machdep.c revision 1.209 1 /* $NetBSD: machdep.c,v 1.209 2000/06/01 03:41:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.209 2000/06/01 03:41:23 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/sched.h>
91 #include <sys/buf.h>
92 #include <sys/reboot.h>
93 #include <sys/device.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/mman.h>
98 #include <sys/msgbuf.h>
99 #include <sys/ioctl.h>
100 #include <sys/tty.h>
101 #include <sys/user.h>
102 #include <sys/exec.h>
103 #include <sys/exec_ecoff.h>
104 #include <vm/vm.h>
105 #include <sys/sysctl.h>
106 #include <sys/core.h>
107 #include <sys/kcore.h>
108 #include <machine/kcore.h>
109
110 #include <sys/mount.h>
111 #include <sys/syscallargs.h>
112
113 #include <vm/vm_kern.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/conf.h>
125 #include <machine/ieeefp.h>
126
127 #include <net/netisr.h>
128 #include <net/if.h>
129
130 #ifdef INET
131 #include <net/route.h>
132 #include <netinet/in.h>
133 #include <netinet/ip_var.h>
134 #include "arp.h"
135 #if NARP > 0
136 #include <netinet/if_inarp.h>
137 #endif
138 #endif
139 #ifdef INET6
140 # ifndef INET
141 # include <netinet/in.h>
142 # endif
143 #include <netinet/ip6.h>
144 #include <netinet6/ip6_var.h>
145 #endif
146 #ifdef NS
147 #include <netns/ns_var.h>
148 #endif
149 #ifdef ISO
150 #include <netiso/iso.h>
151 #include <netiso/clnp.h>
152 #endif
153 #ifdef CCITT
154 #include <netccitt/x25.h>
155 #include <netccitt/pk.h>
156 #include <netccitt/pk_extern.h>
157 #endif
158 #ifdef NATM
159 #include <netnatm/natm.h>
160 #endif
161 #ifdef NETATALK
162 #include <netatalk/at_extern.h>
163 #endif
164 #include "ppp.h"
165 #if NPPP > 0
166 #include <net/ppp_defs.h>
167 #include <net/if_ppp.h>
168 #endif
169
170 #ifdef DDB
171 #include <machine/db_machdep.h>
172 #include <ddb/db_access.h>
173 #include <ddb/db_sym.h>
174 #include <ddb/db_extern.h>
175 #include <ddb/db_interface.h>
176 #endif
177
178 #include <machine/alpha.h>
179 #include <machine/intrcnt.h>
180
181 #include "com.h"
182 #if NCOM > 0
183 extern void comsoft __P((void));
184 #endif
185 #include "zsc_ioasic.h"
186 #if NZSC_IOASIC > 0
187 extern void zs_ioasic_softintr __P((void));
188 #endif
189
190 vm_map_t exec_map = NULL;
191 vm_map_t mb_map = NULL;
192 vm_map_t phys_map = NULL;
193
194 caddr_t msgbufaddr;
195
196 int maxmem; /* max memory per process */
197
198 int totalphysmem; /* total amount of physical memory in system */
199 int physmem; /* physical memory used by NetBSD + some rsvd */
200 int resvmem; /* amount of memory reserved for PROM */
201 int unusedmem; /* amount of memory for OS that we don't use */
202 int unknownmem; /* amount of memory with an unknown use */
203
204 int cputype; /* system type, from the RPB */
205
206 /*
207 * XXX We need an address to which we can assign things so that they
208 * won't be optimized away because we didn't use the value.
209 */
210 u_int32_t no_optimize;
211
212 /* the following is used externally (sysctl_hw) */
213 char machine[] = MACHINE; /* from <machine/param.h> */
214 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
215 char cpu_model[128];
216
217 struct user *proc0paddr;
218
219 /* Number of machine cycles per microsecond */
220 u_int64_t cycles_per_usec;
221
222 /* number of cpus in the box. really! */
223 int ncpus;
224
225 struct bootinfo_kernel bootinfo;
226
227 /* For built-in TCDS */
228 #if defined(DEC_3000_300) || defined(DEC_3000_500)
229 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
230 #endif
231
232 struct platform platform;
233
234 #ifdef DDB
235 /* start and end of kernel symbol table */
236 void *ksym_start, *ksym_end;
237 #endif
238
239 /* for cpu_sysctl() */
240 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
241 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
242 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
243
244 /*
245 * XXX This should be dynamically sized, but we have the chicken-egg problem!
246 * XXX it should also be larger than it is, because not all of the mddt
247 * XXX clusters end up being used for VM.
248 */
249 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
250 int mem_cluster_cnt;
251
252 int cpu_dump __P((void));
253 int cpu_dumpsize __P((void));
254 u_long cpu_dump_mempagecnt __P((void));
255 void dumpsys __P((void));
256 void identifycpu __P((void));
257 void netintr __P((void));
258 void printregs __P((struct reg *));
259
260 void
261 alpha_init(pfn, ptb, bim, bip, biv)
262 u_long pfn; /* first free PFN number */
263 u_long ptb; /* PFN of current level 1 page table */
264 u_long bim; /* bootinfo magic */
265 u_long bip; /* bootinfo pointer */
266 u_long biv; /* bootinfo version */
267 {
268 extern char kernel_text[], _end[];
269 struct mddt *mddtp;
270 struct mddt_cluster *memc;
271 int i, mddtweird;
272 struct vm_physseg *vps;
273 vaddr_t kernstart, kernend;
274 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
275 vsize_t size;
276 char *p;
277 caddr_t v;
278 const char *bootinfo_msg;
279 const struct cpuinit *c;
280
281 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
282
283 /*
284 * Turn off interrupts (not mchecks) and floating point.
285 * Make sure the instruction and data streams are consistent.
286 */
287 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
288 alpha_pal_wrfen(0);
289 ALPHA_TBIA();
290 alpha_pal_imb();
291
292 #if defined(MULTIPROCESSOR)
293 /*
294 * Set our SysValue to the address of our cpu_info structure.
295 * Secondary processors do this in their spinup trampoline.
296 */
297 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
298 #endif
299
300 /*
301 * Get critical system information (if possible, from the
302 * information provided by the boot program).
303 */
304 bootinfo_msg = NULL;
305 if (bim == BOOTINFO_MAGIC) {
306 if (biv == 0) { /* backward compat */
307 biv = *(u_long *)bip;
308 bip += 8;
309 }
310 switch (biv) {
311 case 1: {
312 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
313
314 bootinfo.ssym = v1p->ssym;
315 bootinfo.esym = v1p->esym;
316 /* hwrpb may not be provided by boot block in v1 */
317 if (v1p->hwrpb != NULL) {
318 bootinfo.hwrpb_phys =
319 ((struct rpb *)v1p->hwrpb)->rpb_phys;
320 bootinfo.hwrpb_size = v1p->hwrpbsize;
321 } else {
322 bootinfo.hwrpb_phys =
323 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
324 bootinfo.hwrpb_size =
325 ((struct rpb *)HWRPB_ADDR)->rpb_size;
326 }
327 bcopy(v1p->boot_flags, bootinfo.boot_flags,
328 min(sizeof v1p->boot_flags,
329 sizeof bootinfo.boot_flags));
330 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
331 min(sizeof v1p->booted_kernel,
332 sizeof bootinfo.booted_kernel));
333 /* booted dev not provided in bootinfo */
334 init_prom_interface((struct rpb *)
335 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
336 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
337 sizeof bootinfo.booted_dev);
338 break;
339 }
340 default:
341 bootinfo_msg = "unknown bootinfo version";
342 goto nobootinfo;
343 }
344 } else {
345 bootinfo_msg = "boot program did not pass bootinfo";
346 nobootinfo:
347 bootinfo.ssym = (u_long)_end;
348 bootinfo.esym = (u_long)_end;
349 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
350 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
351 init_prom_interface((struct rpb *)HWRPB_ADDR);
352 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
353 sizeof bootinfo.boot_flags);
354 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
355 sizeof bootinfo.booted_kernel);
356 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
357 sizeof bootinfo.booted_dev);
358 }
359
360 /*
361 * Initialize the kernel's mapping of the RPB. It's needed for
362 * lots of things.
363 */
364 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
365
366 #if defined(DEC_3000_300) || defined(DEC_3000_500)
367 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
368 hwrpb->rpb_type == ST_DEC_3000_500) {
369 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
370 sizeof(dec_3000_scsiid));
371 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
372 sizeof(dec_3000_scsifast));
373 }
374 #endif
375
376 /*
377 * Remember how many cycles there are per microsecond,
378 * so that we can use delay(). Round up, for safety.
379 */
380 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
381
382 /*
383 * Initalize the (temporary) bootstrap console interface, so
384 * we can use printf until the VM system starts being setup.
385 * The real console is initialized before then.
386 */
387 init_bootstrap_console();
388
389 /* OUTPUT NOW ALLOWED */
390
391 /* delayed from above */
392 if (bootinfo_msg)
393 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
394 bootinfo_msg, bim, bip, biv);
395
396 /* Initialize the trap vectors on the primary processor. */
397 trap_init();
398
399 /*
400 * Find out what hardware we're on, and do basic initialization.
401 */
402 cputype = hwrpb->rpb_type;
403 if (cputype < 0) {
404 /*
405 * At least some white-box systems have SRM which
406 * reports a systype that's the negative of their
407 * blue-box counterpart.
408 */
409 cputype = -cputype;
410 }
411 c = platform_lookup(cputype);
412 if (c == NULL) {
413 platform_not_supported();
414 /* NOTREACHED */
415 }
416 (*c->init)();
417 strcpy(cpu_model, platform.model);
418
419 /*
420 * Initalize the real console, so that the bootstrap console is
421 * no longer necessary.
422 */
423 (*platform.cons_init)();
424
425 #ifdef DIAGNOSTIC
426 /* Paranoid sanity checking */
427
428 /* We should always be running on the primary. */
429 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
430
431 /*
432 * On single-CPU systypes, the primary should always be CPU 0,
433 * except on Alpha 8200 systems where the CPU id is related
434 * to the VID, which is related to the Turbo Laser node id.
435 */
436 if (cputype != ST_DEC_21000)
437 assert(hwrpb->rpb_primary_cpu_id == 0);
438 #endif
439
440 /* NO MORE FIRMWARE ACCESS ALLOWED */
441 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
442 /*
443 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
444 * XXX pmap_uses_prom_console() evaluates to non-zero.)
445 */
446 #endif
447
448 /*
449 * find out this system's page size
450 */
451 PAGE_SIZE = hwrpb->rpb_page_size;
452 if (PAGE_SIZE != 8192)
453 panic("page size %d != 8192?!", PAGE_SIZE);
454
455 /*
456 * Initialize PAGE_SIZE-dependent variables.
457 */
458 uvm_setpagesize();
459
460 /*
461 * Find the beginning and end of the kernel (and leave a
462 * bit of space before the beginning for the bootstrap
463 * stack).
464 */
465 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
466 #ifdef DDB
467 ksym_start = (void *)bootinfo.ssym;
468 ksym_end = (void *)bootinfo.esym;
469 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
470 #else
471 kernend = (vaddr_t)round_page((vaddr_t)_end);
472 #endif
473
474 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
475 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
476
477 /*
478 * Find out how much memory is available, by looking at
479 * the memory cluster descriptors. This also tries to do
480 * its best to detect things things that have never been seen
481 * before...
482 */
483 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
484
485 /* MDDT SANITY CHECKING */
486 mddtweird = 0;
487 if (mddtp->mddt_cluster_cnt < 2) {
488 mddtweird = 1;
489 printf("WARNING: weird number of mem clusters: %lu\n",
490 mddtp->mddt_cluster_cnt);
491 }
492
493 #if 0
494 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
495 #endif
496
497 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
498 memc = &mddtp->mddt_clusters[i];
499 #if 0
500 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
501 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
502 #endif
503 totalphysmem += memc->mddt_pg_cnt;
504 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
505 mem_clusters[mem_cluster_cnt].start =
506 ptoa(memc->mddt_pfn);
507 mem_clusters[mem_cluster_cnt].size =
508 ptoa(memc->mddt_pg_cnt);
509 if (memc->mddt_usage & MDDT_mbz ||
510 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
511 memc->mddt_usage & MDDT_PALCODE)
512 mem_clusters[mem_cluster_cnt].size |=
513 PROT_READ;
514 else
515 mem_clusters[mem_cluster_cnt].size |=
516 PROT_READ | PROT_WRITE | PROT_EXEC;
517 mem_cluster_cnt++;
518 }
519
520 if (memc->mddt_usage & MDDT_mbz) {
521 mddtweird = 1;
522 printf("WARNING: mem cluster %d has weird "
523 "usage 0x%lx\n", i, memc->mddt_usage);
524 unknownmem += memc->mddt_pg_cnt;
525 continue;
526 }
527 if (memc->mddt_usage & MDDT_NONVOLATILE) {
528 /* XXX should handle these... */
529 printf("WARNING: skipping non-volatile mem "
530 "cluster %d\n", i);
531 unusedmem += memc->mddt_pg_cnt;
532 continue;
533 }
534 if (memc->mddt_usage & MDDT_PALCODE) {
535 resvmem += memc->mddt_pg_cnt;
536 continue;
537 }
538
539 /*
540 * We have a memory cluster available for system
541 * software use. We must determine if this cluster
542 * holds the kernel.
543 */
544 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
545 /*
546 * XXX If the kernel uses the PROM console, we only use the
547 * XXX memory after the kernel in the first system segment,
548 * XXX to avoid clobbering prom mapping, data, etc.
549 */
550 if (!pmap_uses_prom_console() || physmem == 0) {
551 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
552 physmem += memc->mddt_pg_cnt;
553 pfn0 = memc->mddt_pfn;
554 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
555 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
556 /*
557 * Must compute the location of the kernel
558 * within the segment.
559 */
560 #if 0
561 printf("Cluster %d contains kernel\n", i);
562 #endif
563 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
564 if (!pmap_uses_prom_console()) {
565 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
566 if (pfn0 < kernstartpfn) {
567 /*
568 * There is a chunk before the kernel.
569 */
570 #if 0
571 printf("Loading chunk before kernel: "
572 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
573 #endif
574 uvm_page_physload(pfn0, kernstartpfn,
575 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
576 }
577 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
578 }
579 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
580 if (kernendpfn < pfn1) {
581 /*
582 * There is a chunk after the kernel.
583 */
584 #if 0
585 printf("Loading chunk after kernel: "
586 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
587 #endif
588 uvm_page_physload(kernendpfn, pfn1,
589 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
590 }
591 } else {
592 /*
593 * Just load this cluster as one chunk.
594 */
595 #if 0
596 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
597 pfn0, pfn1);
598 #endif
599 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
600 VM_FREELIST_DEFAULT);
601 }
602 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
603 }
604 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
605 }
606
607 /*
608 * Dump out the MDDT if it looks odd...
609 */
610 if (mddtweird) {
611 printf("\n");
612 printf("complete memory cluster information:\n");
613 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
614 printf("mddt %d:\n", i);
615 printf("\tpfn %lx\n",
616 mddtp->mddt_clusters[i].mddt_pfn);
617 printf("\tcnt %lx\n",
618 mddtp->mddt_clusters[i].mddt_pg_cnt);
619 printf("\ttest %lx\n",
620 mddtp->mddt_clusters[i].mddt_pg_test);
621 printf("\tbva %lx\n",
622 mddtp->mddt_clusters[i].mddt_v_bitaddr);
623 printf("\tbpa %lx\n",
624 mddtp->mddt_clusters[i].mddt_p_bitaddr);
625 printf("\tbcksum %lx\n",
626 mddtp->mddt_clusters[i].mddt_bit_cksum);
627 printf("\tusage %lx\n",
628 mddtp->mddt_clusters[i].mddt_usage);
629 }
630 printf("\n");
631 }
632
633 if (totalphysmem == 0)
634 panic("can't happen: system seems to have no memory!");
635 maxmem = physmem;
636 #if 0
637 printf("totalphysmem = %d\n", totalphysmem);
638 printf("physmem = %d\n", physmem);
639 printf("resvmem = %d\n", resvmem);
640 printf("unusedmem = %d\n", unusedmem);
641 printf("unknownmem = %d\n", unknownmem);
642 #endif
643
644 /*
645 * Initialize error message buffer (at end of core).
646 */
647 {
648 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
649 vsize_t reqsz = sz;
650
651 vps = &vm_physmem[vm_nphysseg - 1];
652
653 /* shrink so that it'll fit in the last segment */
654 if ((vps->avail_end - vps->avail_start) < atop(sz))
655 sz = ptoa(vps->avail_end - vps->avail_start);
656
657 vps->end -= atop(sz);
658 vps->avail_end -= atop(sz);
659 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
660 initmsgbuf(msgbufaddr, sz);
661
662 /* Remove the last segment if it now has no pages. */
663 if (vps->start == vps->end)
664 vm_nphysseg--;
665
666 /* warn if the message buffer had to be shrunk */
667 if (sz != reqsz)
668 printf("WARNING: %ld bytes not available for msgbuf "
669 "in last cluster (%ld used)\n", reqsz, sz);
670
671 }
672
673 /*
674 * Init mapping for u page(s) for proc 0
675 */
676 proc0.p_addr = proc0paddr =
677 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
678
679 /*
680 * Allocate space for system data structures. These data structures
681 * are allocated here instead of cpu_startup() because physical
682 * memory is directly addressable. We don't have to map these into
683 * virtual address space.
684 */
685 size = (vsize_t)allocsys(NULL, NULL);
686 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
687 if ((allocsys(v, NULL) - v) != size)
688 panic("alpha_init: table size inconsistency");
689
690 /*
691 * Initialize the virtual memory system, and set the
692 * page table base register in proc 0's PCB.
693 */
694 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
695 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
696
697 /*
698 * Initialize the rest of proc 0's PCB, and cache its physical
699 * address.
700 */
701 proc0.p_md.md_pcbpaddr =
702 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
703
704 /*
705 * Set the kernel sp, reserving space for an (empty) trapframe,
706 * and make proc0's trapframe pointer point to it for sanity.
707 */
708 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
709 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
710 proc0.p_md.md_tf =
711 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
712
713 /*
714 * Initialize the primary CPU's idle PCB to proc0's. In a
715 * MULTIPROCESSOR configuration, each CPU will later get
716 * its own idle PCB when autoconfiguration runs.
717 */
718 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
719 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
720
721 /* Indicate that proc0 has a CPU. */
722 proc0.p_cpu = curcpu();
723
724 /*
725 * Look at arguments passed to us and compute boothowto.
726 */
727
728 boothowto = RB_SINGLE;
729 #ifdef KADB
730 boothowto |= RB_KDB;
731 #endif
732 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
733 /*
734 * Note that we'd really like to differentiate case here,
735 * but the Alpha AXP Architecture Reference Manual
736 * says that we shouldn't.
737 */
738 switch (*p) {
739 case 'a': /* autoboot */
740 case 'A':
741 boothowto &= ~RB_SINGLE;
742 break;
743
744 #ifdef DEBUG
745 case 'c': /* crash dump immediately after autoconfig */
746 case 'C':
747 boothowto |= RB_DUMP;
748 break;
749 #endif
750
751 #if defined(KGDB) || defined(DDB)
752 case 'd': /* break into the kernel debugger ASAP */
753 case 'D':
754 boothowto |= RB_KDB;
755 break;
756 #endif
757
758 case 'h': /* always halt, never reboot */
759 case 'H':
760 boothowto |= RB_HALT;
761 break;
762
763 #if 0
764 case 'm': /* mini root present in memory */
765 case 'M':
766 boothowto |= RB_MINIROOT;
767 break;
768 #endif
769
770 case 'n': /* askname */
771 case 'N':
772 boothowto |= RB_ASKNAME;
773 break;
774
775 case 's': /* single-user (default, supported for sanity) */
776 case 'S':
777 boothowto |= RB_SINGLE;
778 break;
779
780 case '-':
781 /*
782 * Just ignore this. It's not required, but it's
783 * common for it to be passed regardless.
784 */
785 break;
786
787 default:
788 printf("Unrecognized boot flag '%c'.\n", *p);
789 break;
790 }
791 }
792
793
794 /*
795 * Figure out the number of cpus in the box, from RPB fields.
796 * Really. We mean it.
797 */
798 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
799 struct pcs *pcsp;
800
801 pcsp = LOCATE_PCS(hwrpb, i);
802 if ((pcsp->pcs_flags & PCS_PP) != 0)
803 ncpus++;
804 }
805
806 /*
807 * Initialize debuggers, and break into them if appropriate.
808 */
809 #ifdef DDB
810 db_machine_init();
811 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
812 ksym_start, ksym_end);
813 if (boothowto & RB_KDB)
814 Debugger();
815 #endif
816 #ifdef KGDB
817 if (boothowto & RB_KDB)
818 kgdb_connect(0);
819 #endif
820 /*
821 * Figure out our clock frequency, from RPB fields.
822 */
823 hz = hwrpb->rpb_intr_freq >> 12;
824 if (!(60 <= hz && hz <= 10240)) {
825 hz = 1024;
826 #ifdef DIAGNOSTIC
827 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
828 hwrpb->rpb_intr_freq, hz);
829 #endif
830 }
831 }
832
833 void
834 consinit()
835 {
836
837 /*
838 * Everything related to console initialization is done
839 * in alpha_init().
840 */
841 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
842 printf("consinit: %susing prom console\n",
843 pmap_uses_prom_console() ? "" : "not ");
844 #endif
845 }
846
847 #include "pckbc.h"
848 #include "pckbd.h"
849 #if (NPCKBC > 0) && (NPCKBD == 0)
850
851 #include <dev/ic/pckbcvar.h>
852
853 /*
854 * This is called by the pbkbc driver if no pckbd is configured.
855 * On the i386, it is used to glue in the old, deprecated console
856 * code. On the Alpha, it does nothing.
857 */
858 int
859 pckbc_machdep_cnattach(kbctag, kbcslot)
860 pckbc_tag_t kbctag;
861 pckbc_slot_t kbcslot;
862 {
863
864 return (ENXIO);
865 }
866 #endif /* NPCKBC > 0 && NPCKBD == 0 */
867
868 void
869 cpu_startup()
870 {
871 register unsigned i;
872 int base, residual;
873 vaddr_t minaddr, maxaddr;
874 vsize_t size;
875 char pbuf[9];
876 #if defined(DEBUG)
877 extern int pmapdebug;
878 int opmapdebug = pmapdebug;
879
880 pmapdebug = 0;
881 #endif
882
883 /*
884 * Good {morning,afternoon,evening,night}.
885 */
886 printf(version);
887 identifycpu();
888 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
889 printf("total memory = %s\n", pbuf);
890 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
891 printf("(%s reserved for PROM, ", pbuf);
892 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
893 printf("%s used by NetBSD)\n", pbuf);
894 if (unusedmem) {
895 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
896 printf("WARNING: unused memory = %s\n", pbuf);
897 }
898 if (unknownmem) {
899 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
900 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
901 }
902
903 /*
904 * Allocate virtual address space for file I/O buffers.
905 * Note they are different than the array of headers, 'buf',
906 * and usually occupy more virtual memory than physical.
907 */
908 size = MAXBSIZE * nbuf;
909 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
910 NULL, UVM_UNKNOWN_OFFSET,
911 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
912 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
913 panic("startup: cannot allocate VM for buffers");
914 base = bufpages / nbuf;
915 residual = bufpages % nbuf;
916 for (i = 0; i < nbuf; i++) {
917 vsize_t curbufsize;
918 vaddr_t curbuf;
919 struct vm_page *pg;
920
921 /*
922 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
923 * that MAXBSIZE space, we allocate and map (base+1) pages
924 * for the first "residual" buffers, and then we allocate
925 * "base" pages for the rest.
926 */
927 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
928 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
929
930 while (curbufsize) {
931 pg = uvm_pagealloc(NULL, 0, NULL, 0);
932 if (pg == NULL)
933 panic("cpu_startup: not enough memory for "
934 "buffer cache");
935 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
936 VM_PROT_READ|VM_PROT_WRITE);
937 curbuf += PAGE_SIZE;
938 curbufsize -= PAGE_SIZE;
939 }
940 }
941 /*
942 * Allocate a submap for exec arguments. This map effectively
943 * limits the number of processes exec'ing at any time.
944 */
945 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
946 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
947
948 /*
949 * Allocate a submap for physio
950 */
951 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
952 VM_PHYS_SIZE, 0, FALSE, NULL);
953
954 /*
955 * No need to allocate an mbuf cluster submap. Mbuf clusters
956 * are allocated via the pool allocator, and we use K0SEG to
957 * map those pages.
958 */
959
960 #if defined(DEBUG)
961 pmapdebug = opmapdebug;
962 #endif
963 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
964 printf("avail memory = %s\n", pbuf);
965 #if 0
966 {
967 extern u_long pmap_pages_stolen;
968
969 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
970 printf("stolen memory for VM structures = %s\n", pbuf);
971 }
972 #endif
973 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
974 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
975
976 /*
977 * Set up buffers, so they can be used to read disk labels.
978 */
979 bufinit();
980
981 /*
982 * Set up the HWPCB so that it's safe to configure secondary
983 * CPUs.
984 */
985 hwrpb_primary_init();
986 }
987
988 /*
989 * Retrieve the platform name from the DSR.
990 */
991 const char *
992 alpha_dsr_sysname()
993 {
994 struct dsrdb *dsr;
995 const char *sysname;
996
997 /*
998 * DSR does not exist on early HWRPB versions.
999 */
1000 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1001 return (NULL);
1002
1003 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1004 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1005 sizeof(u_int64_t)));
1006 return (sysname);
1007 }
1008
1009 /*
1010 * Lookup the system specified system variation in the provided table,
1011 * returning the model string on match.
1012 */
1013 const char *
1014 alpha_variation_name(variation, avtp)
1015 u_int64_t variation;
1016 const struct alpha_variation_table *avtp;
1017 {
1018 int i;
1019
1020 for (i = 0; avtp[i].avt_model != NULL; i++)
1021 if (avtp[i].avt_variation == variation)
1022 return (avtp[i].avt_model);
1023 return (NULL);
1024 }
1025
1026 /*
1027 * Generate a default platform name based for unknown system variations.
1028 */
1029 const char *
1030 alpha_unknown_sysname()
1031 {
1032 static char s[128]; /* safe size */
1033
1034 sprintf(s, "%s family, unknown model variation 0x%lx",
1035 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1036 return ((const char *)s);
1037 }
1038
1039 void
1040 identifycpu()
1041 {
1042 char *s;
1043
1044 /*
1045 * print out CPU identification information.
1046 */
1047 printf("%s", cpu_model);
1048 for(s = cpu_model; *s; ++s)
1049 if(strncasecmp(s, "MHz", 3) == 0)
1050 goto skipMHz;
1051 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1052 skipMHz:
1053 printf("\n");
1054 printf("%ld byte page size, %d processor%s.\n",
1055 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1056 #if 0
1057 /* this isn't defined for any systems that we run on? */
1058 printf("serial number 0x%lx 0x%lx\n",
1059 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1060
1061 /* and these aren't particularly useful! */
1062 printf("variation: 0x%lx, revision 0x%lx\n",
1063 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1064 #endif
1065 }
1066
1067 int waittime = -1;
1068 struct pcb dumppcb;
1069
1070 void
1071 cpu_reboot(howto, bootstr)
1072 int howto;
1073 char *bootstr;
1074 {
1075 #if defined(MULTIPROCESSOR)
1076 #if 0 /* XXX See below. */
1077 u_long cpu_id;
1078 #endif
1079 #endif
1080
1081 #if defined(MULTIPROCESSOR)
1082 /* We must be running on the primary CPU. */
1083 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1084 panic("cpu_reboot: not on primary CPU!");
1085 #endif
1086
1087 /* If system is cold, just halt. */
1088 if (cold) {
1089 howto |= RB_HALT;
1090 goto haltsys;
1091 }
1092
1093 /* If "always halt" was specified as a boot flag, obey. */
1094 if ((boothowto & RB_HALT) != 0)
1095 howto |= RB_HALT;
1096
1097 boothowto = howto;
1098 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1099 waittime = 0;
1100 vfs_shutdown();
1101 /*
1102 * If we've been adjusting the clock, the todr
1103 * will be out of synch; adjust it now.
1104 */
1105 resettodr();
1106 }
1107
1108 /* Disable interrupts. */
1109 splhigh();
1110
1111 /* If rebooting and a dump is requested do it. */
1112 #if 0
1113 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1114 #else
1115 if (howto & RB_DUMP)
1116 #endif
1117 dumpsys();
1118
1119 haltsys:
1120
1121 /* run any shutdown hooks */
1122 doshutdownhooks();
1123
1124 #if defined(MULTIPROCESSOR)
1125 #if 0 /* XXX doesn't work when called from here?! */
1126 /* Kill off any secondary CPUs. */
1127 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1128 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1129 cpu_info[cpu_id].ci_softc == NULL)
1130 continue;
1131 cpu_halt_secondary(cpu_id);
1132 }
1133 #endif
1134 #endif
1135
1136 #ifdef BOOTKEY
1137 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1138 cnpollc(1); /* for proper keyboard command handling */
1139 cngetc();
1140 cnpollc(0);
1141 printf("\n");
1142 #endif
1143
1144 /* Finally, powerdown/halt/reboot the system. */
1145 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1146 platform.powerdown != NULL) {
1147 (*platform.powerdown)();
1148 printf("WARNING: powerdown failed!\n");
1149 }
1150 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1151 prom_halt(howto & RB_HALT);
1152 /*NOTREACHED*/
1153 }
1154
1155 /*
1156 * These variables are needed by /sbin/savecore
1157 */
1158 u_long dumpmag = 0x8fca0101; /* magic number */
1159 int dumpsize = 0; /* pages */
1160 long dumplo = 0; /* blocks */
1161
1162 /*
1163 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1164 */
1165 int
1166 cpu_dumpsize()
1167 {
1168 int size;
1169
1170 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1171 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1172 if (roundup(size, dbtob(1)) != dbtob(1))
1173 return -1;
1174
1175 return (1);
1176 }
1177
1178 /*
1179 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1180 */
1181 u_long
1182 cpu_dump_mempagecnt()
1183 {
1184 u_long i, n;
1185
1186 n = 0;
1187 for (i = 0; i < mem_cluster_cnt; i++)
1188 n += atop(mem_clusters[i].size);
1189 return (n);
1190 }
1191
1192 /*
1193 * cpu_dump: dump machine-dependent kernel core dump headers.
1194 */
1195 int
1196 cpu_dump()
1197 {
1198 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1199 char buf[dbtob(1)];
1200 kcore_seg_t *segp;
1201 cpu_kcore_hdr_t *cpuhdrp;
1202 phys_ram_seg_t *memsegp;
1203 int i;
1204
1205 dump = bdevsw[major(dumpdev)].d_dump;
1206
1207 bzero(buf, sizeof buf);
1208 segp = (kcore_seg_t *)buf;
1209 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1210 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1211 ALIGN(sizeof(*cpuhdrp))];
1212
1213 /*
1214 * Generate a segment header.
1215 */
1216 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1217 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1218
1219 /*
1220 * Add the machine-dependent header info.
1221 */
1222 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1223 cpuhdrp->page_size = PAGE_SIZE;
1224 cpuhdrp->nmemsegs = mem_cluster_cnt;
1225
1226 /*
1227 * Fill in the memory segment descriptors.
1228 */
1229 for (i = 0; i < mem_cluster_cnt; i++) {
1230 memsegp[i].start = mem_clusters[i].start;
1231 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1232 }
1233
1234 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1235 }
1236
1237 /*
1238 * This is called by main to set dumplo and dumpsize.
1239 * Dumps always skip the first NBPG of disk space
1240 * in case there might be a disk label stored there.
1241 * If there is extra space, put dump at the end to
1242 * reduce the chance that swapping trashes it.
1243 */
1244 void
1245 cpu_dumpconf()
1246 {
1247 int nblks, dumpblks; /* size of dump area */
1248 int maj;
1249
1250 if (dumpdev == NODEV)
1251 goto bad;
1252 maj = major(dumpdev);
1253 if (maj < 0 || maj >= nblkdev)
1254 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1255 if (bdevsw[maj].d_psize == NULL)
1256 goto bad;
1257 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1258 if (nblks <= ctod(1))
1259 goto bad;
1260
1261 dumpblks = cpu_dumpsize();
1262 if (dumpblks < 0)
1263 goto bad;
1264 dumpblks += ctod(cpu_dump_mempagecnt());
1265
1266 /* If dump won't fit (incl. room for possible label), punt. */
1267 if (dumpblks > (nblks - ctod(1)))
1268 goto bad;
1269
1270 /* Put dump at end of partition */
1271 dumplo = nblks - dumpblks;
1272
1273 /* dumpsize is in page units, and doesn't include headers. */
1274 dumpsize = cpu_dump_mempagecnt();
1275 return;
1276
1277 bad:
1278 dumpsize = 0;
1279 return;
1280 }
1281
1282 /*
1283 * Dump the kernel's image to the swap partition.
1284 */
1285 #define BYTES_PER_DUMP NBPG
1286
1287 void
1288 dumpsys()
1289 {
1290 u_long totalbytesleft, bytes, i, n, memcl;
1291 u_long maddr;
1292 int psize;
1293 daddr_t blkno;
1294 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1295 int error;
1296
1297 /* Save registers. */
1298 savectx(&dumppcb);
1299
1300 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1301 if (dumpdev == NODEV)
1302 return;
1303
1304 /*
1305 * For dumps during autoconfiguration,
1306 * if dump device has already configured...
1307 */
1308 if (dumpsize == 0)
1309 cpu_dumpconf();
1310 if (dumplo <= 0) {
1311 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1312 minor(dumpdev));
1313 return;
1314 }
1315 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1316 minor(dumpdev), dumplo);
1317
1318 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1319 printf("dump ");
1320 if (psize == -1) {
1321 printf("area unavailable\n");
1322 return;
1323 }
1324
1325 /* XXX should purge all outstanding keystrokes. */
1326
1327 if ((error = cpu_dump()) != 0)
1328 goto err;
1329
1330 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1331 blkno = dumplo + cpu_dumpsize();
1332 dump = bdevsw[major(dumpdev)].d_dump;
1333 error = 0;
1334
1335 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1336 maddr = mem_clusters[memcl].start;
1337 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1338
1339 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1340
1341 /* Print out how many MBs we to go. */
1342 if ((totalbytesleft % (1024*1024)) == 0)
1343 printf("%ld ", totalbytesleft / (1024 * 1024));
1344
1345 /* Limit size for next transfer. */
1346 n = bytes - i;
1347 if (n > BYTES_PER_DUMP)
1348 n = BYTES_PER_DUMP;
1349
1350 error = (*dump)(dumpdev, blkno,
1351 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1352 if (error)
1353 goto err;
1354 maddr += n;
1355 blkno += btodb(n); /* XXX? */
1356
1357 /* XXX should look for keystrokes, to cancel. */
1358 }
1359 }
1360
1361 err:
1362 switch (error) {
1363
1364 case ENXIO:
1365 printf("device bad\n");
1366 break;
1367
1368 case EFAULT:
1369 printf("device not ready\n");
1370 break;
1371
1372 case EINVAL:
1373 printf("area improper\n");
1374 break;
1375
1376 case EIO:
1377 printf("i/o error\n");
1378 break;
1379
1380 case EINTR:
1381 printf("aborted from console\n");
1382 break;
1383
1384 case 0:
1385 printf("succeeded\n");
1386 break;
1387
1388 default:
1389 printf("error %d\n", error);
1390 break;
1391 }
1392 printf("\n\n");
1393 delay(1000);
1394 }
1395
1396 void
1397 frametoreg(framep, regp)
1398 struct trapframe *framep;
1399 struct reg *regp;
1400 {
1401
1402 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1403 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1404 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1405 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1406 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1407 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1408 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1409 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1410 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1411 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1412 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1413 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1414 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1415 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1416 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1417 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1418 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1419 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1420 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1421 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1422 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1423 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1424 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1425 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1426 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1427 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1428 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1429 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1430 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1431 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1432 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1433 regp->r_regs[R_ZERO] = 0;
1434 }
1435
1436 void
1437 regtoframe(regp, framep)
1438 struct reg *regp;
1439 struct trapframe *framep;
1440 {
1441
1442 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1443 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1444 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1445 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1446 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1447 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1448 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1449 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1450 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1451 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1452 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1453 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1454 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1455 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1456 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1457 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1458 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1459 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1460 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1461 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1462 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1463 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1464 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1465 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1466 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1467 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1468 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1469 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1470 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1471 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1472 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1473 /* ??? = regp->r_regs[R_ZERO]; */
1474 }
1475
1476 void
1477 printregs(regp)
1478 struct reg *regp;
1479 {
1480 int i;
1481
1482 for (i = 0; i < 32; i++)
1483 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1484 i & 1 ? "\n" : "\t");
1485 }
1486
1487 void
1488 regdump(framep)
1489 struct trapframe *framep;
1490 {
1491 struct reg reg;
1492
1493 frametoreg(framep, ®);
1494 reg.r_regs[R_SP] = alpha_pal_rdusp();
1495
1496 printf("REGISTERS:\n");
1497 printregs(®);
1498 }
1499
1500 #ifdef DEBUG
1501 int sigdebug = 0;
1502 int sigpid = 0;
1503 #define SDB_FOLLOW 0x01
1504 #define SDB_KSTACK 0x02
1505 #endif
1506
1507 /*
1508 * Send an interrupt to process.
1509 */
1510 void
1511 sendsig(catcher, sig, mask, code)
1512 sig_t catcher;
1513 int sig;
1514 sigset_t *mask;
1515 u_long code;
1516 {
1517 struct proc *p = curproc;
1518 struct sigcontext *scp, ksc;
1519 struct trapframe *frame;
1520 struct sigacts *psp = p->p_sigacts;
1521 int onstack, fsize, rndfsize;
1522
1523 frame = p->p_md.md_tf;
1524
1525 /* Do we need to jump onto the signal stack? */
1526 onstack =
1527 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1528 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1529
1530 /* Allocate space for the signal handler context. */
1531 fsize = sizeof(ksc);
1532 rndfsize = ((fsize + 15) / 16) * 16;
1533
1534 if (onstack)
1535 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1536 psp->ps_sigstk.ss_size);
1537 else
1538 scp = (struct sigcontext *)(alpha_pal_rdusp());
1539 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1540
1541 #ifdef DEBUG
1542 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1543 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1544 sig, &onstack, scp);
1545 #endif
1546
1547 /* Build stack frame for signal trampoline. */
1548 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1549 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1550
1551 /* Save register context. */
1552 frametoreg(frame, (struct reg *)ksc.sc_regs);
1553 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1554 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1555
1556 /* save the floating-point state, if necessary, then copy it. */
1557 if (p == fpcurproc) {
1558 alpha_pal_wrfen(1);
1559 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1560 alpha_pal_wrfen(0);
1561 fpcurproc = NULL;
1562 }
1563 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1564 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1565 sizeof(struct fpreg));
1566 ksc.sc_fp_control = 0; /* XXX ? */
1567 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1568 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1569
1570 /* Save signal stack. */
1571 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1572
1573 /* Save signal mask. */
1574 ksc.sc_mask = *mask;
1575
1576 #ifdef COMPAT_13
1577 /*
1578 * XXX We always have to save an old style signal mask because
1579 * XXX we might be delivering a signal to a process which will
1580 * XXX escape from the signal in a non-standard way and invoke
1581 * XXX sigreturn() directly.
1582 */
1583 {
1584 /* Note: it's a long in the stack frame. */
1585 sigset13_t mask13;
1586
1587 native_sigset_to_sigset13(mask, &mask13);
1588 ksc.__sc_mask13 = mask13;
1589 }
1590 #endif
1591
1592 #ifdef COMPAT_OSF1
1593 /*
1594 * XXX Create an OSF/1-style sigcontext and associated goo.
1595 */
1596 #endif
1597
1598 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1599 /*
1600 * Process has trashed its stack; give it an illegal
1601 * instruction to halt it in its tracks.
1602 */
1603 #ifdef DEBUG
1604 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1605 printf("sendsig(%d): copyout failed on sig %d\n",
1606 p->p_pid, sig);
1607 #endif
1608 sigexit(p, SIGILL);
1609 /* NOTREACHED */
1610 }
1611 #ifdef DEBUG
1612 if (sigdebug & SDB_FOLLOW)
1613 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1614 scp, code);
1615 #endif
1616
1617 /* Set up the registers to return to sigcode. */
1618 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1619 frame->tf_regs[FRAME_A0] = sig;
1620 frame->tf_regs[FRAME_A1] = code;
1621 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1622 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1623 alpha_pal_wrusp((unsigned long)scp);
1624
1625 /* Remember that we're now on the signal stack. */
1626 if (onstack)
1627 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1628
1629 #ifdef DEBUG
1630 if (sigdebug & SDB_FOLLOW)
1631 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1632 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1633 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1634 printf("sendsig(%d): sig %d returns\n",
1635 p->p_pid, sig);
1636 #endif
1637 }
1638
1639 /*
1640 * System call to cleanup state after a signal
1641 * has been taken. Reset signal mask and
1642 * stack state from context left by sendsig (above).
1643 * Return to previous pc and psl as specified by
1644 * context left by sendsig. Check carefully to
1645 * make sure that the user has not modified the
1646 * psl to gain improper privileges or to cause
1647 * a machine fault.
1648 */
1649 /* ARGSUSED */
1650 int
1651 sys___sigreturn14(p, v, retval)
1652 struct proc *p;
1653 void *v;
1654 register_t *retval;
1655 {
1656 struct sys___sigreturn14_args /* {
1657 syscallarg(struct sigcontext *) sigcntxp;
1658 } */ *uap = v;
1659 struct sigcontext *scp, ksc;
1660
1661 /*
1662 * The trampoline code hands us the context.
1663 * It is unsafe to keep track of it ourselves, in the event that a
1664 * program jumps out of a signal handler.
1665 */
1666 scp = SCARG(uap, sigcntxp);
1667 #ifdef DEBUG
1668 if (sigdebug & SDB_FOLLOW)
1669 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1670 #endif
1671 if (ALIGN(scp) != (u_int64_t)scp)
1672 return (EINVAL);
1673
1674 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1675 return (EFAULT);
1676
1677 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1678 return (EINVAL);
1679
1680 /* Restore register context. */
1681 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1682 p->p_md.md_tf->tf_regs[FRAME_PS] =
1683 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1684
1685 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1686 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1687
1688 /* XXX ksc.sc_ownedfp ? */
1689 if (p == fpcurproc)
1690 fpcurproc = NULL;
1691 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1692 sizeof(struct fpreg));
1693 /* XXX ksc.sc_fp_control ? */
1694
1695 /* Restore signal stack. */
1696 if (ksc.sc_onstack & SS_ONSTACK)
1697 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1698 else
1699 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1700
1701 /* Restore signal mask. */
1702 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1703
1704 #ifdef DEBUG
1705 if (sigdebug & SDB_FOLLOW)
1706 printf("sigreturn(%d): returns\n", p->p_pid);
1707 #endif
1708 return (EJUSTRETURN);
1709 }
1710
1711 /*
1712 * machine dependent system variables.
1713 */
1714 int
1715 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1716 int *name;
1717 u_int namelen;
1718 void *oldp;
1719 size_t *oldlenp;
1720 void *newp;
1721 size_t newlen;
1722 struct proc *p;
1723 {
1724 dev_t consdev;
1725
1726 /* all sysctl names at this level are terminal */
1727 if (namelen != 1)
1728 return (ENOTDIR); /* overloaded */
1729
1730 switch (name[0]) {
1731 case CPU_CONSDEV:
1732 if (cn_tab != NULL)
1733 consdev = cn_tab->cn_dev;
1734 else
1735 consdev = NODEV;
1736 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1737 sizeof consdev));
1738
1739 case CPU_ROOT_DEVICE:
1740 return (sysctl_rdstring(oldp, oldlenp, newp,
1741 root_device->dv_xname));
1742
1743 case CPU_UNALIGNED_PRINT:
1744 return (sysctl_int(oldp, oldlenp, newp, newlen,
1745 &alpha_unaligned_print));
1746
1747 case CPU_UNALIGNED_FIX:
1748 return (sysctl_int(oldp, oldlenp, newp, newlen,
1749 &alpha_unaligned_fix));
1750
1751 case CPU_UNALIGNED_SIGBUS:
1752 return (sysctl_int(oldp, oldlenp, newp, newlen,
1753 &alpha_unaligned_sigbus));
1754
1755 case CPU_BOOTED_KERNEL:
1756 return (sysctl_rdstring(oldp, oldlenp, newp,
1757 bootinfo.booted_kernel));
1758
1759 default:
1760 return (EOPNOTSUPP);
1761 }
1762 /* NOTREACHED */
1763 }
1764
1765 /*
1766 * Set registers on exec.
1767 */
1768 void
1769 setregs(p, pack, stack)
1770 register struct proc *p;
1771 struct exec_package *pack;
1772 u_long stack;
1773 {
1774 struct trapframe *tfp = p->p_md.md_tf;
1775 #ifdef DEBUG
1776 int i;
1777 #endif
1778
1779 #ifdef DEBUG
1780 /*
1781 * Crash and dump, if the user requested it.
1782 */
1783 if (boothowto & RB_DUMP)
1784 panic("crash requested by boot flags");
1785 #endif
1786
1787 #ifdef DEBUG
1788 for (i = 0; i < FRAME_SIZE; i++)
1789 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1790 #else
1791 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1792 #endif
1793 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1794 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1795 | FPCR_UNFD
1796 | FPCR_UNDZ
1797 | FPCR_DYN(FP_RN)
1798 | FPCR_OVFD
1799 | FPCR_DZED
1800 | FPCR_INVD
1801 | FPCR_DNZ;
1802 alpha_pal_wrusp(stack);
1803 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1804 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1805
1806 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1807 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1808 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1809 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1810 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1811
1812 p->p_md.md_flags &= ~MDP_FPUSED;
1813 if (fpcurproc == p)
1814 fpcurproc = NULL;
1815 }
1816
1817 void
1818 netintr()
1819 {
1820 int n, s;
1821
1822 s = splhigh();
1823 n = netisr;
1824 netisr = 0;
1825 splx(s);
1826
1827 #define DONETISR(bit, fn) \
1828 do { \
1829 if (n & (1 << (bit))) \
1830 fn(); \
1831 } while (0)
1832
1833 #include <net/netisr_dispatch.h>
1834
1835 #undef DONETISR
1836 }
1837
1838 void
1839 do_sir()
1840 {
1841 u_int64_t n;
1842
1843 while ((n = atomic_loadlatch_ulong(&ssir, 0)) != 0) {
1844 #define COUNT_SOFT uvmexp.softs++
1845
1846 #define DO_SIR(bit, fn) \
1847 do { \
1848 if (n & (bit)) { \
1849 COUNT_SOFT; \
1850 fn; \
1851 } \
1852 } while (0)
1853
1854 DO_SIR(SIR_NET, netintr());
1855 DO_SIR(SIR_CLOCK, softclock());
1856 #if NCOM > 0
1857 DO_SIR(SIR_SERIAL, comsoft());
1858 #endif
1859 #if NZSC_IOASIC > 0
1860 DO_SIR(SIR_SERIAL, zs_ioasic_softintr());
1861 #endif
1862
1863 #undef COUNT_SOFT
1864 #undef DO_SIR
1865 }
1866 }
1867
1868 int
1869 spl0()
1870 {
1871
1872 if (ssir) {
1873 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1874 do_sir();
1875 }
1876
1877 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1878 }
1879
1880 /*
1881 * The following primitives manipulate the run queues. _whichqs tells which
1882 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1883 * into queues, Remrunqueue removes them from queues. The running process is
1884 * on no queue, other processes are on a queue related to p->p_priority,
1885 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1886 * available queues.
1887 */
1888 /*
1889 * setrunqueue(p)
1890 * proc *p;
1891 *
1892 * Call should be made at splclock(), and p->p_stat should be SRUN.
1893 */
1894
1895 void
1896 setrunqueue(p)
1897 struct proc *p;
1898 {
1899 int bit;
1900
1901 /* firewall: p->p_back must be NULL */
1902 if (p->p_back != NULL)
1903 panic("setrunqueue");
1904
1905 bit = p->p_priority >> 2;
1906 sched_whichqs |= (1 << bit);
1907 p->p_forw = (struct proc *)&sched_qs[bit];
1908 p->p_back = sched_qs[bit].ph_rlink;
1909 p->p_back->p_forw = p;
1910 sched_qs[bit].ph_rlink = p;
1911 }
1912
1913 /*
1914 * remrunqueue(p)
1915 *
1916 * Call should be made at splclock().
1917 */
1918 void
1919 remrunqueue(p)
1920 struct proc *p;
1921 {
1922 int bit;
1923
1924 bit = p->p_priority >> 2;
1925 if ((sched_whichqs & (1 << bit)) == 0)
1926 panic("remrunqueue");
1927
1928 p->p_back->p_forw = p->p_forw;
1929 p->p_forw->p_back = p->p_back;
1930 p->p_back = NULL; /* for firewall checking. */
1931
1932 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1933 sched_whichqs &= ~(1 << bit);
1934 }
1935
1936 /*
1937 * Return the best possible estimate of the time in the timeval
1938 * to which tvp points. Unfortunately, we can't read the hardware registers.
1939 * We guarantee that the time will be greater than the value obtained by a
1940 * previous call.
1941 */
1942 void
1943 microtime(tvp)
1944 register struct timeval *tvp;
1945 {
1946 int s = splclock();
1947 static struct timeval lasttime;
1948
1949 *tvp = time;
1950 #ifdef notdef
1951 tvp->tv_usec += clkread();
1952 while (tvp->tv_usec >= 1000000) {
1953 tvp->tv_sec++;
1954 tvp->tv_usec -= 1000000;
1955 }
1956 #endif
1957 if (tvp->tv_sec == lasttime.tv_sec &&
1958 tvp->tv_usec <= lasttime.tv_usec &&
1959 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1960 tvp->tv_sec++;
1961 tvp->tv_usec -= 1000000;
1962 }
1963 lasttime = *tvp;
1964 splx(s);
1965 }
1966
1967 /*
1968 * Wait "n" microseconds.
1969 */
1970 void
1971 delay(n)
1972 unsigned long n;
1973 {
1974 long N = cycles_per_usec * (n);
1975
1976 /*
1977 * XXX Should be written to use RPCC?
1978 */
1979
1980 __asm __volatile(
1981 "# The 2 corresponds to the insn count\n"
1982 "1: subq %2, %1, %0 \n"
1983 " bgt %0, 1b"
1984 : "=r" (N)
1985 : "i" (2), "0" (N));
1986 }
1987
1988 #if defined(COMPAT_OSF1) || 1 /* XXX */
1989 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1990 u_long));
1991
1992 void
1993 cpu_exec_ecoff_setregs(p, epp, stack)
1994 struct proc *p;
1995 struct exec_package *epp;
1996 u_long stack;
1997 {
1998 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1999
2000 setregs(p, epp, stack);
2001 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2002 }
2003
2004 /*
2005 * cpu_exec_ecoff_hook():
2006 * cpu-dependent ECOFF format hook for execve().
2007 *
2008 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2009 *
2010 */
2011 int
2012 cpu_exec_ecoff_hook(p, epp)
2013 struct proc *p;
2014 struct exec_package *epp;
2015 {
2016 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2017 extern struct emul emul_netbsd;
2018 int error;
2019 extern int osf1_exec_ecoff_hook(struct proc *p,
2020 struct exec_package *epp);
2021
2022 switch (execp->f.f_magic) {
2023 #ifdef COMPAT_OSF1
2024 case ECOFF_MAGIC_ALPHA:
2025 error = osf1_exec_ecoff_hook(p, epp);
2026 break;
2027 #endif
2028
2029 case ECOFF_MAGIC_NETBSD_ALPHA:
2030 epp->ep_emul = &emul_netbsd;
2031 error = 0;
2032 break;
2033
2034 default:
2035 error = ENOEXEC;
2036 }
2037 return (error);
2038 }
2039 #endif
2040
2041 int
2042 alpha_pa_access(pa)
2043 u_long pa;
2044 {
2045 int i;
2046
2047 for (i = 0; i < mem_cluster_cnt; i++) {
2048 if (pa < mem_clusters[i].start)
2049 continue;
2050 if ((pa - mem_clusters[i].start) >=
2051 (mem_clusters[i].size & ~PAGE_MASK))
2052 continue;
2053 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2054 }
2055
2056 /*
2057 * Address is not a memory address. If we're secure, disallow
2058 * access. Otherwise, grant read/write.
2059 */
2060 if (securelevel > 0)
2061 return (PROT_NONE);
2062 else
2063 return (PROT_READ | PROT_WRITE);
2064 }
2065
2066 /* XXX XXX BEGIN XXX XXX */
2067 paddr_t alpha_XXX_dmamap_or; /* XXX */
2068 /* XXX */
2069 paddr_t /* XXX */
2070 alpha_XXX_dmamap(v) /* XXX */
2071 vaddr_t v; /* XXX */
2072 { /* XXX */
2073 /* XXX */
2074 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2075 } /* XXX */
2076 /* XXX XXX END XXX XXX */
2077
2078 char *
2079 dot_conv(x)
2080 unsigned long x;
2081 {
2082 int i;
2083 char *xc;
2084 static int next;
2085 static char space[2][20];
2086
2087 xc = space[next ^= 1] + sizeof space[0];
2088 *--xc = '\0';
2089 for (i = 0;; ++i) {
2090 if (i && (i & 3) == 0)
2091 *--xc = '.';
2092 *--xc = "0123456789abcdef"[x & 0xf];
2093 x >>= 4;
2094 if (x == 0)
2095 break;
2096 }
2097 return xc;
2098 }
2099