZE), sz);
681
682 }
683
684 /*
685 * Init mapping for u page(s) for proc 0
686 */
687 proc0.p_addr = proc0paddr =
688 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
689
690 /*
691 * Allocate space for system data structures. These data structures
692 * are allocated here instead of cpu_startup() because physical
693 * memory is directly addressable. We don't have to map these into
694 * virtual address space.
695 */
696 size = (vsize_t)allocsys(NULL, NULL);
697 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
698 if ((allocsys(v, NULL) - v) != size)
699 panic("alpha_init: table size inconsistency");
700
701 /*
702 * Initialize the virtual memory system, and set the
703 * page table base register in proc 0's PCB.
704 */
705 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
706 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
707
708 /*
709 * Initialize the rest of proc 0's PCB, and cache its physical
710 * address.
711 */
712 proc0.p_md.md_pcbpaddr =
713 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
714
715 /*
716 * Set the kernel sp, reserving space for an (empty) trapframe,
717 * and make proc0's trapframe pointer point to it for sanity.
718 */
719 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
720 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
721 proc0.p_md.md_tf =
722 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
723
724 #if defined(MULTIPROCESSOR)
725 /*
726 * Initialize the primary CPU's idle PCB to proc0's, until
727 * autoconfiguration runs (it will get its own idle PCB there).
728 */
729 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
730 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
731 #endif
732
733 /*
734 * Look at arguments passed to us and compute boothowto.
735 */
736
737 boothowto = RB_SINGLE;
738 #ifdef KADB
739 boothowto |= RB_KDB;
740 #endif
741 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
742 /*
743 * Note that we'd really like to differentiate case here,
744 * but the Alpha AXP Architecture Reference Manual
745 * says that we shouldn't.
746 */
747 switch (*p) {
748 case 'a': /* autoboot */
749 case 'A':
750 boothowto &= ~RB_SINGLE;
751 break;
752
753 #ifdef DEBUG
754 case 'c': /* crash dump immediately after autoconfig */
755 case 'C':
756 boothowto |= RB_DUMP;
757 break;
758 #endif
759
760 #if defined(KGDB) || defined(DDB)
761 case 'd': /* break into the kernel debugger ASAP */
762 case 'D':
763 boothowto |= RB_KDB;
764 break;
765 #endif
766
767 case 'h': /* always halt, never reboot */
768 case 'H':
769 boothowto |= RB_HALT;
770 break;
771
772 #if 0
773 case 'm': /* mini root present in memory */
774 case 'M':
775 boothowto |= RB_MINIROOT;
776 break;
777 #endif
778
779 case 'n': /* askname */
780 case 'N':
781 boothowto |= RB_ASKNAME;
782 break;
783
784 case 's': /* single-user (default, supported for sanity) */
785 case 'S':
786 boothowto |= RB_SINGLE;
787 break;
788
789 case '-':
790 /*
791 * Just ignore this. It's not required, but it's
792 * common for it to be passed regardless.
793 */
794 break;
795
796 default:
797 printf("Unrecognized boot flag '%c'.\n", *p);
798 break;
799 }
800 }
801
802
803 /*
804 * Figure out the number of cpus in the box, from RPB fields.
805 * Really. We mean it.
806 */
807 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
808 struct pcs *pcsp;
809
810 pcsp = LOCATE_PCS(hwrpb, i);
811 if ((pcsp->pcs_flags & PCS_PP) != 0)
812 ncpus++;
813 }
814
815 /*
816 * Initialize debuggers, and break into them if appropriate.
817 */
818 #ifdef DDB
819 db_machine_init();
820 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
821 ksym_start, ksym_end);
822 if (boothowto & RB_KDB)
823 Debugger();
824 #endif
825 #ifdef KGDB
826 if (boothowto & RB_KDB)
827 kgdb_connect(0);
828 #endif
829 /*
830 * Figure out our clock frequency, from RPB fields.
831 */
832 hz = hwrpb->rpb_intr_freq >> 12;
833 if (!(60 <= hz && hz <= 10240)) {
834 hz = 1024;
835 #ifdef DIAGNOSTIC
836 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
837 hwrpb->rpb_intr_freq, hz);
838 #endif
839 }
840 }
841
842 void
843 consinit()
844 {
845
846 /*
847 * Everything related to console initialization is done
848 * in alpha_init().
849 */
850 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
851 printf("consinit: %susing prom console\n",
852 pmap_uses_prom_console() ? "" : "not ");
853 #endif
854 }
855
856 #include "pckbc.h"
857 #include "pckbd.h"
858 #if (NPCKBC > 0) && (NPCKBD == 0)
859
860 #include <dev/ic/pckbcvar.h>
861
862 /*
863 * This is called by the pbkbc driver if no pckbd is configured.
864 * On the i386, it is used to glue in the old, deprecated console
865 * code. On the Alpha, it does nothing.
866 */
867 int
868 pckbc_machdep_cnattach(kbctag, kbcslot)
869 pckbc_tag_t kbctag;
870 pckbc_slot_t kbcslot;
871 {
872
873 return (ENXIO);
874 }
875 #endif /* NPCKBC > 0 && NPCKBD == 0 */
876
877 void
878 cpu_startup()
879 {
880 register unsigned i;
881 int base, residual;
882 vaddr_t minaddr, maxaddr;
883 vsize_t size;
884 char pbuf[9];
885 #if defined(DEBUG)
886 extern int pmapdebug;
887 int opmapdebug = pmapdebug;
888
889 pmapdebug = 0;
890 #endif
891
892 /*
893 * Good {morning,afternoon,evening,night}.
894 */
895 printf(version);
896 identifycpu();
897 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
898 printf("total memory = %s\n", pbuf);
899 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
900 printf("(%s reserved for PROM, ", pbuf);
901 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
902 printf("%s used by NetBSD)\n", pbuf);
903 if (unusedmem) {
904 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
905 printf("WARNING: unused memory = %s\n", pbuf);
906 }
907 if (unknownmem) {
908 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
909 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
910 }
911
912 /*
913 * Allocate virtual address space for file I/O buffers.
914 * Note they are different than the array of headers, 'buf',
915 * and usually occupy more virtual memory than physical.
916 */
917 size = MAXBSIZE * nbuf;
918 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
919 NULL, UVM_UNKNOWN_OFFSET,
920 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
921 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
922 panic("startup: cannot allocate VM for buffers");
923 base = bufpages / nbuf;
924 residual = bufpages % nbuf;
925 for (i = 0; i < nbuf; i++) {
926 vsize_t curbufsize;
927 vaddr_t curbuf;
928 struct vm_page *pg;
929
930 /*
931 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
932 * that MAXBSIZE space, we allocate and map (base+1) pages
933 * for the first "residual" buffers, and then we allocate
934 * "base" pages for the rest.
935 */
936 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
937 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
938
939 while (curbufsize) {
940 pg = uvm_pagealloc(NULL, 0, NULL, 0);
941 if (pg == NULL)
942 panic("cpu_startup: not enough memory for "
943 "buffer cache");
944 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
945 VM_PROT_READ|VM_PROT_WRITE);
946 curbuf += PAGE_SIZE;
947 curbufsize -= PAGE_SIZE;
948 }
949 }
950 /*
951 * Allocate a submap for exec arguments. This map effectively
952 * limits the number of processes exec'ing at any time.
953 */
954 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
955 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
956
957 /*
958 * Allocate a submap for physio
959 */
960 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
961 VM_PHYS_SIZE, 0, FALSE, NULL);
962
963 /*
964 * No need to allocate an mbuf cluster submap. Mbuf clusters
965 * are allocated via the pool allocator, and we use K0SEG to
966 * map those pages.
967 */
968
969 #if defined(DEBUG)
970 pmapdebug = opmapdebug;
971 #endif
972 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
973 printf("avail memory = %s\n", pbuf);
974 #if 0
975 {
976 extern u_long pmap_pages_stolen;
977
978 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
979 printf("stolen memory for VM structures = %s\n", pbuf);
980 }
981 #endif
982 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
983 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
984
985 /*
986 * Set up buffers, so they can be used to read disk labels.
987 */
988 bufinit();
989
990 /*
991 * Set up the HWPCB so that it's safe to configure secondary
992 * CPUs.
993 */
994 hwrpb_primary_init();
995 }
996
997 /*
998 * Retrieve the platform name from the DSR.
999 */
1000 const char *
1001 alpha_dsr_sysname()
1002 {
1003 struct dsrdb *dsr;
1004 const char *sysname;
1005
1006 /*
1007 * DSR does not exist on early HWRPB versions.
1008 */
1009 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1010 return (NULL);
1011
1012 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1013 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1014 sizeof(u_int64_t)));
1015 return (sysname);
1016 }
1017
1018 /*
1019 * Lookup the system specified system variation in the provided table,
1020 * returning the model string on match.
1021 */
1022 const char *
1023 alpha_variation_name(variation, avtp)
1024 u_int64_t variation;
1025 const struct alpha_variation_table *avtp;
1026 {
1027 int i;
1028
1029 for (i = 0; avtp[i].avt_model != NULL; i++)
1030 if (avtp[i].avt_variation == variation)
1031 return (avtp[i].avt_model);
1032 return (NULL);
1033 }
1034
1035 /*
1036 * Generate a default platform name based for unknown system variations.
1037 */
1038 const char *
1039 alpha_unknown_sysname()
1040 {
1041 static char s[128]; /* safe size */
1042
1043 sprintf(s, "%s family, unknown model variation 0x%lx",
1044 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1045 return ((const char *)s);
1046 }
1047
1048 void
1049 identifycpu()
1050 {
1051 char *s;
1052
1053 /*
1054 * print out CPU identification information.
1055 */
1056 printf("%s", cpu_model);
1057 for(s = cpu_model; *s; ++s)
1058 if(strncasecmp(s, "MHz", 3) == 0)
1059 goto skipMHz;
1060 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1061 skipMHz:
1062 printf("\n");
1063 printf("%ld byte page size, %d processor%s.\n",
1064 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1065 #if 0
1066 /* this isn't defined for any systems that we run on? */
1067 printf("serial number 0x%lx 0x%lx\n",
1068 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1069
1070 /* and these aren't particularly useful! */
1071 printf("variation: 0x%lx, revision 0x%lx\n",
1072 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1073 #endif
1074 }
1075
1076 int waittime = -1;
1077 struct pcb dumppcb;
1078
1079 void
1080 cpu_reboot(howto, bootstr)
1081 int howto;
1082 char *bootstr;
1083 {
1084 #if defined(MULTIPROCESSOR)
1085 #if 0 /* XXX See below. */
1086 u_long cpu_id;
1087 #endif
1088 #endif
1089
1090 #if defined(MULTIPROCESSOR)
1091 /* We must be running on the primary CPU. */
1092 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1093 panic("cpu_reboot: not on primary CPU!");
1094 #endif
1095
1096 /* If system is cold, just halt. */
1097 if (cold) {
1098 howto |= RB_HALT;
1099 goto haltsys;
1100 }
1101
1102 /* If "always halt" was specified as a boot flag, obey. */
1103 if ((boothowto & RB_HALT) != 0)
1104 howto |= RB_HALT;
1105
1106 boothowto = howto;
1107 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1108 waittime = 0;
1109 vfs_shutdown();
1110 /*
1111 * If we've been adjusting the clock, the todr
1112 * will be out of synch; adjust it now.
1113 */
1114 resettodr();
1115 }
1116
1117 /* Disable interrupts. */
1118 splhigh();
1119
1120 /* If rebooting and a dump is requested do it. */
1121 #if 0
1122 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1123 #else
1124 if (howto & RB_DUMP)
1125 #endif
1126 dumpsys();
1127
1128 haltsys:
1129
1130 /* run any shutdown hooks */
1131 doshutdownhooks();
1132
1133 #if defined(MULTIPROCESSOR)
1134 #if 0 /* XXX doesn't work when called from here?! */
1135 /* Kill off any secondary CPUs. */
1136 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1137 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1138 cpu_info[cpu_id].ci_softc == NULL)
1139 continue;
1140 cpu_halt_secondary(cpu_id);
1141 }
1142 #endif
1143 #endif
1144
1145 #ifdef BOOTKEY
1146 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1147 cnpollc(1); /* for proper keyboard command handling */
1148 cngetc();
1149 cnpollc(0);
1150 printf("\n");
1151 #endif
1152
1153 /* Finally, powerdown/halt/reboot the system. */
1154 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1155 platform.powerdown != NULL) {
1156 (*platform.powerdown)();
1157 printf("WARNING: powerdown failed!\n");
1158 }
1159 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1160 prom_halt(howto & RB_HALT);
1161 /*NOTREACHED*/
1162 }
1163
1164 /*
1165 * These variables are needed by /sbin/savecore
1166 */
1167 u_long dumpmag = 0x8fca0101; /* magic number */
1168 int dumpsize = 0; /* pages */
1169 long dumplo = 0; /* blocks */
1170
1171 /*
1172 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1173 */
1174 int
1175 cpu_dumpsize()
1176 {
1177 int size;
1178
1179 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1180 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1181 if (roundup(size, dbtob(1)) != dbtob(1))
1182 return -1;
1183
1184 return (1);
1185 }
1186
1187 /*
1188 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1189 */
1190 u_long
1191 cpu_dump_mempagecnt()
1192 {
1193 u_long i, n;
1194
1195 n = 0;
1196 for (i = 0; i < mem_cluster_cnt; i++)
1197 n += atop(mem_clusters[i].size);
1198 return (n);
1199 }
1200
1201 /*
1202 * cpu_dump: dump machine-dependent kernel core dump headers.
1203 */
1204 int
1205 cpu_dump()
1206 {
1207 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1208 char buf[dbtob(1)];
1209 kcore_seg_t *segp;
1210 cpu_kcore_hdr_t *cpuhdrp;
1211 phys_ram_seg_t *memsegp;
1212 int i;
1213
1214 dump = bdevsw[major(dumpdev)].d_dump;
1215
1216 bzero(buf, sizeof buf);
1217 segp = (kcore_seg_t *)buf;
1218 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1219 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1220 ALIGN(sizeof(*cpuhdrp))];
1221
1222 /*
1223 * Generate a segment header.
1224 */
1225 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1226 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1227
1228 /*
1229 * Add the machine-dependent header info.
1230 */
1231 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1232 cpuhdrp->page_size = PAGE_SIZE;
1233 cpuhdrp->nmemsegs = mem_cluster_cnt;
1234
1235 /*
1236 * Fill in the memory segment descriptors.
1237 */
1238 for (i = 0; i < mem_cluster_cnt; i++) {
1239 memsegp[i].start = mem_clusters[i].start;
1240 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1241 }
1242
1243 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1244 }
1245
1246 /*
1247 * This is called by main to set dumplo and dumpsize.
1248 * Dumps always skip the first NBPG of disk space
1249 * in case there might be a disk label stored there.
1250 * If there is extra space, put dump at the end to
1251 * reduce the chance that swapping trashes it.
1252 */
1253 void
1254 cpu_dumpconf()
1255 {
1256 int nblks, dumpblks; /* size of dump area */
1257 int maj;
1258
1259 if (dumpdev == NODEV)
1260 goto bad;
1261 maj = major(dumpdev);
1262 if (maj < 0 || maj >= nblkdev)
1263 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1264 if (bdevsw[maj].d_psize == NULL)
1265 goto bad;
1266 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1267 if (nblks <= ctod(1))
1268 goto bad;
1269
1270 dumpblks = cpu_dumpsize();
1271 if (dumpblks < 0)
1272 goto bad;
1273 dumpblks += ctod(cpu_dump_mempagecnt());
1274
1275 /* If dump won't fit (incl. room for possible label), punt. */
1276 if (dumpblks > (nblks - ctod(1)))
1277 goto bad;
1278
1279 /* Put dump at end of partition */
1280 dumplo = nblks - dumpblks;
1281
1282 /* dumpsize is in page units, and doesn't include headers. */
1283 dumpsize = cpu_dump_mempagecnt();
1284 return;
1285
1286 bad:
1287 dumpsize = 0;
1288 return;
1289 }
1290
1291 /*
1292 * Dump the kernel's image to the swap partition.
1293 */
1294 #define BYTES_PER_DUMP NBPG
1295
1296 void
1297 dumpsys()
1298 {
1299 u_long totalbytesleft, bytes, i, n, memcl;
1300 u_long maddr;
1301 int psize;
1302 daddr_t blkno;
1303 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1304 int error;
1305
1306 /* Save registers. */
1307 savectx(&dumppcb);
1308
1309 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1310 if (dumpdev == NODEV)
1311 return;
1312
1313 /*
1314 * For dumps during autoconfiguration,
1315 * if dump device has already configured...
1316 */
1317 if (dumpsize == 0)
1318 cpu_dumpconf();
1319 if (dumplo <= 0) {
1320 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1321 minor(dumpdev));
1322 return;
1323 }
1324 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1325 minor(dumpdev), dumplo);
1326
1327 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1328 printf("dump ");
1329 if (psize == -1) {
1330 printf("area unavailable\n");
1331 return;
1332 }
1333
1334 /* XXX should purge all outstanding keystrokes. */
1335
1336 if ((error = cpu_dump()) != 0)
1337 goto err;
1338
1339 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1340 blkno = dumplo + cpu_dumpsize();
1341 dump = bdevsw[major(dumpdev)].d_dump;
1342 error = 0;
1343
1344 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1345 maddr = mem_clusters[memcl].start;
1346 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1347
1348 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1349
1350 /* Print out how many MBs we to go. */
1351 if ((totalbytesleft % (1024*1024)) == 0)
1352 printf("%ld ", totalbytesleft / (1024 * 1024));
1353
1354 /* Limit size for next transfer. */
1355 n = bytes - i;
1356 if (n > BYTES_PER_DUMP)
1357 n = BYTES_PER_DUMP;
1358
1359 error = (*dump)(dumpdev, blkno,
1360 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1361 if (error)
1362 goto err;
1363 maddr += n;
1364 blkno += btodb(n); /* XXX? */
1365
1366 /* XXX should look for keystrokes, to cancel. */
1367 }
1368 }
1369
1370 err:
1371 switch (error) {
1372
1373 case ENXIO:
1374 printf("device bad\n");
1375 break;
1376
1377 case EFAULT:
1378 printf("device not ready\n");
1379 break;
1380
1381 case EINVAL:
1382 printf("area improper\n");
1383 break;
1384
1385 case EIO:
1386 printf("i/o error\n");
1387 break;
1388
1389 case EINTR:
1390 printf("aborted from console\n");
1391 break;
1392
1393 case 0:
1394 printf("succeeded\n");
1395 break;
1396
1397 default:
1398 printf("error %d\n", error);
1399 break;
1400 }
1401 printf("\n\n");
1402 delay(1000);
1403 }
1404
1405 void
1406 frametoreg(framep, regp)
1407 struct trapframe *framep;
1408 struct reg *regp;
1409 {
1410
1411 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1412 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1413 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1414 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1415 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1416 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1417 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1418 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1419 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1420 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1421 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1422 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1423 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1424 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1425 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1426 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1427 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1428 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1429 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1430 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1431 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1432 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1433 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1434 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1435 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1436 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1437 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1438 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1439 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1440 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1441 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1442 regp->r_regs[R_ZERO] = 0;
1443 }
1444
1445 void
1446 regtoframe(regp, framep)
1447 struct reg *regp;
1448 struct trapframe *framep;
1449 {
1450
1451 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1452 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1453 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1454 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1455 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1456 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1457 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1458 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1459 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1460 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1461 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1462 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1463 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1464 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1465 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1466 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1467 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1468 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1469 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1470 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1471 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1472 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1473 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1474 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1475 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1476 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1477 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1478 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1479 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1480 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1481 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1482 /* ??? = regp->r_regs[R_ZERO]; */
1483 }
1484
1485 void
1486 printregs(regp)
1487 struct reg *regp;
1488 {
1489 int i;
1490
1491 for (i = 0; i < 32; i++)
1492 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1493 i & 1 ? "\n" : "\t");
1494 }
1495
1496 void
1497 regdump(framep)
1498 struct trapframe *framep;
1499 {
1500 struct reg reg;
1501
1502 frametoreg(framep, ®);
1503 reg.r_regs[R_SP] = alpha_pal_rdusp();
1504
1505 printf("REGISTERS:\n");
1506 printregs(®);
1507 }
1508
1509 #ifdef DEBUG
1510 int sigdebug = 0;
1511 int sigpid = 0;
1512 #define SDB_FOLLOW 0x01
1513 #define SDB_KSTACK 0x02
1514 #endif
1515
1516 /*
1517 * Send an interrupt to process.
1518 */
1519 void
1520 sendsig(catcher, sig, mask, code)
1521 sig_t catcher;
1522 int sig;
1523 sigset_t *mask;
1524 u_long code;
1525 {
1526 struct proc *p = curproc;
1527 struct sigcontext *scp, ksc;
1528 struct trapframe *frame;
1529 struct sigacts *psp = p->p_sigacts;
1530 int onstack, fsize, rndfsize;
1531
1532 frame = p->p_md.md_tf;
1533
1534 /* Do we need to jump onto the signal stack? */
1535 onstack =
1536 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1537 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1538
1539 /* Allocate space for the signal handler context. */
1540 fsize = sizeof(ksc);
1541 rndfsize = ((fsize + 15) / 16) * 16;
1542
1543 if (onstack)
1544 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1545 psp->ps_sigstk.ss_size);
1546 else
1547 scp = (struct sigcontext *)(alpha_pal_rdusp());
1548 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1549
1550 #ifdef DEBUG
1551 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1552 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1553 sig, &onstack, scp);
1554 #endif
1555
1556 /* Build stack frame for signal trampoline. */
1557 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1558 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1559
1560 /* Save register context. */
1561 frametoreg(frame, (struct reg *)ksc.sc_regs);
1562 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1563 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1564
1565 /* save the floating-point state, if necessary, then copy it. */
1566 if (p == fpcurproc) {
1567 alpha_pal_wrfen(1);
1568 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1569 alpha_pal_wrfen(0);
1570 fpcurproc = NULL;
1571 }
1572 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1573 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1574 sizeof(struct fpreg));
1575 ksc.sc_fp_control = 0; /* XXX ? */
1576 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1577 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1578
1579 /* Save signal stack. */
1580 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1581
1582 /* Save signal mask. */
1583 ksc.sc_mask = *mask;
1584
1585 #ifdef COMPAT_13
1586 /*
1587 * XXX We always have to save an old style signal mask because
1588 * XXX we might be delivering a signal to a process which will
1589 * XXX escape from the signal in a non-standard way and invoke
1590 * XXX sigreturn() directly.
1591 */
1592 {
1593 /* Note: it's a long in the stack frame. */
1594 sigset13_t mask13;
1595
1596 native_sigset_to_sigset13(mask, &mask13);
1597 ksc.__sc_mask13 = mask13;
1598 }
1599 #endif
1600
1601 #ifdef COMPAT_OSF1
1602 /*
1603 * XXX Create an OSF/1-style sigcontext and associated goo.
1604 */
1605 #endif
1606
1607 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1608 /*
1609 * Process has trashed its stack; give it an illegal
1610 * instruction to halt it in its tracks.
1611 */
1612 #ifdef DEBUG
1613 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1614 printf("sendsig(%d): copyout failed on sig %d\n",
1615 p->p_pid, sig);
1616 #endif
1617 sigexit(p, SIGILL);
1618 /* NOTREACHED */
1619 }
1620 #ifdef DEBUG
1621 if (sigdebug & SDB_FOLLOW)
1622 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1623 scp, code);
1624 #endif
1625
1626 /* Set up the registers to return to sigcode. */
1627 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1628 frame->tf_regs[FRAME_A0] = sig;
1629 frame->tf_regs[FRAME_A1] = code;
1630 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1631 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1632 alpha_pal_wrusp((unsigned long)scp);
1633
1634 /* Remember that we're now on the signal stack. */
1635 if (onstack)
1636 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1637
1638 #ifdef DEBUG
1639 if (sigdebug & SDB_FOLLOW)
1640 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1641 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1642 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1643 printf("sendsig(%d): sig %d returns\n",
1644 p->p_pid, sig);
1645 #endif
1646 }
1647
1648 /*
1649 * System call to cleanup state after a signal
1650 * has been taken. Reset signal mask and
1651 * stack state from context left by sendsig (above).
1652 * Return to previous pc and psl as specified by
1653 * context left by sendsig. Check carefully to
1654 * make sure that the user has not modified the
1655 * psl to gain improper privileges or to cause
1656 * a machine fault.
1657 */
1658 /* ARGSUSED */
1659 int
1660 sys___sigreturn14(p, v, retval)
1661 struct proc *p;
1662 void *v;
1663 register_t *retval;
1664 {
1665 struct sys___sigreturn14_args /* {
1666 syscallarg(struct sigcontext *) sigcntxp;
1667 } */ *uap = v;
1668 struct sigcontext *scp, ksc;
1669
1670 /*
1671 * The trampoline code hands us the context.
1672 * It is unsafe to keep track of it ourselves, in the event that a
1673 * program jumps out of a signal handler.
1674 */
1675 scp = SCARG(uap, sigcntxp);
1676 #ifdef DEBUG
1677 if (sigdebug & SDB_FOLLOW)
1678 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1679 #endif
1680 if (ALIGN(scp) != (u_int64_t)scp)
1681 return (EINVAL);
1682
1683 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1684 return (EFAULT);
1685
1686 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1687 return (EINVAL);
1688
1689 /* Restore register context. */
1690 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1691 p->p_md.md_tf->tf_regs[FRAME_PS] =
1692 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1693
1694 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1695 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1696
1697 /* XXX ksc.sc_ownedfp ? */
1698 if (p == fpcurproc)
1699 fpcurproc = NULL;
1700 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1701 sizeof(struct fpreg));
1702 /* XXX ksc.sc_fp_control ? */
1703
1704 /* Restore signal stack. */
1705 if (ksc.sc_onstack & SS_ONSTACK)
1706 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1707 else
1708 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1709
1710 /* Restore signal mask. */
1711 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1712
1713 #ifdef DEBUG
1714 if (sigdebug & SDB_FOLLOW)
1715 printf("sigreturn(%d): returns\n", p->p_pid);
1716 #endif
1717 return (EJUSTRETURN);
1718 }
1719
1720 /*
1721 * machine dependent system variables.
1722 */
1723 int
1724 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1725 int *name;
1726 u_int namelen;
1727 void *oldp;
1728 size_t *oldlenp;
1729 void *newp;
1730 size_t newlen;
1731 struct proc *p;
1732 {
1733 dev_t consdev;
1734
1735 /* all sysctl names at this level are terminal */
1736 if (namelen != 1)
1737 return (ENOTDIR); /* overloaded */
1738
1739 switch (name[0]) {
1740 case CPU_CONSDEV:
1741 if (cn_tab != NULL)
1742 consdev = cn_tab->cn_dev;
1743 else
1744 consdev = NODEV;
1745 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1746 sizeof consdev));
1747
1748 case CPU_ROOT_DEVICE:
1749 return (sysctl_rdstring(oldp, oldlenp, newp,
1750 root_device->dv_xname));
1751
1752 case CPU_UNALIGNED_PRINT:
1753 return (sysctl_int(oldp, oldlenp, newp, newlen,
1754 &alpha_unaligned_print));
1755
1756 case CPU_UNALIGNED_FIX:
1757 return (sysctl_int(oldp, oldlenp, newp, newlen,
1758 &alpha_unaligned_fix));
1759
1760 case CPU_UNALIGNED_SIGBUS:
1761 return (sysctl_int(oldp, oldlenp, newp, newlen,
1762 &alpha_unaligned_sigbus));
1763
1764 case CPU_BOOTED_KERNEL:
1765 return (sysctl_rdstring(oldp, oldlenp, newp,
1766 bootinfo.booted_kernel));
1767
1768 default:
1769 return (EOPNOTSUPP);
1770 }
1771 /* NOTREACHED */
1772 }
1773
1774 /*
1775 * Set registers on exec.
1776 */
1777 void
1778 setregs(p, pack, stack)
1779 register struct proc *p;
1780 struct exec_package *pack;
1781 u_long stack;
1782 {
1783 struct trapframe *tfp = p->p_md.md_tf;
1784 #ifdef DEBUG
1785 int i;
1786 #endif
1787
1788 #ifdef DEBUG
1789 /*
1790 * Crash and dump, if the user requested it.
1791 */
1792 if (boothowto & RB_DUMP)
1793 panic("crash requested by boot flags");
1794 #endif
1795
1796 #ifdef DEBUG
1797 for (i = 0; i < FRAME_SIZE; i++)
1798 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1799 #else
1800 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1801 #endif
1802 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1803 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1804 | FPCR_UNFD
1805 | FPCR_UNDZ
1806 | FPCR_DYN(FP_RN)
1807 | FPCR_OVFD
1808 | FPCR_DZED
1809 | FPCR_INVD
1810 | FPCR_DNZ;
1811 alpha_pal_wrusp(stack);
1812 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1813 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1814
1815 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1816 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1817 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1818 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1819 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1820
1821 p->p_md.md_flags &= ~MDP_FPUSED;
1822 if (fpcurproc == p)
1823 fpcurproc = NULL;
1824 }
1825
1826 void
1827 netintr()
1828 {
1829 int n, s;
1830
1831 s = splhigh();
1832 n = netisr;
1833 netisr = 0;
1834 splx(s);
1835
1836 #define DONETISR(bit, fn) \
1837 do { \
1838 if (n & (1 << (bit))) \
1839 fn(); \
1840 } while (0)
1841
1842 #include <net/netisr_dispatch.h>
1843
1844 #undef DONETISR
1845 }
1846
1847 void
1848 do_sir()
1849 {
1850 u_int64_t n;
1851
1852 while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
1853 #define COUNT_SOFT uvmexp.softs++
1854
1855 #define DO_SIR(bit, fn) \
1856 do { \
1857 if (n & (bit)) { \
1858 COUNT_SOFT; \
1859 fn; \
1860 } \
1861 } while (0)
1862
1863 DO_SIR(SIR_NET, netintr());
1864 DO_SIR(SIR_CLOCK, softclock());
1865 #if NCOM > 0
1866 DO_SIR(SIR_SERIAL, comsoft());
1867 #endif
1868
1869 #undef COUNT_SOFT
1870 #undef DO_SIR
1871 }
1872 }
1873
1874 int
1875 spl0()
1876 {
1877
1878 if (ssir) {
1879 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1880 do_sir();
1881 }
1882
1883 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1884 }
1885
1886 /*
1887 * The following primitives manipulate the run queues. _whichqs tells which
1888 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1889 * into queues, Remrunqueue removes them from queues. The running process is
1890 * on no queue, other processes are on a queue related to p->p_priority,
1891 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1892 * available queues.
1893 */
1894 /*
1895 * setrunqueue(p)
1896 * proc *p;
1897 *
1898 * Call should be made at splclock(), and p->p_stat should be SRUN.
1899 */
1900
1901 void
1902 setrunqueue(p)
1903 struct proc *p;
1904 {
1905 int bit;
1906
1907 /* firewall: p->p_back must be NULL */
1908 if (p->p_back != NULL)
1909 panic("setrunqueue");
1910
1911 bit = p->p_priority >> 2;
1912 whichqs |= (1 << bit);
1913 p->p_forw = (struct proc *)&qs[bit];
1914 p->p_back = qs[bit].ph_rlink;
1915 p->p_back->p_forw = p;
1916 qs[bit].ph_rlink = p;
1917 }
1918
1919 /*
1920 * remrunqueue(p)
1921 *
1922 * Call should be made at splclock().
1923 */
1924 void
1925 remrunqueue(p)
1926 struct proc *p;
1927 {
1928 int bit;
1929
1930 bit = p->p_priority >> 2;
1931 if ((whichqs & (1 << bit)) == 0)
1932 panic("remrunqueue");
1933
1934 p->p_back->p_forw = p->p_forw;
1935 p->p_forw->p_back = p->p_back;
1936 p->p_back = NULL; /* for firewall checking. */
1937
1938 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1939 whichqs &= ~(1 << bit);
1940 }
1941
1942 /*
1943 * Return the best possible estimate of the time in the timeval
1944 * to which tvp points. Unfortunately, we can't read the hardware registers.
1945 * We guarantee that the time will be greater than the value obtained by a
1946 * previous call.
1947 */
1948 void
1949 microtime(tvp)
1950 register struct timeval *tvp;
1951 {
1952 int s = splclock();
1953 static struct timeval lasttime;
1954
1955 *tvp = time;
1956 #ifdef notdef
1957 tvp->tv_usec += clkread();
1958 while (tvp->tv_usec >= 1000000) {
1959 tvp->tv_sec++;
1960 tvp->tv_usec -= 1000000;
1961 }
1962 #endif
1963 if (tvp->tv_sec == lasttime.tv_sec &&
1964 tvp->tv_usec <= lasttime.tv_usec &&
1965 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1966 tvp->tv_sec++;
1967 tvp->tv_usec -= 1000000;
1968 }
1969 lasttime = *tvp;
1970 splx(s);
1971 }
1972
1973 /*
1974 * Wait "n" microseconds.
1975 */
1976 void
1977 delay(n)
1978 unsigned long n;
1979 {
1980 long N = cycles_per_usec * (n);
1981
1982 /*
1983 * XXX Should be written to use RPCC?
1984 */
1985
1986 __asm __volatile(
1987 "# The 2 corresponds to the insn count\n"
1988 "1: subq %2, %1, %0 \n"
1989 " bgt %0, 1b"
1990 : "=r" (N)
1991 : "i" (2), "0" (N));
1992 }
1993
1994 #if defined(COMPAT_OSF1) || 1 /* XXX */
1995 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1996 u_long));
1997
1998 void
1999 cpu_exec_ecoff_setregs(p, epp, stack)
2000 struct proc *p;
2001 struct exec_package *epp;
2002 u_long stack;
2003 {
2004 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2005
2006 setregs(p, epp, stack);
2007 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2008 }
2009
2010 /*
2011 * cpu_exec_ecoff_hook():
2012 * cpu-dependent ECOFF format hook for execve().
2013 *
2014 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2015 *
2016 */
2017 int
2018 cpu_exec_ecoff_hook(p, epp)
2019 struct proc *p;
2020 struct exec_package *epp;
2021 {
2022 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2023 extern struct emul emul_netbsd;
2024 int error;
2025 extern int osf1_exec_ecoff_hook(struct proc *p,
2026 struct exec_package *epp);
2027
2028 switch (execp->f.f_magic) {
2029 #ifdef COMPAT_OSF1
2030 case ECOFF_MAGIC_ALPHA:
2031 error = osf1_exec_ecoff_hook(p, epp);
2032 break;
2033 #endif
2034
2035 case ECOFF_MAGIC_NETBSD_ALPHA:
2036 epp->ep_emul = &emul_netbsd;
2037 error = 0;
2038 break;
2039
2040 default:
2041 error = ENOEXEC;
2042 }
2043 return (error);
2044 }
2045 #endif
2046
2047 int
2048 alpha_pa_access(pa)
2049 u_long pa;
2050 {
2051 int i;
2052
2053 for (i = 0; i < mem_cluster_cnt; i++) {
2054 if (pa < mem_clusters[i].start)
2055 continue;
2056 if ((pa - mem_clusters[i].start) >=
2057 (mem_clusters[i].size & ~PAGE_MASK))
2058 continue;
2059 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2060 }
2061
2062 /*
2063 * Address is not a memory address. If we're secure, disallow
2064 * access. Otherwise, grant read/write.
2065 */
2066 if (securelevel > 0)
2067 return (PROT_NONE);
2068 else
2069 return (PROT_READ | PROT_WRITE);
2070 }
2071
2072 /* XXX XXX BEGIN XXX XXX */
2073 paddr_t alpha_XXX_dmamap_or; /* XXX */
2074 /* XXX */
2075 paddr_t /* XXX */
2076 alpha_XXX_dmamap(v) /* XXX */
2077 vaddr_t v; /* XXX */
2078 { /* XXX */
2079 /* XXX */
2080 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2081 } /* XXX */
2082 /* XXX XXX END XXX XXX */
2083
2084 char *
2085 dot_conv(x)
2086 unsigned long x;
2087 {
2088 int i;
2089 char *xc;
2090 static int next;
2091 static char space[2][20];
2092
2093 xc = space[next ^= 1] + sizeof space[0];
2094 *--xc = '\0';
2095 for (i = 0;; ++i) {
2096 if (i && (i & 3) == 0)
2097 *--xc = '.';
2098 *--xc = "0123456789abcdef"[x & 0xf];
2099 x >>= 4;
2100 if (x == 0)
2101 break;
2102 }
2103 return xc;
2104 }
2105