machdep.c revision 1.208 1 /* $NetBSD: machdep.c,v 1.208 2000/05/31 05:14:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.208 2000/05/31 05:14:29 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/sched.h>
91 #include <sys/buf.h>
92 #include <sys/reboot.h>
93 #include <sys/device.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/mman.h>
98 #include <sys/msgbuf.h>
99 #include <sys/ioctl.h>
100 #include <sys/tty.h>
101 #include <sys/user.h>
102 #include <sys/exec.h>
103 #include <sys/exec_ecoff.h>
104 #include <vm/vm.h>
105 #include <sys/sysctl.h>
106 #include <sys/core.h>
107 #include <sys/kcore.h>
108 #include <machine/kcore.h>
109
110 #include <sys/mount.h>
111 #include <sys/syscallargs.h>
112
113 #include <vm/vm_kern.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/conf.h>
125 #include <machine/ieeefp.h>
126
127 #include <net/netisr.h>
128 #include <net/if.h>
129
130 #ifdef INET
131 #include <net/route.h>
132 #include <netinet/in.h>
133 #include <netinet/ip_var.h>
134 #include "arp.h"
135 #if NARP > 0
136 #include <netinet/if_inarp.h>
137 #endif
138 #endif
139 #ifdef INET6
140 # ifndef INET
141 # include <netinet/in.h>
142 # endif
143 #include <netinet/ip6.h>
144 #include <netinet6/ip6_var.h>
145 #endif
146 #ifdef NS
147 #include <netns/ns_var.h>
148 #endif
149 #ifdef ISO
150 #include <netiso/iso.h>
151 #include <netiso/clnp.h>
152 #endif
153 #ifdef CCITT
154 #include <netccitt/x25.h>
155 #include <netccitt/pk.h>
156 #include <netccitt/pk_extern.h>
157 #endif
158 #ifdef NATM
159 #include <netnatm/natm.h>
160 #endif
161 #ifdef NETATALK
162 #include <netatalk/at_extern.h>
163 #endif
164 #include "ppp.h"
165 #if NPPP > 0
166 #include <net/ppp_defs.h>
167 #include <net/if_ppp.h>
168 #endif
169
170 #ifdef DDB
171 #include <machine/db_machdep.h>
172 #include <ddb/db_access.h>
173 #include <ddb/db_sym.h>
174 #include <ddb/db_extern.h>
175 #include <ddb/db_interface.h>
176 #endif
177
178 #include <machine/alpha.h>
179 #include <machine/intrcnt.h>
180
181 #include "com.h"
182 #if NCOM > 0
183 extern void comsoft __P((void));
184 #endif
185 #include "zsc_ioasic.h"
186 #if NZSC_IOASIC > 0
187 extern void zs_ioasic_softintr __P((void));
188 #endif
189
190 vm_map_t exec_map = NULL;
191 vm_map_t mb_map = NULL;
192 vm_map_t phys_map = NULL;
193
194 caddr_t msgbufaddr;
195
196 int maxmem; /* max memory per process */
197
198 int totalphysmem; /* total amount of physical memory in system */
199 int physmem; /* physical memory used by NetBSD + some rsvd */
200 int resvmem; /* amount of memory reserved for PROM */
201 int unusedmem; /* amount of memory for OS that we don't use */
202 int unknownmem; /* amount of memory with an unknown use */
203
204 int cputype; /* system type, from the RPB */
205
206 /*
207 * XXX We need an address to which we can assign things so that they
208 * won't be optimized away because we didn't use the value.
209 */
210 u_int32_t no_optimize;
211
212 /* the following is used externally (sysctl_hw) */
213 char machine[] = MACHINE; /* from <machine/param.h> */
214 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
215 char cpu_model[128];
216
217 struct user *proc0paddr;
218
219 /* Number of machine cycles per microsecond */
220 u_int64_t cycles_per_usec;
221
222 /* number of cpus in the box. really! */
223 int ncpus;
224
225 struct bootinfo_kernel bootinfo;
226
227 /* For built-in TCDS */
228 #if defined(DEC_3000_300) || defined(DEC_3000_500)
229 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
230 #endif
231
232 struct platform platform;
233
234 #ifdef DDB
235 /* start and end of kernel symbol table */
236 void *ksym_start, *ksym_end;
237 #endif
238
239 /* for cpu_sysctl() */
240 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
241 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
242 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
243
244 /*
245 * XXX This should be dynamically sized, but we have the chicken-egg problem!
246 * XXX it should also be larger than it is, because not all of the mddt
247 * XXX clusters end up being used for VM.
248 */
249 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
250 int mem_cluster_cnt;
251
252 int cpu_dump __P((void));
253 int cpu_dumpsize __P((void));
254 u_long cpu_dump_mempagecnt __P((void));
255 void dumpsys __P((void));
256 void identifycpu __P((void));
257 void netintr __P((void));
258 void printregs __P((struct reg *));
259
260 void
261 alpha_init(pfn, ptb, bim, bip, biv)
262 u_long pfn; /* first free PFN number */
263 u_long ptb; /* PFN of current level 1 page table */
264 u_long bim; /* bootinfo magic */
265 u_long bip; /* bootinfo pointer */
266 u_long biv; /* bootinfo version */
267 {
268 extern char kernel_text[], _end[];
269 struct mddt *mddtp;
270 struct mddt_cluster *memc;
271 int i, mddtweird;
272 struct vm_physseg *vps;
273 vaddr_t kernstart, kernend;
274 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
275 vsize_t size;
276 char *p;
277 caddr_t v;
278 char *bootinfo_msg;
279
280 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
281
282 /*
283 * Turn off interrupts (not mchecks) and floating point.
284 * Make sure the instruction and data streams are consistent.
285 */
286 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
287 alpha_pal_wrfen(0);
288 ALPHA_TBIA();
289 alpha_pal_imb();
290
291 #if defined(MULTIPROCESSOR)
292 /*
293 * Set our SysValue to the address of our cpu_info structure.
294 * Secondary processors do this in their spinup trampoline.
295 */
296 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
297 #endif
298
299 /*
300 * Get critical system information (if possible, from the
301 * information provided by the boot program).
302 */
303 bootinfo_msg = NULL;
304 if (bim == BOOTINFO_MAGIC) {
305 if (biv == 0) { /* backward compat */
306 biv = *(u_long *)bip;
307 bip += 8;
308 }
309 switch (biv) {
310 case 1: {
311 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
312
313 bootinfo.ssym = v1p->ssym;
314 bootinfo.esym = v1p->esym;
315 /* hwrpb may not be provided by boot block in v1 */
316 if (v1p->hwrpb != NULL) {
317 bootinfo.hwrpb_phys =
318 ((struct rpb *)v1p->hwrpb)->rpb_phys;
319 bootinfo.hwrpb_size = v1p->hwrpbsize;
320 } else {
321 bootinfo.hwrpb_phys =
322 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
323 bootinfo.hwrpb_size =
324 ((struct rpb *)HWRPB_ADDR)->rpb_size;
325 }
326 bcopy(v1p->boot_flags, bootinfo.boot_flags,
327 min(sizeof v1p->boot_flags,
328 sizeof bootinfo.boot_flags));
329 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
330 min(sizeof v1p->booted_kernel,
331 sizeof bootinfo.booted_kernel));
332 /* booted dev not provided in bootinfo */
333 init_prom_interface((struct rpb *)
334 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
335 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
336 sizeof bootinfo.booted_dev);
337 break;
338 }
339 default:
340 bootinfo_msg = "unknown bootinfo version";
341 goto nobootinfo;
342 }
343 } else {
344 bootinfo_msg = "boot program did not pass bootinfo";
345 nobootinfo:
346 bootinfo.ssym = (u_long)_end;
347 bootinfo.esym = (u_long)_end;
348 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
349 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
350 init_prom_interface((struct rpb *)HWRPB_ADDR);
351 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
352 sizeof bootinfo.boot_flags);
353 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
354 sizeof bootinfo.booted_kernel);
355 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
356 sizeof bootinfo.booted_dev);
357 }
358
359 /*
360 * Initialize the kernel's mapping of the RPB. It's needed for
361 * lots of things.
362 */
363 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
364
365 #if defined(DEC_3000_300) || defined(DEC_3000_500)
366 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
367 hwrpb->rpb_type == ST_DEC_3000_500) {
368 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
369 sizeof(dec_3000_scsiid));
370 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
371 sizeof(dec_3000_scsifast));
372 }
373 #endif
374
375 /*
376 * Remember how many cycles there are per microsecond,
377 * so that we can use delay(). Round up, for safety.
378 */
379 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
380
381 /*
382 * Initalize the (temporary) bootstrap console interface, so
383 * we can use printf until the VM system starts being setup.
384 * The real console is initialized before then.
385 */
386 init_bootstrap_console();
387
388 /* OUTPUT NOW ALLOWED */
389
390 /* delayed from above */
391 if (bootinfo_msg)
392 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
393 bootinfo_msg, bim, bip, biv);
394
395 /* Initialize the trap vectors on the primary processor. */
396 trap_init();
397
398 /*
399 * Find out what hardware we're on, and do basic initialization.
400 */
401 cputype = hwrpb->rpb_type;
402 if (cputype < 0) {
403 /*
404 * At least some white-box systems have SRM which
405 * reports a systype that's the negative of their
406 * blue-box counterpart.
407 */
408 cputype = -cputype;
409 }
410 if (cputype >= ncpuinit) {
411 platform_not_supported();
412 /* NOTREACHED */
413 }
414 (*cpuinit[cputype].init)();
415 strcpy(cpu_model, platform.model);
416
417 /*
418 * Initalize the real console, so that the bootstrap console is
419 * no longer necessary.
420 */
421 (*platform.cons_init)();
422
423 #ifdef DIAGNOSTIC
424 /* Paranoid sanity checking */
425
426 /* We should always be running on the primary. */
427 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
428
429 /*
430 * On single-CPU systypes, the primary should always be CPU 0,
431 * except on Alpha 8200 systems where the CPU id is related
432 * to the VID, which is related to the Turbo Laser node id.
433 */
434 if (cputype != ST_DEC_21000)
435 assert(hwrpb->rpb_primary_cpu_id == 0);
436 #endif
437
438 /* NO MORE FIRMWARE ACCESS ALLOWED */
439 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
440 /*
441 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
442 * XXX pmap_uses_prom_console() evaluates to non-zero.)
443 */
444 #endif
445
446 /*
447 * find out this system's page size
448 */
449 PAGE_SIZE = hwrpb->rpb_page_size;
450 if (PAGE_SIZE != 8192)
451 panic("page size %d != 8192?!", PAGE_SIZE);
452
453 /*
454 * Initialize PAGE_SIZE-dependent variables.
455 */
456 uvm_setpagesize();
457
458 /*
459 * Find the beginning and end of the kernel (and leave a
460 * bit of space before the beginning for the bootstrap
461 * stack).
462 */
463 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
464 #ifdef DDB
465 ksym_start = (void *)bootinfo.ssym;
466 ksym_end = (void *)bootinfo.esym;
467 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
468 #else
469 kernend = (vaddr_t)round_page((vaddr_t)_end);
470 #endif
471
472 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
473 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
474
475 /*
476 * Find out how much memory is available, by looking at
477 * the memory cluster descriptors. This also tries to do
478 * its best to detect things things that have never been seen
479 * before...
480 */
481 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
482
483 /* MDDT SANITY CHECKING */
484 mddtweird = 0;
485 if (mddtp->mddt_cluster_cnt < 2) {
486 mddtweird = 1;
487 printf("WARNING: weird number of mem clusters: %lu\n",
488 mddtp->mddt_cluster_cnt);
489 }
490
491 #if 0
492 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
493 #endif
494
495 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
496 memc = &mddtp->mddt_clusters[i];
497 #if 0
498 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
499 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
500 #endif
501 totalphysmem += memc->mddt_pg_cnt;
502 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
503 mem_clusters[mem_cluster_cnt].start =
504 ptoa(memc->mddt_pfn);
505 mem_clusters[mem_cluster_cnt].size =
506 ptoa(memc->mddt_pg_cnt);
507 if (memc->mddt_usage & MDDT_mbz ||
508 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
509 memc->mddt_usage & MDDT_PALCODE)
510 mem_clusters[mem_cluster_cnt].size |=
511 PROT_READ;
512 else
513 mem_clusters[mem_cluster_cnt].size |=
514 PROT_READ | PROT_WRITE | PROT_EXEC;
515 mem_cluster_cnt++;
516 }
517
518 if (memc->mddt_usage & MDDT_mbz) {
519 mddtweird = 1;
520 printf("WARNING: mem cluster %d has weird "
521 "usage 0x%lx\n", i, memc->mddt_usage);
522 unknownmem += memc->mddt_pg_cnt;
523 continue;
524 }
525 if (memc->mddt_usage & MDDT_NONVOLATILE) {
526 /* XXX should handle these... */
527 printf("WARNING: skipping non-volatile mem "
528 "cluster %d\n", i);
529 unusedmem += memc->mddt_pg_cnt;
530 continue;
531 }
532 if (memc->mddt_usage & MDDT_PALCODE) {
533 resvmem += memc->mddt_pg_cnt;
534 continue;
535 }
536
537 /*
538 * We have a memory cluster available for system
539 * software use. We must determine if this cluster
540 * holds the kernel.
541 */
542 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
543 /*
544 * XXX If the kernel uses the PROM console, we only use the
545 * XXX memory after the kernel in the first system segment,
546 * XXX to avoid clobbering prom mapping, data, etc.
547 */
548 if (!pmap_uses_prom_console() || physmem == 0) {
549 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
550 physmem += memc->mddt_pg_cnt;
551 pfn0 = memc->mddt_pfn;
552 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
553 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
554 /*
555 * Must compute the location of the kernel
556 * within the segment.
557 */
558 #if 0
559 printf("Cluster %d contains kernel\n", i);
560 #endif
561 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
562 if (!pmap_uses_prom_console()) {
563 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
564 if (pfn0 < kernstartpfn) {
565 /*
566 * There is a chunk before the kernel.
567 */
568 #if 0
569 printf("Loading chunk before kernel: "
570 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
571 #endif
572 uvm_page_physload(pfn0, kernstartpfn,
573 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
574 }
575 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
576 }
577 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
578 if (kernendpfn < pfn1) {
579 /*
580 * There is a chunk after the kernel.
581 */
582 #if 0
583 printf("Loading chunk after kernel: "
584 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
585 #endif
586 uvm_page_physload(kernendpfn, pfn1,
587 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
588 }
589 } else {
590 /*
591 * Just load this cluster as one chunk.
592 */
593 #if 0
594 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
595 pfn0, pfn1);
596 #endif
597 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
598 VM_FREELIST_DEFAULT);
599 }
600 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
601 }
602 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
603 }
604
605 /*
606 * Dump out the MDDT if it looks odd...
607 */
608 if (mddtweird) {
609 printf("\n");
610 printf("complete memory cluster information:\n");
611 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
612 printf("mddt %d:\n", i);
613 printf("\tpfn %lx\n",
614 mddtp->mddt_clusters[i].mddt_pfn);
615 printf("\tcnt %lx\n",
616 mddtp->mddt_clusters[i].mddt_pg_cnt);
617 printf("\ttest %lx\n",
618 mddtp->mddt_clusters[i].mddt_pg_test);
619 printf("\tbva %lx\n",
620 mddtp->mddt_clusters[i].mddt_v_bitaddr);
621 printf("\tbpa %lx\n",
622 mddtp->mddt_clusters[i].mddt_p_bitaddr);
623 printf("\tbcksum %lx\n",
624 mddtp->mddt_clusters[i].mddt_bit_cksum);
625 printf("\tusage %lx\n",
626 mddtp->mddt_clusters[i].mddt_usage);
627 }
628 printf("\n");
629 }
630
631 if (totalphysmem == 0)
632 panic("can't happen: system seems to have no memory!");
633 maxmem = physmem;
634 #if 0
635 printf("totalphysmem = %d\n", totalphysmem);
636 printf("physmem = %d\n", physmem);
637 printf("resvmem = %d\n", resvmem);
638 printf("unusedmem = %d\n", unusedmem);
639 printf("unknownmem = %d\n", unknownmem);
640 #endif
641
642 /*
643 * Initialize error message buffer (at end of core).
644 */
645 {
646 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
647 vsize_t reqsz = sz;
648
649 vps = &vm_physmem[vm_nphysseg - 1];
650
651 /* shrink so that it'll fit in the last segment */
652 if ((vps->avail_end - vps->avail_start) < atop(sz))
653 sz = ptoa(vps->avail_end - vps->avail_start);
654
655 vps->end -= atop(sz);
656 vps->avail_end -= atop(sz);
657 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
658 initmsgbuf(msgbufaddr, sz);
659
660 /* Remove the last segment if it now has no pages. */
661 if (vps->start == vps->end)
662 vm_nphysseg--;
663
664 /* warn if the message buffer had to be shrunk */
665 if (sz != reqsz)
666 printf("WARNING: %ld bytes not available for msgbuf "
667 "in last cluster (%ld used)\n", reqsz, sz);
668
669 }
670
671 /*
672 * Init mapping for u page(s) for proc 0
673 */
674 proc0.p_addr = proc0paddr =
675 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
676
677 /*
678 * Allocate space for system data structures. These data structures
679 * are allocated here instead of cpu_startup() because physical
680 * memory is directly addressable. We don't have to map these into
681 * virtual address space.
682 */
683 size = (vsize_t)allocsys(NULL, NULL);
684 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
685 if ((allocsys(v, NULL) - v) != size)
686 panic("alpha_init: table size inconsistency");
687
688 /*
689 * Initialize the virtual memory system, and set the
690 * page table base register in proc 0's PCB.
691 */
692 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
693 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
694
695 /*
696 * Initialize the rest of proc 0's PCB, and cache its physical
697 * address.
698 */
699 proc0.p_md.md_pcbpaddr =
700 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
701
702 /*
703 * Set the kernel sp, reserving space for an (empty) trapframe,
704 * and make proc0's trapframe pointer point to it for sanity.
705 */
706 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
707 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
708 proc0.p_md.md_tf =
709 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
710
711 /*
712 * Initialize the primary CPU's idle PCB to proc0's. In a
713 * MULTIPROCESSOR configuration, each CPU will later get
714 * its own idle PCB when autoconfiguration runs.
715 */
716 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
717 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
718
719 /* Indicate that proc0 has a CPU. */
720 proc0.p_cpu = curcpu();
721
722 /*
723 * Look at arguments passed to us and compute boothowto.
724 */
725
726 boothowto = RB_SINGLE;
727 #ifdef KADB
728 boothowto |= RB_KDB;
729 #endif
730 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
731 /*
732 * Note that we'd really like to differentiate case here,
733 * but the Alpha AXP Architecture Reference Manual
734 * says that we shouldn't.
735 */
736 switch (*p) {
737 case 'a': /* autoboot */
738 case 'A':
739 boothowto &= ~RB_SINGLE;
740 break;
741
742 #ifdef DEBUG
743 case 'c': /* crash dump immediately after autoconfig */
744 case 'C':
745 boothowto |= RB_DUMP;
746 break;
747 #endif
748
749 #if defined(KGDB) || defined(DDB)
750 case 'd': /* break into the kernel debugger ASAP */
751 case 'D':
752 boothowto |= RB_KDB;
753 break;
754 #endif
755
756 case 'h': /* always halt, never reboot */
757 case 'H':
758 boothowto |= RB_HALT;
759 break;
760
761 #if 0
762 case 'm': /* mini root present in memory */
763 case 'M':
764 boothowto |= RB_MINIROOT;
765 break;
766 #endif
767
768 case 'n': /* askname */
769 case 'N':
770 boothowto |= RB_ASKNAME;
771 break;
772
773 case 's': /* single-user (default, supported for sanity) */
774 case 'S':
775 boothowto |= RB_SINGLE;
776 break;
777
778 case '-':
779 /*
780 * Just ignore this. It's not required, but it's
781 * common for it to be passed regardless.
782 */
783 break;
784
785 default:
786 printf("Unrecognized boot flag '%c'.\n", *p);
787 break;
788 }
789 }
790
791
792 /*
793 * Figure out the number of cpus in the box, from RPB fields.
794 * Really. We mean it.
795 */
796 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
797 struct pcs *pcsp;
798
799 pcsp = LOCATE_PCS(hwrpb, i);
800 if ((pcsp->pcs_flags & PCS_PP) != 0)
801 ncpus++;
802 }
803
804 /*
805 * Initialize debuggers, and break into them if appropriate.
806 */
807 #ifdef DDB
808 db_machine_init();
809 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
810 ksym_start, ksym_end);
811 if (boothowto & RB_KDB)
812 Debugger();
813 #endif
814 #ifdef KGDB
815 if (boothowto & RB_KDB)
816 kgdb_connect(0);
817 #endif
818 /*
819 * Figure out our clock frequency, from RPB fields.
820 */
821 hz = hwrpb->rpb_intr_freq >> 12;
822 if (!(60 <= hz && hz <= 10240)) {
823 hz = 1024;
824 #ifdef DIAGNOSTIC
825 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
826 hwrpb->rpb_intr_freq, hz);
827 #endif
828 }
829 }
830
831 void
832 consinit()
833 {
834
835 /*
836 * Everything related to console initialization is done
837 * in alpha_init().
838 */
839 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
840 printf("consinit: %susing prom console\n",
841 pmap_uses_prom_console() ? "" : "not ");
842 #endif
843 }
844
845 #include "pckbc.h"
846 #include "pckbd.h"
847 #if (NPCKBC > 0) && (NPCKBD == 0)
848
849 #include <dev/ic/pckbcvar.h>
850
851 /*
852 * This is called by the pbkbc driver if no pckbd is configured.
853 * On the i386, it is used to glue in the old, deprecated console
854 * code. On the Alpha, it does nothing.
855 */
856 int
857 pckbc_machdep_cnattach(kbctag, kbcslot)
858 pckbc_tag_t kbctag;
859 pckbc_slot_t kbcslot;
860 {
861
862 return (ENXIO);
863 }
864 #endif /* NPCKBC > 0 && NPCKBD == 0 */
865
866 void
867 cpu_startup()
868 {
869 register unsigned i;
870 int base, residual;
871 vaddr_t minaddr, maxaddr;
872 vsize_t size;
873 char pbuf[9];
874 #if defined(DEBUG)
875 extern int pmapdebug;
876 int opmapdebug = pmapdebug;
877
878 pmapdebug = 0;
879 #endif
880
881 /*
882 * Good {morning,afternoon,evening,night}.
883 */
884 printf(version);
885 identifycpu();
886 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
887 printf("total memory = %s\n", pbuf);
888 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
889 printf("(%s reserved for PROM, ", pbuf);
890 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
891 printf("%s used by NetBSD)\n", pbuf);
892 if (unusedmem) {
893 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
894 printf("WARNING: unused memory = %s\n", pbuf);
895 }
896 if (unknownmem) {
897 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
898 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
899 }
900
901 /*
902 * Allocate virtual address space for file I/O buffers.
903 * Note they are different than the array of headers, 'buf',
904 * and usually occupy more virtual memory than physical.
905 */
906 size = MAXBSIZE * nbuf;
907 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
908 NULL, UVM_UNKNOWN_OFFSET,
909 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
910 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
911 panic("startup: cannot allocate VM for buffers");
912 base = bufpages / nbuf;
913 residual = bufpages % nbuf;
914 for (i = 0; i < nbuf; i++) {
915 vsize_t curbufsize;
916 vaddr_t curbuf;
917 struct vm_page *pg;
918
919 /*
920 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
921 * that MAXBSIZE space, we allocate and map (base+1) pages
922 * for the first "residual" buffers, and then we allocate
923 * "base" pages for the rest.
924 */
925 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
926 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
927
928 while (curbufsize) {
929 pg = uvm_pagealloc(NULL, 0, NULL, 0);
930 if (pg == NULL)
931 panic("cpu_startup: not enough memory for "
932 "buffer cache");
933 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
934 VM_PROT_READ|VM_PROT_WRITE);
935 curbuf += PAGE_SIZE;
936 curbufsize -= PAGE_SIZE;
937 }
938 }
939 /*
940 * Allocate a submap for exec arguments. This map effectively
941 * limits the number of processes exec'ing at any time.
942 */
943 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
944 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
945
946 /*
947 * Allocate a submap for physio
948 */
949 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
950 VM_PHYS_SIZE, 0, FALSE, NULL);
951
952 /*
953 * No need to allocate an mbuf cluster submap. Mbuf clusters
954 * are allocated via the pool allocator, and we use K0SEG to
955 * map those pages.
956 */
957
958 #if defined(DEBUG)
959 pmapdebug = opmapdebug;
960 #endif
961 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
962 printf("avail memory = %s\n", pbuf);
963 #if 0
964 {
965 extern u_long pmap_pages_stolen;
966
967 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
968 printf("stolen memory for VM structures = %s\n", pbuf);
969 }
970 #endif
971 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
972 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
973
974 /*
975 * Set up buffers, so they can be used to read disk labels.
976 */
977 bufinit();
978
979 /*
980 * Set up the HWPCB so that it's safe to configure secondary
981 * CPUs.
982 */
983 hwrpb_primary_init();
984 }
985
986 /*
987 * Retrieve the platform name from the DSR.
988 */
989 const char *
990 alpha_dsr_sysname()
991 {
992 struct dsrdb *dsr;
993 const char *sysname;
994
995 /*
996 * DSR does not exist on early HWRPB versions.
997 */
998 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
999 return (NULL);
1000
1001 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1002 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1003 sizeof(u_int64_t)));
1004 return (sysname);
1005 }
1006
1007 /*
1008 * Lookup the system specified system variation in the provided table,
1009 * returning the model string on match.
1010 */
1011 const char *
1012 alpha_variation_name(variation, avtp)
1013 u_int64_t variation;
1014 const struct alpha_variation_table *avtp;
1015 {
1016 int i;
1017
1018 for (i = 0; avtp[i].avt_model != NULL; i++)
1019 if (avtp[i].avt_variation == variation)
1020 return (avtp[i].avt_model);
1021 return (NULL);
1022 }
1023
1024 /*
1025 * Generate a default platform name based for unknown system variations.
1026 */
1027 const char *
1028 alpha_unknown_sysname()
1029 {
1030 static char s[128]; /* safe size */
1031
1032 sprintf(s, "%s family, unknown model variation 0x%lx",
1033 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1034 return ((const char *)s);
1035 }
1036
1037 void
1038 identifycpu()
1039 {
1040 char *s;
1041
1042 /*
1043 * print out CPU identification information.
1044 */
1045 printf("%s", cpu_model);
1046 for(s = cpu_model; *s; ++s)
1047 if(strncasecmp(s, "MHz", 3) == 0)
1048 goto skipMHz;
1049 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1050 skipMHz:
1051 printf("\n");
1052 printf("%ld byte page size, %d processor%s.\n",
1053 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1054 #if 0
1055 /* this isn't defined for any systems that we run on? */
1056 printf("serial number 0x%lx 0x%lx\n",
1057 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1058
1059 /* and these aren't particularly useful! */
1060 printf("variation: 0x%lx, revision 0x%lx\n",
1061 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1062 #endif
1063 }
1064
1065 int waittime = -1;
1066 struct pcb dumppcb;
1067
1068 void
1069 cpu_reboot(howto, bootstr)
1070 int howto;
1071 char *bootstr;
1072 {
1073 #if defined(MULTIPROCESSOR)
1074 #if 0 /* XXX See below. */
1075 u_long cpu_id;
1076 #endif
1077 #endif
1078
1079 #if defined(MULTIPROCESSOR)
1080 /* We must be running on the primary CPU. */
1081 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1082 panic("cpu_reboot: not on primary CPU!");
1083 #endif
1084
1085 /* If system is cold, just halt. */
1086 if (cold) {
1087 howto |= RB_HALT;
1088 goto haltsys;
1089 }
1090
1091 /* If "always halt" was specified as a boot flag, obey. */
1092 if ((boothowto & RB_HALT) != 0)
1093 howto |= RB_HALT;
1094
1095 boothowto = howto;
1096 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1097 waittime = 0;
1098 vfs_shutdown();
1099 /*
1100 * If we've been adjusting the clock, the todr
1101 * will be out of synch; adjust it now.
1102 */
1103 resettodr();
1104 }
1105
1106 /* Disable interrupts. */
1107 splhigh();
1108
1109 /* If rebooting and a dump is requested do it. */
1110 #if 0
1111 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1112 #else
1113 if (howto & RB_DUMP)
1114 #endif
1115 dumpsys();
1116
1117 haltsys:
1118
1119 /* run any shutdown hooks */
1120 doshutdownhooks();
1121
1122 #if defined(MULTIPROCESSOR)
1123 #if 0 /* XXX doesn't work when called from here?! */
1124 /* Kill off any secondary CPUs. */
1125 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1126 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1127 cpu_info[cpu_id].ci_softc == NULL)
1128 continue;
1129 cpu_halt_secondary(cpu_id);
1130 }
1131 #endif
1132 #endif
1133
1134 #ifdef BOOTKEY
1135 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1136 cnpollc(1); /* for proper keyboard command handling */
1137 cngetc();
1138 cnpollc(0);
1139 printf("\n");
1140 #endif
1141
1142 /* Finally, powerdown/halt/reboot the system. */
1143 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1144 platform.powerdown != NULL) {
1145 (*platform.powerdown)();
1146 printf("WARNING: powerdown failed!\n");
1147 }
1148 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1149 prom_halt(howto & RB_HALT);
1150 /*NOTREACHED*/
1151 }
1152
1153 /*
1154 * These variables are needed by /sbin/savecore
1155 */
1156 u_long dumpmag = 0x8fca0101; /* magic number */
1157 int dumpsize = 0; /* pages */
1158 long dumplo = 0; /* blocks */
1159
1160 /*
1161 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1162 */
1163 int
1164 cpu_dumpsize()
1165 {
1166 int size;
1167
1168 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1169 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1170 if (roundup(size, dbtob(1)) != dbtob(1))
1171 return -1;
1172
1173 return (1);
1174 }
1175
1176 /*
1177 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1178 */
1179 u_long
1180 cpu_dump_mempagecnt()
1181 {
1182 u_long i, n;
1183
1184 n = 0;
1185 for (i = 0; i < mem_cluster_cnt; i++)
1186 n += atop(mem_clusters[i].size);
1187 return (n);
1188 }
1189
1190 /*
1191 * cpu_dump: dump machine-dependent kernel core dump headers.
1192 */
1193 int
1194 cpu_dump()
1195 {
1196 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1197 char buf[dbtob(1)];
1198 kcore_seg_t *segp;
1199 cpu_kcore_hdr_t *cpuhdrp;
1200 phys_ram_seg_t *memsegp;
1201 int i;
1202
1203 dump = bdevsw[major(dumpdev)].d_dump;
1204
1205 bzero(buf, sizeof buf);
1206 segp = (kcore_seg_t *)buf;
1207 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1208 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1209 ALIGN(sizeof(*cpuhdrp))];
1210
1211 /*
1212 * Generate a segment header.
1213 */
1214 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1215 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1216
1217 /*
1218 * Add the machine-dependent header info.
1219 */
1220 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1221 cpuhdrp->page_size = PAGE_SIZE;
1222 cpuhdrp->nmemsegs = mem_cluster_cnt;
1223
1224 /*
1225 * Fill in the memory segment descriptors.
1226 */
1227 for (i = 0; i < mem_cluster_cnt; i++) {
1228 memsegp[i].start = mem_clusters[i].start;
1229 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1230 }
1231
1232 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1233 }
1234
1235 /*
1236 * This is called by main to set dumplo and dumpsize.
1237 * Dumps always skip the first NBPG of disk space
1238 * in case there might be a disk label stored there.
1239 * If there is extra space, put dump at the end to
1240 * reduce the chance that swapping trashes it.
1241 */
1242 void
1243 cpu_dumpconf()
1244 {
1245 int nblks, dumpblks; /* size of dump area */
1246 int maj;
1247
1248 if (dumpdev == NODEV)
1249 goto bad;
1250 maj = major(dumpdev);
1251 if (maj < 0 || maj >= nblkdev)
1252 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1253 if (bdevsw[maj].d_psize == NULL)
1254 goto bad;
1255 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1256 if (nblks <= ctod(1))
1257 goto bad;
1258
1259 dumpblks = cpu_dumpsize();
1260 if (dumpblks < 0)
1261 goto bad;
1262 dumpblks += ctod(cpu_dump_mempagecnt());
1263
1264 /* If dump won't fit (incl. room for possible label), punt. */
1265 if (dumpblks > (nblks - ctod(1)))
1266 goto bad;
1267
1268 /* Put dump at end of partition */
1269 dumplo = nblks - dumpblks;
1270
1271 /* dumpsize is in page units, and doesn't include headers. */
1272 dumpsize = cpu_dump_mempagecnt();
1273 return;
1274
1275 bad:
1276 dumpsize = 0;
1277 return;
1278 }
1279
1280 /*
1281 * Dump the kernel's image to the swap partition.
1282 */
1283 #define BYTES_PER_DUMP NBPG
1284
1285 void
1286 dumpsys()
1287 {
1288 u_long totalbytesleft, bytes, i, n, memcl;
1289 u_long maddr;
1290 int psize;
1291 daddr_t blkno;
1292 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1293 int error;
1294
1295 /* Save registers. */
1296 savectx(&dumppcb);
1297
1298 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1299 if (dumpdev == NODEV)
1300 return;
1301
1302 /*
1303 * For dumps during autoconfiguration,
1304 * if dump device has already configured...
1305 */
1306 if (dumpsize == 0)
1307 cpu_dumpconf();
1308 if (dumplo <= 0) {
1309 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1310 minor(dumpdev));
1311 return;
1312 }
1313 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1314 minor(dumpdev), dumplo);
1315
1316 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1317 printf("dump ");
1318 if (psize == -1) {
1319 printf("area unavailable\n");
1320 return;
1321 }
1322
1323 /* XXX should purge all outstanding keystrokes. */
1324
1325 if ((error = cpu_dump()) != 0)
1326 goto err;
1327
1328 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1329 blkno = dumplo + cpu_dumpsize();
1330 dump = bdevsw[major(dumpdev)].d_dump;
1331 error = 0;
1332
1333 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1334 maddr = mem_clusters[memcl].start;
1335 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1336
1337 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1338
1339 /* Print out how many MBs we to go. */
1340 if ((totalbytesleft % (1024*1024)) == 0)
1341 printf("%ld ", totalbytesleft / (1024 * 1024));
1342
1343 /* Limit size for next transfer. */
1344 n = bytes - i;
1345 if (n > BYTES_PER_DUMP)
1346 n = BYTES_PER_DUMP;
1347
1348 error = (*dump)(dumpdev, blkno,
1349 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1350 if (error)
1351 goto err;
1352 maddr += n;
1353 blkno += btodb(n); /* XXX? */
1354
1355 /* XXX should look for keystrokes, to cancel. */
1356 }
1357 }
1358
1359 err:
1360 switch (error) {
1361
1362 case ENXIO:
1363 printf("device bad\n");
1364 break;
1365
1366 case EFAULT:
1367 printf("device not ready\n");
1368 break;
1369
1370 case EINVAL:
1371 printf("area improper\n");
1372 break;
1373
1374 case EIO:
1375 printf("i/o error\n");
1376 break;
1377
1378 case EINTR:
1379 printf("aborted from console\n");
1380 break;
1381
1382 case 0:
1383 printf("succeeded\n");
1384 break;
1385
1386 default:
1387 printf("error %d\n", error);
1388 break;
1389 }
1390 printf("\n\n");
1391 delay(1000);
1392 }
1393
1394 void
1395 frametoreg(framep, regp)
1396 struct trapframe *framep;
1397 struct reg *regp;
1398 {
1399
1400 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1401 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1402 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1403 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1404 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1405 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1406 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1407 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1408 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1409 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1410 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1411 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1412 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1413 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1414 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1415 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1416 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1417 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1418 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1419 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1420 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1421 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1422 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1423 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1424 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1425 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1426 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1427 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1428 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1429 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1430 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1431 regp->r_regs[R_ZERO] = 0;
1432 }
1433
1434 void
1435 regtoframe(regp, framep)
1436 struct reg *regp;
1437 struct trapframe *framep;
1438 {
1439
1440 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1441 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1442 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1443 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1444 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1445 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1446 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1447 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1448 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1449 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1450 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1451 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1452 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1453 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1454 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1455 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1456 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1457 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1458 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1459 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1460 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1461 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1462 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1463 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1464 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1465 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1466 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1467 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1468 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1469 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1470 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1471 /* ??? = regp->r_regs[R_ZERO]; */
1472 }
1473
1474 void
1475 printregs(regp)
1476 struct reg *regp;
1477 {
1478 int i;
1479
1480 for (i = 0; i < 32; i++)
1481 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1482 i & 1 ? "\n" : "\t");
1483 }
1484
1485 void
1486 regdump(framep)
1487 struct trapframe *framep;
1488 {
1489 struct reg reg;
1490
1491 frametoreg(framep, ®);
1492 reg.r_regs[R_SP] = alpha_pal_rdusp();
1493
1494 printf("REGISTERS:\n");
1495 printregs(®);
1496 }
1497
1498 #ifdef DEBUG
1499 int sigdebug = 0;
1500 int sigpid = 0;
1501 #define SDB_FOLLOW 0x01
1502 #define SDB_KSTACK 0x02
1503 #endif
1504
1505 /*
1506 * Send an interrupt to process.
1507 */
1508 void
1509 sendsig(catcher, sig, mask, code)
1510 sig_t catcher;
1511 int sig;
1512 sigset_t *mask;
1513 u_long code;
1514 {
1515 struct proc *p = curproc;
1516 struct sigcontext *scp, ksc;
1517 struct trapframe *frame;
1518 struct sigacts *psp = p->p_sigacts;
1519 int onstack, fsize, rndfsize;
1520
1521 frame = p->p_md.md_tf;
1522
1523 /* Do we need to jump onto the signal stack? */
1524 onstack =
1525 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1526 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1527
1528 /* Allocate space for the signal handler context. */
1529 fsize = sizeof(ksc);
1530 rndfsize = ((fsize + 15) / 16) * 16;
1531
1532 if (onstack)
1533 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1534 psp->ps_sigstk.ss_size);
1535 else
1536 scp = (struct sigcontext *)(alpha_pal_rdusp());
1537 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1538
1539 #ifdef DEBUG
1540 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1541 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1542 sig, &onstack, scp);
1543 #endif
1544
1545 /* Build stack frame for signal trampoline. */
1546 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1547 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1548
1549 /* Save register context. */
1550 frametoreg(frame, (struct reg *)ksc.sc_regs);
1551 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1552 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1553
1554 /* save the floating-point state, if necessary, then copy it. */
1555 if (p == fpcurproc) {
1556 alpha_pal_wrfen(1);
1557 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1558 alpha_pal_wrfen(0);
1559 fpcurproc = NULL;
1560 }
1561 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1562 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1563 sizeof(struct fpreg));
1564 ksc.sc_fp_control = 0; /* XXX ? */
1565 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1566 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1567
1568 /* Save signal stack. */
1569 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1570
1571 /* Save signal mask. */
1572 ksc.sc_mask = *mask;
1573
1574 #ifdef COMPAT_13
1575 /*
1576 * XXX We always have to save an old style signal mask because
1577 * XXX we might be delivering a signal to a process which will
1578 * XXX escape from the signal in a non-standard way and invoke
1579 * XXX sigreturn() directly.
1580 */
1581 {
1582 /* Note: it's a long in the stack frame. */
1583 sigset13_t mask13;
1584
1585 native_sigset_to_sigset13(mask, &mask13);
1586 ksc.__sc_mask13 = mask13;
1587 }
1588 #endif
1589
1590 #ifdef COMPAT_OSF1
1591 /*
1592 * XXX Create an OSF/1-style sigcontext and associated goo.
1593 */
1594 #endif
1595
1596 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1597 /*
1598 * Process has trashed its stack; give it an illegal
1599 * instruction to halt it in its tracks.
1600 */
1601 #ifdef DEBUG
1602 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1603 printf("sendsig(%d): copyout failed on sig %d\n",
1604 p->p_pid, sig);
1605 #endif
1606 sigexit(p, SIGILL);
1607 /* NOTREACHED */
1608 }
1609 #ifdef DEBUG
1610 if (sigdebug & SDB_FOLLOW)
1611 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1612 scp, code);
1613 #endif
1614
1615 /* Set up the registers to return to sigcode. */
1616 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1617 frame->tf_regs[FRAME_A0] = sig;
1618 frame->tf_regs[FRAME_A1] = code;
1619 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1620 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1621 alpha_pal_wrusp((unsigned long)scp);
1622
1623 /* Remember that we're now on the signal stack. */
1624 if (onstack)
1625 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1626
1627 #ifdef DEBUG
1628 if (sigdebug & SDB_FOLLOW)
1629 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1630 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1631 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1632 printf("sendsig(%d): sig %d returns\n",
1633 p->p_pid, sig);
1634 #endif
1635 }
1636
1637 /*
1638 * System call to cleanup state after a signal
1639 * has been taken. Reset signal mask and
1640 * stack state from context left by sendsig (above).
1641 * Return to previous pc and psl as specified by
1642 * context left by sendsig. Check carefully to
1643 * make sure that the user has not modified the
1644 * psl to gain improper privileges or to cause
1645 * a machine fault.
1646 */
1647 /* ARGSUSED */
1648 int
1649 sys___sigreturn14(p, v, retval)
1650 struct proc *p;
1651 void *v;
1652 register_t *retval;
1653 {
1654 struct sys___sigreturn14_args /* {
1655 syscallarg(struct sigcontext *) sigcntxp;
1656 } */ *uap = v;
1657 struct sigcontext *scp, ksc;
1658
1659 /*
1660 * The trampoline code hands us the context.
1661 * It is unsafe to keep track of it ourselves, in the event that a
1662 * program jumps out of a signal handler.
1663 */
1664 scp = SCARG(uap, sigcntxp);
1665 #ifdef DEBUG
1666 if (sigdebug & SDB_FOLLOW)
1667 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1668 #endif
1669 if (ALIGN(scp) != (u_int64_t)scp)
1670 return (EINVAL);
1671
1672 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1673 return (EFAULT);
1674
1675 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1676 return (EINVAL);
1677
1678 /* Restore register context. */
1679 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1680 p->p_md.md_tf->tf_regs[FRAME_PS] =
1681 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1682
1683 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1684 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1685
1686 /* XXX ksc.sc_ownedfp ? */
1687 if (p == fpcurproc)
1688 fpcurproc = NULL;
1689 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1690 sizeof(struct fpreg));
1691 /* XXX ksc.sc_fp_control ? */
1692
1693 /* Restore signal stack. */
1694 if (ksc.sc_onstack & SS_ONSTACK)
1695 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1696 else
1697 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1698
1699 /* Restore signal mask. */
1700 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1701
1702 #ifdef DEBUG
1703 if (sigdebug & SDB_FOLLOW)
1704 printf("sigreturn(%d): returns\n", p->p_pid);
1705 #endif
1706 return (EJUSTRETURN);
1707 }
1708
1709 /*
1710 * machine dependent system variables.
1711 */
1712 int
1713 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1714 int *name;
1715 u_int namelen;
1716 void *oldp;
1717 size_t *oldlenp;
1718 void *newp;
1719 size_t newlen;
1720 struct proc *p;
1721 {
1722 dev_t consdev;
1723
1724 /* all sysctl names at this level are terminal */
1725 if (namelen != 1)
1726 return (ENOTDIR); /* overloaded */
1727
1728 switch (name[0]) {
1729 case CPU_CONSDEV:
1730 if (cn_tab != NULL)
1731 consdev = cn_tab->cn_dev;
1732 else
1733 consdev = NODEV;
1734 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1735 sizeof consdev));
1736
1737 case CPU_ROOT_DEVICE:
1738 return (sysctl_rdstring(oldp, oldlenp, newp,
1739 root_device->dv_xname));
1740
1741 case CPU_UNALIGNED_PRINT:
1742 return (sysctl_int(oldp, oldlenp, newp, newlen,
1743 &alpha_unaligned_print));
1744
1745 case CPU_UNALIGNED_FIX:
1746 return (sysctl_int(oldp, oldlenp, newp, newlen,
1747 &alpha_unaligned_fix));
1748
1749 case CPU_UNALIGNED_SIGBUS:
1750 return (sysctl_int(oldp, oldlenp, newp, newlen,
1751 &alpha_unaligned_sigbus));
1752
1753 case CPU_BOOTED_KERNEL:
1754 return (sysctl_rdstring(oldp, oldlenp, newp,
1755 bootinfo.booted_kernel));
1756
1757 default:
1758 return (EOPNOTSUPP);
1759 }
1760 /* NOTREACHED */
1761 }
1762
1763 /*
1764 * Set registers on exec.
1765 */
1766 void
1767 setregs(p, pack, stack)
1768 register struct proc *p;
1769 struct exec_package *pack;
1770 u_long stack;
1771 {
1772 struct trapframe *tfp = p->p_md.md_tf;
1773 #ifdef DEBUG
1774 int i;
1775 #endif
1776
1777 #ifdef DEBUG
1778 /*
1779 * Crash and dump, if the user requested it.
1780 */
1781 if (boothowto & RB_DUMP)
1782 panic("crash requested by boot flags");
1783 #endif
1784
1785 #ifdef DEBUG
1786 for (i = 0; i < FRAME_SIZE; i++)
1787 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1788 #else
1789 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1790 #endif
1791 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1792 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1793 | FPCR_UNFD
1794 | FPCR_UNDZ
1795 | FPCR_DYN(FP_RN)
1796 | FPCR_OVFD
1797 | FPCR_DZED
1798 | FPCR_INVD
1799 | FPCR_DNZ;
1800 alpha_pal_wrusp(stack);
1801 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1802 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1803
1804 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1805 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1806 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1807 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1808 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1809
1810 p->p_md.md_flags &= ~MDP_FPUSED;
1811 if (fpcurproc == p)
1812 fpcurproc = NULL;
1813 }
1814
1815 void
1816 netintr()
1817 {
1818 int n, s;
1819
1820 s = splhigh();
1821 n = netisr;
1822 netisr = 0;
1823 splx(s);
1824
1825 #define DONETISR(bit, fn) \
1826 do { \
1827 if (n & (1 << (bit))) \
1828 fn(); \
1829 } while (0)
1830
1831 #include <net/netisr_dispatch.h>
1832
1833 #undef DONETISR
1834 }
1835
1836 void
1837 do_sir()
1838 {
1839 u_int64_t n;
1840
1841 while ((n = atomic_loadlatch_ulong(&ssir, 0)) != 0) {
1842 #define COUNT_SOFT uvmexp.softs++
1843
1844 #define DO_SIR(bit, fn) \
1845 do { \
1846 if (n & (bit)) { \
1847 COUNT_SOFT; \
1848 fn; \
1849 } \
1850 } while (0)
1851
1852 DO_SIR(SIR_NET, netintr());
1853 DO_SIR(SIR_CLOCK, softclock());
1854 #if NCOM > 0
1855 DO_SIR(SIR_SERIAL, comsoft());
1856 #endif
1857 #if NZSC_IOASIC > 0
1858 DO_SIR(SIR_SERIAL, zs_ioasic_softintr());
1859 #endif
1860
1861 #undef COUNT_SOFT
1862 #undef DO_SIR
1863 }
1864 }
1865
1866 int
1867 spl0()
1868 {
1869
1870 if (ssir) {
1871 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1872 do_sir();
1873 }
1874
1875 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1876 }
1877
1878 /*
1879 * The following primitives manipulate the run queues. _whichqs tells which
1880 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1881 * into queues, Remrunqueue removes them from queues. The running process is
1882 * on no queue, other processes are on a queue related to p->p_priority,
1883 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1884 * available queues.
1885 */
1886 /*
1887 * setrunqueue(p)
1888 * proc *p;
1889 *
1890 * Call should be made at splclock(), and p->p_stat should be SRUN.
1891 */
1892
1893 void
1894 setrunqueue(p)
1895 struct proc *p;
1896 {
1897 int bit;
1898
1899 /* firewall: p->p_back must be NULL */
1900 if (p->p_back != NULL)
1901 panic("setrunqueue");
1902
1903 bit = p->p_priority >> 2;
1904 sched_whichqs |= (1 << bit);
1905 p->p_forw = (struct proc *)&sched_qs[bit];
1906 p->p_back = sched_qs[bit].ph_rlink;
1907 p->p_back->p_forw = p;
1908 sched_qs[bit].ph_rlink = p;
1909 }
1910
1911 /*
1912 * remrunqueue(p)
1913 *
1914 * Call should be made at splclock().
1915 */
1916 void
1917 remrunqueue(p)
1918 struct proc *p;
1919 {
1920 int bit;
1921
1922 bit = p->p_priority >> 2;
1923 if ((sched_whichqs & (1 << bit)) == 0)
1924 panic("remrunqueue");
1925
1926 p->p_back->p_forw = p->p_forw;
1927 p->p_forw->p_back = p->p_back;
1928 p->p_back = NULL; /* for firewall checking. */
1929
1930 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1931 sched_whichqs &= ~(1 << bit);
1932 }
1933
1934 /*
1935 * Return the best possible estimate of the time in the timeval
1936 * to which tvp points. Unfortunately, we can't read the hardware registers.
1937 * We guarantee that the time will be greater than the value obtained by a
1938 * previous call.
1939 */
1940 void
1941 microtime(tvp)
1942 register struct timeval *tvp;
1943 {
1944 int s = splclock();
1945 static struct timeval lasttime;
1946
1947 *tvp = time;
1948 #ifdef notdef
1949 tvp->tv_usec += clkread();
1950 while (tvp->tv_usec >= 1000000) {
1951 tvp->tv_sec++;
1952 tvp->tv_usec -= 1000000;
1953 }
1954 #endif
1955 if (tvp->tv_sec == lasttime.tv_sec &&
1956 tvp->tv_usec <= lasttime.tv_usec &&
1957 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1958 tvp->tv_sec++;
1959 tvp->tv_usec -= 1000000;
1960 }
1961 lasttime = *tvp;
1962 splx(s);
1963 }
1964
1965 /*
1966 * Wait "n" microseconds.
1967 */
1968 void
1969 delay(n)
1970 unsigned long n;
1971 {
1972 long N = cycles_per_usec * (n);
1973
1974 /*
1975 * XXX Should be written to use RPCC?
1976 */
1977
1978 __asm __volatile(
1979 "# The 2 corresponds to the insn count\n"
1980 "1: subq %2, %1, %0 \n"
1981 " bgt %0, 1b"
1982 : "=r" (N)
1983 : "i" (2), "0" (N));
1984 }
1985
1986 #if defined(COMPAT_OSF1) || 1 /* XXX */
1987 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1988 u_long));
1989
1990 void
1991 cpu_exec_ecoff_setregs(p, epp, stack)
1992 struct proc *p;
1993 struct exec_package *epp;
1994 u_long stack;
1995 {
1996 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1997
1998 setregs(p, epp, stack);
1999 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2000 }
2001
2002 /*
2003 * cpu_exec_ecoff_hook():
2004 * cpu-dependent ECOFF format hook for execve().
2005 *
2006 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2007 *
2008 */
2009 int
2010 cpu_exec_ecoff_hook(p, epp)
2011 struct proc *p;
2012 struct exec_package *epp;
2013 {
2014 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2015 extern struct emul emul_netbsd;
2016 int error;
2017 extern int osf1_exec_ecoff_hook(struct proc *p,
2018 struct exec_package *epp);
2019
2020 switch (execp->f.f_magic) {
2021 #ifdef COMPAT_OSF1
2022 case ECOFF_MAGIC_ALPHA:
2023 error = osf1_exec_ecoff_hook(p, epp);
2024 break;
2025 #endif
2026
2027 case ECOFF_MAGIC_NETBSD_ALPHA:
2028 epp->ep_emul = &emul_netbsd;
2029 error = 0;
2030 break;
2031
2032 default:
2033 error = ENOEXEC;
2034 }
2035 return (error);
2036 }
2037 #endif
2038
2039 int
2040 alpha_pa_access(pa)
2041 u_long pa;
2042 {
2043 int i;
2044
2045 for (i = 0; i < mem_cluster_cnt; i++) {
2046 if (pa < mem_clusters[i].start)
2047 continue;
2048 if ((pa - mem_clusters[i].start) >=
2049 (mem_clusters[i].size & ~PAGE_MASK))
2050 continue;
2051 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2052 }
2053
2054 /*
2055 * Address is not a memory address. If we're secure, disallow
2056 * access. Otherwise, grant read/write.
2057 */
2058 if (securelevel > 0)
2059 return (PROT_NONE);
2060 else
2061 return (PROT_READ | PROT_WRITE);
2062 }
2063
2064 /* XXX XXX BEGIN XXX XXX */
2065 paddr_t alpha_XXX_dmamap_or; /* XXX */
2066 /* XXX */
2067 paddr_t /* XXX */
2068 alpha_XXX_dmamap(v) /* XXX */
2069 vaddr_t v; /* XXX */
2070 { /* XXX */
2071 /* XXX */
2072 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2073 } /* XXX */
2074 /* XXX XXX END XXX XXX */
2075
2076 char *
2077 dot_conv(x)
2078 unsigned long x;
2079 {
2080 int i;
2081 char *xc;
2082 static int next;
2083 static char space[2][20];
2084
2085 xc = space[next ^= 1] + sizeof space[0];
2086 *--xc = '\0';
2087 for (i = 0;; ++i) {
2088 if (i && (i & 3) == 0)
2089 *--xc = '.';
2090 *--xc = "0123456789abcdef"[x & 0xf];
2091 x >>= 4;
2092 if (x == 0)
2093 break;
2094 }
2095 return xc;
2096 }
2097