machdep.c revision 1.203 1 /* $NetBSD: machdep.c,v 1.203 2000/03/27 06:41:02 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.203 2000/03/27 06:41:02 enami Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/reboot.h>
92 #include <sys/device.h>
93 #include <sys/file.h>
94 #include <sys/malloc.h>
95 #include <sys/mbuf.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <sys/user.h>
101 #include <sys/exec.h>
102 #include <sys/exec_ecoff.h>
103 #include <vm/vm.h>
104 #include <sys/sysctl.h>
105 #include <sys/core.h>
106 #include <sys/kcore.h>
107 #include <machine/kcore.h>
108
109 #include <sys/mount.h>
110 #include <sys/syscallargs.h>
111
112 #include <vm/vm_kern.h>
113
114 #include <uvm/uvm_extern.h>
115
116 #include <dev/cons.h>
117
118 #include <machine/autoconf.h>
119 #include <machine/cpu.h>
120 #include <machine/reg.h>
121 #include <machine/rpb.h>
122 #include <machine/prom.h>
123 #include <machine/conf.h>
124 #include <machine/ieeefp.h>
125
126 #include <net/netisr.h>
127 #include <net/if.h>
128
129 #ifdef INET
130 #include <net/route.h>
131 #include <netinet/in.h>
132 #include <netinet/ip_var.h>
133 #include "arp.h"
134 #if NARP > 0
135 #include <netinet/if_inarp.h>
136 #endif
137 #endif
138 #ifdef INET6
139 # ifndef INET
140 # include <netinet/in.h>
141 # endif
142 #include <netinet/ip6.h>
143 #include <netinet6/ip6_var.h>
144 #endif
145 #ifdef NS
146 #include <netns/ns_var.h>
147 #endif
148 #ifdef ISO
149 #include <netiso/iso.h>
150 #include <netiso/clnp.h>
151 #endif
152 #ifdef CCITT
153 #include <netccitt/x25.h>
154 #include <netccitt/pk.h>
155 #include <netccitt/pk_extern.h>
156 #endif
157 #ifdef NATM
158 #include <netnatm/natm.h>
159 #endif
160 #ifdef NETATALK
161 #include <netatalk/at_extern.h>
162 #endif
163 #include "ppp.h"
164 #if NPPP > 0
165 #include <net/ppp_defs.h>
166 #include <net/if_ppp.h>
167 #endif
168
169 #ifdef DDB
170 #include <machine/db_machdep.h>
171 #include <ddb/db_access.h>
172 #include <ddb/db_sym.h>
173 #include <ddb/db_extern.h>
174 #include <ddb/db_interface.h>
175 #endif
176
177 #include <machine/alpha.h>
178 #include <machine/intrcnt.h>
179
180 #include "com.h"
181 #if NCOM > 0
182 extern void comsoft __P((void));
183 #endif
184 #include "zsc_ioasic.h"
185 #if NZSC_IOASIC > 0
186 extern void zs_ioasic_softintr __P((void));
187 #endif
188
189 vm_map_t exec_map = NULL;
190 vm_map_t mb_map = NULL;
191 vm_map_t phys_map = NULL;
192
193 caddr_t msgbufaddr;
194
195 int maxmem; /* max memory per process */
196
197 int totalphysmem; /* total amount of physical memory in system */
198 int physmem; /* physical memory used by NetBSD + some rsvd */
199 int resvmem; /* amount of memory reserved for PROM */
200 int unusedmem; /* amount of memory for OS that we don't use */
201 int unknownmem; /* amount of memory with an unknown use */
202
203 int cputype; /* system type, from the RPB */
204
205 /*
206 * XXX We need an address to which we can assign things so that they
207 * won't be optimized away because we didn't use the value.
208 */
209 u_int32_t no_optimize;
210
211 /* the following is used externally (sysctl_hw) */
212 char machine[] = MACHINE; /* from <machine/param.h> */
213 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
214 char cpu_model[128];
215
216 struct user *proc0paddr;
217
218 /* Number of machine cycles per microsecond */
219 u_int64_t cycles_per_usec;
220
221 /* number of cpus in the box. really! */
222 int ncpus;
223
224 #if !defined(MULTIPROCESSOR)
225 /* A single machine check info structure for single CPU configurations. */
226 struct mchkinfo mchkinfo_store;
227 #endif
228
229 struct bootinfo_kernel bootinfo;
230
231 /* For built-in TCDS */
232 #if defined(DEC_3000_300) || defined(DEC_3000_500)
233 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
234 #endif
235
236 struct platform platform;
237
238 u_int32_t vm_phys_size = _VM_PHYS_SIZE;
239
240 #ifdef DDB
241 /* start and end of kernel symbol table */
242 void *ksym_start, *ksym_end;
243 #endif
244
245 /* for cpu_sysctl() */
246 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
247 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
248 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
249
250 /*
251 * XXX This should be dynamically sized, but we have the chicken-egg problem!
252 * XXX it should also be larger than it is, because not all of the mddt
253 * XXX clusters end up being used for VM.
254 */
255 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
256 int mem_cluster_cnt;
257
258 int cpu_dump __P((void));
259 int cpu_dumpsize __P((void));
260 u_long cpu_dump_mempagecnt __P((void));
261 void dumpsys __P((void));
262 void identifycpu __P((void));
263 void netintr __P((void));
264 void printregs __P((struct reg *));
265
266 void
267 alpha_init(pfn, ptb, bim, bip, biv)
268 u_long pfn; /* first free PFN number */
269 u_long ptb; /* PFN of current level 1 page table */
270 u_long bim; /* bootinfo magic */
271 u_long bip; /* bootinfo pointer */
272 u_long biv; /* bootinfo version */
273 {
274 extern char kernel_text[], _end[];
275 struct mddt *mddtp;
276 struct mddt_cluster *memc;
277 int i, mddtweird;
278 struct vm_physseg *vps;
279 vaddr_t kernstart, kernend;
280 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
281 vsize_t size;
282 char *p;
283 caddr_t v;
284 char *bootinfo_msg;
285
286 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
287
288 /*
289 * Turn off interrupts (not mchecks) and floating point.
290 * Make sure the instruction and data streams are consistent.
291 */
292 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
293 alpha_pal_wrfen(0);
294 ALPHA_TBIA();
295 alpha_pal_imb();
296
297 #if defined(MULTIPROCESSOR)
298 /*
299 * Set our SysValue to the address of our cpu_info structure.
300 * Secondary processors do this in their spinup trampoline.
301 */
302 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
303 #endif
304
305 /*
306 * Get critical system information (if possible, from the
307 * information provided by the boot program).
308 */
309 bootinfo_msg = NULL;
310 if (bim == BOOTINFO_MAGIC) {
311 if (biv == 0) { /* backward compat */
312 biv = *(u_long *)bip;
313 bip += 8;
314 }
315 switch (biv) {
316 case 1: {
317 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
318
319 bootinfo.ssym = v1p->ssym;
320 bootinfo.esym = v1p->esym;
321 /* hwrpb may not be provided by boot block in v1 */
322 if (v1p->hwrpb != NULL) {
323 bootinfo.hwrpb_phys =
324 ((struct rpb *)v1p->hwrpb)->rpb_phys;
325 bootinfo.hwrpb_size = v1p->hwrpbsize;
326 } else {
327 bootinfo.hwrpb_phys =
328 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
329 bootinfo.hwrpb_size =
330 ((struct rpb *)HWRPB_ADDR)->rpb_size;
331 }
332 bcopy(v1p->boot_flags, bootinfo.boot_flags,
333 min(sizeof v1p->boot_flags,
334 sizeof bootinfo.boot_flags));
335 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
336 min(sizeof v1p->booted_kernel,
337 sizeof bootinfo.booted_kernel));
338 /* booted dev not provided in bootinfo */
339 init_prom_interface((struct rpb *)
340 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
341 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
342 sizeof bootinfo.booted_dev);
343 break;
344 }
345 default:
346 bootinfo_msg = "unknown bootinfo version";
347 goto nobootinfo;
348 }
349 } else {
350 bootinfo_msg = "boot program did not pass bootinfo";
351 nobootinfo:
352 bootinfo.ssym = (u_long)_end;
353 bootinfo.esym = (u_long)_end;
354 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
355 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
356 init_prom_interface((struct rpb *)HWRPB_ADDR);
357 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
358 sizeof bootinfo.boot_flags);
359 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
360 sizeof bootinfo.booted_kernel);
361 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
362 sizeof bootinfo.booted_dev);
363 }
364
365 /*
366 * Initialize the kernel's mapping of the RPB. It's needed for
367 * lots of things.
368 */
369 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
370
371 #if defined(DEC_3000_300) || defined(DEC_3000_500)
372 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
373 hwrpb->rpb_type == ST_DEC_3000_500) {
374 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
375 sizeof(dec_3000_scsiid));
376 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
377 sizeof(dec_3000_scsifast));
378 }
379 #endif
380
381 /*
382 * Remember how many cycles there are per microsecond,
383 * so that we can use delay(). Round up, for safety.
384 */
385 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
386
387 /*
388 * Initalize the (temporary) bootstrap console interface, so
389 * we can use printf until the VM system starts being setup.
390 * The real console is initialized before then.
391 */
392 init_bootstrap_console();
393
394 /* OUTPUT NOW ALLOWED */
395
396 /* delayed from above */
397 if (bootinfo_msg)
398 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
399 bootinfo_msg, bim, bip, biv);
400
401 /* Initialize the trap vectors on the primary processor. */
402 trap_init();
403
404 /*
405 * Find out what hardware we're on, and do basic initialization.
406 */
407 cputype = hwrpb->rpb_type;
408 if (cputype < 0) {
409 /*
410 * At least some white-box systems have SRM which
411 * reports a systype that's the negative of their
412 * blue-box counterpart.
413 */
414 cputype = -cputype;
415 }
416 if (cputype >= ncpuinit) {
417 platform_not_supported();
418 /* NOTREACHED */
419 }
420 (*cpuinit[cputype].init)();
421 strcpy(cpu_model, platform.model);
422
423 /*
424 * Initalize the real console, so that the bootstrap console is
425 * no longer necessary.
426 */
427 (*platform.cons_init)();
428
429 #ifdef DIAGNOSTIC
430 /* Paranoid sanity checking */
431
432 /* We should always be running on the primary. */
433 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
434
435 /*
436 * On single-CPU systypes, the primary should always be CPU 0,
437 * except on Alpha 8200 systems where the CPU id is related
438 * to the VID, which is related to the Turbo Laser node id.
439 */
440 if (cputype != ST_DEC_21000)
441 assert(hwrpb->rpb_primary_cpu_id == 0);
442 #endif
443
444 /* NO MORE FIRMWARE ACCESS ALLOWED */
445 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
446 /*
447 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
448 * XXX pmap_uses_prom_console() evaluates to non-zero.)
449 */
450 #endif
451
452 /*
453 * find out this system's page size
454 */
455 PAGE_SIZE = hwrpb->rpb_page_size;
456 if (PAGE_SIZE != 8192)
457 panic("page size %d != 8192?!", PAGE_SIZE);
458
459 /*
460 * Initialize PAGE_SIZE-dependent variables.
461 */
462 uvm_setpagesize();
463
464 /*
465 * Find the beginning and end of the kernel (and leave a
466 * bit of space before the beginning for the bootstrap
467 * stack).
468 */
469 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
470 #ifdef DDB
471 ksym_start = (void *)bootinfo.ssym;
472 ksym_end = (void *)bootinfo.esym;
473 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
474 #else
475 kernend = (vaddr_t)round_page((vaddr_t)_end);
476 #endif
477
478 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
479 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
480
481 /*
482 * Find out how much memory is available, by looking at
483 * the memory cluster descriptors. This also tries to do
484 * its best to detect things things that have never been seen
485 * before...
486 */
487 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
488
489 /* MDDT SANITY CHECKING */
490 mddtweird = 0;
491 if (mddtp->mddt_cluster_cnt < 2) {
492 mddtweird = 1;
493 printf("WARNING: weird number of mem clusters: %lu\n",
494 mddtp->mddt_cluster_cnt);
495 }
496
497 #if 0
498 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
499 #endif
500
501 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
502 memc = &mddtp->mddt_clusters[i];
503 #if 0
504 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
505 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
506 #endif
507 totalphysmem += memc->mddt_pg_cnt;
508 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
509 mem_clusters[mem_cluster_cnt].start =
510 ptoa(memc->mddt_pfn);
511 mem_clusters[mem_cluster_cnt].size =
512 ptoa(memc->mddt_pg_cnt);
513 if (memc->mddt_usage & MDDT_mbz ||
514 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
515 memc->mddt_usage & MDDT_PALCODE)
516 mem_clusters[mem_cluster_cnt].size |=
517 PROT_READ;
518 else
519 mem_clusters[mem_cluster_cnt].size |=
520 PROT_READ | PROT_WRITE | PROT_EXEC;
521 mem_cluster_cnt++;
522 }
523
524 if (memc->mddt_usage & MDDT_mbz) {
525 mddtweird = 1;
526 printf("WARNING: mem cluster %d has weird "
527 "usage 0x%lx\n", i, memc->mddt_usage);
528 unknownmem += memc->mddt_pg_cnt;
529 continue;
530 }
531 if (memc->mddt_usage & MDDT_NONVOLATILE) {
532 /* XXX should handle these... */
533 printf("WARNING: skipping non-volatile mem "
534 "cluster %d\n", i);
535 unusedmem += memc->mddt_pg_cnt;
536 continue;
537 }
538 if (memc->mddt_usage & MDDT_PALCODE) {
539 resvmem += memc->mddt_pg_cnt;
540 continue;
541 }
542
543 /*
544 * We have a memory cluster available for system
545 * software use. We must determine if this cluster
546 * holds the kernel.
547 */
548 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
549 /*
550 * XXX If the kernel uses the PROM console, we only use the
551 * XXX memory after the kernel in the first system segment,
552 * XXX to avoid clobbering prom mapping, data, etc.
553 */
554 if (!pmap_uses_prom_console() || physmem == 0) {
555 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
556 physmem += memc->mddt_pg_cnt;
557 pfn0 = memc->mddt_pfn;
558 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
559 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
560 /*
561 * Must compute the location of the kernel
562 * within the segment.
563 */
564 #if 0
565 printf("Cluster %d contains kernel\n", i);
566 #endif
567 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
568 if (!pmap_uses_prom_console()) {
569 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
570 if (pfn0 < kernstartpfn) {
571 /*
572 * There is a chunk before the kernel.
573 */
574 #if 0
575 printf("Loading chunk before kernel: "
576 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
577 #endif
578 uvm_page_physload(pfn0, kernstartpfn,
579 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
580 }
581 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
582 }
583 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
584 if (kernendpfn < pfn1) {
585 /*
586 * There is a chunk after the kernel.
587 */
588 #if 0
589 printf("Loading chunk after kernel: "
590 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
591 #endif
592 uvm_page_physload(kernendpfn, pfn1,
593 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
594 }
595 } else {
596 /*
597 * Just load this cluster as one chunk.
598 */
599 #if 0
600 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
601 pfn0, pfn1);
602 #endif
603 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
604 VM_FREELIST_DEFAULT);
605 }
606 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
607 }
608 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
609 }
610
611 /*
612 * Dump out the MDDT if it looks odd...
613 */
614 if (mddtweird) {
615 printf("\n");
616 printf("complete memory cluster information:\n");
617 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
618 printf("mddt %d:\n", i);
619 printf("\tpfn %lx\n",
620 mddtp->mddt_clusters[i].mddt_pfn);
621 printf("\tcnt %lx\n",
622 mddtp->mddt_clusters[i].mddt_pg_cnt);
623 printf("\ttest %lx\n",
624 mddtp->mddt_clusters[i].mddt_pg_test);
625 printf("\tbva %lx\n",
626 mddtp->mddt_clusters[i].mddt_v_bitaddr);
627 printf("\tbpa %lx\n",
628 mddtp->mddt_clusters[i].mddt_p_bitaddr);
629 printf("\tbcksum %lx\n",
630 mddtp->mddt_clusters[i].mddt_bit_cksum);
631 printf("\tusage %lx\n",
632 mddtp->mddt_clusters[i].mddt_usage);
633 }
634 printf("\n");
635 }
636
637 if (totalphysmem == 0)
638 panic("can't happen: system seems to have no memory!");
639 maxmem = physmem;
640 #if 0
641 printf("totalphysmem = %d\n", totalphysmem);
642 printf("physmem = %d\n", physmem);
643 printf("resvmem = %d\n", resvmem);
644 printf("unusedmem = %d\n", unusedmem);
645 printf("unknownmem = %d\n", unknownmem);
646 #endif
647
648 /*
649 * Adjust some parameters if the amount of physmem
650 * available would cause us to croak. This is completely
651 * eyeballed and isn't meant to be the final answer.
652 * vm_phys_size is probably the only one to really worry
653 * about.
654 *
655 * It's for booting a GENERIC kernel on a large memory platform.
656 */
657 if (physmem >= atop(128 * 1024 * 1024))
658 vm_phys_size <<= 2;
659
660 /*
661 * Initialize error message buffer (at end of core).
662 */
663 {
664 vsize_t sz = (vsize_t)round_page((vaddr_t)MSGBUFSIZE);
665 vsize_t reqsz = sz;
666
667 vps = &vm_physmem[vm_nphysseg - 1];
668
669 /* shrink so that it'll fit in the last segment */
670 if ((vps->avail_end - vps->avail_start) < atop(sz))
671 sz = ptoa(vps->avail_end - vps->avail_start);
672
673 vps->end -= atop(sz);
674 vps->avail_end -= atop(sz);
675 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
676 initmsgbuf(msgbufaddr, sz);
677
678 /* Remove the last segment if it now has no pages. */
679 if (vps->start == vps->end)
680 vm_nphysseg--;
681
682 /* warn if the message buffer had to be shrunk */
683 if (sz != reqsz)
684 printf("WARNING: %ld bytes not available for msgbuf "
685 "in last cluster (%ld used)\n", reqsz, sz);
686
687 }
688
689 /*
690 * Init mapping for u page(s) for proc 0
691 */
692 proc0.p_addr = proc0paddr =
693 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
694
695 /*
696 * Allocate space for system data structures. These data structures
697 * are allocated here instead of cpu_startup() because physical
698 * memory is directly addressable. We don't have to map these into
699 * virtual address space.
700 */
701 size = (vsize_t)allocsys(NULL, NULL);
702 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
703 if ((allocsys(v, NULL) - v) != size)
704 panic("alpha_init: table size inconsistency");
705
706 /*
707 * Initialize the virtual memory system, and set the
708 * page table base register in proc 0's PCB.
709 */
710 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
711 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
712
713 /*
714 * Initialize the rest of proc 0's PCB, and cache its physical
715 * address.
716 */
717 proc0.p_md.md_pcbpaddr =
718 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
719
720 /*
721 * Set the kernel sp, reserving space for an (empty) trapframe,
722 * and make proc0's trapframe pointer point to it for sanity.
723 */
724 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
725 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
726 proc0.p_md.md_tf =
727 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
728
729 #if defined(MULTIPROCESSOR)
730 /*
731 * Initialize the primary CPU's idle PCB to proc0's, until
732 * autoconfiguration runs (it will get its own idle PCB there).
733 */
734 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
735 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
736 #endif
737
738 /*
739 * Look at arguments passed to us and compute boothowto.
740 */
741
742 boothowto = RB_SINGLE;
743 #ifdef KADB
744 boothowto |= RB_KDB;
745 #endif
746 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
747 /*
748 * Note that we'd really like to differentiate case here,
749 * but the Alpha AXP Architecture Reference Manual
750 * says that we shouldn't.
751 */
752 switch (*p) {
753 case 'a': /* autoboot */
754 case 'A':
755 boothowto &= ~RB_SINGLE;
756 break;
757
758 #ifdef DEBUG
759 case 'c': /* crash dump immediately after autoconfig */
760 case 'C':
761 boothowto |= RB_DUMP;
762 break;
763 #endif
764
765 #if defined(KGDB) || defined(DDB)
766 case 'd': /* break into the kernel debugger ASAP */
767 case 'D':
768 boothowto |= RB_KDB;
769 break;
770 #endif
771
772 case 'h': /* always halt, never reboot */
773 case 'H':
774 boothowto |= RB_HALT;
775 break;
776
777 #if 0
778 case 'm': /* mini root present in memory */
779 case 'M':
780 boothowto |= RB_MINIROOT;
781 break;
782 #endif
783
784 case 'n': /* askname */
785 case 'N':
786 boothowto |= RB_ASKNAME;
787 break;
788
789 case 's': /* single-user (default, supported for sanity) */
790 case 'S':
791 boothowto |= RB_SINGLE;
792 break;
793
794 case '-':
795 /*
796 * Just ignore this. It's not required, but it's
797 * common for it to be passed regardless.
798 */
799 break;
800
801 default:
802 printf("Unrecognized boot flag '%c'.\n", *p);
803 break;
804 }
805 }
806
807
808 /*
809 * Figure out the number of cpus in the box, from RPB fields.
810 * Really. We mean it.
811 */
812 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
813 struct pcs *pcsp;
814
815 pcsp = LOCATE_PCS(hwrpb, i);
816 if ((pcsp->pcs_flags & PCS_PP) != 0)
817 ncpus++;
818 }
819
820 /*
821 * Initialize debuggers, and break into them if appropriate.
822 */
823 #ifdef DDB
824 db_machine_init();
825 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
826 ksym_start, ksym_end);
827 if (boothowto & RB_KDB)
828 Debugger();
829 #endif
830 #ifdef KGDB
831 if (boothowto & RB_KDB)
832 kgdb_connect(0);
833 #endif
834 /*
835 * Figure out our clock frequency, from RPB fields.
836 */
837 hz = hwrpb->rpb_intr_freq >> 12;
838 if (!(60 <= hz && hz <= 10240)) {
839 hz = 1024;
840 #ifdef DIAGNOSTIC
841 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
842 hwrpb->rpb_intr_freq, hz);
843 #endif
844 }
845 }
846
847 void
848 consinit()
849 {
850
851 /*
852 * Everything related to console initialization is done
853 * in alpha_init().
854 */
855 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
856 printf("consinit: %susing prom console\n",
857 pmap_uses_prom_console() ? "" : "not ");
858 #endif
859 }
860
861 #include "pckbc.h"
862 #include "pckbd.h"
863 #if (NPCKBC > 0) && (NPCKBD == 0)
864
865 #include <dev/ic/pckbcvar.h>
866
867 /*
868 * This is called by the pbkbc driver if no pckbd is configured.
869 * On the i386, it is used to glue in the old, deprecated console
870 * code. On the Alpha, it does nothing.
871 */
872 int
873 pckbc_machdep_cnattach(kbctag, kbcslot)
874 pckbc_tag_t kbctag;
875 pckbc_slot_t kbcslot;
876 {
877
878 return (ENXIO);
879 }
880 #endif /* NPCKBC > 0 && NPCKBD == 0 */
881
882 void
883 cpu_startup()
884 {
885 register unsigned i;
886 int base, residual;
887 vaddr_t minaddr, maxaddr;
888 vsize_t size;
889 char pbuf[9];
890 #if defined(DEBUG)
891 extern int pmapdebug;
892 int opmapdebug = pmapdebug;
893
894 pmapdebug = 0;
895 #endif
896
897 /*
898 * Good {morning,afternoon,evening,night}.
899 */
900 printf(version);
901 identifycpu();
902 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
903 printf("total memory = %s\n", pbuf);
904 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
905 printf("(%s reserved for PROM, ", pbuf);
906 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
907 printf("%s used by NetBSD)\n", pbuf);
908 if (unusedmem) {
909 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
910 printf("WARNING: unused memory = %s\n", pbuf);
911 }
912 if (unknownmem) {
913 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
914 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
915 }
916
917 /*
918 * Allocate virtual address space for file I/O buffers.
919 * Note they are different than the array of headers, 'buf',
920 * and usually occupy more virtual memory than physical.
921 */
922 size = MAXBSIZE * nbuf;
923 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
924 NULL, UVM_UNKNOWN_OFFSET,
925 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
926 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
927 panic("startup: cannot allocate VM for buffers");
928 base = bufpages / nbuf;
929 residual = bufpages % nbuf;
930 for (i = 0; i < nbuf; i++) {
931 vsize_t curbufsize;
932 vaddr_t curbuf;
933 struct vm_page *pg;
934
935 /*
936 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
937 * that MAXBSIZE space, we allocate and map (base+1) pages
938 * for the first "residual" buffers, and then we allocate
939 * "base" pages for the rest.
940 */
941 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
942 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
943
944 while (curbufsize) {
945 pg = uvm_pagealloc(NULL, 0, NULL, 0);
946 if (pg == NULL)
947 panic("cpu_startup: not enough memory for "
948 "buffer cache");
949 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
950 VM_PROT_READ|VM_PROT_WRITE);
951 curbuf += PAGE_SIZE;
952 curbufsize -= PAGE_SIZE;
953 }
954 }
955 /*
956 * Allocate a submap for exec arguments. This map effectively
957 * limits the number of processes exec'ing at any time.
958 */
959 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
960 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
961
962 /*
963 * Allocate a submap for physio
964 */
965 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
966 VM_PHYS_SIZE, 0, FALSE, NULL);
967
968 /*
969 * No need to allocate an mbuf cluster submap. Mbuf clusters
970 * are allocated via the pool allocator, and we use K0SEG to
971 * map those pages.
972 */
973
974 #if defined(DEBUG)
975 pmapdebug = opmapdebug;
976 #endif
977 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
978 printf("avail memory = %s\n", pbuf);
979 #if 0
980 {
981 extern u_long pmap_pages_stolen;
982
983 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
984 printf("stolen memory for VM structures = %s\n", pbuf);
985 }
986 #endif
987 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
988 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
989
990 /*
991 * Set up buffers, so they can be used to read disk labels.
992 */
993 bufinit();
994
995 /*
996 * Set up the HWPCB so that it's safe to configure secondary
997 * CPUs.
998 */
999 hwrpb_primary_init();
1000 }
1001
1002 /*
1003 * Retrieve the platform name from the DSR.
1004 */
1005 const char *
1006 alpha_dsr_sysname()
1007 {
1008 struct dsrdb *dsr;
1009 const char *sysname;
1010
1011 /*
1012 * DSR does not exist on early HWRPB versions.
1013 */
1014 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1015 return (NULL);
1016
1017 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1018 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1019 sizeof(u_int64_t)));
1020 return (sysname);
1021 }
1022
1023 /*
1024 * Lookup the system specified system variation in the provided table,
1025 * returning the model string on match.
1026 */
1027 const char *
1028 alpha_variation_name(variation, avtp)
1029 u_int64_t variation;
1030 const struct alpha_variation_table *avtp;
1031 {
1032 int i;
1033
1034 for (i = 0; avtp[i].avt_model != NULL; i++)
1035 if (avtp[i].avt_variation == variation)
1036 return (avtp[i].avt_model);
1037 return (NULL);
1038 }
1039
1040 /*
1041 * Generate a default platform name based for unknown system variations.
1042 */
1043 const char *
1044 alpha_unknown_sysname()
1045 {
1046 static char s[128]; /* safe size */
1047
1048 sprintf(s, "%s family, unknown model variation 0x%lx",
1049 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1050 return ((const char *)s);
1051 }
1052
1053 void
1054 identifycpu()
1055 {
1056 char *s;
1057
1058 /*
1059 * print out CPU identification information.
1060 */
1061 printf("%s", cpu_model);
1062 for(s = cpu_model; *s; ++s)
1063 if(strncasecmp(s, "MHz", 3) == 0)
1064 goto skipMHz;
1065 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1066 skipMHz:
1067 printf("\n");
1068 printf("%ld byte page size, %d processor%s.\n",
1069 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1070 #if 0
1071 /* this isn't defined for any systems that we run on? */
1072 printf("serial number 0x%lx 0x%lx\n",
1073 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1074
1075 /* and these aren't particularly useful! */
1076 printf("variation: 0x%lx, revision 0x%lx\n",
1077 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1078 #endif
1079 }
1080
1081 int waittime = -1;
1082 struct pcb dumppcb;
1083
1084 void
1085 cpu_reboot(howto, bootstr)
1086 int howto;
1087 char *bootstr;
1088 {
1089 #if defined(MULTIPROCESSOR)
1090 #if 0 /* XXX See below. */
1091 u_long cpu_id;
1092 #endif
1093 #endif
1094
1095 #if defined(MULTIPROCESSOR)
1096 /* We must be running on the primary CPU. */
1097 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1098 panic("cpu_reboot: not on primary CPU!");
1099 #endif
1100
1101 /* If system is cold, just halt. */
1102 if (cold) {
1103 howto |= RB_HALT;
1104 goto haltsys;
1105 }
1106
1107 /* If "always halt" was specified as a boot flag, obey. */
1108 if ((boothowto & RB_HALT) != 0)
1109 howto |= RB_HALT;
1110
1111 boothowto = howto;
1112 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1113 waittime = 0;
1114 vfs_shutdown();
1115 /*
1116 * If we've been adjusting the clock, the todr
1117 * will be out of synch; adjust it now.
1118 */
1119 resettodr();
1120 }
1121
1122 /* Disable interrupts. */
1123 splhigh();
1124
1125 /* If rebooting and a dump is requested do it. */
1126 #if 0
1127 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1128 #else
1129 if (howto & RB_DUMP)
1130 #endif
1131 dumpsys();
1132
1133 haltsys:
1134
1135 /* run any shutdown hooks */
1136 doshutdownhooks();
1137
1138 #if defined(MULTIPROCESSOR)
1139 #if 0 /* XXX doesn't work when called from here?! */
1140 /* Kill off any secondary CPUs. */
1141 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1142 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1143 cpu_info[cpu_id].ci_softc == NULL)
1144 continue;
1145 cpu_halt_secondary(cpu_id);
1146 }
1147 #endif
1148 #endif
1149
1150 #ifdef BOOTKEY
1151 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1152 cnpollc(1); /* for proper keyboard command handling */
1153 cngetc();
1154 cnpollc(0);
1155 printf("\n");
1156 #endif
1157
1158 /* Finally, powerdown/halt/reboot the system. */
1159 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1160 platform.powerdown != NULL) {
1161 (*platform.powerdown)();
1162 printf("WARNING: powerdown failed!\n");
1163 }
1164 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1165 prom_halt(howto & RB_HALT);
1166 /*NOTREACHED*/
1167 }
1168
1169 /*
1170 * These variables are needed by /sbin/savecore
1171 */
1172 u_long dumpmag = 0x8fca0101; /* magic number */
1173 int dumpsize = 0; /* pages */
1174 long dumplo = 0; /* blocks */
1175
1176 /*
1177 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1178 */
1179 int
1180 cpu_dumpsize()
1181 {
1182 int size;
1183
1184 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1185 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1186 if (roundup(size, dbtob(1)) != dbtob(1))
1187 return -1;
1188
1189 return (1);
1190 }
1191
1192 /*
1193 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1194 */
1195 u_long
1196 cpu_dump_mempagecnt()
1197 {
1198 u_long i, n;
1199
1200 n = 0;
1201 for (i = 0; i < mem_cluster_cnt; i++)
1202 n += atop(mem_clusters[i].size);
1203 return (n);
1204 }
1205
1206 /*
1207 * cpu_dump: dump machine-dependent kernel core dump headers.
1208 */
1209 int
1210 cpu_dump()
1211 {
1212 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1213 char buf[dbtob(1)];
1214 kcore_seg_t *segp;
1215 cpu_kcore_hdr_t *cpuhdrp;
1216 phys_ram_seg_t *memsegp;
1217 int i;
1218
1219 dump = bdevsw[major(dumpdev)].d_dump;
1220
1221 bzero(buf, sizeof buf);
1222 segp = (kcore_seg_t *)buf;
1223 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1224 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1225 ALIGN(sizeof(*cpuhdrp))];
1226
1227 /*
1228 * Generate a segment header.
1229 */
1230 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1231 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1232
1233 /*
1234 * Add the machine-dependent header info.
1235 */
1236 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1237 cpuhdrp->page_size = PAGE_SIZE;
1238 cpuhdrp->nmemsegs = mem_cluster_cnt;
1239
1240 /*
1241 * Fill in the memory segment descriptors.
1242 */
1243 for (i = 0; i < mem_cluster_cnt; i++) {
1244 memsegp[i].start = mem_clusters[i].start;
1245 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1246 }
1247
1248 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1249 }
1250
1251 /*
1252 * This is called by main to set dumplo and dumpsize.
1253 * Dumps always skip the first NBPG of disk space
1254 * in case there might be a disk label stored there.
1255 * If there is extra space, put dump at the end to
1256 * reduce the chance that swapping trashes it.
1257 */
1258 void
1259 cpu_dumpconf()
1260 {
1261 int nblks, dumpblks; /* size of dump area */
1262 int maj;
1263
1264 if (dumpdev == NODEV)
1265 goto bad;
1266 maj = major(dumpdev);
1267 if (maj < 0 || maj >= nblkdev)
1268 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1269 if (bdevsw[maj].d_psize == NULL)
1270 goto bad;
1271 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1272 if (nblks <= ctod(1))
1273 goto bad;
1274
1275 dumpblks = cpu_dumpsize();
1276 if (dumpblks < 0)
1277 goto bad;
1278 dumpblks += ctod(cpu_dump_mempagecnt());
1279
1280 /* If dump won't fit (incl. room for possible label), punt. */
1281 if (dumpblks > (nblks - ctod(1)))
1282 goto bad;
1283
1284 /* Put dump at end of partition */
1285 dumplo = nblks - dumpblks;
1286
1287 /* dumpsize is in page units, and doesn't include headers. */
1288 dumpsize = cpu_dump_mempagecnt();
1289 return;
1290
1291 bad:
1292 dumpsize = 0;
1293 return;
1294 }
1295
1296 /*
1297 * Dump the kernel's image to the swap partition.
1298 */
1299 #define BYTES_PER_DUMP NBPG
1300
1301 void
1302 dumpsys()
1303 {
1304 u_long totalbytesleft, bytes, i, n, memcl;
1305 u_long maddr;
1306 int psize;
1307 daddr_t blkno;
1308 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1309 int error;
1310
1311 /* Save registers. */
1312 savectx(&dumppcb);
1313
1314 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1315 if (dumpdev == NODEV)
1316 return;
1317
1318 /*
1319 * For dumps during autoconfiguration,
1320 * if dump device has already configured...
1321 */
1322 if (dumpsize == 0)
1323 cpu_dumpconf();
1324 if (dumplo <= 0) {
1325 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1326 minor(dumpdev));
1327 return;
1328 }
1329 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1330 minor(dumpdev), dumplo);
1331
1332 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1333 printf("dump ");
1334 if (psize == -1) {
1335 printf("area unavailable\n");
1336 return;
1337 }
1338
1339 /* XXX should purge all outstanding keystrokes. */
1340
1341 if ((error = cpu_dump()) != 0)
1342 goto err;
1343
1344 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1345 blkno = dumplo + cpu_dumpsize();
1346 dump = bdevsw[major(dumpdev)].d_dump;
1347 error = 0;
1348
1349 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1350 maddr = mem_clusters[memcl].start;
1351 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1352
1353 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1354
1355 /* Print out how many MBs we to go. */
1356 if ((totalbytesleft % (1024*1024)) == 0)
1357 printf("%ld ", totalbytesleft / (1024 * 1024));
1358
1359 /* Limit size for next transfer. */
1360 n = bytes - i;
1361 if (n > BYTES_PER_DUMP)
1362 n = BYTES_PER_DUMP;
1363
1364 error = (*dump)(dumpdev, blkno,
1365 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1366 if (error)
1367 goto err;
1368 maddr += n;
1369 blkno += btodb(n); /* XXX? */
1370
1371 /* XXX should look for keystrokes, to cancel. */
1372 }
1373 }
1374
1375 err:
1376 switch (error) {
1377
1378 case ENXIO:
1379 printf("device bad\n");
1380 break;
1381
1382 case EFAULT:
1383 printf("device not ready\n");
1384 break;
1385
1386 case EINVAL:
1387 printf("area improper\n");
1388 break;
1389
1390 case EIO:
1391 printf("i/o error\n");
1392 break;
1393
1394 case EINTR:
1395 printf("aborted from console\n");
1396 break;
1397
1398 case 0:
1399 printf("succeeded\n");
1400 break;
1401
1402 default:
1403 printf("error %d\n", error);
1404 break;
1405 }
1406 printf("\n\n");
1407 delay(1000);
1408 }
1409
1410 void
1411 frametoreg(framep, regp)
1412 struct trapframe *framep;
1413 struct reg *regp;
1414 {
1415
1416 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1417 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1418 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1419 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1420 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1421 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1422 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1423 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1424 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1425 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1426 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1427 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1428 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1429 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1430 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1431 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1432 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1433 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1434 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1435 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1436 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1437 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1438 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1439 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1440 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1441 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1442 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1443 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1444 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1445 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1446 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1447 regp->r_regs[R_ZERO] = 0;
1448 }
1449
1450 void
1451 regtoframe(regp, framep)
1452 struct reg *regp;
1453 struct trapframe *framep;
1454 {
1455
1456 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1457 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1458 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1459 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1460 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1461 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1462 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1463 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1464 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1465 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1466 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1467 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1468 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1469 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1470 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1471 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1472 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1473 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1474 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1475 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1476 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1477 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1478 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1479 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1480 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1481 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1482 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1483 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1484 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1485 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1486 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1487 /* ??? = regp->r_regs[R_ZERO]; */
1488 }
1489
1490 void
1491 printregs(regp)
1492 struct reg *regp;
1493 {
1494 int i;
1495
1496 for (i = 0; i < 32; i++)
1497 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1498 i & 1 ? "\n" : "\t");
1499 }
1500
1501 void
1502 regdump(framep)
1503 struct trapframe *framep;
1504 {
1505 struct reg reg;
1506
1507 frametoreg(framep, ®);
1508 reg.r_regs[R_SP] = alpha_pal_rdusp();
1509
1510 printf("REGISTERS:\n");
1511 printregs(®);
1512 }
1513
1514 #ifdef DEBUG
1515 int sigdebug = 0;
1516 int sigpid = 0;
1517 #define SDB_FOLLOW 0x01
1518 #define SDB_KSTACK 0x02
1519 #endif
1520
1521 /*
1522 * Send an interrupt to process.
1523 */
1524 void
1525 sendsig(catcher, sig, mask, code)
1526 sig_t catcher;
1527 int sig;
1528 sigset_t *mask;
1529 u_long code;
1530 {
1531 struct proc *p = curproc;
1532 struct sigcontext *scp, ksc;
1533 struct trapframe *frame;
1534 struct sigacts *psp = p->p_sigacts;
1535 int onstack, fsize, rndfsize;
1536
1537 frame = p->p_md.md_tf;
1538
1539 /* Do we need to jump onto the signal stack? */
1540 onstack =
1541 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1542 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1543
1544 /* Allocate space for the signal handler context. */
1545 fsize = sizeof(ksc);
1546 rndfsize = ((fsize + 15) / 16) * 16;
1547
1548 if (onstack)
1549 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1550 psp->ps_sigstk.ss_size);
1551 else
1552 scp = (struct sigcontext *)(alpha_pal_rdusp());
1553 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1554
1555 #ifdef DEBUG
1556 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1557 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1558 sig, &onstack, scp);
1559 #endif
1560
1561 /* Build stack frame for signal trampoline. */
1562 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1563 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1564
1565 /* Save register context. */
1566 frametoreg(frame, (struct reg *)ksc.sc_regs);
1567 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1568 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1569
1570 /* save the floating-point state, if necessary, then copy it. */
1571 if (p == fpcurproc) {
1572 alpha_pal_wrfen(1);
1573 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1574 alpha_pal_wrfen(0);
1575 fpcurproc = NULL;
1576 }
1577 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1578 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1579 sizeof(struct fpreg));
1580 ksc.sc_fp_control = 0; /* XXX ? */
1581 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1582 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1583
1584 /* Save signal stack. */
1585 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1586
1587 /* Save signal mask. */
1588 ksc.sc_mask = *mask;
1589
1590 #ifdef COMPAT_13
1591 /*
1592 * XXX We always have to save an old style signal mask because
1593 * XXX we might be delivering a signal to a process which will
1594 * XXX escape from the signal in a non-standard way and invoke
1595 * XXX sigreturn() directly.
1596 */
1597 {
1598 /* Note: it's a long in the stack frame. */
1599 sigset13_t mask13;
1600
1601 native_sigset_to_sigset13(mask, &mask13);
1602 ksc.__sc_mask13 = mask13;
1603 }
1604 #endif
1605
1606 #ifdef COMPAT_OSF1
1607 /*
1608 * XXX Create an OSF/1-style sigcontext and associated goo.
1609 */
1610 #endif
1611
1612 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1613 /*
1614 * Process has trashed its stack; give it an illegal
1615 * instruction to halt it in its tracks.
1616 */
1617 #ifdef DEBUG
1618 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1619 printf("sendsig(%d): copyout failed on sig %d\n",
1620 p->p_pid, sig);
1621 #endif
1622 sigexit(p, SIGILL);
1623 /* NOTREACHED */
1624 }
1625 #ifdef DEBUG
1626 if (sigdebug & SDB_FOLLOW)
1627 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1628 scp, code);
1629 #endif
1630
1631 /* Set up the registers to return to sigcode. */
1632 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1633 frame->tf_regs[FRAME_A0] = sig;
1634 frame->tf_regs[FRAME_A1] = code;
1635 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1636 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1637 alpha_pal_wrusp((unsigned long)scp);
1638
1639 /* Remember that we're now on the signal stack. */
1640 if (onstack)
1641 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1642
1643 #ifdef DEBUG
1644 if (sigdebug & SDB_FOLLOW)
1645 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1646 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1647 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1648 printf("sendsig(%d): sig %d returns\n",
1649 p->p_pid, sig);
1650 #endif
1651 }
1652
1653 /*
1654 * System call to cleanup state after a signal
1655 * has been taken. Reset signal mask and
1656 * stack state from context left by sendsig (above).
1657 * Return to previous pc and psl as specified by
1658 * context left by sendsig. Check carefully to
1659 * make sure that the user has not modified the
1660 * psl to gain improper privileges or to cause
1661 * a machine fault.
1662 */
1663 /* ARGSUSED */
1664 int
1665 sys___sigreturn14(p, v, retval)
1666 struct proc *p;
1667 void *v;
1668 register_t *retval;
1669 {
1670 struct sys___sigreturn14_args /* {
1671 syscallarg(struct sigcontext *) sigcntxp;
1672 } */ *uap = v;
1673 struct sigcontext *scp, ksc;
1674
1675 /*
1676 * The trampoline code hands us the context.
1677 * It is unsafe to keep track of it ourselves, in the event that a
1678 * program jumps out of a signal handler.
1679 */
1680 scp = SCARG(uap, sigcntxp);
1681 #ifdef DEBUG
1682 if (sigdebug & SDB_FOLLOW)
1683 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1684 #endif
1685 if (ALIGN(scp) != (u_int64_t)scp)
1686 return (EINVAL);
1687
1688 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1689 return (EFAULT);
1690
1691 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1692 return (EINVAL);
1693
1694 /* Restore register context. */
1695 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1696 p->p_md.md_tf->tf_regs[FRAME_PS] =
1697 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1698
1699 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1700 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1701
1702 /* XXX ksc.sc_ownedfp ? */
1703 if (p == fpcurproc)
1704 fpcurproc = NULL;
1705 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1706 sizeof(struct fpreg));
1707 /* XXX ksc.sc_fp_control ? */
1708
1709 /* Restore signal stack. */
1710 if (ksc.sc_onstack & SS_ONSTACK)
1711 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1712 else
1713 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1714
1715 /* Restore signal mask. */
1716 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1717
1718 #ifdef DEBUG
1719 if (sigdebug & SDB_FOLLOW)
1720 printf("sigreturn(%d): returns\n", p->p_pid);
1721 #endif
1722 return (EJUSTRETURN);
1723 }
1724
1725 /*
1726 * machine dependent system variables.
1727 */
1728 int
1729 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1730 int *name;
1731 u_int namelen;
1732 void *oldp;
1733 size_t *oldlenp;
1734 void *newp;
1735 size_t newlen;
1736 struct proc *p;
1737 {
1738 dev_t consdev;
1739
1740 /* all sysctl names at this level are terminal */
1741 if (namelen != 1)
1742 return (ENOTDIR); /* overloaded */
1743
1744 switch (name[0]) {
1745 case CPU_CONSDEV:
1746 if (cn_tab != NULL)
1747 consdev = cn_tab->cn_dev;
1748 else
1749 consdev = NODEV;
1750 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1751 sizeof consdev));
1752
1753 case CPU_ROOT_DEVICE:
1754 return (sysctl_rdstring(oldp, oldlenp, newp,
1755 root_device->dv_xname));
1756
1757 case CPU_UNALIGNED_PRINT:
1758 return (sysctl_int(oldp, oldlenp, newp, newlen,
1759 &alpha_unaligned_print));
1760
1761 case CPU_UNALIGNED_FIX:
1762 return (sysctl_int(oldp, oldlenp, newp, newlen,
1763 &alpha_unaligned_fix));
1764
1765 case CPU_UNALIGNED_SIGBUS:
1766 return (sysctl_int(oldp, oldlenp, newp, newlen,
1767 &alpha_unaligned_sigbus));
1768
1769 case CPU_BOOTED_KERNEL:
1770 return (sysctl_rdstring(oldp, oldlenp, newp,
1771 bootinfo.booted_kernel));
1772
1773 default:
1774 return (EOPNOTSUPP);
1775 }
1776 /* NOTREACHED */
1777 }
1778
1779 /*
1780 * Set registers on exec.
1781 */
1782 void
1783 setregs(p, pack, stack)
1784 register struct proc *p;
1785 struct exec_package *pack;
1786 u_long stack;
1787 {
1788 struct trapframe *tfp = p->p_md.md_tf;
1789 #ifdef DEBUG
1790 int i;
1791 #endif
1792
1793 #ifdef DEBUG
1794 /*
1795 * Crash and dump, if the user requested it.
1796 */
1797 if (boothowto & RB_DUMP)
1798 panic("crash requested by boot flags");
1799 #endif
1800
1801 #ifdef DEBUG
1802 for (i = 0; i < FRAME_SIZE; i++)
1803 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1804 #else
1805 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1806 #endif
1807 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1808 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1809 | FPCR_UNFD
1810 | FPCR_UNDZ
1811 | FPCR_DYN(FP_RN)
1812 | FPCR_OVFD
1813 | FPCR_DZED
1814 | FPCR_INVD
1815 | FPCR_DNZ;
1816 alpha_pal_wrusp(stack);
1817 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1818 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1819
1820 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1821 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1822 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1823 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1824 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1825
1826 p->p_md.md_flags &= ~MDP_FPUSED;
1827 if (fpcurproc == p)
1828 fpcurproc = NULL;
1829 }
1830
1831 void
1832 netintr()
1833 {
1834 int n, s;
1835
1836 s = splhigh();
1837 n = netisr;
1838 netisr = 0;
1839 splx(s);
1840
1841 #define DONETISR(bit, fn) \
1842 do { \
1843 if (n & (1 << (bit))) \
1844 fn(); \
1845 } while (0)
1846
1847 #include <net/netisr_dispatch.h>
1848
1849 #undef DONETISR
1850 }
1851
1852 void
1853 do_sir()
1854 {
1855 u_int64_t n;
1856
1857 while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
1858 #define COUNT_SOFT uvmexp.softs++
1859
1860 #define DO_SIR(bit, fn) \
1861 do { \
1862 if (n & (bit)) { \
1863 COUNT_SOFT; \
1864 fn; \
1865 } \
1866 } while (0)
1867
1868 DO_SIR(SIR_NET, netintr());
1869 DO_SIR(SIR_CLOCK, softclock());
1870 #if NCOM > 0
1871 DO_SIR(SIR_SERIAL, comsoft());
1872 #endif
1873 #if NZSC_IOASIC > 0
1874 DO_SIR(SIR_SERIAL, zs_ioasic_softintr());
1875 #endif
1876
1877 #undef COUNT_SOFT
1878 #undef DO_SIR
1879 }
1880 }
1881
1882 int
1883 spl0()
1884 {
1885
1886 if (ssir) {
1887 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1888 do_sir();
1889 }
1890
1891 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1892 }
1893
1894 /*
1895 * The following primitives manipulate the run queues. _whichqs tells which
1896 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1897 * into queues, Remrunqueue removes them from queues. The running process is
1898 * on no queue, other processes are on a queue related to p->p_priority,
1899 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1900 * available queues.
1901 */
1902 /*
1903 * setrunqueue(p)
1904 * proc *p;
1905 *
1906 * Call should be made at splclock(), and p->p_stat should be SRUN.
1907 */
1908
1909 void
1910 setrunqueue(p)
1911 struct proc *p;
1912 {
1913 int bit;
1914
1915 /* firewall: p->p_back must be NULL */
1916 if (p->p_back != NULL)
1917 panic("setrunqueue");
1918
1919 bit = p->p_priority >> 2;
1920 whichqs |= (1 << bit);
1921 p->p_forw = (struct proc *)&qs[bit];
1922 p->p_back = qs[bit].ph_rlink;
1923 p->p_back->p_forw = p;
1924 qs[bit].ph_rlink = p;
1925 }
1926
1927 /*
1928 * remrunqueue(p)
1929 *
1930 * Call should be made at splclock().
1931 */
1932 void
1933 remrunqueue(p)
1934 struct proc *p;
1935 {
1936 int bit;
1937
1938 bit = p->p_priority >> 2;
1939 if ((whichqs & (1 << bit)) == 0)
1940 panic("remrunqueue");
1941
1942 p->p_back->p_forw = p->p_forw;
1943 p->p_forw->p_back = p->p_back;
1944 p->p_back = NULL; /* for firewall checking. */
1945
1946 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1947 whichqs &= ~(1 << bit);
1948 }
1949
1950 /*
1951 * Return the best possible estimate of the time in the timeval
1952 * to which tvp points. Unfortunately, we can't read the hardware registers.
1953 * We guarantee that the time will be greater than the value obtained by a
1954 * previous call.
1955 */
1956 void
1957 microtime(tvp)
1958 register struct timeval *tvp;
1959 {
1960 int s = splclock();
1961 static struct timeval lasttime;
1962
1963 *tvp = time;
1964 #ifdef notdef
1965 tvp->tv_usec += clkread();
1966 while (tvp->tv_usec >= 1000000) {
1967 tvp->tv_sec++;
1968 tvp->tv_usec -= 1000000;
1969 }
1970 #endif
1971 if (tvp->tv_sec == lasttime.tv_sec &&
1972 tvp->tv_usec <= lasttime.tv_usec &&
1973 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1974 tvp->tv_sec++;
1975 tvp->tv_usec -= 1000000;
1976 }
1977 lasttime = *tvp;
1978 splx(s);
1979 }
1980
1981 /*
1982 * Wait "n" microseconds.
1983 */
1984 void
1985 delay(n)
1986 unsigned long n;
1987 {
1988 long N = cycles_per_usec * (n);
1989
1990 /*
1991 * XXX Should be written to use RPCC?
1992 */
1993
1994 __asm __volatile(
1995 "# The 2 corresponds to the insn count\n"
1996 "1: subq %2, %1, %0 \n"
1997 " bgt %0, 1b"
1998 : "=r" (N)
1999 : "i" (2), "0" (N));
2000 }
2001
2002 #if defined(COMPAT_OSF1) || 1 /* XXX */
2003 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2004 u_long));
2005
2006 void
2007 cpu_exec_ecoff_setregs(p, epp, stack)
2008 struct proc *p;
2009 struct exec_package *epp;
2010 u_long stack;
2011 {
2012 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2013
2014 setregs(p, epp, stack);
2015 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2016 }
2017
2018 /*
2019 * cpu_exec_ecoff_hook():
2020 * cpu-dependent ECOFF format hook for execve().
2021 *
2022 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2023 *
2024 */
2025 int
2026 cpu_exec_ecoff_hook(p, epp)
2027 struct proc *p;
2028 struct exec_package *epp;
2029 {
2030 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2031 extern struct emul emul_netbsd;
2032 int error;
2033 extern int osf1_exec_ecoff_hook(struct proc *p,
2034 struct exec_package *epp);
2035
2036 switch (execp->f.f_magic) {
2037 #ifdef COMPAT_OSF1
2038 case ECOFF_MAGIC_ALPHA:
2039 error = osf1_exec_ecoff_hook(p, epp);
2040 break;
2041 #endif
2042
2043 case ECOFF_MAGIC_NETBSD_ALPHA:
2044 epp->ep_emul = &emul_netbsd;
2045 error = 0;
2046 break;
2047
2048 default:
2049 error = ENOEXEC;
2050 }
2051 return (error);
2052 }
2053 #endif
2054
2055 int
2056 alpha_pa_access(pa)
2057 u_long pa;
2058 {
2059 int i;
2060
2061 for (i = 0; i < mem_cluster_cnt; i++) {
2062 if (pa < mem_clusters[i].start)
2063 continue;
2064 if ((pa - mem_clusters[i].start) >=
2065 (mem_clusters[i].size & ~PAGE_MASK))
2066 continue;
2067 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2068 }
2069
2070 /*
2071 * Address is not a memory address. If we're secure, disallow
2072 * access. Otherwise, grant read/write.
2073 */
2074 if (securelevel > 0)
2075 return (PROT_NONE);
2076 else
2077 return (PROT_READ | PROT_WRITE);
2078 }
2079
2080 /* XXX XXX BEGIN XXX XXX */
2081 paddr_t alpha_XXX_dmamap_or; /* XXX */
2082 /* XXX */
2083 paddr_t /* XXX */
2084 alpha_XXX_dmamap(v) /* XXX */
2085 vaddr_t v; /* XXX */
2086 { /* XXX */
2087 /* XXX */
2088 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2089 } /* XXX */
2090 /* XXX XXX END XXX XXX */
2091
2092 char *
2093 dot_conv(x)
2094 unsigned long x;
2095 {
2096 int i;
2097 char *xc;
2098 static int next;
2099 static char space[2][20];
2100
2101 xc = space[next ^= 1] + sizeof space[0];
2102 *--xc = '\0';
2103 for (i = 0;; ++i) {
2104 if (i && (i & 3) == 0)
2105 *--xc = '.';
2106 *--xc = "0123456789abcdef"[x & 0xf];
2107 x >>= 4;
2108 if (x == 0)
2109 break;
2110 }
2111 return xc;
2112 }
2113