machdep.c revision 1.211 1 /* $NetBSD: machdep.c,v 1.211 2000/06/03 20:47:37 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73
74 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75
76 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.211 2000/06/03 20:47:37 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/signalvar.h>
81 #include <sys/kernel.h>
82 #include <sys/map.h>
83 #include <sys/proc.h>
84 #include <sys/sched.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/device.h>
88 #include <sys/file.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <vm/vm.h>
99 #include <sys/sysctl.h>
100 #include <sys/core.h>
101 #include <sys/kcore.h>
102 #include <machine/kcore.h>
103
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106
107 #include <vm/vm_kern.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <dev/cons.h>
112
113 #include <machine/autoconf.h>
114 #include <machine/cpu.h>
115 #include <machine/reg.h>
116 #include <machine/rpb.h>
117 #include <machine/prom.h>
118 #include <machine/conf.h>
119 #include <machine/ieeefp.h>
120
121 #ifdef DDB
122 #include <machine/db_machdep.h>
123 #include <ddb/db_access.h>
124 #include <ddb/db_sym.h>
125 #include <ddb/db_extern.h>
126 #include <ddb/db_interface.h>
127 #endif
128
129 #include <machine/alpha.h>
130 #include <machine/intrcnt.h>
131
132 #include "com.h"
133 #if NCOM > 0
134 extern void comsoft __P((void));
135 #endif
136 #include "zsc_ioasic.h"
137 #if NZSC_IOASIC > 0
138 extern void zs_ioasic_softintr __P((void));
139 #endif
140
141 vm_map_t exec_map = NULL;
142 vm_map_t mb_map = NULL;
143 vm_map_t phys_map = NULL;
144
145 caddr_t msgbufaddr;
146
147 int maxmem; /* max memory per process */
148
149 int totalphysmem; /* total amount of physical memory in system */
150 int physmem; /* physical memory used by NetBSD + some rsvd */
151 int resvmem; /* amount of memory reserved for PROM */
152 int unusedmem; /* amount of memory for OS that we don't use */
153 int unknownmem; /* amount of memory with an unknown use */
154
155 int cputype; /* system type, from the RPB */
156
157 int bootdev_debug = 0; /* patchable, or from DDB */
158
159 /*
160 * XXX We need an address to which we can assign things so that they
161 * won't be optimized away because we didn't use the value.
162 */
163 u_int32_t no_optimize;
164
165 /* the following is used externally (sysctl_hw) */
166 char machine[] = MACHINE; /* from <machine/param.h> */
167 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
168 char cpu_model[128];
169
170 struct user *proc0paddr;
171
172 /* Number of machine cycles per microsecond */
173 u_int64_t cycles_per_usec;
174
175 /* number of cpus in the box. really! */
176 int ncpus;
177
178 struct bootinfo_kernel bootinfo;
179
180 /* For built-in TCDS */
181 #if defined(DEC_3000_300) || defined(DEC_3000_500)
182 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
183 #endif
184
185 struct platform platform;
186
187 #ifdef DDB
188 /* start and end of kernel symbol table */
189 void *ksym_start, *ksym_end;
190 #endif
191
192 /* for cpu_sysctl() */
193 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
194 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
195 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
196
197 /*
198 * XXX This should be dynamically sized, but we have the chicken-egg problem!
199 * XXX it should also be larger than it is, because not all of the mddt
200 * XXX clusters end up being used for VM.
201 */
202 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
203 int mem_cluster_cnt;
204
205 int cpu_dump __P((void));
206 int cpu_dumpsize __P((void));
207 u_long cpu_dump_mempagecnt __P((void));
208 void dumpsys __P((void));
209 void identifycpu __P((void));
210 void printregs __P((struct reg *));
211
212 void
213 alpha_init(pfn, ptb, bim, bip, biv)
214 u_long pfn; /* first free PFN number */
215 u_long ptb; /* PFN of current level 1 page table */
216 u_long bim; /* bootinfo magic */
217 u_long bip; /* bootinfo pointer */
218 u_long biv; /* bootinfo version */
219 {
220 extern char kernel_text[], _end[];
221 struct mddt *mddtp;
222 struct mddt_cluster *memc;
223 int i, mddtweird;
224 struct vm_physseg *vps;
225 vaddr_t kernstart, kernend;
226 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
227 vsize_t size;
228 cpuid_t cpu_id;
229 struct cpu_info *ci;
230 char *p;
231 caddr_t v;
232 const char *bootinfo_msg;
233 const struct cpuinit *c;
234
235 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
236
237 /*
238 * Turn off interrupts (not mchecks) and floating point.
239 * Make sure the instruction and data streams are consistent.
240 */
241 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
242 alpha_pal_wrfen(0);
243 ALPHA_TBIA();
244 alpha_pal_imb();
245
246 cpu_id = cpu_number();
247
248 #if defined(MULTIPROCESSOR)
249 /*
250 * Set our SysValue to the address of our cpu_info structure.
251 * Secondary processors do this in their spinup trampoline.
252 */
253 alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
254 #endif
255
256 ci = curcpu();
257 ci->ci_cpuid = cpu_id;
258
259 /*
260 * Get critical system information (if possible, from the
261 * information provided by the boot program).
262 */
263 bootinfo_msg = NULL;
264 if (bim == BOOTINFO_MAGIC) {
265 if (biv == 0) { /* backward compat */
266 biv = *(u_long *)bip;
267 bip += 8;
268 }
269 switch (biv) {
270 case 1: {
271 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
272
273 bootinfo.ssym = v1p->ssym;
274 bootinfo.esym = v1p->esym;
275 /* hwrpb may not be provided by boot block in v1 */
276 if (v1p->hwrpb != NULL) {
277 bootinfo.hwrpb_phys =
278 ((struct rpb *)v1p->hwrpb)->rpb_phys;
279 bootinfo.hwrpb_size = v1p->hwrpbsize;
280 } else {
281 bootinfo.hwrpb_phys =
282 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
283 bootinfo.hwrpb_size =
284 ((struct rpb *)HWRPB_ADDR)->rpb_size;
285 }
286 bcopy(v1p->boot_flags, bootinfo.boot_flags,
287 min(sizeof v1p->boot_flags,
288 sizeof bootinfo.boot_flags));
289 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
290 min(sizeof v1p->booted_kernel,
291 sizeof bootinfo.booted_kernel));
292 /* booted dev not provided in bootinfo */
293 init_prom_interface((struct rpb *)
294 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
295 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
296 sizeof bootinfo.booted_dev);
297 break;
298 }
299 default:
300 bootinfo_msg = "unknown bootinfo version";
301 goto nobootinfo;
302 }
303 } else {
304 bootinfo_msg = "boot program did not pass bootinfo";
305 nobootinfo:
306 bootinfo.ssym = (u_long)_end;
307 bootinfo.esym = (u_long)_end;
308 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
309 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
310 init_prom_interface((struct rpb *)HWRPB_ADDR);
311 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
312 sizeof bootinfo.boot_flags);
313 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
314 sizeof bootinfo.booted_kernel);
315 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
316 sizeof bootinfo.booted_dev);
317 }
318
319 /*
320 * Initialize the kernel's mapping of the RPB. It's needed for
321 * lots of things.
322 */
323 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
324
325 #if defined(DEC_3000_300) || defined(DEC_3000_500)
326 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
327 hwrpb->rpb_type == ST_DEC_3000_500) {
328 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
329 sizeof(dec_3000_scsiid));
330 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
331 sizeof(dec_3000_scsifast));
332 }
333 #endif
334
335 /*
336 * Remember how many cycles there are per microsecond,
337 * so that we can use delay(). Round up, for safety.
338 */
339 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
340
341 /*
342 * Initalize the (temporary) bootstrap console interface, so
343 * we can use printf until the VM system starts being setup.
344 * The real console is initialized before then.
345 */
346 init_bootstrap_console();
347
348 /* OUTPUT NOW ALLOWED */
349
350 /* delayed from above */
351 if (bootinfo_msg)
352 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
353 bootinfo_msg, bim, bip, biv);
354
355 /* Initialize the trap vectors on the primary processor. */
356 trap_init();
357
358 /*
359 * Find out what hardware we're on, and do basic initialization.
360 */
361 cputype = hwrpb->rpb_type;
362 if (cputype < 0) {
363 /*
364 * At least some white-box systems have SRM which
365 * reports a systype that's the negative of their
366 * blue-box counterpart.
367 */
368 cputype = -cputype;
369 }
370 c = platform_lookup(cputype);
371 if (c == NULL) {
372 platform_not_supported();
373 /* NOTREACHED */
374 }
375 (*c->init)();
376 strcpy(cpu_model, platform.model);
377
378 /*
379 * Initalize the real console, so that the bootstrap console is
380 * no longer necessary.
381 */
382 (*platform.cons_init)();
383
384 #ifdef DIAGNOSTIC
385 /* Paranoid sanity checking */
386
387 /* We should always be running on the primary. */
388 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
389
390 /*
391 * On single-CPU systypes, the primary should always be CPU 0,
392 * except on Alpha 8200 systems where the CPU id is related
393 * to the VID, which is related to the Turbo Laser node id.
394 */
395 if (cputype != ST_DEC_21000)
396 assert(hwrpb->rpb_primary_cpu_id == 0);
397 #endif
398
399 /* NO MORE FIRMWARE ACCESS ALLOWED */
400 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
401 /*
402 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
403 * XXX pmap_uses_prom_console() evaluates to non-zero.)
404 */
405 #endif
406
407 /*
408 * find out this system's page size
409 */
410 PAGE_SIZE = hwrpb->rpb_page_size;
411 if (PAGE_SIZE != 8192)
412 panic("page size %d != 8192?!", PAGE_SIZE);
413
414 /*
415 * Initialize PAGE_SIZE-dependent variables.
416 */
417 uvm_setpagesize();
418
419 /*
420 * Find the beginning and end of the kernel (and leave a
421 * bit of space before the beginning for the bootstrap
422 * stack).
423 */
424 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
425 #ifdef DDB
426 ksym_start = (void *)bootinfo.ssym;
427 ksym_end = (void *)bootinfo.esym;
428 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
429 #else
430 kernend = (vaddr_t)round_page((vaddr_t)_end);
431 #endif
432
433 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
434 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
435
436 /*
437 * Find out how much memory is available, by looking at
438 * the memory cluster descriptors. This also tries to do
439 * its best to detect things things that have never been seen
440 * before...
441 */
442 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
443
444 /* MDDT SANITY CHECKING */
445 mddtweird = 0;
446 if (mddtp->mddt_cluster_cnt < 2) {
447 mddtweird = 1;
448 printf("WARNING: weird number of mem clusters: %lu\n",
449 mddtp->mddt_cluster_cnt);
450 }
451
452 #if 0
453 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
454 #endif
455
456 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
457 memc = &mddtp->mddt_clusters[i];
458 #if 0
459 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
460 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
461 #endif
462 totalphysmem += memc->mddt_pg_cnt;
463 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
464 mem_clusters[mem_cluster_cnt].start =
465 ptoa(memc->mddt_pfn);
466 mem_clusters[mem_cluster_cnt].size =
467 ptoa(memc->mddt_pg_cnt);
468 if (memc->mddt_usage & MDDT_mbz ||
469 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
470 memc->mddt_usage & MDDT_PALCODE)
471 mem_clusters[mem_cluster_cnt].size |=
472 PROT_READ;
473 else
474 mem_clusters[mem_cluster_cnt].size |=
475 PROT_READ | PROT_WRITE | PROT_EXEC;
476 mem_cluster_cnt++;
477 }
478
479 if (memc->mddt_usage & MDDT_mbz) {
480 mddtweird = 1;
481 printf("WARNING: mem cluster %d has weird "
482 "usage 0x%lx\n", i, memc->mddt_usage);
483 unknownmem += memc->mddt_pg_cnt;
484 continue;
485 }
486 if (memc->mddt_usage & MDDT_NONVOLATILE) {
487 /* XXX should handle these... */
488 printf("WARNING: skipping non-volatile mem "
489 "cluster %d\n", i);
490 unusedmem += memc->mddt_pg_cnt;
491 continue;
492 }
493 if (memc->mddt_usage & MDDT_PALCODE) {
494 resvmem += memc->mddt_pg_cnt;
495 continue;
496 }
497
498 /*
499 * We have a memory cluster available for system
500 * software use. We must determine if this cluster
501 * holds the kernel.
502 */
503 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
504 /*
505 * XXX If the kernel uses the PROM console, we only use the
506 * XXX memory after the kernel in the first system segment,
507 * XXX to avoid clobbering prom mapping, data, etc.
508 */
509 if (!pmap_uses_prom_console() || physmem == 0) {
510 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
511 physmem += memc->mddt_pg_cnt;
512 pfn0 = memc->mddt_pfn;
513 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
514 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
515 /*
516 * Must compute the location of the kernel
517 * within the segment.
518 */
519 #if 0
520 printf("Cluster %d contains kernel\n", i);
521 #endif
522 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
523 if (!pmap_uses_prom_console()) {
524 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
525 if (pfn0 < kernstartpfn) {
526 /*
527 * There is a chunk before the kernel.
528 */
529 #if 0
530 printf("Loading chunk before kernel: "
531 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
532 #endif
533 uvm_page_physload(pfn0, kernstartpfn,
534 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
535 }
536 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
537 }
538 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
539 if (kernendpfn < pfn1) {
540 /*
541 * There is a chunk after the kernel.
542 */
543 #if 0
544 printf("Loading chunk after kernel: "
545 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
546 #endif
547 uvm_page_physload(kernendpfn, pfn1,
548 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
549 }
550 } else {
551 /*
552 * Just load this cluster as one chunk.
553 */
554 #if 0
555 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
556 pfn0, pfn1);
557 #endif
558 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
559 VM_FREELIST_DEFAULT);
560 }
561 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
562 }
563 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
564 }
565
566 /*
567 * Dump out the MDDT if it looks odd...
568 */
569 if (mddtweird) {
570 printf("\n");
571 printf("complete memory cluster information:\n");
572 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
573 printf("mddt %d:\n", i);
574 printf("\tpfn %lx\n",
575 mddtp->mddt_clusters[i].mddt_pfn);
576 printf("\tcnt %lx\n",
577 mddtp->mddt_clusters[i].mddt_pg_cnt);
578 printf("\ttest %lx\n",
579 mddtp->mddt_clusters[i].mddt_pg_test);
580 printf("\tbva %lx\n",
581 mddtp->mddt_clusters[i].mddt_v_bitaddr);
582 printf("\tbpa %lx\n",
583 mddtp->mddt_clusters[i].mddt_p_bitaddr);
584 printf("\tbcksum %lx\n",
585 mddtp->mddt_clusters[i].mddt_bit_cksum);
586 printf("\tusage %lx\n",
587 mddtp->mddt_clusters[i].mddt_usage);
588 }
589 printf("\n");
590 }
591
592 if (totalphysmem == 0)
593 panic("can't happen: system seems to have no memory!");
594 maxmem = physmem;
595 #if 0
596 printf("totalphysmem = %d\n", totalphysmem);
597 printf("physmem = %d\n", physmem);
598 printf("resvmem = %d\n", resvmem);
599 printf("unusedmem = %d\n", unusedmem);
600 printf("unknownmem = %d\n", unknownmem);
601 #endif
602
603 /*
604 * Initialize error message buffer (at end of core).
605 */
606 {
607 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
608 vsize_t reqsz = sz;
609
610 vps = &vm_physmem[vm_nphysseg - 1];
611
612 /* shrink so that it'll fit in the last segment */
613 if ((vps->avail_end - vps->avail_start) < atop(sz))
614 sz = ptoa(vps->avail_end - vps->avail_start);
615
616 vps->end -= atop(sz);
617 vps->avail_end -= atop(sz);
618 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
619 initmsgbuf(msgbufaddr, sz);
620
621 /* Remove the last segment if it now has no pages. */
622 if (vps->start == vps->end)
623 vm_nphysseg--;
624
625 /* warn if the message buffer had to be shrunk */
626 if (sz != reqsz)
627 printf("WARNING: %ld bytes not available for msgbuf "
628 "in last cluster (%ld used)\n", reqsz, sz);
629
630 }
631
632 /*
633 * Init mapping for u page(s) for proc 0
634 */
635 proc0.p_addr = proc0paddr =
636 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
637
638 /*
639 * Allocate space for system data structures. These data structures
640 * are allocated here instead of cpu_startup() because physical
641 * memory is directly addressable. We don't have to map these into
642 * virtual address space.
643 */
644 size = (vsize_t)allocsys(NULL, NULL);
645 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
646 if ((allocsys(v, NULL) - v) != size)
647 panic("alpha_init: table size inconsistency");
648
649 /*
650 * Initialize the virtual memory system, and set the
651 * page table base register in proc 0's PCB.
652 */
653 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
654 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
655
656 /*
657 * Initialize the rest of proc 0's PCB, and cache its physical
658 * address.
659 */
660 proc0.p_md.md_pcbpaddr =
661 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
662
663 /*
664 * Set the kernel sp, reserving space for an (empty) trapframe,
665 * and make proc0's trapframe pointer point to it for sanity.
666 */
667 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
668 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
669 proc0.p_md.md_tf =
670 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
671
672 /*
673 * Initialize the primary CPU's idle PCB to proc0's. In a
674 * MULTIPROCESSOR configuration, each CPU will later get
675 * its own idle PCB when autoconfiguration runs.
676 */
677 ci->ci_idle_pcb = &proc0paddr->u_pcb;
678 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
679
680 /* Indicate that proc0 has a CPU. */
681 proc0.p_cpu = ci;
682
683 /*
684 * Look at arguments passed to us and compute boothowto.
685 */
686
687 boothowto = RB_SINGLE;
688 #ifdef KADB
689 boothowto |= RB_KDB;
690 #endif
691 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
692 /*
693 * Note that we'd really like to differentiate case here,
694 * but the Alpha AXP Architecture Reference Manual
695 * says that we shouldn't.
696 */
697 switch (*p) {
698 case 'a': /* autoboot */
699 case 'A':
700 boothowto &= ~RB_SINGLE;
701 break;
702
703 #ifdef DEBUG
704 case 'c': /* crash dump immediately after autoconfig */
705 case 'C':
706 boothowto |= RB_DUMP;
707 break;
708 #endif
709
710 #if defined(KGDB) || defined(DDB)
711 case 'd': /* break into the kernel debugger ASAP */
712 case 'D':
713 boothowto |= RB_KDB;
714 break;
715 #endif
716
717 case 'h': /* always halt, never reboot */
718 case 'H':
719 boothowto |= RB_HALT;
720 break;
721
722 #if 0
723 case 'm': /* mini root present in memory */
724 case 'M':
725 boothowto |= RB_MINIROOT;
726 break;
727 #endif
728
729 case 'n': /* askname */
730 case 'N':
731 boothowto |= RB_ASKNAME;
732 break;
733
734 case 's': /* single-user (default, supported for sanity) */
735 case 'S':
736 boothowto |= RB_SINGLE;
737 break;
738
739 case '-':
740 /*
741 * Just ignore this. It's not required, but it's
742 * common for it to be passed regardless.
743 */
744 break;
745
746 default:
747 printf("Unrecognized boot flag '%c'.\n", *p);
748 break;
749 }
750 }
751
752
753 /*
754 * Figure out the number of cpus in the box, from RPB fields.
755 * Really. We mean it.
756 */
757 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
758 struct pcs *pcsp;
759
760 pcsp = LOCATE_PCS(hwrpb, i);
761 if ((pcsp->pcs_flags & PCS_PP) != 0)
762 ncpus++;
763 }
764
765 /*
766 * Initialize debuggers, and break into them if appropriate.
767 */
768 #ifdef DDB
769 db_machine_init();
770 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
771 ksym_start, ksym_end);
772 if (boothowto & RB_KDB)
773 Debugger();
774 #endif
775 #ifdef KGDB
776 if (boothowto & RB_KDB)
777 kgdb_connect(0);
778 #endif
779 /*
780 * Figure out our clock frequency, from RPB fields.
781 */
782 hz = hwrpb->rpb_intr_freq >> 12;
783 if (!(60 <= hz && hz <= 10240)) {
784 hz = 1024;
785 #ifdef DIAGNOSTIC
786 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
787 hwrpb->rpb_intr_freq, hz);
788 #endif
789 }
790 }
791
792 void
793 consinit()
794 {
795
796 /*
797 * Everything related to console initialization is done
798 * in alpha_init().
799 */
800 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
801 printf("consinit: %susing prom console\n",
802 pmap_uses_prom_console() ? "" : "not ");
803 #endif
804 }
805
806 #include "pckbc.h"
807 #include "pckbd.h"
808 #if (NPCKBC > 0) && (NPCKBD == 0)
809
810 #include <dev/ic/pckbcvar.h>
811
812 /*
813 * This is called by the pbkbc driver if no pckbd is configured.
814 * On the i386, it is used to glue in the old, deprecated console
815 * code. On the Alpha, it does nothing.
816 */
817 int
818 pckbc_machdep_cnattach(kbctag, kbcslot)
819 pckbc_tag_t kbctag;
820 pckbc_slot_t kbcslot;
821 {
822
823 return (ENXIO);
824 }
825 #endif /* NPCKBC > 0 && NPCKBD == 0 */
826
827 void
828 cpu_startup()
829 {
830 register unsigned i;
831 int base, residual;
832 vaddr_t minaddr, maxaddr;
833 vsize_t size;
834 char pbuf[9];
835 #if defined(DEBUG)
836 extern int pmapdebug;
837 int opmapdebug = pmapdebug;
838
839 pmapdebug = 0;
840 #endif
841
842 /*
843 * Good {morning,afternoon,evening,night}.
844 */
845 printf(version);
846 identifycpu();
847 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
848 printf("total memory = %s\n", pbuf);
849 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
850 printf("(%s reserved for PROM, ", pbuf);
851 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
852 printf("%s used by NetBSD)\n", pbuf);
853 if (unusedmem) {
854 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
855 printf("WARNING: unused memory = %s\n", pbuf);
856 }
857 if (unknownmem) {
858 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
859 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
860 }
861
862 /*
863 * Allocate virtual address space for file I/O buffers.
864 * Note they are different than the array of headers, 'buf',
865 * and usually occupy more virtual memory than physical.
866 */
867 size = MAXBSIZE * nbuf;
868 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
869 NULL, UVM_UNKNOWN_OFFSET,
870 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
871 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
872 panic("startup: cannot allocate VM for buffers");
873 base = bufpages / nbuf;
874 residual = bufpages % nbuf;
875 for (i = 0; i < nbuf; i++) {
876 vsize_t curbufsize;
877 vaddr_t curbuf;
878 struct vm_page *pg;
879
880 /*
881 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
882 * that MAXBSIZE space, we allocate and map (base+1) pages
883 * for the first "residual" buffers, and then we allocate
884 * "base" pages for the rest.
885 */
886 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
887 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
888
889 while (curbufsize) {
890 pg = uvm_pagealloc(NULL, 0, NULL, 0);
891 if (pg == NULL)
892 panic("cpu_startup: not enough memory for "
893 "buffer cache");
894 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
895 VM_PROT_READ|VM_PROT_WRITE);
896 curbuf += PAGE_SIZE;
897 curbufsize -= PAGE_SIZE;
898 }
899 }
900 /*
901 * Allocate a submap for exec arguments. This map effectively
902 * limits the number of processes exec'ing at any time.
903 */
904 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
905 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
906
907 /*
908 * Allocate a submap for physio
909 */
910 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
911 VM_PHYS_SIZE, 0, FALSE, NULL);
912
913 /*
914 * No need to allocate an mbuf cluster submap. Mbuf clusters
915 * are allocated via the pool allocator, and we use K0SEG to
916 * map those pages.
917 */
918
919 #if defined(DEBUG)
920 pmapdebug = opmapdebug;
921 #endif
922 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
923 printf("avail memory = %s\n", pbuf);
924 #if 0
925 {
926 extern u_long pmap_pages_stolen;
927
928 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
929 printf("stolen memory for VM structures = %s\n", pbuf);
930 }
931 #endif
932 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
933 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
934
935 /*
936 * Set up buffers, so they can be used to read disk labels.
937 */
938 bufinit();
939
940 /*
941 * Set up the HWPCB so that it's safe to configure secondary
942 * CPUs.
943 */
944 hwrpb_primary_init();
945 }
946
947 /*
948 * Retrieve the platform name from the DSR.
949 */
950 const char *
951 alpha_dsr_sysname()
952 {
953 struct dsrdb *dsr;
954 const char *sysname;
955
956 /*
957 * DSR does not exist on early HWRPB versions.
958 */
959 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
960 return (NULL);
961
962 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
963 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
964 sizeof(u_int64_t)));
965 return (sysname);
966 }
967
968 /*
969 * Lookup the system specified system variation in the provided table,
970 * returning the model string on match.
971 */
972 const char *
973 alpha_variation_name(variation, avtp)
974 u_int64_t variation;
975 const struct alpha_variation_table *avtp;
976 {
977 int i;
978
979 for (i = 0; avtp[i].avt_model != NULL; i++)
980 if (avtp[i].avt_variation == variation)
981 return (avtp[i].avt_model);
982 return (NULL);
983 }
984
985 /*
986 * Generate a default platform name based for unknown system variations.
987 */
988 const char *
989 alpha_unknown_sysname()
990 {
991 static char s[128]; /* safe size */
992
993 sprintf(s, "%s family, unknown model variation 0x%lx",
994 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
995 return ((const char *)s);
996 }
997
998 void
999 identifycpu()
1000 {
1001 char *s;
1002
1003 /*
1004 * print out CPU identification information.
1005 */
1006 printf("%s", cpu_model);
1007 for(s = cpu_model; *s; ++s)
1008 if(strncasecmp(s, "MHz", 3) == 0)
1009 goto skipMHz;
1010 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1011 skipMHz:
1012 printf("\n");
1013 printf("%ld byte page size, %d processor%s.\n",
1014 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1015 #if 0
1016 /* this isn't defined for any systems that we run on? */
1017 printf("serial number 0x%lx 0x%lx\n",
1018 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1019
1020 /* and these aren't particularly useful! */
1021 printf("variation: 0x%lx, revision 0x%lx\n",
1022 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1023 #endif
1024 }
1025
1026 int waittime = -1;
1027 struct pcb dumppcb;
1028
1029 void
1030 cpu_reboot(howto, bootstr)
1031 int howto;
1032 char *bootstr;
1033 {
1034 #if defined(MULTIPROCESSOR)
1035 #if 0 /* XXX See below. */
1036 u_long cpu_id;
1037 #endif
1038 #endif
1039
1040 #if defined(MULTIPROCESSOR)
1041 /* We must be running on the primary CPU. */
1042 if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1043 panic("cpu_reboot: not on primary CPU!");
1044 #endif
1045
1046 /* If system is cold, just halt. */
1047 if (cold) {
1048 howto |= RB_HALT;
1049 goto haltsys;
1050 }
1051
1052 /* If "always halt" was specified as a boot flag, obey. */
1053 if ((boothowto & RB_HALT) != 0)
1054 howto |= RB_HALT;
1055
1056 boothowto = howto;
1057 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1058 waittime = 0;
1059 vfs_shutdown();
1060 /*
1061 * If we've been adjusting the clock, the todr
1062 * will be out of synch; adjust it now.
1063 */
1064 resettodr();
1065 }
1066
1067 /* Disable interrupts. */
1068 splhigh();
1069
1070 /* If rebooting and a dump is requested do it. */
1071 #if 0
1072 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1073 #else
1074 if (howto & RB_DUMP)
1075 #endif
1076 dumpsys();
1077
1078 haltsys:
1079
1080 /* run any shutdown hooks */
1081 doshutdownhooks();
1082
1083 #if defined(MULTIPROCESSOR)
1084 #if 0 /* XXX doesn't work when called from here?! */
1085 /* Kill off any secondary CPUs. */
1086 for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1087 if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1088 cpu_info[cpu_id].ci_softc == NULL)
1089 continue;
1090 cpu_halt_secondary(cpu_id);
1091 }
1092 #endif
1093 #endif
1094
1095 #ifdef BOOTKEY
1096 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1097 cnpollc(1); /* for proper keyboard command handling */
1098 cngetc();
1099 cnpollc(0);
1100 printf("\n");
1101 #endif
1102
1103 /* Finally, powerdown/halt/reboot the system. */
1104 if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1105 platform.powerdown != NULL) {
1106 (*platform.powerdown)();
1107 printf("WARNING: powerdown failed!\n");
1108 }
1109 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1110 prom_halt(howto & RB_HALT);
1111 /*NOTREACHED*/
1112 }
1113
1114 /*
1115 * These variables are needed by /sbin/savecore
1116 */
1117 u_long dumpmag = 0x8fca0101; /* magic number */
1118 int dumpsize = 0; /* pages */
1119 long dumplo = 0; /* blocks */
1120
1121 /*
1122 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1123 */
1124 int
1125 cpu_dumpsize()
1126 {
1127 int size;
1128
1129 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1130 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1131 if (roundup(size, dbtob(1)) != dbtob(1))
1132 return -1;
1133
1134 return (1);
1135 }
1136
1137 /*
1138 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1139 */
1140 u_long
1141 cpu_dump_mempagecnt()
1142 {
1143 u_long i, n;
1144
1145 n = 0;
1146 for (i = 0; i < mem_cluster_cnt; i++)
1147 n += atop(mem_clusters[i].size);
1148 return (n);
1149 }
1150
1151 /*
1152 * cpu_dump: dump machine-dependent kernel core dump headers.
1153 */
1154 int
1155 cpu_dump()
1156 {
1157 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1158 char buf[dbtob(1)];
1159 kcore_seg_t *segp;
1160 cpu_kcore_hdr_t *cpuhdrp;
1161 phys_ram_seg_t *memsegp;
1162 int i;
1163
1164 dump = bdevsw[major(dumpdev)].d_dump;
1165
1166 bzero(buf, sizeof buf);
1167 segp = (kcore_seg_t *)buf;
1168 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1169 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1170 ALIGN(sizeof(*cpuhdrp))];
1171
1172 /*
1173 * Generate a segment header.
1174 */
1175 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1176 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1177
1178 /*
1179 * Add the machine-dependent header info.
1180 */
1181 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1182 cpuhdrp->page_size = PAGE_SIZE;
1183 cpuhdrp->nmemsegs = mem_cluster_cnt;
1184
1185 /*
1186 * Fill in the memory segment descriptors.
1187 */
1188 for (i = 0; i < mem_cluster_cnt; i++) {
1189 memsegp[i].start = mem_clusters[i].start;
1190 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1191 }
1192
1193 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1194 }
1195
1196 /*
1197 * This is called by main to set dumplo and dumpsize.
1198 * Dumps always skip the first NBPG of disk space
1199 * in case there might be a disk label stored there.
1200 * If there is extra space, put dump at the end to
1201 * reduce the chance that swapping trashes it.
1202 */
1203 void
1204 cpu_dumpconf()
1205 {
1206 int nblks, dumpblks; /* size of dump area */
1207 int maj;
1208
1209 if (dumpdev == NODEV)
1210 goto bad;
1211 maj = major(dumpdev);
1212 if (maj < 0 || maj >= nblkdev)
1213 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1214 if (bdevsw[maj].d_psize == NULL)
1215 goto bad;
1216 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1217 if (nblks <= ctod(1))
1218 goto bad;
1219
1220 dumpblks = cpu_dumpsize();
1221 if (dumpblks < 0)
1222 goto bad;
1223 dumpblks += ctod(cpu_dump_mempagecnt());
1224
1225 /* If dump won't fit (incl. room for possible label), punt. */
1226 if (dumpblks > (nblks - ctod(1)))
1227 goto bad;
1228
1229 /* Put dump at end of partition */
1230 dumplo = nblks - dumpblks;
1231
1232 /* dumpsize is in page units, and doesn't include headers. */
1233 dumpsize = cpu_dump_mempagecnt();
1234 return;
1235
1236 bad:
1237 dumpsize = 0;
1238 return;
1239 }
1240
1241 /*
1242 * Dump the kernel's image to the swap partition.
1243 */
1244 #define BYTES_PER_DUMP NBPG
1245
1246 void
1247 dumpsys()
1248 {
1249 u_long totalbytesleft, bytes, i, n, memcl;
1250 u_long maddr;
1251 int psize;
1252 daddr_t blkno;
1253 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1254 int error;
1255
1256 /* Save registers. */
1257 savectx(&dumppcb);
1258
1259 msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1260 if (dumpdev == NODEV)
1261 return;
1262
1263 /*
1264 * For dumps during autoconfiguration,
1265 * if dump device has already configured...
1266 */
1267 if (dumpsize == 0)
1268 cpu_dumpconf();
1269 if (dumplo <= 0) {
1270 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1271 minor(dumpdev));
1272 return;
1273 }
1274 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1275 minor(dumpdev), dumplo);
1276
1277 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1278 printf("dump ");
1279 if (psize == -1) {
1280 printf("area unavailable\n");
1281 return;
1282 }
1283
1284 /* XXX should purge all outstanding keystrokes. */
1285
1286 if ((error = cpu_dump()) != 0)
1287 goto err;
1288
1289 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1290 blkno = dumplo + cpu_dumpsize();
1291 dump = bdevsw[major(dumpdev)].d_dump;
1292 error = 0;
1293
1294 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1295 maddr = mem_clusters[memcl].start;
1296 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1297
1298 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1299
1300 /* Print out how many MBs we to go. */
1301 if ((totalbytesleft % (1024*1024)) == 0)
1302 printf("%ld ", totalbytesleft / (1024 * 1024));
1303
1304 /* Limit size for next transfer. */
1305 n = bytes - i;
1306 if (n > BYTES_PER_DUMP)
1307 n = BYTES_PER_DUMP;
1308
1309 error = (*dump)(dumpdev, blkno,
1310 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1311 if (error)
1312 goto err;
1313 maddr += n;
1314 blkno += btodb(n); /* XXX? */
1315
1316 /* XXX should look for keystrokes, to cancel. */
1317 }
1318 }
1319
1320 err:
1321 switch (error) {
1322
1323 case ENXIO:
1324 printf("device bad\n");
1325 break;
1326
1327 case EFAULT:
1328 printf("device not ready\n");
1329 break;
1330
1331 case EINVAL:
1332 printf("area improper\n");
1333 break;
1334
1335 case EIO:
1336 printf("i/o error\n");
1337 break;
1338
1339 case EINTR:
1340 printf("aborted from console\n");
1341 break;
1342
1343 case 0:
1344 printf("succeeded\n");
1345 break;
1346
1347 default:
1348 printf("error %d\n", error);
1349 break;
1350 }
1351 printf("\n\n");
1352 delay(1000);
1353 }
1354
1355 void
1356 frametoreg(framep, regp)
1357 struct trapframe *framep;
1358 struct reg *regp;
1359 {
1360
1361 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1362 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1363 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1364 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1365 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1366 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1367 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1368 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1369 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1370 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1371 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1372 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1373 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1374 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1375 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1376 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1377 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1378 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1379 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1380 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1381 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1382 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1383 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1384 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1385 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1386 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1387 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1388 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1389 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1390 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1391 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1392 regp->r_regs[R_ZERO] = 0;
1393 }
1394
1395 void
1396 regtoframe(regp, framep)
1397 struct reg *regp;
1398 struct trapframe *framep;
1399 {
1400
1401 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1402 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1403 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1404 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1405 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1406 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1407 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1408 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1409 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1410 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1411 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1412 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1413 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1414 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1415 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1416 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1417 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1418 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1419 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1420 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1421 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1422 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1423 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1424 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1425 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1426 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1427 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1428 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1429 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1430 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1431 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1432 /* ??? = regp->r_regs[R_ZERO]; */
1433 }
1434
1435 void
1436 printregs(regp)
1437 struct reg *regp;
1438 {
1439 int i;
1440
1441 for (i = 0; i < 32; i++)
1442 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1443 i & 1 ? "\n" : "\t");
1444 }
1445
1446 void
1447 regdump(framep)
1448 struct trapframe *framep;
1449 {
1450 struct reg reg;
1451
1452 frametoreg(framep, ®);
1453 reg.r_regs[R_SP] = alpha_pal_rdusp();
1454
1455 printf("REGISTERS:\n");
1456 printregs(®);
1457 }
1458
1459 #ifdef DEBUG
1460 int sigdebug = 0;
1461 int sigpid = 0;
1462 #define SDB_FOLLOW 0x01
1463 #define SDB_KSTACK 0x02
1464 #endif
1465
1466 /*
1467 * Send an interrupt to process.
1468 */
1469 void
1470 sendsig(catcher, sig, mask, code)
1471 sig_t catcher;
1472 int sig;
1473 sigset_t *mask;
1474 u_long code;
1475 {
1476 struct proc *p = curproc;
1477 struct sigcontext *scp, ksc;
1478 struct trapframe *frame;
1479 struct sigacts *psp = p->p_sigacts;
1480 int onstack, fsize, rndfsize;
1481
1482 frame = p->p_md.md_tf;
1483
1484 /* Do we need to jump onto the signal stack? */
1485 onstack =
1486 (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1487 (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1488
1489 /* Allocate space for the signal handler context. */
1490 fsize = sizeof(ksc);
1491 rndfsize = ((fsize + 15) / 16) * 16;
1492
1493 if (onstack)
1494 scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1495 psp->ps_sigstk.ss_size);
1496 else
1497 scp = (struct sigcontext *)(alpha_pal_rdusp());
1498 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1499
1500 #ifdef DEBUG
1501 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1502 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1503 sig, &onstack, scp);
1504 #endif
1505
1506 /* Build stack frame for signal trampoline. */
1507 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1508 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1509
1510 /* Save register context. */
1511 frametoreg(frame, (struct reg *)ksc.sc_regs);
1512 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1513 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1514
1515 /* save the floating-point state, if necessary, then copy it. */
1516 if (p == fpcurproc) {
1517 alpha_pal_wrfen(1);
1518 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1519 alpha_pal_wrfen(0);
1520 fpcurproc = NULL;
1521 }
1522 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1523 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1524 sizeof(struct fpreg));
1525 ksc.sc_fp_control = 0; /* XXX ? */
1526 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1527 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1528
1529 /* Save signal stack. */
1530 ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1531
1532 /* Save signal mask. */
1533 ksc.sc_mask = *mask;
1534
1535 #ifdef COMPAT_13
1536 /*
1537 * XXX We always have to save an old style signal mask because
1538 * XXX we might be delivering a signal to a process which will
1539 * XXX escape from the signal in a non-standard way and invoke
1540 * XXX sigreturn() directly.
1541 */
1542 {
1543 /* Note: it's a long in the stack frame. */
1544 sigset13_t mask13;
1545
1546 native_sigset_to_sigset13(mask, &mask13);
1547 ksc.__sc_mask13 = mask13;
1548 }
1549 #endif
1550
1551 #ifdef COMPAT_OSF1
1552 /*
1553 * XXX Create an OSF/1-style sigcontext and associated goo.
1554 */
1555 #endif
1556
1557 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1558 /*
1559 * Process has trashed its stack; give it an illegal
1560 * instruction to halt it in its tracks.
1561 */
1562 #ifdef DEBUG
1563 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1564 printf("sendsig(%d): copyout failed on sig %d\n",
1565 p->p_pid, sig);
1566 #endif
1567 sigexit(p, SIGILL);
1568 /* NOTREACHED */
1569 }
1570 #ifdef DEBUG
1571 if (sigdebug & SDB_FOLLOW)
1572 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1573 scp, code);
1574 #endif
1575
1576 /* Set up the registers to return to sigcode. */
1577 frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1578 frame->tf_regs[FRAME_A0] = sig;
1579 frame->tf_regs[FRAME_A1] = code;
1580 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1581 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1582 alpha_pal_wrusp((unsigned long)scp);
1583
1584 /* Remember that we're now on the signal stack. */
1585 if (onstack)
1586 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1587
1588 #ifdef DEBUG
1589 if (sigdebug & SDB_FOLLOW)
1590 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1591 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1592 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1593 printf("sendsig(%d): sig %d returns\n",
1594 p->p_pid, sig);
1595 #endif
1596 }
1597
1598 /*
1599 * System call to cleanup state after a signal
1600 * has been taken. Reset signal mask and
1601 * stack state from context left by sendsig (above).
1602 * Return to previous pc and psl as specified by
1603 * context left by sendsig. Check carefully to
1604 * make sure that the user has not modified the
1605 * psl to gain improper privileges or to cause
1606 * a machine fault.
1607 */
1608 /* ARGSUSED */
1609 int
1610 sys___sigreturn14(p, v, retval)
1611 struct proc *p;
1612 void *v;
1613 register_t *retval;
1614 {
1615 struct sys___sigreturn14_args /* {
1616 syscallarg(struct sigcontext *) sigcntxp;
1617 } */ *uap = v;
1618 struct sigcontext *scp, ksc;
1619
1620 /*
1621 * The trampoline code hands us the context.
1622 * It is unsafe to keep track of it ourselves, in the event that a
1623 * program jumps out of a signal handler.
1624 */
1625 scp = SCARG(uap, sigcntxp);
1626 #ifdef DEBUG
1627 if (sigdebug & SDB_FOLLOW)
1628 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1629 #endif
1630 if (ALIGN(scp) != (u_int64_t)scp)
1631 return (EINVAL);
1632
1633 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1634 return (EFAULT);
1635
1636 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1637 return (EINVAL);
1638
1639 /* Restore register context. */
1640 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1641 p->p_md.md_tf->tf_regs[FRAME_PS] =
1642 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1643
1644 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1645 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1646
1647 /* XXX ksc.sc_ownedfp ? */
1648 if (p == fpcurproc)
1649 fpcurproc = NULL;
1650 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1651 sizeof(struct fpreg));
1652 /* XXX ksc.sc_fp_control ? */
1653
1654 /* Restore signal stack. */
1655 if (ksc.sc_onstack & SS_ONSTACK)
1656 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1657 else
1658 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1659
1660 /* Restore signal mask. */
1661 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1662
1663 #ifdef DEBUG
1664 if (sigdebug & SDB_FOLLOW)
1665 printf("sigreturn(%d): returns\n", p->p_pid);
1666 #endif
1667 return (EJUSTRETURN);
1668 }
1669
1670 /*
1671 * machine dependent system variables.
1672 */
1673 int
1674 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1675 int *name;
1676 u_int namelen;
1677 void *oldp;
1678 size_t *oldlenp;
1679 void *newp;
1680 size_t newlen;
1681 struct proc *p;
1682 {
1683 dev_t consdev;
1684
1685 /* all sysctl names at this level are terminal */
1686 if (namelen != 1)
1687 return (ENOTDIR); /* overloaded */
1688
1689 switch (name[0]) {
1690 case CPU_CONSDEV:
1691 if (cn_tab != NULL)
1692 consdev = cn_tab->cn_dev;
1693 else
1694 consdev = NODEV;
1695 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1696 sizeof consdev));
1697
1698 case CPU_ROOT_DEVICE:
1699 return (sysctl_rdstring(oldp, oldlenp, newp,
1700 root_device->dv_xname));
1701
1702 case CPU_UNALIGNED_PRINT:
1703 return (sysctl_int(oldp, oldlenp, newp, newlen,
1704 &alpha_unaligned_print));
1705
1706 case CPU_UNALIGNED_FIX:
1707 return (sysctl_int(oldp, oldlenp, newp, newlen,
1708 &alpha_unaligned_fix));
1709
1710 case CPU_UNALIGNED_SIGBUS:
1711 return (sysctl_int(oldp, oldlenp, newp, newlen,
1712 &alpha_unaligned_sigbus));
1713
1714 case CPU_BOOTED_KERNEL:
1715 return (sysctl_rdstring(oldp, oldlenp, newp,
1716 bootinfo.booted_kernel));
1717
1718 default:
1719 return (EOPNOTSUPP);
1720 }
1721 /* NOTREACHED */
1722 }
1723
1724 /*
1725 * Set registers on exec.
1726 */
1727 void
1728 setregs(p, pack, stack)
1729 register struct proc *p;
1730 struct exec_package *pack;
1731 u_long stack;
1732 {
1733 struct trapframe *tfp = p->p_md.md_tf;
1734 #ifdef DEBUG
1735 int i;
1736 #endif
1737
1738 #ifdef DEBUG
1739 /*
1740 * Crash and dump, if the user requested it.
1741 */
1742 if (boothowto & RB_DUMP)
1743 panic("crash requested by boot flags");
1744 #endif
1745
1746 #ifdef DEBUG
1747 for (i = 0; i < FRAME_SIZE; i++)
1748 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1749 #else
1750 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1751 #endif
1752 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1753 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1754 | FPCR_UNFD
1755 | FPCR_UNDZ
1756 | FPCR_DYN(FP_RN)
1757 | FPCR_OVFD
1758 | FPCR_DZED
1759 | FPCR_INVD
1760 | FPCR_DNZ;
1761 alpha_pal_wrusp(stack);
1762 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1763 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1764
1765 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1766 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1767 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1768 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1769 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1770
1771 p->p_md.md_flags &= ~MDP_FPUSED;
1772 if (fpcurproc == p)
1773 fpcurproc = NULL;
1774 }
1775
1776 int
1777 spl0()
1778 {
1779
1780 if (ssir) {
1781 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1782 softintr_dispatch();
1783 }
1784
1785 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1786 }
1787
1788 /*
1789 * The following primitives manipulate the run queues. _whichqs tells which
1790 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1791 * into queues, Remrunqueue removes them from queues. The running process is
1792 * on no queue, other processes are on a queue related to p->p_priority,
1793 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1794 * available queues.
1795 */
1796 /*
1797 * setrunqueue(p)
1798 * proc *p;
1799 *
1800 * Call should be made at splclock(), and p->p_stat should be SRUN.
1801 */
1802
1803 void
1804 setrunqueue(p)
1805 struct proc *p;
1806 {
1807 int bit;
1808
1809 /* firewall: p->p_back must be NULL */
1810 if (p->p_back != NULL)
1811 panic("setrunqueue");
1812
1813 bit = p->p_priority >> 2;
1814 sched_whichqs |= (1 << bit);
1815 p->p_forw = (struct proc *)&sched_qs[bit];
1816 p->p_back = sched_qs[bit].ph_rlink;
1817 p->p_back->p_forw = p;
1818 sched_qs[bit].ph_rlink = p;
1819 }
1820
1821 /*
1822 * remrunqueue(p)
1823 *
1824 * Call should be made at splclock().
1825 */
1826 void
1827 remrunqueue(p)
1828 struct proc *p;
1829 {
1830 int bit;
1831
1832 bit = p->p_priority >> 2;
1833 if ((sched_whichqs & (1 << bit)) == 0)
1834 panic("remrunqueue");
1835
1836 p->p_back->p_forw = p->p_forw;
1837 p->p_forw->p_back = p->p_back;
1838 p->p_back = NULL; /* for firewall checking. */
1839
1840 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1841 sched_whichqs &= ~(1 << bit);
1842 }
1843
1844 /*
1845 * Return the best possible estimate of the time in the timeval
1846 * to which tvp points. Unfortunately, we can't read the hardware registers.
1847 * We guarantee that the time will be greater than the value obtained by a
1848 * previous call.
1849 */
1850 void
1851 microtime(tvp)
1852 register struct timeval *tvp;
1853 {
1854 int s = splclock();
1855 static struct timeval lasttime;
1856
1857 *tvp = time;
1858 #ifdef notdef
1859 tvp->tv_usec += clkread();
1860 while (tvp->tv_usec >= 1000000) {
1861 tvp->tv_sec++;
1862 tvp->tv_usec -= 1000000;
1863 }
1864 #endif
1865 if (tvp->tv_sec == lasttime.tv_sec &&
1866 tvp->tv_usec <= lasttime.tv_usec &&
1867 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1868 tvp->tv_sec++;
1869 tvp->tv_usec -= 1000000;
1870 }
1871 lasttime = *tvp;
1872 splx(s);
1873 }
1874
1875 /*
1876 * Wait "n" microseconds.
1877 */
1878 void
1879 delay(n)
1880 unsigned long n;
1881 {
1882 long N = cycles_per_usec * (n);
1883
1884 /*
1885 * XXX Should be written to use RPCC?
1886 */
1887
1888 __asm __volatile(
1889 "# The 2 corresponds to the insn count\n"
1890 "1: subq %2, %1, %0 \n"
1891 " bgt %0, 1b"
1892 : "=r" (N)
1893 : "i" (2), "0" (N));
1894 }
1895
1896 #if defined(COMPAT_OSF1) || 1 /* XXX */
1897 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1898 u_long));
1899
1900 void
1901 cpu_exec_ecoff_setregs(p, epp, stack)
1902 struct proc *p;
1903 struct exec_package *epp;
1904 u_long stack;
1905 {
1906 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1907
1908 setregs(p, epp, stack);
1909 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1910 }
1911
1912 /*
1913 * cpu_exec_ecoff_hook():
1914 * cpu-dependent ECOFF format hook for execve().
1915 *
1916 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1917 *
1918 */
1919 int
1920 cpu_exec_ecoff_hook(p, epp)
1921 struct proc *p;
1922 struct exec_package *epp;
1923 {
1924 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1925 extern struct emul emul_netbsd;
1926 int error;
1927 extern int osf1_exec_ecoff_hook(struct proc *p,
1928 struct exec_package *epp);
1929
1930 switch (execp->f.f_magic) {
1931 #ifdef COMPAT_OSF1
1932 case ECOFF_MAGIC_ALPHA:
1933 error = osf1_exec_ecoff_hook(p, epp);
1934 break;
1935 #endif
1936
1937 case ECOFF_MAGIC_NETBSD_ALPHA:
1938 epp->ep_emul = &emul_netbsd;
1939 error = 0;
1940 break;
1941
1942 default:
1943 error = ENOEXEC;
1944 }
1945 return (error);
1946 }
1947 #endif
1948
1949 int
1950 alpha_pa_access(pa)
1951 u_long pa;
1952 {
1953 int i;
1954
1955 for (i = 0; i < mem_cluster_cnt; i++) {
1956 if (pa < mem_clusters[i].start)
1957 continue;
1958 if ((pa - mem_clusters[i].start) >=
1959 (mem_clusters[i].size & ~PAGE_MASK))
1960 continue;
1961 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1962 }
1963
1964 /*
1965 * Address is not a memory address. If we're secure, disallow
1966 * access. Otherwise, grant read/write.
1967 */
1968 if (securelevel > 0)
1969 return (PROT_NONE);
1970 else
1971 return (PROT_READ | PROT_WRITE);
1972 }
1973
1974 /* XXX XXX BEGIN XXX XXX */
1975 paddr_t alpha_XXX_dmamap_or; /* XXX */
1976 /* XXX */
1977 paddr_t /* XXX */
1978 alpha_XXX_dmamap(v) /* XXX */
1979 vaddr_t v; /* XXX */
1980 { /* XXX */
1981 /* XXX */
1982 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1983 } /* XXX */
1984 /* XXX XXX END XXX XXX */
1985
1986 char *
1987 dot_conv(x)
1988 unsigned long x;
1989 {
1990 int i;
1991 char *xc;
1992 static int next;
1993 static char space[2][20];
1994
1995 xc = space[next ^= 1] + sizeof space[0];
1996 *--xc = '\0';
1997 for (i = 0;; ++i) {
1998 if (i && (i & 3) == 0)
1999 *--xc = '.';
2000 *--xc = "0123456789abcdef"[x & 0xf];
2001 x >>= 4;
2002 if (x == 0)
2003 break;
2004 }
2005 return xc;
2006 }
2007