machdep.c revision 1.210 1 /* $NetBSD: machdep.c,v 1.210 2000/06/01 17:12:38 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73 #include "opt_inet.h"
74 #include "opt_atalk.h"
75 #include "opt_ccitt.h"
76 #include "opt_iso.h"
77 #include "opt_ns.h"
78 #include "opt_natm.h"
79
80 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81
82 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.210 2000/06/01 17:12:38 thorpej Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/signalvar.h>
87 #include <sys/kernel.h>
88 #include <sys/map.h>
89 #include <sys/proc.h>
90 #include <sys/sched.h>
91 #include <sys/buf.h>
92 #include <sys/reboot.h>
93 #include <sys/device.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/mman.h>
98 #include <sys/msgbuf.h>
99 #include <sys/ioctl.h>
100 #include <sys/tty.h>
101 #include <sys/user.h>
102 #include <sys/exec.h>
103 #include <sys/exec_ecoff.h>
104 #include <vm/vm.h>
105 #include <sys/sysctl.h>
106 #include <sys/core.h>
107 #include <sys/kcore.h>
108 #include <machine/kcore.h>
109
110 #include <sys/mount.h>
111 #include <sys/syscallargs.h>
112
113 #include <vm/vm_kern.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/conf.h>
125 #include <machine/ieeefp.h>
126
127 #include <net/netisr.h>
128 #include <net/if.h>
129
130 #ifdef INET
131 #include <net/route.h>
132 #include <netinet/in.h>
133 #include <netinet/ip_var.h>
134 #include "arp.h"
135 #if NARP > 0
136 #include <netinet/if_inarp.h>
137 #endif
138 #endif
139 #ifdef INET6
140 # ifndef INET
141 # include <netinet/in.h>
142 # endif
143 #include <netinet/ip6.h>
144 #include <netinet6/ip6_var.h>
145 #endif
146 #ifdef NS
147 #include <netns/ns_var.h>
148 #endif
149 #ifdef ISO
150 #include <netiso/iso.h>
151 #include <netiso/clnp.h>
152 #endif
153 #ifdef CCITT
154 #include <netccitt/x25.h>
155 #include <netccitt/pk.h>
156 #include <netccitt/pk_extern.h>
157 #endif
158 #ifdef NATM
159 #include <netnatm/natm.h>
160 #endif
161 #ifdef NETATALK
162 #include <netatalk/at_extern.h>
163 #endif
164 #include "ppp.h"
165 #if NPPP > 0
166 #include <net/ppp_defs.h>
167 #include <net/if_ppp.h>
168 #endif
169
170 #ifdef DDB
171 #include <machine/db_machdep.h>
172 #include <ddb/db_access.h>
173 #include <ddb/db_sym.h>
174 #include <ddb/db_extern.h>
175 #include <ddb/db_interface.h>
176 #endif
177
178 #include <machine/alpha.h>
179 #include <machine/intrcnt.h>
180
181 #include "com.h"
182 #if NCOM > 0
183 extern void comsoft __P((void));
184 #endif
185 #include "zsc_ioasic.h"
186 #if NZSC_IOASIC > 0
187 extern void zs_ioasic_softintr __P((void));
188 #endif
189
190 vm_map_t exec_map = NULL;
191 vm_map_t mb_map = NULL;
192 vm_map_t phys_map = NULL;
193
194 caddr_t msgbufaddr;
195
196 int maxmem; /* max memory per process */
197
198 int totalphysmem; /* total amount of physical memory in system */
199 int physmem; /* physical memory used by NetBSD + some rsvd */
200 int resvmem; /* amount of memory reserved for PROM */
201 int unusedmem; /* amount of memory for OS that we don't use */
202 int unknownmem; /* amount of memory with an unknown use */
203
204 int cputype; /* system type, from the RPB */
205
206 int bootdev_debug = 0; /* patchable, or from DDB */
207
208 /*
209 * XXX We need an address to which we can assign things so that they
210 * won't be optimized away because we didn't use the value.
211 */
212 u_int32_t no_optimize;
213
214 /* the following is used externally (sysctl_hw) */
215 char machine[] = MACHINE; /* from <machine/param.h> */
216 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
217 char cpu_model[128];
218
219 struct user *proc0paddr;
220
221 /* Number of machine cycles per microsecond */
222 u_int64_t cycles_per_usec;
223
224 /* number of cpus in the box. really! */
225 int ncpus;
226
227 struct bootinfo_kernel bootinfo;
228
229 /* For built-in TCDS */
230 #if defined(DEC_3000_300) || defined(DEC_3000_500)
231 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
232 #endif
233
234 struct platform platform;
235
236 #ifdef DDB
237 /* start and end of kernel symbol table */
238 void *ksym_start, *ksym_end;
239 #endif
240
241 /* for cpu_sysctl() */
242 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
243 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
244 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
245
246 /*
247 * XXX This should be dynamically sized, but we have the chicken-egg problem!
248 * XXX it should also be larger than it is, because not all of the mddt
249 * XXX clusters end up being used for VM.
250 */
251 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
252 int mem_cluster_cnt;
253
254 int cpu_dump __P((void));
255 int cpu_dumpsize __P((void));
256 u_long cpu_dump_mempagecnt __P((void));
257 void dumpsys __P((void));
258 void identifycpu __P((void));
259 void netintr __P((void));
260 void printregs __P((struct reg *));
261
262 void
263 alpha_init(pfn, ptb, bim, bip, biv)
264 u_long pfn; /* first free PFN number */
265 u_long ptb; /* PFN of current level 1 page table */
266 u_long bim; /* bootinfo magic */
267 u_long bip; /* bootinfo pointer */
268 u_long biv; /* bootinfo version */
269 {
270 extern char kernel_text[], _end[];
271 struct mddt *mddtp;
272 struct mddt_cluster *memc;
273 int i, mddtweird;
274 struct vm_physseg *vps;
275 vaddr_t kernstart, kernend;
276 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
277 vsize_t size;
278 char *p;
279 caddr_t v;
280 const char *bootinfo_msg;
281 const struct cpuinit *c;
282
283 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
284
285 /*
286 * Turn off interrupts (not mchecks) and floating point.
287 * Make sure the instruction and data streams are consistent.
288 */
289 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
290 alpha_pal_wrfen(0);
291 ALPHA_TBIA();
292 alpha_pal_imb();
293
294 #if defined(MULTIPROCESSOR)
295 /*
296 * Set our SysValue to the address of our cpu_info structure.
297 * Secondary processors do this in their spinup trampoline.
298 */
299 alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
300 #endif
301
302 /*
303 * Get critical system information (if possible, from the
304 * information provided by the boot program).
305 */
306 bootinfo_msg = NULL;
307 if (bim == BOOTINFO_MAGIC) {
308 if (biv == 0) { /* backward compat */
309 biv = *(u_long *)bip;
310 bip += 8;
311 }
312 switch (biv) {
313 case 1: {
314 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
315
316 bootinfo.ssym = v1p->ssym;
317 bootinfo.esym = v1p->esym;
318 /* hwrpb may not be provided by boot block in v1 */
319 if (v1p->hwrpb != NULL) {
320 bootinfo.hwrpb_phys =
321 ((struct rpb *)v1p->hwrpb)->rpb_phys;
322 bootinfo.hwrpb_size = v1p->hwrpbsize;
323 } else {
324 bootinfo.hwrpb_phys =
325 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
326 bootinfo.hwrpb_size =
327 ((struct rpb *)HWRPB_ADDR)->rpb_size;
328 }
329 bcopy(v1p->boot_flags, bootinfo.boot_flags,
330 min(sizeof v1p->boot_flags,
331 sizeof bootinfo.boot_flags));
332 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
333 min(sizeof v1p->booted_kernel,
334 sizeof bootinfo.booted_kernel));
335 /* booted dev not provided in bootinfo */
336 init_prom_interface((struct rpb *)
337 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
338 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
339 sizeof bootinfo.booted_dev);
340 break;
341 }
342 default:
343 bootinfo_msg = "unknown bootinfo version";
344 goto nobootinfo;
345 }
346 } else {
347 bootinfo_msg = "boot program did not pass bootinfo";
348 nobootinfo:
349 bootinfo.ssym = (u_long)_end;
350 bootinfo.esym = (u_long)_end;
351 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
352 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
353 init_prom_interface((struct rpb *)HWRPB_ADDR);
354 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
355 sizeof bootinfo.boot_flags);
356 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
357 sizeof bootinfo.booted_kernel);
358 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
359 sizeof bootinfo.booted_dev);
360 }
361
362 /*
363 * Initialize the kernel's mapping of the RPB. It's needed for
364 * lots of things.
365 */
366 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
367
368 #if defined(DEC_3000_300) || defined(DEC_3000_500)
369 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
370 hwrpb->rpb_type == ST_DEC_3000_500) {
371 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
372 sizeof(dec_3000_scsiid));
373 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
374 sizeof(dec_3000_scsifast));
375 }
376 #endif
377
378 /*
379 * Remember how many cycles there are per microsecond,
380 * so that we can use delay(). Round up, for safety.
381 */
382 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
383
384 /*
385 * Initalize the (temporary) bootstrap console interface, so
386 * we can use printf until the VM system starts being setup.
387 * The real console is initialized before then.
388 */
389 init_bootstrap_console();
390
391 /* OUTPUT NOW ALLOWED */
392
393 /* delayed from above */
394 if (bootinfo_msg)
395 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
396 bootinfo_msg, bim, bip, biv);
397
398 /* Initialize the trap vectors on the primary processor. */
399 trap_init();
400
401 /*
402 * Find out what hardware we're on, and do basic initialization.
403 */
404 cputype = hwrpb->rpb_type;
405 if (cputype < 0) {
406 /*
407 * At least some white-box systems have SRM which
408 * reports a systype that's the negative of their
409 * blue-box counterpart.
410 */
411 cputype = -cputype;
412 }
413 c = platform_lookup(cputype);
414 if (c == NULL) {
415 platform_not_supported();
416 /* NOTREACHED */
417 }
418 (*c->init)();
419 strcpy(cpu_model, platform.model);
420
421 /*
422 * Initalize the real console, so that the bootstrap console is
423 * no longer necessary.
424 */
425 (*platform.cons_init)();
426
427 #ifdef DIAGNOSTIC
428 /* Paranoid sanity checking */
429
430 /* We should always be running on the primary. */
431 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
432
433 /*
434 * On single-CPU systypes, the primary should always be CPU 0,
435 * except on Alpha 8200 systems where the CPU id is related
436 * to the VID, which is related to the Turbo Laser node id.
437 */
438 if (cputype != ST_DEC_21000)
439 assert(hwrpb->rpb_primary_cpu_id == 0);
440 #endif
441
442 /* NO MORE FIRMWARE ACCESS ALLOWED */
443 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
444 /*
445 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
446 * XXX pmap_uses_prom_console() evaluates to non-zero.)
447 */
448 #endif
449
450 /*
451 * find out this system's page size
452 */
453 PAGE_SIZE = hwrpb->rpb_page_size;
454 if (PAGE_SIZE != 8192)
455 panic("page size %d != 8192?!", PAGE_SIZE);
456
457 /*
458 * Initialize PAGE_SIZE-dependent variables.
459 */
460 uvm_setpagesize();
461
462 /*
463 * Find the beginning and end of the kernel (and leave a
464 * bit of space before the beginning for the bootstrap
465 * stack).
466 */
467 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
468 #ifdef DDB
469 ksym_start = (void *)bootinfo.ssym;
470 ksym_end = (void *)bootinfo.esym;
471 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
472 #else
473 kernend = (vaddr_t)round_page((vaddr_t)_end);
474 #endif
475
476 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
477 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
478
479 /*
480 * Find out how much memory is available, by looking at
481 * the memory cluster descriptors. This also tries to do
482 * its best to detect things things that have never been seen
483 * before...
484 */
485 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
486
487 /* MDDT SANITY CHECKING */
488 mddtweird = 0;
489 if (mddtp->mddt_cluster_cnt < 2) {
490 mddtweird = 1;
491 printf("WARNING: weird number of mem clusters: %lu\n",
492 mddtp->mddt_cluster_cnt);
493 }
494
495 #if 0
496 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
497 #endif
498
499 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
500 memc = &mddtp->mddt_clusters[i];
501 #if 0
502 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
503 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
504 #endif
505 totalphysmem += memc->mddt_pg_cnt;
506 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
507 mem_clusters[mem_cluster_cnt].start =
508 ptoa(memc->mddt_pfn);
509 mem_clusters[mem_cluster_cnt].size =
510 ptoa(memc->mddt_pg_cnt);
511 if (memc->mddt_usage & MDDT_mbz ||
512 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
513 memc->mddt_usage & MDDT_PALCODE)
514 mem_clusters[mem_cluster_cnt].size |=
515 PROT_READ;
516 else
517 mem_clusters[mem_cluster_cnt].size |=
518 PROT_READ | PROT_WRITE | PROT_EXEC;
519 mem_cluster_cnt++;
520 }
521
522 if (memc->mddt_usage & MDDT_mbz) {
523 mddtweird = 1;
524 printf("WARNING: mem cluster %d has weird "
525 "usage 0x%lx\n", i, memc->mddt_usage);
526 unknownmem += memc->mddt_pg_cnt;
527 continue;
528 }
529 if (memc->mddt_usage & MDDT_NONVOLATILE) {
530 /* XXX should handle these... */
531 printf("WARNING: skipping non-volatile mem "
532 "cluster %d\n", i);
533 unusedmem += memc->mddt_pg_cnt;
534 continue;
535 }
536 if (memc->mddt_usage & MDDT_PALCODE) {
537 resvmem += memc->mddt_pg_cnt;
538 continue;
539 }
540
541 /*
542 * We have a memory cluster available for system
543 * software use. We must determine if this cluster
544 * holds the kernel.
545 */
546 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
547 /*
548 * XXX If the kernel uses the PROM console, we only use the
549 * XXX memory after the kernel in the first system segment,
550 * XXX to avoid clobbering prom mapping, data, etc.
551 */
552 if (!pmap_uses_prom_console() || physmem == 0) {
553 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
554 physmem += memc->mddt_pg_cnt;
555 pfn0 = memc->mddt_pfn;
556 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
557 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
558 /*
559 * Must compute the location of the kernel
560 * within the segment.
561 */
562 #if 0
563 printf("Cluster %d contains kernel\n", i);
564 #endif
565 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
566 if (!pmap_uses_prom_console()) {
567 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
568 if (pfn0 < kernstartpfn) {
569 /*
570 * There is a chunk before the kernel.
571 */
572 #if 0
573 printf("Loading chunk before kernel: "
574 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
575 #endif
576 uvm_page_physload(pfn0, kernstartpfn,
577 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
578 }
579 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
580 }
581 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
582 if (kernendpfn < pfn1) {
583 /*
584 * There is a chunk after the kernel.
585 */
586 #if 0
587 printf("Loading chunk after kernel: "
588 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
589 #endif
590 uvm_page_physload(kernendpfn, pfn1,
591 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
592 }
593 } else {
594 /*
595 * Just load this cluster as one chunk.
596 */
597 #if 0
598 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
599 pfn0, pfn1);
600 #endif
601 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
602 VM_FREELIST_DEFAULT);
603 }
604 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
605 }
606 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
607 }
608
609 /*
610 * Dump out the MDDT if it looks odd...
611 */
612 if (mddtweird) {
613 printf("\n");
614 printf("complete memory cluster information:\n");
615 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
616 printf("mddt %d:\n", i);
617 printf("\tpfn %lx\n",
618 mddtp->mddt_clusters[i].mddt_pfn);
619 printf("\tcnt %lx\n",
620 mddtp->mddt_clusters[i].mddt_pg_cnt);
621 printf("\ttest %lx\n",
622 mddtp->mddt_clusters[i].mddt_pg_test);
623 printf("\tbva %lx\n",
624 mddtp->mddt_clusters[i].mddt_v_bitaddr);
625 printf("\tbpa %lx\n",
626 mddtp->mddt_clusters[i].mddt_p_bitaddr);
627 printf("\tbcksum %lx\n",
628 mddtp->mddt_clusters[i].mddt_bit_cksum);
629 printf("\tusage %lx\n",
630 mddtp->mddt_clusters[i].mddt_usage);
631 }
632 printf("\n");
633 }
634
635 if (totalphysmem == 0)
636 panic("can't happen: system seems to have no memory!");
637 maxmem = physmem;
638 #if 0
639 printf("totalphysmem = %d\n", totalphysmem);
640 printf("physmem = %d\n", physmem);
641 printf("resvmem = %d\n", resvmem);
642 printf("unusedmem = %d\n", unusedmem);
643 printf("unknownmem = %d\n", unknownmem);
644 #endif
645
646 /*
647 * Initialize error message buffer (at end of core).
648 */
649 {
650 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
651 vsize_t reqsz = sz;
652
653 vps = &vm_physmem[vm_nphysseg - 1];
654
655 /* shrink so that it'll fit in the last segment */
656 if ((vps->avail_end - vps->avail_start) < atop(sz))
657 sz = ptoa(vps->avail_end - vps->avail_start);
658
659 vps->end -= atop(sz);
660 vps->avail_end -= atop(sz);
661 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
662 initmsgbuf(msgbufaddr, sz);
663
664 /* Remove the last segment if it now has no pages. */
665 if (vps->start == vps->end)
666 vm_nphysseg--;
667
668 /* warn if the message buffer had to be shrunk */
669 if (sz != reqsz)
670 printf("WARNING: %ld bytes not available for msgbuf "
671 "in last cluster (%ld used)\n", reqsz, sz);
672
673 }
674
675 /*
676 * Init mapping for u page(s) for proc 0
677 */
678 proc0.p_addr = proc0paddr =
679 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
680
681 /*
682 * Allocate space for system data structures. These data structures
683 * are allocated here instead of cpu_startup() because physical
684 * memory is directly addressable. We don't have to map these into
685 * virtual address space.
686 */
687 size = (vsize_t)allocsys(NULL, NULL);
688 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
689 if ((allocsys(v, NULL) - v) != size)
690 panic("alpha_init: table size inconsistency");
691
692 /*
693 * Initialize the virtual memory system, and set the
694 * page table base register in proc 0's PCB.
695 */
696 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
697 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
698
699 /*
700 * Initialize the rest of proc 0's PCB, and cache its physical
701 * address.
702 */
703 proc0.p_md.md_pcbpaddr =
704 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
705
706 /*
707 * Set the kernel sp, reserving space for an (empty) trapframe,
708 * and make proc0's trapframe pointer point to it for sanity.
709 */
710 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
711 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
712 proc0.p_md.md_tf =
713 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
714
715 /*
716 * Initialize the primary CPU's idle PCB to proc0's. In a
717 * MULTIPROCESSOR configuration, each CPU will later get
718 * its own idle PCB when autoconfiguration runs.
719 */
720 curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
721 curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
722
723 /* Indicate that proc0 has a CPU. */
724 proc0.p_cpu = curcpu();
725
726 /*
727 * Look at arguments passed to us and compute boothowto.
728 */
729
730 boothowto = RB_SINGLE;
731 #ifdef KADB
732 boothowto |= RB_KDB;
733 #endif
734 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
735 /*
736 * Note that we'd really like to differentiate case here,
737 * but the Alpha AXP Architecture Reference Manual
738 * says that we shouldn't.
739 */
740 switch (*p) {
741 case 'a': /* autoboot */
742 case 'A':
743 boothowto &= ~RB_SINGLE;
744 break;
745
746 #ifdef DEBUG
747 case 'c': /* crash dump immediately after autoconfig */
748 case 'C':
749 boothowto |= RB_DUMP;
750 break;
751 #endif
752
753 #if defined(KGDB) || defined(DDB)
754 case 'd': /* break into the kernel debugger ASAP */
755 case 'D':
756 boothowto |= RB_KDB;
757 break;
758 #endif
759
760 case 'h': /* always halt, never reboot */
761 case 'H':
762 boothowto |= RB_HALT;
763 break;
764
765 #if 0
766 case 'm': /* mini root present in memory */
767 case 'M':
768 boothowto |= RB_MINIROOT;
769 break;
770 #endif
771
772 case 'n': /* askname */
773 case 'N':
774 boothowto |= RB_ASKNAME;
775 break;
776
777 case 's': /* single-user (default, supported for sanity) */
778 case 'S':
779 boothowto |= RB_SINGLE;
780 break;
781
782 case '-':
783 /*
784 * Just ignore this. It's not required, but it's
785 * common for it to be passed regardless.
786 */
787 break;
788
789 default:
790 printf("Unrecognized boot flag '%c'.\n", *p);
791 break;
792 }
793 }
794
795
796 /*
797 * Figure out the number of cpus in the box, from RPB fields.
798 * Really. We mean it.
799 */
800 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
801 struct pcs *pcsp;
802
803 pcsp = LOCATE_PCS(hwrpb, i);
804 if ((pcsp->pcs_flags & PCS_PP) != 0)
805 ncpus++;
806 }
807
808 /*
809 * Initialize debuggers, and break into them if appropriate.
810 */
811 #ifdef DDB
812 db_machine_init();
813 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
814 ksym_start, ksym_end);
815 if (boothowto & RB_KDB)
816 Debugger();
817 #endif
818 #ifdef KGDB
819 if (boothowto & RB_KDB)
820 kgdb_connect(0);
821 #endif
822 /*
823 * Figure out our clock frequency, from RPB fields.
824 */
825 hz = hwrpb->rpb_intr_freq >> 12;
826 if (!(60 <= hz && hz <= 10240)) {
827 hz = 1024;
828 #ifdef DIAGNOSTIC
829 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
830 hwrpb->rpb_intr_freq, hz);
831 #endif
832 }
833 }
834
835 void
836 consinit()
837 {
838
839 /*
840 * Everything related to console initialization is done
841 * in alpha_init().
842 */
843 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
844 printf("consinit: %susing prom console\n",
845 pmap_uses_prom_console() ? "" : "not ");
846 #endif
847 }
848
849 #include "pckbc.h"
850 #include "pckbd.h"
851 #if (NPCKBC > 0) && (NPCKBD == 0)
852
853 #include <dev/ic/pckbcvar.h>
854
855 /*
856 * This is called by the pbkbc driver if no pckbd is configured.
857 * On the i386, it is used to glue in the old, deprecated console
858 * code. On the Alpha, it does nothing.
859 */
860 int
861 pckbc_machdep_cnattach(kbctag, kbcslot)
862 pckbc_tag_t kbctag;
863 pckbc_slot_t kbcslot;
864 {
865
866 return (ENXIO);
867 }
868 #endif /* NPCKBC > 0 && NPCKBD == 0 */
869
870 void
871 cpu_startup()
872 {
873 register unsigned i;
874 int base, residual;
875 vaddr_t minaddr, maxaddr;
876 vsize_t size;
877 char pbuf[9];
878 #if defined(DEBUG)
879 extern int pmapdebug;
880 int opmapdebug = pmapdebug;
881
882 pmapdebug = 0;
883 #endif
884
885 /*
886 * Good {morning,afternoon,evening,night}.
887 */
888 printf(version);
889 identifycpu();
890 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
891 printf("total memory = %s\n", pbuf);
892 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
893 printf("(%s reserved for PROM, ", pbuf);
894 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
895 printf("%s used by NetBSD)\n", pbuf);
896 if (unusedmem) {
897 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
898 printf("WARNING: unused memory = %s\n", pbuf);
899 }
900 if (unknownmem) {
901 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
902 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
903 }
904
905 /*
906 * Allocate virtual address space for file I/O buffers.
907 * Note they are different than the array of headers, 'buf',
908 * and usually occupy more virtual memory than physical.
909 */
910 size = MAXBSIZE * nbuf;
911 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
912 NULL, UVM_UNKNOWN_OFFSET,
913 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
914 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
915 panic("startup: cannot allocate VM for buffers");
916 base = bufpages / nbuf;
917 residual = bufpages % nbuf;
918 for (i = 0; i < nbuf; i++) {
919 vsize_t curbufsize;
920 vaddr_t curbuf;
921 struct vm_page *pg;
922
923 /*
924 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
925 * that MAXBSIZE space, we allocate and map (base+1) pages
926 * for the first "residual" buffers, and then we allocate
927 * "base" pages for the rest.
928 */
929 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
930 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
931
932 while (curbufsize) {
933 pg = uvm_pagealloc(NULL, 0, NULL, 0);
934 if (pg == NULL)
935 panic("cpu_startup: not enough memory for "
936 "buffer cache");
937 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
938 VM_PROT_READ|VM_PROT_WRITE);
939 curbuf += PAGE_SIZE;
940 curbufsize -= PAGE_SIZE;
941 }
942 }
943 /*
944 * Allocate a submap for exec arguments. This map effectively
945 * limits the number of processes exec'ing at any time.
946 */
947 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
948 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
949
950 /*
951 * Allocate a submap for physio
952 */
953 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
954 VM_PHYS_SIZE, 0, FALSE, NULL);
955
956 /*
957 * No need to allocate an mbuf cluster submap. Mbuf clusters
958 * are allocated via the pool allocator, and we use K0SEG to
959 * map those pages.
960 */
961
962 #if defined(DEBUG)
963 pmapdebug = opmapdebug;
964 #endif
965 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
966 printf("avail memory = %s\n", pbuf);
967 #if 0
968 {
969 extern u_long pmap_pages_stolen;
970
971 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
972 printf("stolen memory for VM structures = %s\n", pbuf);
973 }
974 #endif
975 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
976 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
977
978 /*
979 * Set up buffers, so they can be used to read disk labels.
980 */
981 bufinit();
982
983 /*
984 * Set up the HWPCB so that it's safe to configure secondary
985 * CPUs.
986 */
987 hwrpb_primary_init();
988 }
989
990 /*
991 * Retrieve the platform name from the DSR.
992 */
993 const char *
994 alpha_dsr_sysname()
995 {
996 struct dsrdb *dsr;
997 const char *sysname;
998
999 /*
1000 * DSR does not exist on early HWRPB versions.
1001 */
1002 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1003 return (NULL);
1004
1005 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1006 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1007 sizeof(u_int64_t)));
1008 return (sysname);
1009 }
1010
1011 /*
1012 * Lookup the system specified system variation in the provided table,
1013 * returning the model string on match.
1014 */
1015 const char *
1016 alpha_variation_name(variation, avtp)
1017 u_int64_t variation;
1018 const struct alpha_variation_table *avtp;
1019 {
1020 int i;
1021
1022 for (i = 0; avtp[i].avt_model != NULL; i++)
1023 if (avtp[i].avt_variation == variation)
1024 return (avtp[i].avt_model);
1025 return (NULL);
1026 }
1027
1028 /*
1029 * Generate a default platform name based for unknown system variations.
1030 */
1031 const char *
1032 alpha_unknown_sysname()
1033 {
1034 static char s[128]; /* safe size */
1035
1036 sprintf(s, "%s family, unknown model variation 0x%lx",
1037 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1038 return ((const char *)s);
1039 }
1040
1041 void
1042 identifycpu()
1043 {
1044 char *s;
1045
1046 /*
1047 * print out CPU identification information.
1048 */
1049 printf("%s", cpu_model);
1050 for(s = cpu_model; *s; ++s)
1051 if(strncasecmp(s, "MHz", 3) == 0)
1052 goto skipMHz;
1053 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1054 skipMHz:
1055 printf("\n");
1056 printf("%ld byte page size, %d processor%s.\n",
1057 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1058 #if 0
1059 /* this isn't defined for any systems that we run on? */
1060 printf("serial number 0x%lx 0x%lx\n",
1061 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1062
1063 /* and these aren't particularly useful! */
1064 printf("variation: 0x%lx, revision 0x%lx\n",
1065 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1066 #endif
1067 }
1068
1069 int waittime = -1;
1070 struct pcb dumppcb;
1071
1072 void
1073 cpu_reboot(howto, bootstr)
1074 int howto;
1075 char *bootstr;
1076 {
1077 #if defined(MULTIPROCESSOR)
1078 #if 0 /* XXX See below. */
1079 u_long cpu_id;
1080 #endif
1081 #endif
1082
1083 #if defined(MULTIPROCESSOR)
1084 /* We must be running on the primary CPU. */
1085 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1086 panic("cpu_reboot: not on primary CPU!");
1087 #endif
1088
1089 /* If system is cold, just halt. */
1090 if (cold) {
1091 howto |= RB_HALT;
1092 goto haltsys;
1093 }
1094
1095 /* If "always halt" was specified as a boot flag, obey. */
1096 if ((boothowto & RB_HALT) != 0)
1097 howto |= RB_HALT;
1098
1099 boothowto = howto;
1100 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1101 waittime = 0;
1102 vfs_shutdown();
1103 /*
1104 * If we've been adjusting the clock, the todr
1105 * will be out of synch; adjust it now.
1106 */
1107 resettodr();
1108 }
1109
1110 /* Disable interrupts. */
1111 splhigh();
1112
1113 /* If rebooting and a dump is requested do it. */
1114 #if 0
1115 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1116 #else
1117 if (howto & RB_DUMP)
1118 #endif
1119 dumpsys();
1120
1121 haltsys:
1122
1123 /* run any shutdown hooks */
1124 doshutdownhooks();
1125
1126 #if defined(MULTIPROCESSOR)
1127 #if 0 /* XXX doesn't work when called from here?! */
1128 /* Kill off any secondary CPUs. */
1129 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1130 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1131 cpu_info[cpu_id].ci_softc == NULL)
1132 continue;
1133 cpu_halt_secondary(cpu_id);
1134 }
1135 #endif
1136 #endif
1137
1138 #ifdef BOOTKEY
1139 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1140 cnpollc(1); /* for proper keyboard command handling */
1141 cngetc();
1142 cnpollc(0);
1143 printf("\n");
1144 #endif
1145
1146 /* Finally, powerdown/halt/reboot the system. */
1147 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1148 platform.powerdown != NULL) {
1149 (*platform.powerdown)();
1150 printf("WARNING: powerdown failed!\n");
1151 }
1152 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1153 prom_halt(howto & RB_HALT);
1154 /*NOTREACHED*/
1155 }
1156
1157 /*
1158 * These variables are needed by /sbin/savecore
1159 */
1160 u_long dumpmag = 0x8fca0101; /* magic number */
1161 int dumpsize = 0; /* pages */
1162 long dumplo = 0; /* blocks */
1163
1164 /*
1165 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1166 */
1167 int
1168 cpu_dumpsize()
1169 {
1170 int size;
1171
1172 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1173 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1174 if (roundup(size, dbtob(1)) != dbtob(1))
1175 return -1;
1176
1177 return (1);
1178 }
1179
1180 /*
1181 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1182 */
1183 u_long
1184 cpu_dump_mempagecnt()
1185 {
1186 u_long i, n;
1187
1188 n = 0;
1189 for (i = 0; i < mem_cluster_cnt; i++)
1190 n += atop(mem_clusters[i].size);
1191 return (n);
1192 }
1193
1194 /*
1195 * cpu_dump: dump machine-dependent kernel core dump headers.
1196 */
1197 int
1198 cpu_dump()
1199 {
1200 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1201 char buf[dbtob(1)];
1202 kcore_seg_t *segp;
1203 cpu_kcore_hdr_t *cpuhdrp;
1204 phys_ram_seg_t *memsegp;
1205 int i;
1206
1207 dump = bdevsw[major(dumpdev)].d_dump;
1208
1209 bzero(buf, sizeof buf);
1210 segp = (kcore_seg_t *)buf;
1211 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1212 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1213 ALIGN(sizeof(*cpuhdrp))];
1214
1215 /*
1216 * Generate a segment header.
1217 */
1218 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1219 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1220
1221 /*
1222 * Add the machine-dependent header info.
1223 */
1224 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1225 cpuhdrp->page_size = PAGE_SIZE;
1226 cpuhdrp->nmemsegs = mem_cluster_cnt;
1227
1228 /*
1229 * Fill in the memory segment descriptors.
1230 */
1231 for (i = 0; i < mem_cluster_cnt; i++) {
1232 memsegp[i].start = mem_clusters[i].start;
1233 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1234 }
1235
1236 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1237 }
1238
1239 /*
1240 * This is called by main to set dumplo and dumpsize.
1241 * Dumps always skip the first NBPG of disk space
1242 * in case there might be a disk label stored there.
1243 * If there is extra space, put dump at the end to
1244 * reduce the chance that swapping trashes it.
1245 */
1246 void
1247 cpu_dumpconf()
1248 {
1249 int nblks, dumpblks; /* size of dump area */
1250 int maj;
1251
1252 if (dumpdev == NODEV)
1253 goto bad;
1254 maj = major(dumpdev);
1255 if (maj < 0 || maj >= nblkdev)
1256 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1257 if (bdevsw[maj].d_psize == NULL)
1258 goto bad;
1259 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1260 if (nblks <= ctod(1))
1261 goto bad;
1262
1263 dumpblks = cpu_dumpsize();
1264 if (dumpblks < 0)
1265 goto bad;
1266 dumpblks += ctod(cpu_dump_mempagecnt());
1267
1268 /* If dump won't fit (incl. room for possible label), punt. */
1269 if (dumpblks > (nblks - ctod(1)))
1270 goto bad;
1271
1272 /* Put dump at end of partition */
1273 dumplo = nblks - dumpblks;
1274
1275 /* dumpsize is in page units, and doesn't include headers. */
1276 dumpsize = cpu_dump_mempagecnt();
1277 return;
1278
1279 bad:
1280 dumpsize = 0;
1281 return;
1282 }
1283
1284 /*
1285 * Dump the kernel's image to the swap partition.
1286 */
1287 #define BYTES_PER_DUMP NBPG
1288
1289 void
1290 dumpsys()
1291 {
1292 u_long totalbytesleft, bytes, i, n, memcl;
1293 u_long maddr;
1294 int psize;
1295 daddr_t blkno;
1296 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1297 int error;
1298
1299 /* Save registers. */
1300 savectx(&dumppcb);
1301
1302 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1303 if (dumpdev == NODEV)
1304 return;
1305
1306 /*
1307 * For dumps during autoconfiguration,
1308 * if dump device has already configured...
1309 */
1310 if (dumpsize == 0)
1311 cpu_dumpconf();
1312 if (dumplo <= 0) {
1313 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1314 minor(dumpdev));
1315 return;
1316 }
1317 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1318 minor(dumpdev), dumplo);
1319
1320 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1321 printf("dump ");
1322 if (psize == -1) {
1323 printf("area unavailable\n");
1324 return;
1325 }
1326
1327 /* XXX should purge all outstanding keystrokes. */
1328
1329 if ((error = cpu_dump()) != 0)
1330 goto err;
1331
1332 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1333 blkno = dumplo + cpu_dumpsize();
1334 dump = bdevsw[major(dumpdev)].d_dump;
1335 error = 0;
1336
1337 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1338 maddr = mem_clusters[memcl].start;
1339 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1340
1341 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1342
1343 /* Print out how many MBs we to go. */
1344 if ((totalbytesleft % (1024*1024)) == 0)
1345 printf("%ld ", totalbytesleft / (1024 * 1024));
1346
1347 /* Limit size for next transfer. */
1348 n = bytes - i;
1349 if (n > BYTES_PER_DUMP)
1350 n = BYTES_PER_DUMP;
1351
1352 error = (*dump)(dumpdev, blkno,
1353 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1354 if (error)
1355 goto err;
1356 maddr += n;
1357 blkno += btodb(n); /* XXX? */
1358
1359 /* XXX should look for keystrokes, to cancel. */
1360 }
1361 }
1362
1363 err:
1364 switch (error) {
1365
1366 case ENXIO:
1367 printf("device bad\n");
1368 break;
1369
1370 case EFAULT:
1371 printf("device not ready\n");
1372 break;
1373
1374 case EINVAL:
1375 printf("area improper\n");
1376 break;
1377
1378 case EIO:
1379 printf("i/o error\n");
1380 break;
1381
1382 case EINTR:
1383 printf("aborted from console\n");
1384 break;
1385
1386 case 0:
1387 printf("succeeded\n");
1388 break;
1389
1390 default:
1391 printf("error %d\n", error);
1392 break;
1393 }
1394 printf("\n\n");
1395 delay(1000);
1396 }
1397
1398 void
1399 frametoreg(framep, regp)
1400 struct trapframe *framep;
1401 struct reg *regp;
1402 {
1403
1404 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1405 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1406 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1407 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1408 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1409 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1410 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1411 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1412 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1413 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1414 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1415 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1416 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1417 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1418 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1419 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1420 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1421 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1422 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1423 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1424 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1425 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1426 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1427 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1428 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1429 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1430 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1431 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1432 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1433 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1434 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1435 regp->r_regs[R_ZERO] = 0;
1436 }
1437
1438 void
1439 regtoframe(regp, framep)
1440 struct reg *regp;
1441 struct trapframe *framep;
1442 {
1443
1444 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1445 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1446 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1447 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1448 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1449 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1450 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1451 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1452 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1453 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1454 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1455 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1456 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1457 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1458 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1459 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1460 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1461 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1462 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1463 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1464 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1465 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1466 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1467 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1468 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1469 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1470 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1471 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1472 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1473 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1474 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1475 /* ??? = regp->r_regs[R_ZERO]; */
1476 }
1477
1478 void
1479 printregs(regp)
1480 struct reg *regp;
1481 {
1482 int i;
1483
1484 for (i = 0; i < 32; i++)
1485 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1486 i & 1 ? "\n" : "\t");
1487 }
1488
1489 void
1490 regdump(framep)
1491 struct trapframe *framep;
1492 {
1493 struct reg reg;
1494
1495 frametoreg(framep, ®);
1496 reg.r_regs[R_SP] = alpha_pal_rdusp();
1497
1498 printf("REGISTERS:\n");
1499 printregs(®);
1500 }
1501
1502 #ifdef DEBUG
1503 int sigdebug = 0;
1504 int sigpid = 0;
1505 #define SDB_FOLLOW 0x01
1506 #define SDB_KSTACK 0x02
1507 #endif
1508
1509 /*
1510 * Send an interrupt to process.
1511 */
1512 void
1513 sendsig(catcher, sig, mask, code)
1514 sig_t catcher;
1515 int sig;
1516 sigset_t *mask;
1517 u_long code;
1518 {
1519 struct proc *p = curproc;
1520 struct sigcontext *scp, ksc;
1521 struct trapframe *frame;
1522 struct sigacts *psp = p->p_sigacts;
1523 int onstack, fsize, rndfsize;
1524
1525 frame = p->p_md.md_tf;
1526
1527 /* Do we need to jump onto the signal stack? */
1528 onstack =
1529 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1530 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1531
1532 /* Allocate space for the signal handler context. */
1533 fsize = sizeof(ksc);
1534 rndfsize = ((fsize + 15) / 16) * 16;
1535
1536 if (onstack)
1537 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1538 psp->ps_sigstk.ss_size);
1539 else
1540 scp = (struct sigcontext *)(alpha_pal_rdusp());
1541 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1542
1543 #ifdef DEBUG
1544 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1545 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1546 sig, &onstack, scp);
1547 #endif
1548
1549 /* Build stack frame for signal trampoline. */
1550 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1551 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1552
1553 /* Save register context. */
1554 frametoreg(frame, (struct reg *)ksc.sc_regs);
1555 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1556 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1557
1558 /* save the floating-point state, if necessary, then copy it. */
1559 if (p == fpcurproc) {
1560 alpha_pal_wrfen(1);
1561 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1562 alpha_pal_wrfen(0);
1563 fpcurproc = NULL;
1564 }
1565 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1566 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1567 sizeof(struct fpreg));
1568 ksc.sc_fp_control = 0; /* XXX ? */
1569 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1570 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1571
1572 /* Save signal stack. */
1573 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1574
1575 /* Save signal mask. */
1576 ksc.sc_mask = *mask;
1577
1578 #ifdef COMPAT_13
1579 /*
1580 * XXX We always have to save an old style signal mask because
1581 * XXX we might be delivering a signal to a process which will
1582 * XXX escape from the signal in a non-standard way and invoke
1583 * XXX sigreturn() directly.
1584 */
1585 {
1586 /* Note: it's a long in the stack frame. */
1587 sigset13_t mask13;
1588
1589 native_sigset_to_sigset13(mask, &mask13);
1590 ksc.__sc_mask13 = mask13;
1591 }
1592 #endif
1593
1594 #ifdef COMPAT_OSF1
1595 /*
1596 * XXX Create an OSF/1-style sigcontext and associated goo.
1597 */
1598 #endif
1599
1600 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1601 /*
1602 * Process has trashed its stack; give it an illegal
1603 * instruction to halt it in its tracks.
1604 */
1605 #ifdef DEBUG
1606 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1607 printf("sendsig(%d): copyout failed on sig %d\n",
1608 p->p_pid, sig);
1609 #endif
1610 sigexit(p, SIGILL);
1611 /* NOTREACHED */
1612 }
1613 #ifdef DEBUG
1614 if (sigdebug & SDB_FOLLOW)
1615 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1616 scp, code);
1617 #endif
1618
1619 /* Set up the registers to return to sigcode. */
1620 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1621 frame->tf_regs[FRAME_A0] = sig;
1622 frame->tf_regs[FRAME_A1] = code;
1623 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1624 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1625 alpha_pal_wrusp((unsigned long)scp);
1626
1627 /* Remember that we're now on the signal stack. */
1628 if (onstack)
1629 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1630
1631 #ifdef DEBUG
1632 if (sigdebug & SDB_FOLLOW)
1633 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1634 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1635 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1636 printf("sendsig(%d): sig %d returns\n",
1637 p->p_pid, sig);
1638 #endif
1639 }
1640
1641 /*
1642 * System call to cleanup state after a signal
1643 * has been taken. Reset signal mask and
1644 * stack state from context left by sendsig (above).
1645 * Return to previous pc and psl as specified by
1646 * context left by sendsig. Check carefully to
1647 * make sure that the user has not modified the
1648 * psl to gain improper privileges or to cause
1649 * a machine fault.
1650 */
1651 /* ARGSUSED */
1652 int
1653 sys___sigreturn14(p, v, retval)
1654 struct proc *p;
1655 void *v;
1656 register_t *retval;
1657 {
1658 struct sys___sigreturn14_args /* {
1659 syscallarg(struct sigcontext *) sigcntxp;
1660 } */ *uap = v;
1661 struct sigcontext *scp, ksc;
1662
1663 /*
1664 * The trampoline code hands us the context.
1665 * It is unsafe to keep track of it ourselves, in the event that a
1666 * program jumps out of a signal handler.
1667 */
1668 scp = SCARG(uap, sigcntxp);
1669 #ifdef DEBUG
1670 if (sigdebug & SDB_FOLLOW)
1671 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1672 #endif
1673 if (ALIGN(scp) != (u_int64_t)scp)
1674 return (EINVAL);
1675
1676 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1677 return (EFAULT);
1678
1679 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1680 return (EINVAL);
1681
1682 /* Restore register context. */
1683 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1684 p->p_md.md_tf->tf_regs[FRAME_PS] =
1685 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1686
1687 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1688 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1689
1690 /* XXX ksc.sc_ownedfp ? */
1691 if (p == fpcurproc)
1692 fpcurproc = NULL;
1693 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1694 sizeof(struct fpreg));
1695 /* XXX ksc.sc_fp_control ? */
1696
1697 /* Restore signal stack. */
1698 if (ksc.sc_onstack & SS_ONSTACK)
1699 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1700 else
1701 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1702
1703 /* Restore signal mask. */
1704 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1705
1706 #ifdef DEBUG
1707 if (sigdebug & SDB_FOLLOW)
1708 printf("sigreturn(%d): returns\n", p->p_pid);
1709 #endif
1710 return (EJUSTRETURN);
1711 }
1712
1713 /*
1714 * machine dependent system variables.
1715 */
1716 int
1717 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1718 int *name;
1719 u_int namelen;
1720 void *oldp;
1721 size_t *oldlenp;
1722 void *newp;
1723 size_t newlen;
1724 struct proc *p;
1725 {
1726 dev_t consdev;
1727
1728 /* all sysctl names at this level are terminal */
1729 if (namelen != 1)
1730 return (ENOTDIR); /* overloaded */
1731
1732 switch (name[0]) {
1733 case CPU_CONSDEV:
1734 if (cn_tab != NULL)
1735 consdev = cn_tab->cn_dev;
1736 else
1737 consdev = NODEV;
1738 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1739 sizeof consdev));
1740
1741 case CPU_ROOT_DEVICE:
1742 return (sysctl_rdstring(oldp, oldlenp, newp,
1743 root_device->dv_xname));
1744
1745 case CPU_UNALIGNED_PRINT:
1746 return (sysctl_int(oldp, oldlenp, newp, newlen,
1747 &alpha_unaligned_print));
1748
1749 case CPU_UNALIGNED_FIX:
1750 return (sysctl_int(oldp, oldlenp, newp, newlen,
1751 &alpha_unaligned_fix));
1752
1753 case CPU_UNALIGNED_SIGBUS:
1754 return (sysctl_int(oldp, oldlenp, newp, newlen,
1755 &alpha_unaligned_sigbus));
1756
1757 case CPU_BOOTED_KERNEL:
1758 return (sysctl_rdstring(oldp, oldlenp, newp,
1759 bootinfo.booted_kernel));
1760
1761 default:
1762 return (EOPNOTSUPP);
1763 }
1764 /* NOTREACHED */
1765 }
1766
1767 /*
1768 * Set registers on exec.
1769 */
1770 void
1771 setregs(p, pack, stack)
1772 register struct proc *p;
1773 struct exec_package *pack;
1774 u_long stack;
1775 {
1776 struct trapframe *tfp = p->p_md.md_tf;
1777 #ifdef DEBUG
1778 int i;
1779 #endif
1780
1781 #ifdef DEBUG
1782 /*
1783 * Crash and dump, if the user requested it.
1784 */
1785 if (boothowto & RB_DUMP)
1786 panic("crash requested by boot flags");
1787 #endif
1788
1789 #ifdef DEBUG
1790 for (i = 0; i < FRAME_SIZE; i++)
1791 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1792 #else
1793 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1794 #endif
1795 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1796 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1797 | FPCR_UNFD
1798 | FPCR_UNDZ
1799 | FPCR_DYN(FP_RN)
1800 | FPCR_OVFD
1801 | FPCR_DZED
1802 | FPCR_INVD
1803 | FPCR_DNZ;
1804 alpha_pal_wrusp(stack);
1805 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1806 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1807
1808 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1809 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1810 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1811 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1812 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1813
1814 p->p_md.md_flags &= ~MDP_FPUSED;
1815 if (fpcurproc == p)
1816 fpcurproc = NULL;
1817 }
1818
1819 void
1820 netintr()
1821 {
1822 int n, s;
1823
1824 s = splhigh();
1825 n = netisr;
1826 netisr = 0;
1827 splx(s);
1828
1829 #define DONETISR(bit, fn) \
1830 do { \
1831 if (n & (1 << (bit))) \
1832 fn(); \
1833 } while (0)
1834
1835 #include <net/netisr_dispatch.h>
1836
1837 #undef DONETISR
1838 }
1839
1840 void
1841 do_sir()
1842 {
1843 u_int64_t n;
1844
1845 while ((n = atomic_loadlatch_ulong(&ssir, 0)) != 0) {
1846 #define COUNT_SOFT uvmexp.softs++
1847
1848 #define DO_SIR(bit, fn) \
1849 do { \
1850 if (n & (bit)) { \
1851 COUNT_SOFT; \
1852 fn; \
1853 } \
1854 } while (0)
1855
1856 DO_SIR(SIR_NET, netintr());
1857 DO_SIR(SIR_CLOCK, softclock());
1858 #if NCOM > 0
1859 DO_SIR(SIR_SERIAL, comsoft());
1860 #endif
1861 #if NZSC_IOASIC > 0
1862 DO_SIR(SIR_SERIAL, zs_ioasic_softintr());
1863 #endif
1864
1865 #undef COUNT_SOFT
1866 #undef DO_SIR
1867 }
1868 }
1869
1870 int
1871 spl0()
1872 {
1873
1874 if (ssir) {
1875 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1876 do_sir();
1877 }
1878
1879 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1880 }
1881
1882 /*
1883 * The following primitives manipulate the run queues. _whichqs tells which
1884 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1885 * into queues, Remrunqueue removes them from queues. The running process is
1886 * on no queue, other processes are on a queue related to p->p_priority,
1887 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1888 * available queues.
1889 */
1890 /*
1891 * setrunqueue(p)
1892 * proc *p;
1893 *
1894 * Call should be made at splclock(), and p->p_stat should be SRUN.
1895 */
1896
1897 void
1898 setrunqueue(p)
1899 struct proc *p;
1900 {
1901 int bit;
1902
1903 /* firewall: p->p_back must be NULL */
1904 if (p->p_back != NULL)
1905 panic("setrunqueue");
1906
1907 bit = p->p_priority >> 2;
1908 sched_whichqs |= (1 << bit);
1909 p->p_forw = (struct proc *)&sched_qs[bit];
1910 p->p_back = sched_qs[bit].ph_rlink;
1911 p->p_back->p_forw = p;
1912 sched_qs[bit].ph_rlink = p;
1913 }
1914
1915 /*
1916 * remrunqueue(p)
1917 *
1918 * Call should be made at splclock().
1919 */
1920 void
1921 remrunqueue(p)
1922 struct proc *p;
1923 {
1924 int bit;
1925
1926 bit = p->p_priority >> 2;
1927 if ((sched_whichqs & (1 << bit)) == 0)
1928 panic("remrunqueue");
1929
1930 p->p_back->p_forw = p->p_forw;
1931 p->p_forw->p_back = p->p_back;
1932 p->p_back = NULL; /* for firewall checking. */
1933
1934 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1935 sched_whichqs &= ~(1 << bit);
1936 }
1937
1938 /*
1939 * Return the best possible estimate of the time in the timeval
1940 * to which tvp points. Unfortunately, we can't read the hardware registers.
1941 * We guarantee that the time will be greater than the value obtained by a
1942 * previous call.
1943 */
1944 void
1945 microtime(tvp)
1946 register struct timeval *tvp;
1947 {
1948 int s = splclock();
1949 static struct timeval lasttime;
1950
1951 *tvp = time;
1952 #ifdef notdef
1953 tvp->tv_usec += clkread();
1954 while (tvp->tv_usec >= 1000000) {
1955 tvp->tv_sec++;
1956 tvp->tv_usec -= 1000000;
1957 }
1958 #endif
1959 if (tvp->tv_sec == lasttime.tv_sec &&
1960 tvp->tv_usec <= lasttime.tv_usec &&
1961 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1962 tvp->tv_sec++;
1963 tvp->tv_usec -= 1000000;
1964 }
1965 lasttime = *tvp;
1966 splx(s);
1967 }
1968
1969 /*
1970 * Wait "n" microseconds.
1971 */
1972 void
1973 delay(n)
1974 unsigned long n;
1975 {
1976 long N = cycles_per_usec * (n);
1977
1978 /*
1979 * XXX Should be written to use RPCC?
1980 */
1981
1982 __asm __volatile(
1983 "# The 2 corresponds to the insn count\n"
1984 "1: subq %2, %1, %0 \n"
1985 " bgt %0, 1b"
1986 : "=r" (N)
1987 : "i" (2), "0" (N));
1988 }
1989
1990 #if defined(COMPAT_OSF1) || 1 /* XXX */
1991 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1992 u_long));
1993
1994 void
1995 cpu_exec_ecoff_setregs(p, epp, stack)
1996 struct proc *p;
1997 struct exec_package *epp;
1998 u_long stack;
1999 {
2000 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2001
2002 setregs(p, epp, stack);
2003 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2004 }
2005
2006 /*
2007 * cpu_exec_ecoff_hook():
2008 * cpu-dependent ECOFF format hook for execve().
2009 *
2010 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2011 *
2012 */
2013 int
2014 cpu_exec_ecoff_hook(p, epp)
2015 struct proc *p;
2016 struct exec_package *epp;
2017 {
2018 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2019 extern struct emul emul_netbsd;
2020 int error;
2021 extern int osf1_exec_ecoff_hook(struct proc *p,
2022 struct exec_package *epp);
2023
2024 switch (execp->f.f_magic) {
2025 #ifdef COMPAT_OSF1
2026 case ECOFF_MAGIC_ALPHA:
2027 error = osf1_exec_ecoff_hook(p, epp);
2028 break;
2029 #endif
2030
2031 case ECOFF_MAGIC_NETBSD_ALPHA:
2032 epp->ep_emul = &emul_netbsd;
2033 error = 0;
2034 break;
2035
2036 default:
2037 error = ENOEXEC;
2038 }
2039 return (error);
2040 }
2041 #endif
2042
2043 int
2044 alpha_pa_access(pa)
2045 u_long pa;
2046 {
2047 int i;
2048
2049 for (i = 0; i < mem_cluster_cnt; i++) {
2050 if (pa < mem_clusters[i].start)
2051 continue;
2052 if ((pa - mem_clusters[i].start) >=
2053 (mem_clusters[i].size & ~PAGE_MASK))
2054 continue;
2055 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2056 }
2057
2058 /*
2059 * Address is not a memory address. If we're secure, disallow
2060 * access. Otherwise, grant read/write.
2061 */
2062 if (securelevel > 0)
2063 return (PROT_NONE);
2064 else
2065 return (PROT_READ | PROT_WRITE);
2066 }
2067
2068 /* XXX XXX BEGIN XXX XXX */
2069 paddr_t alpha_XXX_dmamap_or; /* XXX */
2070 /* XXX */
2071 paddr_t /* XXX */
2072 alpha_XXX_dmamap(v) /* XXX */
2073 vaddr_t v; /* XXX */
2074 { /* XXX */
2075 /* XXX */
2076 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2077 } /* XXX */
2078 /* XXX XXX END XXX XXX */
2079
2080 char *
2081 dot_conv(x)
2082 unsigned long x;
2083 {
2084 int i;
2085 char *xc;
2086 static int next;
2087 static char space[2][20];
2088
2089 xc = space[next ^= 1] + sizeof space[0];
2090 *--xc = '\0';
2091 for (i = 0;; ++i) {
2092 if (i && (i & 3) == 0)
2093 *--xc = '.';
2094 *--xc = "0123456789abcdef"[x & 0xf];
2095 x >>= 4;
2096 if (x == 0)
2097 break;
2098 }
2099 return xc;
2100 }
2101