machdep.c revision 1.207 1 /* $NetBSD: machdep.c,v 1.207 2000/05/26 21:19:22 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.207 2000/05/26 21:19:22 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/sched.h>
91 #include <sys/buf.h>
92 #include <sys/reboot.h>
93 #include <sys/device.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/mman.h>
98 #include <sys/msgbuf.h>
99 #include <sys/ioctl.h>
100 #include <sys/tty.h>
101 #include <sys/user.h>
102 #include <sys/exec.h>
103 #include <sys/exec_ecoff.h>
104 #include <vm/vm.h>
105 #include <sys/sysctl.h>
106 #include <sys/core.h>
107 #include <sys/kcore.h>
108 #include <machine/kcore.h>
109
110 #include <sys/mount.h>
111 #include <sys/syscallargs.h>
112
113 #include <vm/vm_kern.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/conf.h>
125 #include <machine/ieeefp.h>
126
127 #include <net/netisr.h>
128 #include <net/if.h>
129
130 #ifdef INET
131 #include <net/route.h>
132 #include <netinet/in.h>
133 #include <netinet/ip_var.h>
134 #include "arp.h"
135 #if NARP > 0
136 #include <netinet/if_inarp.h>
137 #endif
138 #endif
139 #ifdef INET6
140 # ifndef INET
141 # include <netinet/in.h>
142 # endif
143 #include <netinet/ip6.h>
144 #include <netinet6/ip6_var.h>
145 #endif
146 #ifdef NS
147 #include <netns/ns_var.h>
148 #endif
149 #ifdef ISO
150 #include <netiso/iso.h>
151 #include <netiso/clnp.h>
152 #endif
153 #ifdef CCITT
154 #include <netccitt/x25.h>
155 #include <netccitt/pk.h>
156 #include <netccitt/pk_extern.h>
157 #endif
158 #ifdef NATM
159 #include <netnatm/natm.h>
160 #endif
161 #ifdef NETATALK
162 #include <netatalk/at_extern.h>
163 #endif
164 #include "ppp.h"
165 #if NPPP > 0
166 #include <net/ppp_defs.h>
167 #include <net/if_ppp.h>
168 #endif
169
170 #ifdef DDB
171 #include <machine/db_machdep.h>
172 #include <ddb/db_access.h>
173 #include <ddb/db_sym.h>
174 #include <ddb/db_extern.h>
175 #include <ddb/db_interface.h>
176 #endif
177
178 #include <machine/alpha.h>
179 #include <machine/intrcnt.h>
180
181 #include "com.h"
182 #if NCOM > 0
183 extern void comsoft __P((void));
184 #endif
185 #include "zsc_ioasic.h"
186 #if NZSC_IOASIC > 0
187 extern void zs_ioasic_softintr __P((void));
188 #endif
189
190 vm_map_t exec_map = NULL;
191 vm_map_t mb_map = NULL;
192 vm_map_t phys_map = NULL;
193
194 caddr_t msgbufaddr;
195
196 int maxmem; /* max memory per process */
197
198 int totalphysmem; /* total amount of physical memory in system */
199 int physmem; /* physical memory used by NetBSD + some rsvd */
200 int resvmem; /* amount of memory reserved for PROM */
201 int unusedmem; /* amount of memory for OS that we don't use */
202 int unknownmem; /* amount of memory with an unknown use */
203
204 int cputype; /* system type, from the RPB */
205
206 /*
207 * XXX We need an address to which we can assign things so that they
208 * won't be optimized away because we didn't use the value.
209 */
210 u_int32_t no_optimize;
211
212 /* the following is used externally (sysctl_hw) */
213 char machine[] = MACHINE; /* from <machine/param.h> */
214 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
215 char cpu_model[128];
216
217 struct user *proc0paddr;
218
219 /* Number of machine cycles per microsecond */
220 u_int64_t cycles_per_usec;
221
222 /* number of cpus in the box. really! */
223 int ncpus;
224
225 struct bootinfo_kernel bootinfo;
226
227 /* For built-in TCDS */
228 #if defined(DEC_3000_300) || defined(DEC_3000_500)
229 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
230 #endif
231
232 struct platform platform;
233
234 #ifdef DDB
235 /* start and end of kernel symbol table */
236 void *ksym_start, *ksym_end;
237 #endif
238
239 /* for cpu_sysctl() */
240 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
241 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
242 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
243
244 /*
245 * XXX This should be dynamically sized, but we have the chicken-egg problem!
246 * XXX it should also be larger than it is, because not all of the mddt
247 * XXX clusters end up being used for VM.
248 */
249 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
250 int mem_cluster_cnt;
251
252 int cpu_dump __P((void));
253 int cpu_dumpsize __P((void));
254 u_long cpu_dump_mempagecnt __P((void));
255 void dumpsys __P((void));
256 void identifycpu __P((void));
257 void netintr __P((void));
258 void printregs __P((struct reg *));
259
260 void
261 alpha_init(pfn, ptb, bim, bip, biv)
262 u_long pfn; /* first free PFN number */
263 u_long ptb; /* PFN of current level 1 page table */
264 u_long bim; /* bootinfo magic */
265 u_long bip; /* bootinfo pointer */
266 u_long biv; /* bootinfo version */
267 {
268 extern char kernel_text[], _end[];
269 struct mddt *mddtp;
270 struct mddt_cluster *memc;
271 int i, mddtweird;
272 struct vm_physseg *vps;
273 vaddr_t kernstart, kernend;
274 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
275 vsize_t size;
276 char *p;
277 caddr_t v;
278 char *bootinfo_msg;
279
280 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
281
282 /*
283 * Turn off interrupts (not mchecks) and floating point.
284 * Make sure the instruction and data streams are consistent.
285 */
286 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
287 alpha_pal_wrfen(0);
288 ALPHA_TBIA();
289 alpha_pal_imb();
290
291 #if defined(MULTIPROCESSOR)
292 /*
293 * Set our SysValue to the address of our cpu_info structure.
294 * Secondary processors do this in their spinup trampoline.
295 */
296 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
297 #endif
298
299 /*
300 * Get critical system information (if possible, from the
301 * information provided by the boot program).
302 */
303 bootinfo_msg = NULL;
304 if (bim == BOOTINFO_MAGIC) {
305 if (biv == 0) { /* backward compat */
306 biv = *(u_long *)bip;
307 bip += 8;
308 }
309 switch (biv) {
310 case 1: {
311 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
312
313 bootinfo.ssym = v1p->ssym;
314 bootinfo.esym = v1p->esym;
315 /* hwrpb may not be provided by boot block in v1 */
316 if (v1p->hwrpb != NULL) {
317 bootinfo.hwrpb_phys =
318 ((struct rpb *)v1p->hwrpb)->rpb_phys;
319 bootinfo.hwrpb_size = v1p->hwrpbsize;
320 } else {
321 bootinfo.hwrpb_phys =
322 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
323 bootinfo.hwrpb_size =
324 ((struct rpb *)HWRPB_ADDR)->rpb_size;
325 }
326 bcopy(v1p->boot_flags, bootinfo.boot_flags,
327 min(sizeof v1p->boot_flags,
328 sizeof bootinfo.boot_flags));
329 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
330 min(sizeof v1p->booted_kernel,
331 sizeof bootinfo.booted_kernel));
332 /* booted dev not provided in bootinfo */
333 init_prom_interface((struct rpb *)
334 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
335 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
336 sizeof bootinfo.booted_dev);
337 break;
338 }
339 default:
340 bootinfo_msg = "unknown bootinfo version";
341 goto nobootinfo;
342 }
343 } else {
344 bootinfo_msg = "boot program did not pass bootinfo";
345 nobootinfo:
346 bootinfo.ssym = (u_long)_end;
347 bootinfo.esym = (u_long)_end;
348 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
349 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
350 init_prom_interface((struct rpb *)HWRPB_ADDR);
351 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
352 sizeof bootinfo.boot_flags);
353 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
354 sizeof bootinfo.booted_kernel);
355 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
356 sizeof bootinfo.booted_dev);
357 }
358
359 /*
360 * Initialize the kernel's mapping of the RPB. It's needed for
361 * lots of things.
362 */
363 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
364
365 #if defined(DEC_3000_300) || defined(DEC_3000_500)
366 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
367 hwrpb->rpb_type == ST_DEC_3000_500) {
368 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
369 sizeof(dec_3000_scsiid));
370 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
371 sizeof(dec_3000_scsifast));
372 }
373 #endif
374
375 /*
376 * Remember how many cycles there are per microsecond,
377 * so that we can use delay(). Round up, for safety.
378 */
379 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
380
381 /*
382 * Initalize the (temporary) bootstrap console interface, so
383 * we can use printf until the VM system starts being setup.
384 * The real console is initialized before then.
385 */
386 init_bootstrap_console();
387
388 /* OUTPUT NOW ALLOWED */
389
390 /* delayed from above */
391 if (bootinfo_msg)
392 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
393 bootinfo_msg, bim, bip, biv);
394
395 /* Initialize the trap vectors on the primary processor. */
396 trap_init();
397
398 /*
399 * Find out what hardware we're on, and do basic initialization.
400 */
401 cputype = hwrpb->rpb_type;
402 if (cputype < 0) {
403 /*
404 * At least some white-box systems have SRM which
405 * reports a systype that's the negative of their
406 * blue-box counterpart.
407 */
408 cputype = -cputype;
409 }
410 if (cputype >= ncpuinit) {
411 platform_not_supported();
412 /* NOTREACHED */
413 }
414 (*cpuinit[cputype].init)();
415 strcpy(cpu_model, platform.model);
416
417 /*
418 * Initalize the real console, so that the bootstrap console is
419 * no longer necessary.
420 */
421 (*platform.cons_init)();
422
423 #ifdef DIAGNOSTIC
424 /* Paranoid sanity checking */
425
426 /* We should always be running on the primary. */
427 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
428
429 /*
430 * On single-CPU systypes, the primary should always be CPU 0,
431 * except on Alpha 8200 systems where the CPU id is related
432 * to the VID, which is related to the Turbo Laser node id.
433 */
434 if (cputype != ST_DEC_21000)
435 assert(hwrpb->rpb_primary_cpu_id == 0);
436 #endif
437
438 /* NO MORE FIRMWARE ACCESS ALLOWED */
439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
440 /*
441 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
442 * XXX pmap_uses_prom_console() evaluates to non-zero.)
443 */
444 #endif
445
446 /*
447 * find out this system's page size
448 */
449 PAGE_SIZE = hwrpb->rpb_page_size;
450 if (PAGE_SIZE != 8192)
451 panic("page size %d != 8192?!", PAGE_SIZE);
452
453 /*
454 * Initialize PAGE_SIZE-dependent variables.
455 */
456 uvm_setpagesize();
457
458 /*
459 * Find the beginning and end of the kernel (and leave a
460 * bit of space before the beginning for the bootstrap
461 * stack).
462 */
463 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
464 #ifdef DDB
465 ksym_start = (void *)bootinfo.ssym;
466 ksym_end = (void *)bootinfo.esym;
467 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
468 #else
469 kernend = (vaddr_t)round_page((vaddr_t)_end);
470 #endif
471
472 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
473 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
474
475 /*
476 * Find out how much memory is available, by looking at
477 * the memory cluster descriptors. This also tries to do
478 * its best to detect things things that have never been seen
479 * before...
480 */
481 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
482
483 /* MDDT SANITY CHECKING */
484 mddtweird = 0;
485 if (mddtp->mddt_cluster_cnt < 2) {
486 mddtweird = 1;
487 printf("WARNING: weird number of mem clusters: %lu\n",
488 mddtp->mddt_cluster_cnt);
489 }
490
491 #if 0
492 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
493 #endif
494
495 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
496 memc = &mddtp->mddt_clusters[i];
497 #if 0
498 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
499 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
500 #endif
501 totalphysmem += memc->mddt_pg_cnt;
502 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
503 mem_clusters[mem_cluster_cnt].start =
504 ptoa(memc->mddt_pfn);
505 mem_clusters[mem_cluster_cnt].size =
506 ptoa(memc->mddt_pg_cnt);
507 if (memc->mddt_usage & MDDT_mbz ||
508 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
509 memc->mddt_usage & MDDT_PALCODE)
510 mem_clusters[mem_cluster_cnt].size |=
511 PROT_READ;
512 else
513 mem_clusters[mem_cluster_cnt].size |=
514 PROT_READ | PROT_WRITE | PROT_EXEC;
515 mem_cluster_cnt++;
516 }
517
518 if (memc->mddt_usage & MDDT_mbz) {
519 mddtweird = 1;
520 printf("WARNING: mem cluster %d has weird "
521 "usage 0x%lx\n", i, memc->mddt_usage);
522 unknownmem += memc->mddt_pg_cnt;
523 continue;
524 }
525 if (memc->mddt_usage & MDDT_NONVOLATILE) {
526 /* XXX should handle these... */
527 printf("WARNING: skipping non-volatile mem "
528 "cluster %d\n", i);
529 unusedmem += memc->mddt_pg_cnt;
530 continue;
531 }
532 if (memc->mddt_usage & MDDT_PALCODE) {
533 resvmem += memc->mddt_pg_cnt;
534 continue;
535 }
536
537 /*
538 * We have a memory cluster available for system
539 * software use. We must determine if this cluster
540 * holds the kernel.
541 */
542 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
543 /*
544 * XXX If the kernel uses the PROM console, we only use the
545 * XXX memory after the kernel in the first system segment,
546 * XXX to avoid clobbering prom mapping, data, etc.
547 */
548 if (!pmap_uses_prom_console() || physmem == 0) {
549 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
550 physmem += memc->mddt_pg_cnt;
551 pfn0 = memc->mddt_pfn;
552 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
553 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
554 /*
555 * Must compute the location of the kernel
556 * within the segment.
557 */
558 #if 0
559 printf("Cluster %d contains kernel\n", i);
560 #endif
561 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
562 if (!pmap_uses_prom_console()) {
563 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
564 if (pfn0 < kernstartpfn) {
565 /*
566 * There is a chunk before the kernel.
567 */
568 #if 0
569 printf("Loading chunk before kernel: "
570 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
571 #endif
572 uvm_page_physload(pfn0, kernstartpfn,
573 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
574 }
575 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
576 }
577 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
578 if (kernendpfn < pfn1) {
579 /*
580 * There is a chunk after the kernel.
581 */
582 #if 0
583 printf("Loading chunk after kernel: "
584 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
585 #endif
586 uvm_page_physload(kernendpfn, pfn1,
587 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
588 }
589 } else {
590 /*
591 * Just load this cluster as one chunk.
592 */
593 #if 0
594 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
595 pfn0, pfn1);
596 #endif
597 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
598 VM_FREELIST_DEFAULT);
599 }
600 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
601 }
602 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
603 }
604
605 /*
606 * Dump out the MDDT if it looks odd...
607 */
608 if (mddtweird) {
609 printf("\n");
610 printf("complete memory cluster information:\n");
611 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
612 printf("mddt %d:\n", i);
613 printf("\tpfn %lx\n",
614 mddtp->mddt_clusters[i].mddt_pfn);
615 printf("\tcnt %lx\n",
616 mddtp->mddt_clusters[i].mddt_pg_cnt);
617 printf("\ttest %lx\n",
618 mddtp->mddt_clusters[i].mddt_pg_test);
619 printf("\tbva %lx\n",
620 mddtp->mddt_clusters[i].mddt_v_bitaddr);
621 printf("\tbpa %lx\n",
622 mddtp->mddt_clusters[i].mddt_p_bitaddr);
623 printf("\tbcksum %lx\n",
624 mddtp->mddt_clusters[i].mddt_bit_cksum);
625 printf("\tusage %lx\n",
626 mddtp->mddt_clusters[i].mddt_usage);
627 }
628 printf("\n");
629 }
630
631 if (totalphysmem == 0)
632 panic("can't happen: system seems to have no memory!");
633 maxmem = physmem;
634 #if 0
635 printf("totalphysmem = %d\n", totalphysmem);
636 printf("physmem = %d\n", physmem);
637 printf("resvmem = %d\n", resvmem);
638 printf("unusedmem = %d\n", unusedmem);
639 printf("unknownmem = %d\n", unknownmem);
640 #endif
641
642 /*
643 * Initialize error message buffer (at end of core).
644 */
645 {
646 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
647 vsize_t reqsz = sz;
648
649 vps = &vm_physmem[vm_nphysseg - 1];
650
651 /* shrink so that it'll fit in the last segment */
652 if ((vps->avail_end - vps->avail_start) < atop(sz))
653 sz = ptoa(vps->avail_end - vps->avail_start);
654
655 vps->end -= atop(sz);
656 vps->avail_end -= atop(sz);
657 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
658 initmsgbuf(msgbufaddr, sz);
659
660 /* Remove the last segment if it now has no pages. */
661 if (vps->start == vps->end)
662 vm_nphysseg--;
663
664 /* warn if the message buffer had to be shrunk */
665 if (sz != reqsz)
666 printf("WARNING: %ld bytes not available for msgbuf "
667 "in last cluster (%ld used)\n", reqsz, sz);
668
669 }
670
671 /*
672 * Init mapping for u page(s) for proc 0
673 */
674 proc0.p_addr = proc0paddr =
675 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
676
677 /*
678 * Allocate space for system data structures. These data structures
679 * are allocated here instead of cpu_startup() because physical
680 * memory is directly addressable. We don't have to map these into
681 * virtual address space.
682 */
683 size = (vsize_t)allocsys(NULL, NULL);
684 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
685 if ((allocsys(v, NULL) - v) != size)
686 panic("alpha_init: table size inconsistency");
687
688 /*
689 * Initialize the virtual memory system, and set the
690 * page table base register in proc 0's PCB.
691 */
692 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
693 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
694
695 /*
696 * Initialize the rest of proc 0's PCB, and cache its physical
697 * address.
698 */
699 proc0.p_md.md_pcbpaddr =
700 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
701
702 /*
703 * Set the kernel sp, reserving space for an (empty) trapframe,
704 * and make proc0's trapframe pointer point to it for sanity.
705 */
706 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
707 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
708 proc0.p_md.md_tf =
709 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
710
711 #if defined(MULTIPROCESSOR)
712 /*
713 * Initialize the primary CPU's idle PCB to proc0's, until
714 * autoconfiguration runs (it will get its own idle PCB there).
715 */
716 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
717 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
718 #endif
719
720 /*
721 * Look at arguments passed to us and compute boothowto.
722 */
723
724 boothowto = RB_SINGLE;
725 #ifdef KADB
726 boothowto |= RB_KDB;
727 #endif
728 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
729 /*
730 * Note that we'd really like to differentiate case here,
731 * but the Alpha AXP Architecture Reference Manual
732 * says that we shouldn't.
733 */
734 switch (*p) {
735 case 'a': /* autoboot */
736 case 'A':
737 boothowto &= ~RB_SINGLE;
738 break;
739
740 #ifdef DEBUG
741 case 'c': /* crash dump immediately after autoconfig */
742 case 'C':
743 boothowto |= RB_DUMP;
744 break;
745 #endif
746
747 #if defined(KGDB) || defined(DDB)
748 case 'd': /* break into the kernel debugger ASAP */
749 case 'D':
750 boothowto |= RB_KDB;
751 break;
752 #endif
753
754 case 'h': /* always halt, never reboot */
755 case 'H':
756 boothowto |= RB_HALT;
757 break;
758
759 #if 0
760 case 'm': /* mini root present in memory */
761 case 'M':
762 boothowto |= RB_MINIROOT;
763 break;
764 #endif
765
766 case 'n': /* askname */
767 case 'N':
768 boothowto |= RB_ASKNAME;
769 break;
770
771 case 's': /* single-user (default, supported for sanity) */
772 case 'S':
773 boothowto |= RB_SINGLE;
774 break;
775
776 case '-':
777 /*
778 * Just ignore this. It's not required, but it's
779 * common for it to be passed regardless.
780 */
781 break;
782
783 default:
784 printf("Unrecognized boot flag '%c'.\n", *p);
785 break;
786 }
787 }
788
789
790 /*
791 * Figure out the number of cpus in the box, from RPB fields.
792 * Really. We mean it.
793 */
794 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
795 struct pcs *pcsp;
796
797 pcsp = LOCATE_PCS(hwrpb, i);
798 if ((pcsp->pcs_flags & PCS_PP) != 0)
799 ncpus++;
800 }
801
802 /*
803 * Initialize debuggers, and break into them if appropriate.
804 */
805 #ifdef DDB
806 db_machine_init();
807 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
808 ksym_start, ksym_end);
809 if (boothowto & RB_KDB)
810 Debugger();
811 #endif
812 #ifdef KGDB
813 if (boothowto & RB_KDB)
814 kgdb_connect(0);
815 #endif
816 /*
817 * Figure out our clock frequency, from RPB fields.
818 */
819 hz = hwrpb->rpb_intr_freq >> 12;
820 if (!(60 <= hz && hz <= 10240)) {
821 hz = 1024;
822 #ifdef DIAGNOSTIC
823 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
824 hwrpb->rpb_intr_freq, hz);
825 #endif
826 }
827 }
828
829 void
830 consinit()
831 {
832
833 /*
834 * Everything related to console initialization is done
835 * in alpha_init().
836 */
837 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
838 printf("consinit: %susing prom console\n",
839 pmap_uses_prom_console() ? "" : "not ");
840 #endif
841 }
842
843 #include "pckbc.h"
844 #include "pckbd.h"
845 #if (NPCKBC > 0) && (NPCKBD == 0)
846
847 #include <dev/ic/pckbcvar.h>
848
849 /*
850 * This is called by the pbkbc driver if no pckbd is configured.
851 * On the i386, it is used to glue in the old, deprecated console
852 * code. On the Alpha, it does nothing.
853 */
854 int
855 pckbc_machdep_cnattach(kbctag, kbcslot)
856 pckbc_tag_t kbctag;
857 pckbc_slot_t kbcslot;
858 {
859
860 return (ENXIO);
861 }
862 #endif /* NPCKBC > 0 && NPCKBD == 0 */
863
864 void
865 cpu_startup()
866 {
867 register unsigned i;
868 int base, residual;
869 vaddr_t minaddr, maxaddr;
870 vsize_t size;
871 char pbuf[9];
872 #if defined(DEBUG)
873 extern int pmapdebug;
874 int opmapdebug = pmapdebug;
875
876 pmapdebug = 0;
877 #endif
878
879 /*
880 * Good {morning,afternoon,evening,night}.
881 */
882 printf(version);
883 identifycpu();
884 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
885 printf("total memory = %s\n", pbuf);
886 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
887 printf("(%s reserved for PROM, ", pbuf);
888 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
889 printf("%s used by NetBSD)\n", pbuf);
890 if (unusedmem) {
891 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
892 printf("WARNING: unused memory = %s\n", pbuf);
893 }
894 if (unknownmem) {
895 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
896 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
897 }
898
899 /*
900 * Allocate virtual address space for file I/O buffers.
901 * Note they are different than the array of headers, 'buf',
902 * and usually occupy more virtual memory than physical.
903 */
904 size = MAXBSIZE * nbuf;
905 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
906 NULL, UVM_UNKNOWN_OFFSET,
907 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
908 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
909 panic("startup: cannot allocate VM for buffers");
910 base = bufpages / nbuf;
911 residual = bufpages % nbuf;
912 for (i = 0; i < nbuf; i++) {
913 vsize_t curbufsize;
914 vaddr_t curbuf;
915 struct vm_page *pg;
916
917 /*
918 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
919 * that MAXBSIZE space, we allocate and map (base+1) pages
920 * for the first "residual" buffers, and then we allocate
921 * "base" pages for the rest.
922 */
923 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
924 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
925
926 while (curbufsize) {
927 pg = uvm_pagealloc(NULL, 0, NULL, 0);
928 if (pg == NULL)
929 panic("cpu_startup: not enough memory for "
930 "buffer cache");
931 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
932 VM_PROT_READ|VM_PROT_WRITE);
933 curbuf += PAGE_SIZE;
934 curbufsize -= PAGE_SIZE;
935 }
936 }
937 /*
938 * Allocate a submap for exec arguments. This map effectively
939 * limits the number of processes exec'ing at any time.
940 */
941 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
942 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
943
944 /*
945 * Allocate a submap for physio
946 */
947 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
948 VM_PHYS_SIZE, 0, FALSE, NULL);
949
950 /*
951 * No need to allocate an mbuf cluster submap. Mbuf clusters
952 * are allocated via the pool allocator, and we use K0SEG to
953 * map those pages.
954 */
955
956 #if defined(DEBUG)
957 pmapdebug = opmapdebug;
958 #endif
959 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
960 printf("avail memory = %s\n", pbuf);
961 #if 0
962 {
963 extern u_long pmap_pages_stolen;
964
965 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
966 printf("stolen memory for VM structures = %s\n", pbuf);
967 }
968 #endif
969 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
970 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
971
972 /*
973 * Set up buffers, so they can be used to read disk labels.
974 */
975 bufinit();
976
977 /*
978 * Set up the HWPCB so that it's safe to configure secondary
979 * CPUs.
980 */
981 hwrpb_primary_init();
982 }
983
984 /*
985 * Retrieve the platform name from the DSR.
986 */
987 const char *
988 alpha_dsr_sysname()
989 {
990 struct dsrdb *dsr;
991 const char *sysname;
992
993 /*
994 * DSR does not exist on early HWRPB versions.
995 */
996 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
997 return (NULL);
998
999 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1000 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1001 sizeof(u_int64_t)));
1002 return (sysname);
1003 }
1004
1005 /*
1006 * Lookup the system specified system variation in the provided table,
1007 * returning the model string on match.
1008 */
1009 const char *
1010 alpha_variation_name(variation, avtp)
1011 u_int64_t variation;
1012 const struct alpha_variation_table *avtp;
1013 {
1014 int i;
1015
1016 for (i = 0; avtp[i].avt_model != NULL; i++)
1017 if (avtp[i].avt_variation == variation)
1018 return (avtp[i].avt_model);
1019 return (NULL);
1020 }
1021
1022 /*
1023 * Generate a default platform name based for unknown system variations.
1024 */
1025 const char *
1026 alpha_unknown_sysname()
1027 {
1028 static char s[128]; /* safe size */
1029
1030 sprintf(s, "%s family, unknown model variation 0x%lx",
1031 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1032 return ((const char *)s);
1033 }
1034
1035 void
1036 identifycpu()
1037 {
1038 char *s;
1039
1040 /*
1041 * print out CPU identification information.
1042 */
1043 printf("%s", cpu_model);
1044 for(s = cpu_model; *s; ++s)
1045 if(strncasecmp(s, "MHz", 3) == 0)
1046 goto skipMHz;
1047 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1048 skipMHz:
1049 printf("\n");
1050 printf("%ld byte page size, %d processor%s.\n",
1051 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1052 #if 0
1053 /* this isn't defined for any systems that we run on? */
1054 printf("serial number 0x%lx 0x%lx\n",
1055 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1056
1057 /* and these aren't particularly useful! */
1058 printf("variation: 0x%lx, revision 0x%lx\n",
1059 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1060 #endif
1061 }
1062
1063 int waittime = -1;
1064 struct pcb dumppcb;
1065
1066 void
1067 cpu_reboot(howto, bootstr)
1068 int howto;
1069 char *bootstr;
1070 {
1071 #if defined(MULTIPROCESSOR)
1072 #if 0 /* XXX See below. */
1073 u_long cpu_id;
1074 #endif
1075 #endif
1076
1077 #if defined(MULTIPROCESSOR)
1078 /* We must be running on the primary CPU. */
1079 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1080 panic("cpu_reboot: not on primary CPU!");
1081 #endif
1082
1083 /* If system is cold, just halt. */
1084 if (cold) {
1085 howto |= RB_HALT;
1086 goto haltsys;
1087 }
1088
1089 /* If "always halt" was specified as a boot flag, obey. */
1090 if ((boothowto & RB_HALT) != 0)
1091 howto |= RB_HALT;
1092
1093 boothowto = howto;
1094 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1095 waittime = 0;
1096 vfs_shutdown();
1097 /*
1098 * If we've been adjusting the clock, the todr
1099 * will be out of synch; adjust it now.
1100 */
1101 resettodr();
1102 }
1103
1104 /* Disable interrupts. */
1105 splhigh();
1106
1107 /* If rebooting and a dump is requested do it. */
1108 #if 0
1109 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1110 #else
1111 if (howto & RB_DUMP)
1112 #endif
1113 dumpsys();
1114
1115 haltsys:
1116
1117 /* run any shutdown hooks */
1118 doshutdownhooks();
1119
1120 #if defined(MULTIPROCESSOR)
1121 #if 0 /* XXX doesn't work when called from here?! */
1122 /* Kill off any secondary CPUs. */
1123 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1124 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1125 cpu_info[cpu_id].ci_softc == NULL)
1126 continue;
1127 cpu_halt_secondary(cpu_id);
1128 }
1129 #endif
1130 #endif
1131
1132 #ifdef BOOTKEY
1133 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1134 cnpollc(1); /* for proper keyboard command handling */
1135 cngetc();
1136 cnpollc(0);
1137 printf("\n");
1138 #endif
1139
1140 /* Finally, powerdown/halt/reboot the system. */
1141 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1142 platform.powerdown != NULL) {
1143 (*platform.powerdown)();
1144 printf("WARNING: powerdown failed!\n");
1145 }
1146 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1147 prom_halt(howto & RB_HALT);
1148 /*NOTREACHED*/
1149 }
1150
1151 /*
1152 * These variables are needed by /sbin/savecore
1153 */
1154 u_long dumpmag = 0x8fca0101; /* magic number */
1155 int dumpsize = 0; /* pages */
1156 long dumplo = 0; /* blocks */
1157
1158 /*
1159 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1160 */
1161 int
1162 cpu_dumpsize()
1163 {
1164 int size;
1165
1166 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1167 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1168 if (roundup(size, dbtob(1)) != dbtob(1))
1169 return -1;
1170
1171 return (1);
1172 }
1173
1174 /*
1175 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1176 */
1177 u_long
1178 cpu_dump_mempagecnt()
1179 {
1180 u_long i, n;
1181
1182 n = 0;
1183 for (i = 0; i < mem_cluster_cnt; i++)
1184 n += atop(mem_clusters[i].size);
1185 return (n);
1186 }
1187
1188 /*
1189 * cpu_dump: dump machine-dependent kernel core dump headers.
1190 */
1191 int
1192 cpu_dump()
1193 {
1194 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1195 char buf[dbtob(1)];
1196 kcore_seg_t *segp;
1197 cpu_kcore_hdr_t *cpuhdrp;
1198 phys_ram_seg_t *memsegp;
1199 int i;
1200
1201 dump = bdevsw[major(dumpdev)].d_dump;
1202
1203 bzero(buf, sizeof buf);
1204 segp = (kcore_seg_t *)buf;
1205 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1206 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1207 ALIGN(sizeof(*cpuhdrp))];
1208
1209 /*
1210 * Generate a segment header.
1211 */
1212 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1213 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1214
1215 /*
1216 * Add the machine-dependent header info.
1217 */
1218 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1219 cpuhdrp->page_size = PAGE_SIZE;
1220 cpuhdrp->nmemsegs = mem_cluster_cnt;
1221
1222 /*
1223 * Fill in the memory segment descriptors.
1224 */
1225 for (i = 0; i < mem_cluster_cnt; i++) {
1226 memsegp[i].start = mem_clusters[i].start;
1227 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1228 }
1229
1230 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1231 }
1232
1233 /*
1234 * This is called by main to set dumplo and dumpsize.
1235 * Dumps always skip the first NBPG of disk space
1236 * in case there might be a disk label stored there.
1237 * If there is extra space, put dump at the end to
1238 * reduce the chance that swapping trashes it.
1239 */
1240 void
1241 cpu_dumpconf()
1242 {
1243 int nblks, dumpblks; /* size of dump area */
1244 int maj;
1245
1246 if (dumpdev == NODEV)
1247 goto bad;
1248 maj = major(dumpdev);
1249 if (maj < 0 || maj >= nblkdev)
1250 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1251 if (bdevsw[maj].d_psize == NULL)
1252 goto bad;
1253 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1254 if (nblks <= ctod(1))
1255 goto bad;
1256
1257 dumpblks = cpu_dumpsize();
1258 if (dumpblks < 0)
1259 goto bad;
1260 dumpblks += ctod(cpu_dump_mempagecnt());
1261
1262 /* If dump won't fit (incl. room for possible label), punt. */
1263 if (dumpblks > (nblks - ctod(1)))
1264 goto bad;
1265
1266 /* Put dump at end of partition */
1267 dumplo = nblks - dumpblks;
1268
1269 /* dumpsize is in page units, and doesn't include headers. */
1270 dumpsize = cpu_dump_mempagecnt();
1271 return;
1272
1273 bad:
1274 dumpsize = 0;
1275 return;
1276 }
1277
1278 /*
1279 * Dump the kernel's image to the swap partition.
1280 */
1281 #define BYTES_PER_DUMP NBPG
1282
1283 void
1284 dumpsys()
1285 {
1286 u_long totalbytesleft, bytes, i, n, memcl;
1287 u_long maddr;
1288 int psize;
1289 daddr_t blkno;
1290 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1291 int error;
1292
1293 /* Save registers. */
1294 savectx(&dumppcb);
1295
1296 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1297 if (dumpdev == NODEV)
1298 return;
1299
1300 /*
1301 * For dumps during autoconfiguration,
1302 * if dump device has already configured...
1303 */
1304 if (dumpsize == 0)
1305 cpu_dumpconf();
1306 if (dumplo <= 0) {
1307 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1308 minor(dumpdev));
1309 return;
1310 }
1311 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1312 minor(dumpdev), dumplo);
1313
1314 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1315 printf("dump ");
1316 if (psize == -1) {
1317 printf("area unavailable\n");
1318 return;
1319 }
1320
1321 /* XXX should purge all outstanding keystrokes. */
1322
1323 if ((error = cpu_dump()) != 0)
1324 goto err;
1325
1326 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1327 blkno = dumplo + cpu_dumpsize();
1328 dump = bdevsw[major(dumpdev)].d_dump;
1329 error = 0;
1330
1331 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1332 maddr = mem_clusters[memcl].start;
1333 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1334
1335 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1336
1337 /* Print out how many MBs we to go. */
1338 if ((totalbytesleft % (1024*1024)) == 0)
1339 printf("%ld ", totalbytesleft / (1024 * 1024));
1340
1341 /* Limit size for next transfer. */
1342 n = bytes - i;
1343 if (n > BYTES_PER_DUMP)
1344 n = BYTES_PER_DUMP;
1345
1346 error = (*dump)(dumpdev, blkno,
1347 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1348 if (error)
1349 goto err;
1350 maddr += n;
1351 blkno += btodb(n); /* XXX? */
1352
1353 /* XXX should look for keystrokes, to cancel. */
1354 }
1355 }
1356
1357 err:
1358 switch (error) {
1359
1360 case ENXIO:
1361 printf("device bad\n");
1362 break;
1363
1364 case EFAULT:
1365 printf("device not ready\n");
1366 break;
1367
1368 case EINVAL:
1369 printf("area improper\n");
1370 break;
1371
1372 case EIO:
1373 printf("i/o error\n");
1374 break;
1375
1376 case EINTR:
1377 printf("aborted from console\n");
1378 break;
1379
1380 case 0:
1381 printf("succeeded\n");
1382 break;
1383
1384 default:
1385 printf("error %d\n", error);
1386 break;
1387 }
1388 printf("\n\n");
1389 delay(1000);
1390 }
1391
1392 void
1393 frametoreg(framep, regp)
1394 struct trapframe *framep;
1395 struct reg *regp;
1396 {
1397
1398 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1399 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1400 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1401 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1402 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1403 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1404 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1405 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1406 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1407 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1408 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1409 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1410 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1411 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1412 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1413 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1414 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1415 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1416 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1417 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1418 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1419 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1420 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1421 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1422 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1423 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1424 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1425 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1426 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1427 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1428 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1429 regp->r_regs[R_ZERO] = 0;
1430 }
1431
1432 void
1433 regtoframe(regp, framep)
1434 struct reg *regp;
1435 struct trapframe *framep;
1436 {
1437
1438 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1439 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1440 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1441 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1442 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1443 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1444 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1445 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1446 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1447 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1448 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1449 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1450 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1451 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1452 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1453 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1454 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1455 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1456 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1457 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1458 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1459 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1460 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1461 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1462 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1463 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1464 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1465 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1466 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1467 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1468 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1469 /* ??? = regp->r_regs[R_ZERO]; */
1470 }
1471
1472 void
1473 printregs(regp)
1474 struct reg *regp;
1475 {
1476 int i;
1477
1478 for (i = 0; i < 32; i++)
1479 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1480 i & 1 ? "\n" : "\t");
1481 }
1482
1483 void
1484 regdump(framep)
1485 struct trapframe *framep;
1486 {
1487 struct reg reg;
1488
1489 frametoreg(framep, ®);
1490 reg.r_regs[R_SP] = alpha_pal_rdusp();
1491
1492 printf("REGISTERS:\n");
1493 printregs(®);
1494 }
1495
1496 #ifdef DEBUG
1497 int sigdebug = 0;
1498 int sigpid = 0;
1499 #define SDB_FOLLOW 0x01
1500 #define SDB_KSTACK 0x02
1501 #endif
1502
1503 /*
1504 * Send an interrupt to process.
1505 */
1506 void
1507 sendsig(catcher, sig, mask, code)
1508 sig_t catcher;
1509 int sig;
1510 sigset_t *mask;
1511 u_long code;
1512 {
1513 struct proc *p = curproc;
1514 struct sigcontext *scp, ksc;
1515 struct trapframe *frame;
1516 struct sigacts *psp = p->p_sigacts;
1517 int onstack, fsize, rndfsize;
1518
1519 frame = p->p_md.md_tf;
1520
1521 /* Do we need to jump onto the signal stack? */
1522 onstack =
1523 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1524 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1525
1526 /* Allocate space for the signal handler context. */
1527 fsize = sizeof(ksc);
1528 rndfsize = ((fsize + 15) / 16) * 16;
1529
1530 if (onstack)
1531 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1532 psp->ps_sigstk.ss_size);
1533 else
1534 scp = (struct sigcontext *)(alpha_pal_rdusp());
1535 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1536
1537 #ifdef DEBUG
1538 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1539 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1540 sig, &onstack, scp);
1541 #endif
1542
1543 /* Build stack frame for signal trampoline. */
1544 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1545 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1546
1547 /* Save register context. */
1548 frametoreg(frame, (struct reg *)ksc.sc_regs);
1549 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1550 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1551
1552 /* save the floating-point state, if necessary, then copy it. */
1553 if (p == fpcurproc) {
1554 alpha_pal_wrfen(1);
1555 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1556 alpha_pal_wrfen(0);
1557 fpcurproc = NULL;
1558 }
1559 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1560 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1561 sizeof(struct fpreg));
1562 ksc.sc_fp_control = 0; /* XXX ? */
1563 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1564 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1565
1566 /* Save signal stack. */
1567 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1568
1569 /* Save signal mask. */
1570 ksc.sc_mask = *mask;
1571
1572 #ifdef COMPAT_13
1573 /*
1574 * XXX We always have to save an old style signal mask because
1575 * XXX we might be delivering a signal to a process which will
1576 * XXX escape from the signal in a non-standard way and invoke
1577 * XXX sigreturn() directly.
1578 */
1579 {
1580 /* Note: it's a long in the stack frame. */
1581 sigset13_t mask13;
1582
1583 native_sigset_to_sigset13(mask, &mask13);
1584 ksc.__sc_mask13 = mask13;
1585 }
1586 #endif
1587
1588 #ifdef COMPAT_OSF1
1589 /*
1590 * XXX Create an OSF/1-style sigcontext and associated goo.
1591 */
1592 #endif
1593
1594 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1595 /*
1596 * Process has trashed its stack; give it an illegal
1597 * instruction to halt it in its tracks.
1598 */
1599 #ifdef DEBUG
1600 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1601 printf("sendsig(%d): copyout failed on sig %d\n",
1602 p->p_pid, sig);
1603 #endif
1604 sigexit(p, SIGILL);
1605 /* NOTREACHED */
1606 }
1607 #ifdef DEBUG
1608 if (sigdebug & SDB_FOLLOW)
1609 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1610 scp, code);
1611 #endif
1612
1613 /* Set up the registers to return to sigcode. */
1614 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1615 frame->tf_regs[FRAME_A0] = sig;
1616 frame->tf_regs[FRAME_A1] = code;
1617 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1618 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1619 alpha_pal_wrusp((unsigned long)scp);
1620
1621 /* Remember that we're now on the signal stack. */
1622 if (onstack)
1623 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1624
1625 #ifdef DEBUG
1626 if (sigdebug & SDB_FOLLOW)
1627 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1628 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1629 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1630 printf("sendsig(%d): sig %d returns\n",
1631 p->p_pid, sig);
1632 #endif
1633 }
1634
1635 /*
1636 * System call to cleanup state after a signal
1637 * has been taken. Reset signal mask and
1638 * stack state from context left by sendsig (above).
1639 * Return to previous pc and psl as specified by
1640 * context left by sendsig. Check carefully to
1641 * make sure that the user has not modified the
1642 * psl to gain improper privileges or to cause
1643 * a machine fault.
1644 */
1645 /* ARGSUSED */
1646 int
1647 sys___sigreturn14(p, v, retval)
1648 struct proc *p;
1649 void *v;
1650 register_t *retval;
1651 {
1652 struct sys___sigreturn14_args /* {
1653 syscallarg(struct sigcontext *) sigcntxp;
1654 } */ *uap = v;
1655 struct sigcontext *scp, ksc;
1656
1657 /*
1658 * The trampoline code hands us the context.
1659 * It is unsafe to keep track of it ourselves, in the event that a
1660 * program jumps out of a signal handler.
1661 */
1662 scp = SCARG(uap, sigcntxp);
1663 #ifdef DEBUG
1664 if (sigdebug & SDB_FOLLOW)
1665 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1666 #endif
1667 if (ALIGN(scp) != (u_int64_t)scp)
1668 return (EINVAL);
1669
1670 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1671 return (EFAULT);
1672
1673 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1674 return (EINVAL);
1675
1676 /* Restore register context. */
1677 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1678 p->p_md.md_tf->tf_regs[FRAME_PS] =
1679 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1680
1681 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1682 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1683
1684 /* XXX ksc.sc_ownedfp ? */
1685 if (p == fpcurproc)
1686 fpcurproc = NULL;
1687 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1688 sizeof(struct fpreg));
1689 /* XXX ksc.sc_fp_control ? */
1690
1691 /* Restore signal stack. */
1692 if (ksc.sc_onstack & SS_ONSTACK)
1693 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1694 else
1695 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1696
1697 /* Restore signal mask. */
1698 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1699
1700 #ifdef DEBUG
1701 if (sigdebug & SDB_FOLLOW)
1702 printf("sigreturn(%d): returns\n", p->p_pid);
1703 #endif
1704 return (EJUSTRETURN);
1705 }
1706
1707 /*
1708 * machine dependent system variables.
1709 */
1710 int
1711 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1712 int *name;
1713 u_int namelen;
1714 void *oldp;
1715 size_t *oldlenp;
1716 void *newp;
1717 size_t newlen;
1718 struct proc *p;
1719 {
1720 dev_t consdev;
1721
1722 /* all sysctl names at this level are terminal */
1723 if (namelen != 1)
1724 return (ENOTDIR); /* overloaded */
1725
1726 switch (name[0]) {
1727 case CPU_CONSDEV:
1728 if (cn_tab != NULL)
1729 consdev = cn_tab->cn_dev;
1730 else
1731 consdev = NODEV;
1732 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1733 sizeof consdev));
1734
1735 case CPU_ROOT_DEVICE:
1736 return (sysctl_rdstring(oldp, oldlenp, newp,
1737 root_device->dv_xname));
1738
1739 case CPU_UNALIGNED_PRINT:
1740 return (sysctl_int(oldp, oldlenp, newp, newlen,
1741 &alpha_unaligned_print));
1742
1743 case CPU_UNALIGNED_FIX:
1744 return (sysctl_int(oldp, oldlenp, newp, newlen,
1745 &alpha_unaligned_fix));
1746
1747 case CPU_UNALIGNED_SIGBUS:
1748 return (sysctl_int(oldp, oldlenp, newp, newlen,
1749 &alpha_unaligned_sigbus));
1750
1751 case CPU_BOOTED_KERNEL:
1752 return (sysctl_rdstring(oldp, oldlenp, newp,
1753 bootinfo.booted_kernel));
1754
1755 default:
1756 return (EOPNOTSUPP);
1757 }
1758 /* NOTREACHED */
1759 }
1760
1761 /*
1762 * Set registers on exec.
1763 */
1764 void
1765 setregs(p, pack, stack)
1766 register struct proc *p;
1767 struct exec_package *pack;
1768 u_long stack;
1769 {
1770 struct trapframe *tfp = p->p_md.md_tf;
1771 #ifdef DEBUG
1772 int i;
1773 #endif
1774
1775 #ifdef DEBUG
1776 /*
1777 * Crash and dump, if the user requested it.
1778 */
1779 if (boothowto & RB_DUMP)
1780 panic("crash requested by boot flags");
1781 #endif
1782
1783 #ifdef DEBUG
1784 for (i = 0; i < FRAME_SIZE; i++)
1785 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1786 #else
1787 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1788 #endif
1789 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1790 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1791 | FPCR_UNFD
1792 | FPCR_UNDZ
1793 | FPCR_DYN(FP_RN)
1794 | FPCR_OVFD
1795 | FPCR_DZED
1796 | FPCR_INVD
1797 | FPCR_DNZ;
1798 alpha_pal_wrusp(stack);
1799 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1800 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1801
1802 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1803 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1804 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1805 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1806 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1807
1808 p->p_md.md_flags &= ~MDP_FPUSED;
1809 if (fpcurproc == p)
1810 fpcurproc = NULL;
1811 }
1812
1813 void
1814 netintr()
1815 {
1816 int n, s;
1817
1818 s = splhigh();
1819 n = netisr;
1820 netisr = 0;
1821 splx(s);
1822
1823 #define DONETISR(bit, fn) \
1824 do { \
1825 if (n & (1 << (bit))) \
1826 fn(); \
1827 } while (0)
1828
1829 #include <net/netisr_dispatch.h>
1830
1831 #undef DONETISR
1832 }
1833
1834 void
1835 do_sir()
1836 {
1837 u_int64_t n;
1838
1839 while ((n = atomic_loadlatch_ulong(&ssir, 0)) != 0) {
1840 #define COUNT_SOFT uvmexp.softs++
1841
1842 #define DO_SIR(bit, fn) \
1843 do { \
1844 if (n & (bit)) { \
1845 COUNT_SOFT; \
1846 fn; \
1847 } \
1848 } while (0)
1849
1850 DO_SIR(SIR_NET, netintr());
1851 DO_SIR(SIR_CLOCK, softclock());
1852 #if NCOM > 0
1853 DO_SIR(SIR_SERIAL, comsoft());
1854 #endif
1855 #if NZSC_IOASIC > 0
1856 DO_SIR(SIR_SERIAL, zs_ioasic_softintr());
1857 #endif
1858
1859 #undef COUNT_SOFT
1860 #undef DO_SIR
1861 }
1862 }
1863
1864 int
1865 spl0()
1866 {
1867
1868 if (ssir) {
1869 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1870 do_sir();
1871 }
1872
1873 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1874 }
1875
1876 /*
1877 * The following primitives manipulate the run queues. _whichqs tells which
1878 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1879 * into queues, Remrunqueue removes them from queues. The running process is
1880 * on no queue, other processes are on a queue related to p->p_priority,
1881 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1882 * available queues.
1883 */
1884 /*
1885 * setrunqueue(p)
1886 * proc *p;
1887 *
1888 * Call should be made at splclock(), and p->p_stat should be SRUN.
1889 */
1890
1891 void
1892 setrunqueue(p)
1893 struct proc *p;
1894 {
1895 int bit;
1896
1897 /* firewall: p->p_back must be NULL */
1898 if (p->p_back != NULL)
1899 panic("setrunqueue");
1900
1901 bit = p->p_priority >> 2;
1902 sched_whichqs |= (1 << bit);
1903 p->p_forw = (struct proc *)&sched_qs[bit];
1904 p->p_back = sched_qs[bit].ph_rlink;
1905 p->p_back->p_forw = p;
1906 sched_qs[bit].ph_rlink = p;
1907 }
1908
1909 /*
1910 * remrunqueue(p)
1911 *
1912 * Call should be made at splclock().
1913 */
1914 void
1915 remrunqueue(p)
1916 struct proc *p;
1917 {
1918 int bit;
1919
1920 bit = p->p_priority >> 2;
1921 if ((sched_whichqs & (1 << bit)) == 0)
1922 panic("remrunqueue");
1923
1924 p->p_back->p_forw = p->p_forw;
1925 p->p_forw->p_back = p->p_back;
1926 p->p_back = NULL; /* for firewall checking. */
1927
1928 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1929 sched_whichqs &= ~(1 << bit);
1930 }
1931
1932 /*
1933 * Return the best possible estimate of the time in the timeval
1934 * to which tvp points. Unfortunately, we can't read the hardware registers.
1935 * We guarantee that the time will be greater than the value obtained by a
1936 * previous call.
1937 */
1938 void
1939 microtime(tvp)
1940 register struct timeval *tvp;
1941 {
1942 int s = splclock();
1943 static struct timeval lasttime;
1944
1945 *tvp = time;
1946 #ifdef notdef
1947 tvp->tv_usec += clkread();
1948 while (tvp->tv_usec >= 1000000) {
1949 tvp->tv_sec++;
1950 tvp->tv_usec -= 1000000;
1951 }
1952 #endif
1953 if (tvp->tv_sec == lasttime.tv_sec &&
1954 tvp->tv_usec <= lasttime.tv_usec &&
1955 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1956 tvp->tv_sec++;
1957 tvp->tv_usec -= 1000000;
1958 }
1959 lasttime = *tvp;
1960 splx(s);
1961 }
1962
1963 /*
1964 * Wait "n" microseconds.
1965 */
1966 void
1967 delay(n)
1968 unsigned long n;
1969 {
1970 long N = cycles_per_usec * (n);
1971
1972 /*
1973 * XXX Should be written to use RPCC?
1974 */
1975
1976 __asm __volatile(
1977 "# The 2 corresponds to the insn count\n"
1978 "1: subq %2, %1, %0 \n"
1979 " bgt %0, 1b"
1980 : "=r" (N)
1981 : "i" (2), "0" (N));
1982 }
1983
1984 #if defined(COMPAT_OSF1) || 1 /* XXX */
1985 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1986 u_long));
1987
1988 void
1989 cpu_exec_ecoff_setregs(p, epp, stack)
1990 struct proc *p;
1991 struct exec_package *epp;
1992 u_long stack;
1993 {
1994 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1995
1996 setregs(p, epp, stack);
1997 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1998 }
1999
2000 /*
2001 * cpu_exec_ecoff_hook():
2002 * cpu-dependent ECOFF format hook for execve().
2003 *
2004 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2005 *
2006 */
2007 int
2008 cpu_exec_ecoff_hook(p, epp)
2009 struct proc *p;
2010 struct exec_package *epp;
2011 {
2012 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2013 extern struct emul emul_netbsd;
2014 int error;
2015 extern int osf1_exec_ecoff_hook(struct proc *p,
2016 struct exec_package *epp);
2017
2018 switch (execp->f.f_magic) {
2019 #ifdef COMPAT_OSF1
2020 case ECOFF_MAGIC_ALPHA:
2021 error = osf1_exec_ecoff_hook(p, epp);
2022 break;
2023 #endif
2024
2025 case ECOFF_MAGIC_NETBSD_ALPHA:
2026 epp->ep_emul = &emul_netbsd;
2027 error = 0;
2028 break;
2029
2030 default:
2031 error = ENOEXEC;
2032 }
2033 return (error);
2034 }
2035 #endif
2036
2037 int
2038 alpha_pa_access(pa)
2039 u_long pa;
2040 {
2041 int i;
2042
2043 for (i = 0; i < mem_cluster_cnt; i++) {
2044 if (pa < mem_clusters[i].start)
2045 continue;
2046 if ((pa - mem_clusters[i].start) >=
2047 (mem_clusters[i].size & ~PAGE_MASK))
2048 continue;
2049 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2050 }
2051
2052 /*
2053 * Address is not a memory address. If we're secure, disallow
2054 * access. Otherwise, grant read/write.
2055 */
2056 if (securelevel > 0)
2057 return (PROT_NONE);
2058 else
2059 return (PROT_READ | PROT_WRITE);
2060 }
2061
2062 /* XXX XXX BEGIN XXX XXX */
2063 paddr_t alpha_XXX_dmamap_or; /* XXX */
2064 /* XXX */
2065 paddr_t /* XXX */
2066 alpha_XXX_dmamap(v) /* XXX */
2067 vaddr_t v; /* XXX */
2068 { /* XXX */
2069 /* XXX */
2070 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2071 } /* XXX */
2072 /* XXX XXX END XXX XXX */
2073
2074 char *
2075 dot_conv(x)
2076 unsigned long x;
2077 {
2078 int i;
2079 char *xc;
2080 static int next;
2081 static char space[2][20];
2082
2083 xc = space[next ^= 1] + sizeof space[0];
2084 *--xc = '\0';
2085 for (i = 0;; ++i) {
2086 if (i && (i & 3) == 0)
2087 *--xc = '.';
2088 *--xc = "0123456789abcdef"[x & 0xf];
2089 x >>= 4;
2090 if (x == 0)
2091 break;
2092 }
2093 return xc;
2094 }
2095