Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.214
      1 /* $NetBSD: machdep.c,v 1.214 2000/06/09 01:40:13 cgd Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_multiprocessor.h"
     69 #include "opt_dec_3000_300.h"
     70 #include "opt_dec_3000_500.h"
     71 #include "opt_compat_osf1.h"
     72 #include "opt_compat_netbsd.h"
     73 
     74 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     75 
     76 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.214 2000/06/09 01:40:13 cgd Exp $");
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/kernel.h>
     82 #include <sys/map.h>
     83 #include <sys/proc.h>
     84 #include <sys/sched.h>
     85 #include <sys/buf.h>
     86 #include <sys/reboot.h>
     87 #include <sys/device.h>
     88 #include <sys/file.h>
     89 #include <sys/malloc.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/mman.h>
     92 #include <sys/msgbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/user.h>
     96 #include <sys/exec.h>
     97 #include <sys/exec_ecoff.h>
     98 #include <vm/vm.h>
     99 #include <sys/sysctl.h>
    100 #include <sys/core.h>
    101 #include <sys/kcore.h>
    102 #include <machine/kcore.h>
    103 
    104 #include <sys/mount.h>
    105 #include <sys/syscallargs.h>
    106 
    107 #include <vm/vm_kern.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <dev/cons.h>
    112 
    113 #include <machine/autoconf.h>
    114 #include <machine/cpu.h>
    115 #include <machine/reg.h>
    116 #include <machine/rpb.h>
    117 #include <machine/prom.h>
    118 #include <machine/conf.h>
    119 #include <machine/ieeefp.h>
    120 
    121 #ifdef DDB
    122 #include <machine/db_machdep.h>
    123 #include <ddb/db_access.h>
    124 #include <ddb/db_sym.h>
    125 #include <ddb/db_extern.h>
    126 #include <ddb/db_interface.h>
    127 #endif
    128 
    129 #include <machine/alpha.h>
    130 
    131 vm_map_t exec_map = NULL;
    132 vm_map_t mb_map = NULL;
    133 vm_map_t phys_map = NULL;
    134 
    135 caddr_t msgbufaddr;
    136 
    137 int	maxmem;			/* max memory per process */
    138 
    139 int	totalphysmem;		/* total amount of physical memory in system */
    140 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    141 int	resvmem;		/* amount of memory reserved for PROM */
    142 int	unusedmem;		/* amount of memory for OS that we don't use */
    143 int	unknownmem;		/* amount of memory with an unknown use */
    144 
    145 int	cputype;		/* system type, from the RPB */
    146 
    147 int	bootdev_debug = 0;	/* patchable, or from DDB */
    148 
    149 /*
    150  * XXX We need an address to which we can assign things so that they
    151  * won't be optimized away because we didn't use the value.
    152  */
    153 u_int32_t no_optimize;
    154 
    155 /* the following is used externally (sysctl_hw) */
    156 char	machine[] = MACHINE;		/* from <machine/param.h> */
    157 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    158 char	cpu_model[128];
    159 
    160 struct	user *proc0paddr;
    161 
    162 /* Number of machine cycles per microsecond */
    163 u_int64_t	cycles_per_usec;
    164 
    165 /* number of cpus in the box.  really! */
    166 int		ncpus;
    167 
    168 struct bootinfo_kernel bootinfo;
    169 
    170 /* For built-in TCDS */
    171 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    172 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    173 #endif
    174 
    175 struct platform platform;
    176 
    177 #ifdef DDB
    178 /* start and end of kernel symbol table */
    179 void	*ksym_start, *ksym_end;
    180 #endif
    181 
    182 /* for cpu_sysctl() */
    183 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    184 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    185 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    186 
    187 /*
    188  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    189  * XXX it should also be larger than it is, because not all of the mddt
    190  * XXX clusters end up being used for VM.
    191  */
    192 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    193 int	mem_cluster_cnt;
    194 
    195 int	cpu_dump __P((void));
    196 int	cpu_dumpsize __P((void));
    197 u_long	cpu_dump_mempagecnt __P((void));
    198 void	dumpsys __P((void));
    199 void	identifycpu __P((void));
    200 void	printregs __P((struct reg *));
    201 
    202 void
    203 alpha_init(pfn, ptb, bim, bip, biv)
    204 	u_long pfn;		/* first free PFN number */
    205 	u_long ptb;		/* PFN of current level 1 page table */
    206 	u_long bim;		/* bootinfo magic */
    207 	u_long bip;		/* bootinfo pointer */
    208 	u_long biv;		/* bootinfo version */
    209 {
    210 	extern char kernel_text[], _end[];
    211 	struct mddt *mddtp;
    212 	struct mddt_cluster *memc;
    213 	int i, mddtweird;
    214 	struct vm_physseg *vps;
    215 	vaddr_t kernstart, kernend;
    216 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    217 	vsize_t size;
    218 	cpuid_t cpu_id;
    219 	struct cpu_info *ci;
    220 	char *p;
    221 	caddr_t v;
    222 	const char *bootinfo_msg;
    223 	const struct cpuinit *c;
    224 
    225 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    226 
    227 	/*
    228 	 * Turn off interrupts (not mchecks) and floating point.
    229 	 * Make sure the instruction and data streams are consistent.
    230 	 */
    231 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    232 	alpha_pal_wrfen(0);
    233 	ALPHA_TBIA();
    234 	alpha_pal_imb();
    235 
    236 	cpu_id = cpu_number();
    237 
    238 #if defined(MULTIPROCESSOR)
    239 	/*
    240 	 * Set our SysValue to the address of our cpu_info structure.
    241 	 * Secondary processors do this in their spinup trampoline.
    242 	 */
    243 	alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
    244 #endif
    245 
    246 	ci = curcpu();
    247 	ci->ci_cpuid = cpu_id;
    248 
    249 	/*
    250 	 * Get critical system information (if possible, from the
    251 	 * information provided by the boot program).
    252 	 */
    253 	bootinfo_msg = NULL;
    254 	if (bim == BOOTINFO_MAGIC) {
    255 		if (biv == 0) {		/* backward compat */
    256 			biv = *(u_long *)bip;
    257 			bip += 8;
    258 		}
    259 		switch (biv) {
    260 		case 1: {
    261 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    262 
    263 			bootinfo.ssym = v1p->ssym;
    264 			bootinfo.esym = v1p->esym;
    265 			/* hwrpb may not be provided by boot block in v1 */
    266 			if (v1p->hwrpb != NULL) {
    267 				bootinfo.hwrpb_phys =
    268 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    269 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    270 			} else {
    271 				bootinfo.hwrpb_phys =
    272 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    273 				bootinfo.hwrpb_size =
    274 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    275 			}
    276 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    277 			    min(sizeof v1p->boot_flags,
    278 			      sizeof bootinfo.boot_flags));
    279 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    280 			    min(sizeof v1p->booted_kernel,
    281 			      sizeof bootinfo.booted_kernel));
    282 			/* booted dev not provided in bootinfo */
    283 			init_prom_interface((struct rpb *)
    284 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    285                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    286 			    sizeof bootinfo.booted_dev);
    287 			break;
    288 		}
    289 		default:
    290 			bootinfo_msg = "unknown bootinfo version";
    291 			goto nobootinfo;
    292 		}
    293 	} else {
    294 		bootinfo_msg = "boot program did not pass bootinfo";
    295 nobootinfo:
    296 		bootinfo.ssym = (u_long)_end;
    297 		bootinfo.esym = (u_long)_end;
    298 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    299 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    300 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    301 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    302 		    sizeof bootinfo.boot_flags);
    303 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    304 		    sizeof bootinfo.booted_kernel);
    305 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    306 		    sizeof bootinfo.booted_dev);
    307 	}
    308 
    309 	/*
    310 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    311 	 * lots of things.
    312 	 */
    313 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    314 
    315 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    316 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    317 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    318 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    319 		    sizeof(dec_3000_scsiid));
    320 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    321 		    sizeof(dec_3000_scsifast));
    322 	}
    323 #endif
    324 
    325 	/*
    326 	 * Remember how many cycles there are per microsecond,
    327 	 * so that we can use delay().  Round up, for safety.
    328 	 */
    329 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    330 
    331 	/*
    332 	 * Initalize the (temporary) bootstrap console interface, so
    333 	 * we can use printf until the VM system starts being setup.
    334 	 * The real console is initialized before then.
    335 	 */
    336 	init_bootstrap_console();
    337 
    338 	/* OUTPUT NOW ALLOWED */
    339 
    340 	/* delayed from above */
    341 	if (bootinfo_msg)
    342 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    343 		    bootinfo_msg, bim, bip, biv);
    344 
    345 	/* Initialize the trap vectors on the primary processor. */
    346 	trap_init();
    347 
    348 	/*
    349 	 * Find out what hardware we're on, and do basic initialization.
    350 	 */
    351 	cputype = hwrpb->rpb_type;
    352 	if (cputype < 0) {
    353 		/*
    354 		 * At least some white-box systems have SRM which
    355 		 * reports a systype that's the negative of their
    356 		 * blue-box counterpart.
    357 		 */
    358 		cputype = -cputype;
    359 	}
    360 	c = platform_lookup(cputype);
    361 	if (c == NULL) {
    362 		platform_not_supported();
    363 		/* NOTREACHED */
    364 	}
    365 	(*c->init)();
    366 	strcpy(cpu_model, platform.model);
    367 
    368 	/*
    369 	 * Initalize the real console, so that the bootstrap console is
    370 	 * no longer necessary.
    371 	 */
    372 	(*platform.cons_init)();
    373 
    374 #ifdef DIAGNOSTIC
    375 	/* Paranoid sanity checking */
    376 
    377 	/* We should always be running on the primary. */
    378 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    379 
    380 	/*
    381 	 * On single-CPU systypes, the primary should always be CPU 0,
    382 	 * except on Alpha 8200 systems where the CPU id is related
    383 	 * to the VID, which is related to the Turbo Laser node id.
    384 	 */
    385 	if (cputype != ST_DEC_21000)
    386 		assert(hwrpb->rpb_primary_cpu_id == 0);
    387 #endif
    388 
    389 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    390 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    391 	/*
    392 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    393 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    394 	 */
    395 #endif
    396 
    397 	/*
    398 	 * find out this system's page size
    399 	 */
    400 	PAGE_SIZE = hwrpb->rpb_page_size;
    401 	if (PAGE_SIZE != 8192)
    402 		panic("page size %d != 8192?!", PAGE_SIZE);
    403 
    404 	/*
    405 	 * Initialize PAGE_SIZE-dependent variables.
    406 	 */
    407 	uvm_setpagesize();
    408 
    409 	/*
    410 	 * Find the beginning and end of the kernel (and leave a
    411 	 * bit of space before the beginning for the bootstrap
    412 	 * stack).
    413 	 */
    414 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    415 #ifdef DDB
    416 	ksym_start = (void *)bootinfo.ssym;
    417 	ksym_end   = (void *)bootinfo.esym;
    418 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    419 #else
    420 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    421 #endif
    422 
    423 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    424 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    425 
    426 	/*
    427 	 * Find out how much memory is available, by looking at
    428 	 * the memory cluster descriptors.  This also tries to do
    429 	 * its best to detect things things that have never been seen
    430 	 * before...
    431 	 */
    432 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    433 
    434 	/* MDDT SANITY CHECKING */
    435 	mddtweird = 0;
    436 	if (mddtp->mddt_cluster_cnt < 2) {
    437 		mddtweird = 1;
    438 		printf("WARNING: weird number of mem clusters: %lu\n",
    439 		    mddtp->mddt_cluster_cnt);
    440 	}
    441 
    442 #if 0
    443 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    444 #endif
    445 
    446 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    447 		memc = &mddtp->mddt_clusters[i];
    448 #if 0
    449 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    450 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    451 #endif
    452 		totalphysmem += memc->mddt_pg_cnt;
    453 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    454 			mem_clusters[mem_cluster_cnt].start =
    455 			    ptoa(memc->mddt_pfn);
    456 			mem_clusters[mem_cluster_cnt].size =
    457 			    ptoa(memc->mddt_pg_cnt);
    458 			if (memc->mddt_usage & MDDT_mbz ||
    459 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    460 			    memc->mddt_usage & MDDT_PALCODE)
    461 				mem_clusters[mem_cluster_cnt].size |=
    462 				    PROT_READ;
    463 			else
    464 				mem_clusters[mem_cluster_cnt].size |=
    465 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    466 			mem_cluster_cnt++;
    467 		}
    468 
    469 		if (memc->mddt_usage & MDDT_mbz) {
    470 			mddtweird = 1;
    471 			printf("WARNING: mem cluster %d has weird "
    472 			    "usage 0x%lx\n", i, memc->mddt_usage);
    473 			unknownmem += memc->mddt_pg_cnt;
    474 			continue;
    475 		}
    476 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    477 			/* XXX should handle these... */
    478 			printf("WARNING: skipping non-volatile mem "
    479 			    "cluster %d\n", i);
    480 			unusedmem += memc->mddt_pg_cnt;
    481 			continue;
    482 		}
    483 		if (memc->mddt_usage & MDDT_PALCODE) {
    484 			resvmem += memc->mddt_pg_cnt;
    485 			continue;
    486 		}
    487 
    488 		/*
    489 		 * We have a memory cluster available for system
    490 		 * software use.  We must determine if this cluster
    491 		 * holds the kernel.
    492 		 */
    493 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    494 		/*
    495 		 * XXX If the kernel uses the PROM console, we only use the
    496 		 * XXX memory after the kernel in the first system segment,
    497 		 * XXX to avoid clobbering prom mapping, data, etc.
    498 		 */
    499 	    if (!pmap_uses_prom_console() || physmem == 0) {
    500 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    501 		physmem += memc->mddt_pg_cnt;
    502 		pfn0 = memc->mddt_pfn;
    503 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    504 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    505 			/*
    506 			 * Must compute the location of the kernel
    507 			 * within the segment.
    508 			 */
    509 #if 0
    510 			printf("Cluster %d contains kernel\n", i);
    511 #endif
    512 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    513 		    if (!pmap_uses_prom_console()) {
    514 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    515 			if (pfn0 < kernstartpfn) {
    516 				/*
    517 				 * There is a chunk before the kernel.
    518 				 */
    519 #if 0
    520 				printf("Loading chunk before kernel: "
    521 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    522 #endif
    523 				uvm_page_physload(pfn0, kernstartpfn,
    524 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    525 			}
    526 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    527 		    }
    528 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    529 			if (kernendpfn < pfn1) {
    530 				/*
    531 				 * There is a chunk after the kernel.
    532 				 */
    533 #if 0
    534 				printf("Loading chunk after kernel: "
    535 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    536 #endif
    537 				uvm_page_physload(kernendpfn, pfn1,
    538 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    539 			}
    540 		} else {
    541 			/*
    542 			 * Just load this cluster as one chunk.
    543 			 */
    544 #if 0
    545 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    546 			    pfn0, pfn1);
    547 #endif
    548 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    549 			    VM_FREELIST_DEFAULT);
    550 		}
    551 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    552 	    }
    553 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    554 	}
    555 
    556 	/*
    557 	 * Dump out the MDDT if it looks odd...
    558 	 */
    559 	if (mddtweird) {
    560 		printf("\n");
    561 		printf("complete memory cluster information:\n");
    562 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    563 			printf("mddt %d:\n", i);
    564 			printf("\tpfn %lx\n",
    565 			    mddtp->mddt_clusters[i].mddt_pfn);
    566 			printf("\tcnt %lx\n",
    567 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    568 			printf("\ttest %lx\n",
    569 			    mddtp->mddt_clusters[i].mddt_pg_test);
    570 			printf("\tbva %lx\n",
    571 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    572 			printf("\tbpa %lx\n",
    573 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    574 			printf("\tbcksum %lx\n",
    575 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    576 			printf("\tusage %lx\n",
    577 			    mddtp->mddt_clusters[i].mddt_usage);
    578 		}
    579 		printf("\n");
    580 	}
    581 
    582 	if (totalphysmem == 0)
    583 		panic("can't happen: system seems to have no memory!");
    584 	maxmem = physmem;
    585 #if 0
    586 	printf("totalphysmem = %d\n", totalphysmem);
    587 	printf("physmem = %d\n", physmem);
    588 	printf("resvmem = %d\n", resvmem);
    589 	printf("unusedmem = %d\n", unusedmem);
    590 	printf("unknownmem = %d\n", unknownmem);
    591 #endif
    592 
    593 	/*
    594 	 * Initialize error message buffer (at end of core).
    595 	 */
    596 	{
    597 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    598 		vsize_t reqsz = sz;
    599 
    600 		vps = &vm_physmem[vm_nphysseg - 1];
    601 
    602 		/* shrink so that it'll fit in the last segment */
    603 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    604 			sz = ptoa(vps->avail_end - vps->avail_start);
    605 
    606 		vps->end -= atop(sz);
    607 		vps->avail_end -= atop(sz);
    608 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    609 		initmsgbuf(msgbufaddr, sz);
    610 
    611 		/* Remove the last segment if it now has no pages. */
    612 		if (vps->start == vps->end)
    613 			vm_nphysseg--;
    614 
    615 		/* warn if the message buffer had to be shrunk */
    616 		if (sz != reqsz)
    617 			printf("WARNING: %ld bytes not available for msgbuf "
    618 			    "in last cluster (%ld used)\n", reqsz, sz);
    619 
    620 	}
    621 
    622 	/*
    623 	 * Init mapping for u page(s) for proc 0
    624 	 */
    625 	proc0.p_addr = proc0paddr =
    626 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    627 
    628 	/*
    629 	 * Allocate space for system data structures.  These data structures
    630 	 * are allocated here instead of cpu_startup() because physical
    631 	 * memory is directly addressable.  We don't have to map these into
    632 	 * virtual address space.
    633 	 */
    634 	size = (vsize_t)allocsys(NULL, NULL);
    635 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    636 	if ((allocsys(v, NULL) - v) != size)
    637 		panic("alpha_init: table size inconsistency");
    638 
    639 	/*
    640 	 * Initialize the virtual memory system, and set the
    641 	 * page table base register in proc 0's PCB.
    642 	 */
    643 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    644 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    645 
    646 	/*
    647 	 * Initialize the rest of proc 0's PCB, and cache its physical
    648 	 * address.
    649 	 */
    650 	proc0.p_md.md_pcbpaddr =
    651 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    652 
    653 	/*
    654 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    655 	 * and make proc0's trapframe pointer point to it for sanity.
    656 	 */
    657 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    658 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    659 	proc0.p_md.md_tf =
    660 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    661 
    662 	/*
    663 	 * Initialize the primary CPU's idle PCB to proc0's.  In a
    664 	 * MULTIPROCESSOR configuration, each CPU will later get
    665 	 * its own idle PCB when autoconfiguration runs.
    666 	 */
    667 	ci->ci_idle_pcb = &proc0paddr->u_pcb;
    668 	ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
    669 
    670 	/* Indicate that proc0 has a CPU. */
    671 	proc0.p_cpu = ci;
    672 
    673 	/*
    674 	 * Look at arguments passed to us and compute boothowto.
    675 	 */
    676 
    677 	boothowto = RB_SINGLE;
    678 #ifdef KADB
    679 	boothowto |= RB_KDB;
    680 #endif
    681 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    682 		/*
    683 		 * Note that we'd really like to differentiate case here,
    684 		 * but the Alpha AXP Architecture Reference Manual
    685 		 * says that we shouldn't.
    686 		 */
    687 		switch (*p) {
    688 		case 'a': /* autoboot */
    689 		case 'A':
    690 			boothowto &= ~RB_SINGLE;
    691 			break;
    692 
    693 #ifdef DEBUG
    694 		case 'c': /* crash dump immediately after autoconfig */
    695 		case 'C':
    696 			boothowto |= RB_DUMP;
    697 			break;
    698 #endif
    699 
    700 #if defined(KGDB) || defined(DDB)
    701 		case 'd': /* break into the kernel debugger ASAP */
    702 		case 'D':
    703 			boothowto |= RB_KDB;
    704 			break;
    705 #endif
    706 
    707 		case 'h': /* always halt, never reboot */
    708 		case 'H':
    709 			boothowto |= RB_HALT;
    710 			break;
    711 
    712 #if 0
    713 		case 'm': /* mini root present in memory */
    714 		case 'M':
    715 			boothowto |= RB_MINIROOT;
    716 			break;
    717 #endif
    718 
    719 		case 'n': /* askname */
    720 		case 'N':
    721 			boothowto |= RB_ASKNAME;
    722 			break;
    723 
    724 		case 's': /* single-user (default, supported for sanity) */
    725 		case 'S':
    726 			boothowto |= RB_SINGLE;
    727 			break;
    728 
    729 		case '-':
    730 			/*
    731 			 * Just ignore this.  It's not required, but it's
    732 			 * common for it to be passed regardless.
    733 			 */
    734 			break;
    735 
    736 		default:
    737 			printf("Unrecognized boot flag '%c'.\n", *p);
    738 			break;
    739 		}
    740 	}
    741 
    742 
    743 	/*
    744 	 * Figure out the number of cpus in the box, from RPB fields.
    745 	 * Really.  We mean it.
    746 	 */
    747 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    748 		struct pcs *pcsp;
    749 
    750 		pcsp = LOCATE_PCS(hwrpb, i);
    751 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    752 			ncpus++;
    753 	}
    754 
    755 	/*
    756 	 * Initialize debuggers, and break into them if appropriate.
    757 	 */
    758 #ifdef DDB
    759 	db_machine_init();
    760 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    761 	    ksym_start, ksym_end);
    762 	if (boothowto & RB_KDB)
    763 		Debugger();
    764 #endif
    765 #ifdef KGDB
    766 	if (boothowto & RB_KDB)
    767 		kgdb_connect(0);
    768 #endif
    769 	/*
    770 	 * Figure out our clock frequency, from RPB fields.
    771 	 */
    772 	hz = hwrpb->rpb_intr_freq >> 12;
    773 	if (!(60 <= hz && hz <= 10240)) {
    774 		hz = 1024;
    775 #ifdef DIAGNOSTIC
    776 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    777 			hwrpb->rpb_intr_freq, hz);
    778 #endif
    779 	}
    780 }
    781 
    782 void
    783 consinit()
    784 {
    785 
    786 	/*
    787 	 * Everything related to console initialization is done
    788 	 * in alpha_init().
    789 	 */
    790 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    791 	printf("consinit: %susing prom console\n",
    792 	    pmap_uses_prom_console() ? "" : "not ");
    793 #endif
    794 }
    795 
    796 #include "pckbc.h"
    797 #include "pckbd.h"
    798 #if (NPCKBC > 0) && (NPCKBD == 0)
    799 
    800 #include <dev/ic/pckbcvar.h>
    801 
    802 /*
    803  * This is called by the pbkbc driver if no pckbd is configured.
    804  * On the i386, it is used to glue in the old, deprecated console
    805  * code.  On the Alpha, it does nothing.
    806  */
    807 int
    808 pckbc_machdep_cnattach(kbctag, kbcslot)
    809 	pckbc_tag_t kbctag;
    810 	pckbc_slot_t kbcslot;
    811 {
    812 
    813 	return (ENXIO);
    814 }
    815 #endif /* NPCKBC > 0 && NPCKBD == 0 */
    816 
    817 void
    818 cpu_startup()
    819 {
    820 	register unsigned i;
    821 	int base, residual;
    822 	vaddr_t minaddr, maxaddr;
    823 	vsize_t size;
    824 	char pbuf[9];
    825 #if defined(DEBUG)
    826 	extern int pmapdebug;
    827 	int opmapdebug = pmapdebug;
    828 
    829 	pmapdebug = 0;
    830 #endif
    831 
    832 	/*
    833 	 * Good {morning,afternoon,evening,night}.
    834 	 */
    835 	printf(version);
    836 	identifycpu();
    837 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    838 	printf("total memory = %s\n", pbuf);
    839 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    840 	printf("(%s reserved for PROM, ", pbuf);
    841 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    842 	printf("%s used by NetBSD)\n", pbuf);
    843 	if (unusedmem) {
    844 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    845 		printf("WARNING: unused memory = %s\n", pbuf);
    846 	}
    847 	if (unknownmem) {
    848 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    849 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    850 	}
    851 
    852 	/*
    853 	 * Allocate virtual address space for file I/O buffers.
    854 	 * Note they are different than the array of headers, 'buf',
    855 	 * and usually occupy more virtual memory than physical.
    856 	 */
    857 	size = MAXBSIZE * nbuf;
    858 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    859 		    NULL, UVM_UNKNOWN_OFFSET,
    860 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    861 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
    862 		panic("startup: cannot allocate VM for buffers");
    863 	base = bufpages / nbuf;
    864 	residual = bufpages % nbuf;
    865 	for (i = 0; i < nbuf; i++) {
    866 		vsize_t curbufsize;
    867 		vaddr_t curbuf;
    868 		struct vm_page *pg;
    869 
    870 		/*
    871 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    872 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    873 		 * for the first "residual" buffers, and then we allocate
    874 		 * "base" pages for the rest.
    875 		 */
    876 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    877 		curbufsize = NBPG * ((i < residual) ? (base+1) : base);
    878 
    879 		while (curbufsize) {
    880 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    881 			if (pg == NULL)
    882 				panic("cpu_startup: not enough memory for "
    883 				    "buffer cache");
    884 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    885 					VM_PROT_READ|VM_PROT_WRITE);
    886 			curbuf += PAGE_SIZE;
    887 			curbufsize -= PAGE_SIZE;
    888 		}
    889 	}
    890 	/*
    891 	 * Allocate a submap for exec arguments.  This map effectively
    892 	 * limits the number of processes exec'ing at any time.
    893 	 */
    894 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    895 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    896 
    897 	/*
    898 	 * Allocate a submap for physio
    899 	 */
    900 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    901 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    902 
    903 	/*
    904 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    905 	 * are allocated via the pool allocator, and we use K0SEG to
    906 	 * map those pages.
    907 	 */
    908 
    909 #if defined(DEBUG)
    910 	pmapdebug = opmapdebug;
    911 #endif
    912 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    913 	printf("avail memory = %s\n", pbuf);
    914 #if 0
    915 	{
    916 		extern u_long pmap_pages_stolen;
    917 
    918 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    919 		printf("stolen memory for VM structures = %s\n", pbuf);
    920 	}
    921 #endif
    922 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    923 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
    924 
    925 	/*
    926 	 * Set up buffers, so they can be used to read disk labels.
    927 	 */
    928 	bufinit();
    929 
    930 	/*
    931 	 * Set up the HWPCB so that it's safe to configure secondary
    932 	 * CPUs.
    933 	 */
    934 	hwrpb_primary_init();
    935 }
    936 
    937 /*
    938  * Retrieve the platform name from the DSR.
    939  */
    940 const char *
    941 alpha_dsr_sysname()
    942 {
    943 	struct dsrdb *dsr;
    944 	const char *sysname;
    945 
    946 	/*
    947 	 * DSR does not exist on early HWRPB versions.
    948 	 */
    949 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    950 		return (NULL);
    951 
    952 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    953 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    954 	    sizeof(u_int64_t)));
    955 	return (sysname);
    956 }
    957 
    958 /*
    959  * Lookup the system specified system variation in the provided table,
    960  * returning the model string on match.
    961  */
    962 const char *
    963 alpha_variation_name(variation, avtp)
    964 	u_int64_t variation;
    965 	const struct alpha_variation_table *avtp;
    966 {
    967 	int i;
    968 
    969 	for (i = 0; avtp[i].avt_model != NULL; i++)
    970 		if (avtp[i].avt_variation == variation)
    971 			return (avtp[i].avt_model);
    972 	return (NULL);
    973 }
    974 
    975 /*
    976  * Generate a default platform name based for unknown system variations.
    977  */
    978 const char *
    979 alpha_unknown_sysname()
    980 {
    981 	static char s[128];		/* safe size */
    982 
    983 	sprintf(s, "%s family, unknown model variation 0x%lx",
    984 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    985 	return ((const char *)s);
    986 }
    987 
    988 void
    989 identifycpu()
    990 {
    991 	char *s;
    992 
    993 	/*
    994 	 * print out CPU identification information.
    995 	 */
    996 	printf("%s", cpu_model);
    997 	for(s = cpu_model; *s; ++s)
    998 		if(strncasecmp(s, "MHz", 3) == 0)
    999 			goto skipMHz;
   1000 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1001 skipMHz:
   1002 	printf("\n");
   1003 	printf("%ld byte page size, %d processor%s.\n",
   1004 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1005 #if 0
   1006 	/* this isn't defined for any systems that we run on? */
   1007 	printf("serial number 0x%lx 0x%lx\n",
   1008 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1009 
   1010 	/* and these aren't particularly useful! */
   1011 	printf("variation: 0x%lx, revision 0x%lx\n",
   1012 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1013 #endif
   1014 }
   1015 
   1016 int	waittime = -1;
   1017 struct pcb dumppcb;
   1018 
   1019 void
   1020 cpu_reboot(howto, bootstr)
   1021 	int howto;
   1022 	char *bootstr;
   1023 {
   1024 #if defined(MULTIPROCESSOR)
   1025 #if 0 /* XXX See below. */
   1026 	u_long cpu_id;
   1027 #endif
   1028 #endif
   1029 
   1030 #if defined(MULTIPROCESSOR)
   1031 	/* We must be running on the primary CPU. */
   1032 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1033 		panic("cpu_reboot: not on primary CPU!");
   1034 #endif
   1035 
   1036 	/* If system is cold, just halt. */
   1037 	if (cold) {
   1038 		howto |= RB_HALT;
   1039 		goto haltsys;
   1040 	}
   1041 
   1042 	/* If "always halt" was specified as a boot flag, obey. */
   1043 	if ((boothowto & RB_HALT) != 0)
   1044 		howto |= RB_HALT;
   1045 
   1046 	boothowto = howto;
   1047 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1048 		waittime = 0;
   1049 		vfs_shutdown();
   1050 		/*
   1051 		 * If we've been adjusting the clock, the todr
   1052 		 * will be out of synch; adjust it now.
   1053 		 */
   1054 		resettodr();
   1055 	}
   1056 
   1057 	/* Disable interrupts. */
   1058 	splhigh();
   1059 
   1060 	/* If rebooting and a dump is requested do it. */
   1061 #if 0
   1062 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1063 #else
   1064 	if (howto & RB_DUMP)
   1065 #endif
   1066 		dumpsys();
   1067 
   1068 haltsys:
   1069 
   1070 	/* run any shutdown hooks */
   1071 	doshutdownhooks();
   1072 
   1073 #if defined(MULTIPROCESSOR)
   1074 #if 0 /* XXX doesn't work when called from here?! */
   1075 	/* Kill off any secondary CPUs. */
   1076 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1077 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1078 		    cpu_info[cpu_id].ci_softc == NULL)
   1079 			continue;
   1080 		cpu_halt_secondary(cpu_id);
   1081 	}
   1082 #endif
   1083 #endif
   1084 
   1085 #ifdef BOOTKEY
   1086 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1087 	cnpollc(1);	/* for proper keyboard command handling */
   1088 	cngetc();
   1089 	cnpollc(0);
   1090 	printf("\n");
   1091 #endif
   1092 
   1093 	/* Finally, powerdown/halt/reboot the system. */
   1094 	if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
   1095 	    platform.powerdown != NULL) {
   1096 		(*platform.powerdown)();
   1097 		printf("WARNING: powerdown failed!\n");
   1098 	}
   1099 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1100 	prom_halt(howto & RB_HALT);
   1101 	/*NOTREACHED*/
   1102 }
   1103 
   1104 /*
   1105  * These variables are needed by /sbin/savecore
   1106  */
   1107 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1108 int 	dumpsize = 0;		/* pages */
   1109 long	dumplo = 0; 		/* blocks */
   1110 
   1111 /*
   1112  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1113  */
   1114 int
   1115 cpu_dumpsize()
   1116 {
   1117 	int size;
   1118 
   1119 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1120 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1121 	if (roundup(size, dbtob(1)) != dbtob(1))
   1122 		return -1;
   1123 
   1124 	return (1);
   1125 }
   1126 
   1127 /*
   1128  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1129  */
   1130 u_long
   1131 cpu_dump_mempagecnt()
   1132 {
   1133 	u_long i, n;
   1134 
   1135 	n = 0;
   1136 	for (i = 0; i < mem_cluster_cnt; i++)
   1137 		n += atop(mem_clusters[i].size);
   1138 	return (n);
   1139 }
   1140 
   1141 /*
   1142  * cpu_dump: dump machine-dependent kernel core dump headers.
   1143  */
   1144 int
   1145 cpu_dump()
   1146 {
   1147 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1148 	char buf[dbtob(1)];
   1149 	kcore_seg_t *segp;
   1150 	cpu_kcore_hdr_t *cpuhdrp;
   1151 	phys_ram_seg_t *memsegp;
   1152 	int i;
   1153 
   1154 	dump = bdevsw[major(dumpdev)].d_dump;
   1155 
   1156 	bzero(buf, sizeof buf);
   1157 	segp = (kcore_seg_t *)buf;
   1158 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1159 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1160 	    ALIGN(sizeof(*cpuhdrp))];
   1161 
   1162 	/*
   1163 	 * Generate a segment header.
   1164 	 */
   1165 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1166 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1167 
   1168 	/*
   1169 	 * Add the machine-dependent header info.
   1170 	 */
   1171 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1172 	cpuhdrp->page_size = PAGE_SIZE;
   1173 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1174 
   1175 	/*
   1176 	 * Fill in the memory segment descriptors.
   1177 	 */
   1178 	for (i = 0; i < mem_cluster_cnt; i++) {
   1179 		memsegp[i].start = mem_clusters[i].start;
   1180 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1181 	}
   1182 
   1183 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1184 }
   1185 
   1186 /*
   1187  * This is called by main to set dumplo and dumpsize.
   1188  * Dumps always skip the first NBPG of disk space
   1189  * in case there might be a disk label stored there.
   1190  * If there is extra space, put dump at the end to
   1191  * reduce the chance that swapping trashes it.
   1192  */
   1193 void
   1194 cpu_dumpconf()
   1195 {
   1196 	int nblks, dumpblks;	/* size of dump area */
   1197 	int maj;
   1198 
   1199 	if (dumpdev == NODEV)
   1200 		goto bad;
   1201 	maj = major(dumpdev);
   1202 	if (maj < 0 || maj >= nblkdev)
   1203 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1204 	if (bdevsw[maj].d_psize == NULL)
   1205 		goto bad;
   1206 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1207 	if (nblks <= ctod(1))
   1208 		goto bad;
   1209 
   1210 	dumpblks = cpu_dumpsize();
   1211 	if (dumpblks < 0)
   1212 		goto bad;
   1213 	dumpblks += ctod(cpu_dump_mempagecnt());
   1214 
   1215 	/* If dump won't fit (incl. room for possible label), punt. */
   1216 	if (dumpblks > (nblks - ctod(1)))
   1217 		goto bad;
   1218 
   1219 	/* Put dump at end of partition */
   1220 	dumplo = nblks - dumpblks;
   1221 
   1222 	/* dumpsize is in page units, and doesn't include headers. */
   1223 	dumpsize = cpu_dump_mempagecnt();
   1224 	return;
   1225 
   1226 bad:
   1227 	dumpsize = 0;
   1228 	return;
   1229 }
   1230 
   1231 /*
   1232  * Dump the kernel's image to the swap partition.
   1233  */
   1234 #define	BYTES_PER_DUMP	NBPG
   1235 
   1236 void
   1237 dumpsys()
   1238 {
   1239 	u_long totalbytesleft, bytes, i, n, memcl;
   1240 	u_long maddr;
   1241 	int psize;
   1242 	daddr_t blkno;
   1243 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1244 	int error;
   1245 
   1246 	/* Save registers. */
   1247 	savectx(&dumppcb);
   1248 
   1249 	if (dumpdev == NODEV)
   1250 		return;
   1251 
   1252 	/*
   1253 	 * For dumps during autoconfiguration,
   1254 	 * if dump device has already configured...
   1255 	 */
   1256 	if (dumpsize == 0)
   1257 		cpu_dumpconf();
   1258 	if (dumplo <= 0) {
   1259 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1260 		    minor(dumpdev));
   1261 		return;
   1262 	}
   1263 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1264 	    minor(dumpdev), dumplo);
   1265 
   1266 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1267 	printf("dump ");
   1268 	if (psize == -1) {
   1269 		printf("area unavailable\n");
   1270 		return;
   1271 	}
   1272 
   1273 	/* XXX should purge all outstanding keystrokes. */
   1274 
   1275 	if ((error = cpu_dump()) != 0)
   1276 		goto err;
   1277 
   1278 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1279 	blkno = dumplo + cpu_dumpsize();
   1280 	dump = bdevsw[major(dumpdev)].d_dump;
   1281 	error = 0;
   1282 
   1283 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1284 		maddr = mem_clusters[memcl].start;
   1285 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1286 
   1287 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1288 
   1289 			/* Print out how many MBs we to go. */
   1290 			if ((totalbytesleft % (1024*1024)) == 0)
   1291 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1292 
   1293 			/* Limit size for next transfer. */
   1294 			n = bytes - i;
   1295 			if (n > BYTES_PER_DUMP)
   1296 				n =  BYTES_PER_DUMP;
   1297 
   1298 			error = (*dump)(dumpdev, blkno,
   1299 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1300 			if (error)
   1301 				goto err;
   1302 			maddr += n;
   1303 			blkno += btodb(n);			/* XXX? */
   1304 
   1305 			/* XXX should look for keystrokes, to cancel. */
   1306 		}
   1307 	}
   1308 
   1309 err:
   1310 	switch (error) {
   1311 
   1312 	case ENXIO:
   1313 		printf("device bad\n");
   1314 		break;
   1315 
   1316 	case EFAULT:
   1317 		printf("device not ready\n");
   1318 		break;
   1319 
   1320 	case EINVAL:
   1321 		printf("area improper\n");
   1322 		break;
   1323 
   1324 	case EIO:
   1325 		printf("i/o error\n");
   1326 		break;
   1327 
   1328 	case EINTR:
   1329 		printf("aborted from console\n");
   1330 		break;
   1331 
   1332 	case 0:
   1333 		printf("succeeded\n");
   1334 		break;
   1335 
   1336 	default:
   1337 		printf("error %d\n", error);
   1338 		break;
   1339 	}
   1340 	printf("\n\n");
   1341 	delay(1000);
   1342 }
   1343 
   1344 void
   1345 frametoreg(framep, regp)
   1346 	struct trapframe *framep;
   1347 	struct reg *regp;
   1348 {
   1349 
   1350 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1351 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1352 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1353 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1354 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1355 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1356 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1357 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1358 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1359 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1360 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1361 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1362 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1363 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1364 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1365 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1366 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1367 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1368 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1369 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1370 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1371 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1372 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1373 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1374 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1375 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1376 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1377 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1378 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1379 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1380 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1381 	regp->r_regs[R_ZERO] = 0;
   1382 }
   1383 
   1384 void
   1385 regtoframe(regp, framep)
   1386 	struct reg *regp;
   1387 	struct trapframe *framep;
   1388 {
   1389 
   1390 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1391 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1392 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1393 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1394 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1395 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1396 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1397 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1398 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1399 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1400 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1401 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1402 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1403 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1404 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1405 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1406 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1407 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1408 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1409 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1410 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1411 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1412 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1413 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1414 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1415 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1416 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1417 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1418 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1419 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1420 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1421 	/* ??? = regp->r_regs[R_ZERO]; */
   1422 }
   1423 
   1424 void
   1425 printregs(regp)
   1426 	struct reg *regp;
   1427 {
   1428 	int i;
   1429 
   1430 	for (i = 0; i < 32; i++)
   1431 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1432 		   i & 1 ? "\n" : "\t");
   1433 }
   1434 
   1435 void
   1436 regdump(framep)
   1437 	struct trapframe *framep;
   1438 {
   1439 	struct reg reg;
   1440 
   1441 	frametoreg(framep, &reg);
   1442 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1443 
   1444 	printf("REGISTERS:\n");
   1445 	printregs(&reg);
   1446 }
   1447 
   1448 #ifdef DEBUG
   1449 int sigdebug = 0;
   1450 int sigpid = 0;
   1451 #define	SDB_FOLLOW	0x01
   1452 #define	SDB_KSTACK	0x02
   1453 #endif
   1454 
   1455 /*
   1456  * Send an interrupt to process.
   1457  */
   1458 void
   1459 sendsig(catcher, sig, mask, code)
   1460 	sig_t catcher;
   1461 	int sig;
   1462 	sigset_t *mask;
   1463 	u_long code;
   1464 {
   1465 	struct proc *p = curproc;
   1466 	struct sigcontext *scp, ksc;
   1467 	struct trapframe *frame;
   1468 	struct sigacts *psp = p->p_sigacts;
   1469 	int onstack, fsize, rndfsize;
   1470 
   1471 	frame = p->p_md.md_tf;
   1472 
   1473 	/* Do we need to jump onto the signal stack? */
   1474 	onstack =
   1475 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1476 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1477 
   1478 	/* Allocate space for the signal handler context. */
   1479 	fsize = sizeof(ksc);
   1480 	rndfsize = ((fsize + 15) / 16) * 16;
   1481 
   1482 	if (onstack)
   1483 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1484 						     psp->ps_sigstk.ss_size);
   1485 	else
   1486 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1487 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1488 
   1489 #ifdef DEBUG
   1490 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1491 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1492 		    sig, &onstack, scp);
   1493 #endif
   1494 
   1495 	/* Build stack frame for signal trampoline. */
   1496 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1497 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1498 
   1499 	/* Save register context. */
   1500 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1501 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1502 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1503 
   1504 	/* save the floating-point state, if necessary, then copy it. */
   1505 	if (p == fpcurproc) {
   1506 		alpha_pal_wrfen(1);
   1507 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1508 		alpha_pal_wrfen(0);
   1509 		fpcurproc = NULL;
   1510 	}
   1511 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1512 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1513 	    sizeof(struct fpreg));
   1514 	ksc.sc_fp_control = 0;					/* XXX ? */
   1515 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1516 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1517 
   1518 	/* Save signal stack. */
   1519 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1520 
   1521 	/* Save signal mask. */
   1522 	ksc.sc_mask = *mask;
   1523 
   1524 #ifdef COMPAT_13
   1525 	/*
   1526 	 * XXX We always have to save an old style signal mask because
   1527 	 * XXX we might be delivering a signal to a process which will
   1528 	 * XXX escape from the signal in a non-standard way and invoke
   1529 	 * XXX sigreturn() directly.
   1530 	 */
   1531 	{
   1532 		/* Note: it's a long in the stack frame. */
   1533 		sigset13_t mask13;
   1534 
   1535 		native_sigset_to_sigset13(mask, &mask13);
   1536 		ksc.__sc_mask13 = mask13;
   1537 	}
   1538 #endif
   1539 
   1540 #ifdef COMPAT_OSF1
   1541 	/*
   1542 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1543 	 */
   1544 #endif
   1545 
   1546 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1547 		/*
   1548 		 * Process has trashed its stack; give it an illegal
   1549 		 * instruction to halt it in its tracks.
   1550 		 */
   1551 #ifdef DEBUG
   1552 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1553 			printf("sendsig(%d): copyout failed on sig %d\n",
   1554 			    p->p_pid, sig);
   1555 #endif
   1556 		sigexit(p, SIGILL);
   1557 		/* NOTREACHED */
   1558 	}
   1559 #ifdef DEBUG
   1560 	if (sigdebug & SDB_FOLLOW)
   1561 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1562 		    scp, code);
   1563 #endif
   1564 
   1565 	/* Set up the registers to return to sigcode. */
   1566 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1567 	frame->tf_regs[FRAME_A0] = sig;
   1568 	frame->tf_regs[FRAME_A1] = code;
   1569 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1570 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1571 	alpha_pal_wrusp((unsigned long)scp);
   1572 
   1573 	/* Remember that we're now on the signal stack. */
   1574 	if (onstack)
   1575 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1576 
   1577 #ifdef DEBUG
   1578 	if (sigdebug & SDB_FOLLOW)
   1579 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1580 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1581 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1582 		printf("sendsig(%d): sig %d returns\n",
   1583 		    p->p_pid, sig);
   1584 #endif
   1585 }
   1586 
   1587 /*
   1588  * System call to cleanup state after a signal
   1589  * has been taken.  Reset signal mask and
   1590  * stack state from context left by sendsig (above).
   1591  * Return to previous pc and psl as specified by
   1592  * context left by sendsig. Check carefully to
   1593  * make sure that the user has not modified the
   1594  * psl to gain improper privileges or to cause
   1595  * a machine fault.
   1596  */
   1597 /* ARGSUSED */
   1598 int
   1599 sys___sigreturn14(p, v, retval)
   1600 	struct proc *p;
   1601 	void *v;
   1602 	register_t *retval;
   1603 {
   1604 	struct sys___sigreturn14_args /* {
   1605 		syscallarg(struct sigcontext *) sigcntxp;
   1606 	} */ *uap = v;
   1607 	struct sigcontext *scp, ksc;
   1608 
   1609 	/*
   1610 	 * The trampoline code hands us the context.
   1611 	 * It is unsafe to keep track of it ourselves, in the event that a
   1612 	 * program jumps out of a signal handler.
   1613 	 */
   1614 	scp = SCARG(uap, sigcntxp);
   1615 #ifdef DEBUG
   1616 	if (sigdebug & SDB_FOLLOW)
   1617 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1618 #endif
   1619 	if (ALIGN(scp) != (u_int64_t)scp)
   1620 		return (EINVAL);
   1621 
   1622 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1623 		return (EFAULT);
   1624 
   1625 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1626 		return (EINVAL);
   1627 
   1628 	/* Restore register context. */
   1629 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1630 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1631 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1632 
   1633 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1634 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1635 
   1636 	/* XXX ksc.sc_ownedfp ? */
   1637 	if (p == fpcurproc)
   1638 		fpcurproc = NULL;
   1639 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1640 	    sizeof(struct fpreg));
   1641 	/* XXX ksc.sc_fp_control ? */
   1642 
   1643 	/* Restore signal stack. */
   1644 	if (ksc.sc_onstack & SS_ONSTACK)
   1645 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1646 	else
   1647 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1648 
   1649 	/* Restore signal mask. */
   1650 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1651 
   1652 #ifdef DEBUG
   1653 	if (sigdebug & SDB_FOLLOW)
   1654 		printf("sigreturn(%d): returns\n", p->p_pid);
   1655 #endif
   1656 	return (EJUSTRETURN);
   1657 }
   1658 
   1659 /*
   1660  * machine dependent system variables.
   1661  */
   1662 int
   1663 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1664 	int *name;
   1665 	u_int namelen;
   1666 	void *oldp;
   1667 	size_t *oldlenp;
   1668 	void *newp;
   1669 	size_t newlen;
   1670 	struct proc *p;
   1671 {
   1672 	dev_t consdev;
   1673 
   1674 	/* all sysctl names at this level are terminal */
   1675 	if (namelen != 1)
   1676 		return (ENOTDIR);		/* overloaded */
   1677 
   1678 	switch (name[0]) {
   1679 	case CPU_CONSDEV:
   1680 		if (cn_tab != NULL)
   1681 			consdev = cn_tab->cn_dev;
   1682 		else
   1683 			consdev = NODEV;
   1684 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1685 			sizeof consdev));
   1686 
   1687 	case CPU_ROOT_DEVICE:
   1688 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1689 		    root_device->dv_xname));
   1690 
   1691 	case CPU_UNALIGNED_PRINT:
   1692 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1693 		    &alpha_unaligned_print));
   1694 
   1695 	case CPU_UNALIGNED_FIX:
   1696 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1697 		    &alpha_unaligned_fix));
   1698 
   1699 	case CPU_UNALIGNED_SIGBUS:
   1700 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1701 		    &alpha_unaligned_sigbus));
   1702 
   1703 	case CPU_BOOTED_KERNEL:
   1704 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1705 		    bootinfo.booted_kernel));
   1706 
   1707 	default:
   1708 		return (EOPNOTSUPP);
   1709 	}
   1710 	/* NOTREACHED */
   1711 }
   1712 
   1713 /*
   1714  * Set registers on exec.
   1715  */
   1716 void
   1717 setregs(p, pack, stack)
   1718 	register struct proc *p;
   1719 	struct exec_package *pack;
   1720 	u_long stack;
   1721 {
   1722 	struct trapframe *tfp = p->p_md.md_tf;
   1723 #ifdef DEBUG
   1724 	int i;
   1725 #endif
   1726 
   1727 #ifdef DEBUG
   1728 	/*
   1729 	 * Crash and dump, if the user requested it.
   1730 	 */
   1731 	if (boothowto & RB_DUMP)
   1732 		panic("crash requested by boot flags");
   1733 #endif
   1734 
   1735 #ifdef DEBUG
   1736 	for (i = 0; i < FRAME_SIZE; i++)
   1737 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1738 #else
   1739 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1740 #endif
   1741 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1742 	p->p_addr->u_pcb.pcb_fp.fpr_cr =  FPCR_INED
   1743 					| FPCR_UNFD
   1744 					| FPCR_UNDZ
   1745 					| FPCR_DYN(FP_RN)
   1746 					| FPCR_OVFD
   1747 					| FPCR_DZED
   1748 					| FPCR_INVD
   1749 					| FPCR_DNZ;
   1750 	alpha_pal_wrusp(stack);
   1751 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1752 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1753 
   1754 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1755 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1756 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1757 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1758 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1759 
   1760 	p->p_md.md_flags &= ~MDP_FPUSED;
   1761 	if (fpcurproc == p)
   1762 		fpcurproc = NULL;
   1763 }
   1764 
   1765 void
   1766 spl0()
   1767 {
   1768 
   1769 	if (ssir) {
   1770 		(void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
   1771 		softintr_dispatch();
   1772 	}
   1773 
   1774 	(void) alpha_pal_swpipl(ALPHA_PSL_IPL_0);
   1775 }
   1776 
   1777 /*
   1778  * The following primitives manipulate the run queues.  _whichqs tells which
   1779  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1780  * into queues, Remrunqueue removes them from queues.  The running process is
   1781  * on no queue, other processes are on a queue related to p->p_priority,
   1782  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1783  * available queues.
   1784  */
   1785 /*
   1786  * setrunqueue(p)
   1787  *	proc *p;
   1788  *
   1789  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1790  */
   1791 
   1792 void
   1793 setrunqueue(p)
   1794 	struct proc *p;
   1795 {
   1796 	int bit;
   1797 
   1798 	/* firewall: p->p_back must be NULL */
   1799 	if (p->p_back != NULL)
   1800 		panic("setrunqueue");
   1801 
   1802 	bit = p->p_priority >> 2;
   1803 	sched_whichqs |= (1 << bit);
   1804 	p->p_forw = (struct proc *)&sched_qs[bit];
   1805 	p->p_back = sched_qs[bit].ph_rlink;
   1806 	p->p_back->p_forw = p;
   1807 	sched_qs[bit].ph_rlink = p;
   1808 }
   1809 
   1810 /*
   1811  * remrunqueue(p)
   1812  *
   1813  * Call should be made at splclock().
   1814  */
   1815 void
   1816 remrunqueue(p)
   1817 	struct proc *p;
   1818 {
   1819 	int bit;
   1820 
   1821 	bit = p->p_priority >> 2;
   1822 	if ((sched_whichqs & (1 << bit)) == 0)
   1823 		panic("remrunqueue");
   1824 
   1825 	p->p_back->p_forw = p->p_forw;
   1826 	p->p_forw->p_back = p->p_back;
   1827 	p->p_back = NULL;	/* for firewall checking. */
   1828 
   1829 	if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
   1830 		sched_whichqs &= ~(1 << bit);
   1831 }
   1832 
   1833 /*
   1834  * Return the best possible estimate of the time in the timeval
   1835  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1836  * We guarantee that the time will be greater than the value obtained by a
   1837  * previous call.
   1838  */
   1839 void
   1840 microtime(tvp)
   1841 	register struct timeval *tvp;
   1842 {
   1843 	int s = splclock();
   1844 	static struct timeval lasttime;
   1845 
   1846 	*tvp = time;
   1847 #ifdef notdef
   1848 	tvp->tv_usec += clkread();
   1849 	while (tvp->tv_usec >= 1000000) {
   1850 		tvp->tv_sec++;
   1851 		tvp->tv_usec -= 1000000;
   1852 	}
   1853 #endif
   1854 	if (tvp->tv_sec == lasttime.tv_sec &&
   1855 	    tvp->tv_usec <= lasttime.tv_usec &&
   1856 	    (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
   1857 		tvp->tv_sec++;
   1858 		tvp->tv_usec -= 1000000;
   1859 	}
   1860 	lasttime = *tvp;
   1861 	splx(s);
   1862 }
   1863 
   1864 /*
   1865  * Wait "n" microseconds.
   1866  */
   1867 void
   1868 delay(n)
   1869 	unsigned long n;
   1870 {
   1871 	long N = cycles_per_usec * (n);
   1872 
   1873 	/*
   1874 	 * XXX Should be written to use RPCC?
   1875 	 */
   1876 
   1877 	__asm __volatile(
   1878 		"# The 2 corresponds to the insn count\n"
   1879 		"1:	subq	%2, %1, %0	\n"
   1880 		"	bgt	%0, 1b"
   1881 		: "=r" (N)
   1882 		: "i" (2), "0" (N));
   1883 }
   1884 
   1885 #if defined(COMPAT_OSF1) || 1		/* XXX */
   1886 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1887 	    u_long));
   1888 
   1889 void
   1890 cpu_exec_ecoff_setregs(p, epp, stack)
   1891 	struct proc *p;
   1892 	struct exec_package *epp;
   1893 	u_long stack;
   1894 {
   1895 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1896 
   1897 	setregs(p, epp, stack);
   1898 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1899 }
   1900 
   1901 /*
   1902  * cpu_exec_ecoff_hook():
   1903  *	cpu-dependent ECOFF format hook for execve().
   1904  *
   1905  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1906  *
   1907  */
   1908 int
   1909 cpu_exec_ecoff_hook(p, epp)
   1910 	struct proc *p;
   1911 	struct exec_package *epp;
   1912 {
   1913 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1914 	extern struct emul emul_netbsd;
   1915 	int error;
   1916 	extern int osf1_exec_ecoff_hook(struct proc *p,
   1917 					struct exec_package *epp);
   1918 
   1919 	switch (execp->f.f_magic) {
   1920 #ifdef COMPAT_OSF1
   1921 	case ECOFF_MAGIC_ALPHA:
   1922 		error = osf1_exec_ecoff_hook(p, epp);
   1923 		break;
   1924 #endif
   1925 
   1926 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1927 		epp->ep_emul = &emul_netbsd;
   1928 		error = 0;
   1929 		break;
   1930 
   1931 	default:
   1932 		error = ENOEXEC;
   1933 	}
   1934 	return (error);
   1935 }
   1936 #endif
   1937 
   1938 int
   1939 alpha_pa_access(pa)
   1940 	u_long pa;
   1941 {
   1942 	int i;
   1943 
   1944 	for (i = 0; i < mem_cluster_cnt; i++) {
   1945 		if (pa < mem_clusters[i].start)
   1946 			continue;
   1947 		if ((pa - mem_clusters[i].start) >=
   1948 		    (mem_clusters[i].size & ~PAGE_MASK))
   1949 			continue;
   1950 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   1951 	}
   1952 
   1953 	/*
   1954 	 * Address is not a memory address.  If we're secure, disallow
   1955 	 * access.  Otherwise, grant read/write.
   1956 	 */
   1957 	if (securelevel > 0)
   1958 		return (PROT_NONE);
   1959 	else
   1960 		return (PROT_READ | PROT_WRITE);
   1961 }
   1962 
   1963 /* XXX XXX BEGIN XXX XXX */
   1964 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1965 								/* XXX */
   1966 paddr_t								/* XXX */
   1967 alpha_XXX_dmamap(v)						/* XXX */
   1968 	vaddr_t v;						/* XXX */
   1969 {								/* XXX */
   1970 								/* XXX */
   1971 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1972 }								/* XXX */
   1973 /* XXX XXX END XXX XXX */
   1974 
   1975 char *
   1976 dot_conv(x)
   1977 	unsigned long x;
   1978 {
   1979 	int i;
   1980 	char *xc;
   1981 	static int next;
   1982 	static char space[2][20];
   1983 
   1984 	xc = space[next ^= 1] + sizeof space[0];
   1985 	*--xc = '\0';
   1986 	for (i = 0;; ++i) {
   1987 		if (i && (i & 3) == 0)
   1988 			*--xc = '.';
   1989 		*--xc = "0123456789abcdef"[x & 0xf];
   1990 		x >>= 4;
   1991 		if (x == 0)
   1992 			break;
   1993 	}
   1994 	return xc;
   1995 }
   1996