machdep.c revision 1.228 1 /* $NetBSD: machdep.c,v 1.228 2000/12/22 22:58:52 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73
74 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75
76 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.228 2000/12/22 22:58:52 jdolecek Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/signalvar.h>
81 #include <sys/kernel.h>
82 #include <sys/map.h>
83 #include <sys/proc.h>
84 #include <sys/sched.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/device.h>
88 #include <sys/file.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <sys/core.h>
99 #include <sys/kcore.h>
100 #include <machine/kcore.h>
101
102 #include <sys/mount.h>
103 #include <sys/syscallargs.h>
104
105 #include <uvm/uvm_extern.h>
106 #include <sys/sysctl.h>
107
108 #include <dev/cons.h>
109
110 #include <machine/autoconf.h>
111 #include <machine/cpu.h>
112 #include <machine/reg.h>
113 #include <machine/rpb.h>
114 #include <machine/prom.h>
115 #include <machine/conf.h>
116 #include <machine/ieeefp.h>
117
118 #ifdef DDB
119 #include <machine/db_machdep.h>
120 #include <ddb/db_access.h>
121 #include <ddb/db_sym.h>
122 #include <ddb/db_extern.h>
123 #include <ddb/db_interface.h>
124 #endif
125
126 #include <machine/alpha.h>
127
128 vm_map_t exec_map = NULL;
129 vm_map_t mb_map = NULL;
130 vm_map_t phys_map = NULL;
131
132 caddr_t msgbufaddr;
133
134 int maxmem; /* max memory per process */
135
136 int totalphysmem; /* total amount of physical memory in system */
137 int physmem; /* physical memory used by NetBSD + some rsvd */
138 int resvmem; /* amount of memory reserved for PROM */
139 int unusedmem; /* amount of memory for OS that we don't use */
140 int unknownmem; /* amount of memory with an unknown use */
141
142 int cputype; /* system type, from the RPB */
143
144 int bootdev_debug = 0; /* patchable, or from DDB */
145
146 /*
147 * XXX We need an address to which we can assign things so that they
148 * won't be optimized away because we didn't use the value.
149 */
150 u_int32_t no_optimize;
151
152 /* the following is used externally (sysctl_hw) */
153 char machine[] = MACHINE; /* from <machine/param.h> */
154 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
155 char cpu_model[128];
156
157 struct user *proc0paddr;
158
159 /* Number of machine cycles per microsecond */
160 u_int64_t cycles_per_usec;
161
162 /* number of cpus in the box. really! */
163 int ncpus;
164
165 struct bootinfo_kernel bootinfo;
166
167 /* For built-in TCDS */
168 #if defined(DEC_3000_300) || defined(DEC_3000_500)
169 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
170 #endif
171
172 struct platform platform;
173
174 #ifdef DDB
175 /* start and end of kernel symbol table */
176 void *ksym_start, *ksym_end;
177 #endif
178
179 /* for cpu_sysctl() */
180 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
181 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
182 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
183
184 /*
185 * XXX This should be dynamically sized, but we have the chicken-egg problem!
186 * XXX it should also be larger than it is, because not all of the mddt
187 * XXX clusters end up being used for VM.
188 */
189 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
190 int mem_cluster_cnt;
191
192 int cpu_dump __P((void));
193 int cpu_dumpsize __P((void));
194 u_long cpu_dump_mempagecnt __P((void));
195 void dumpsys __P((void));
196 void identifycpu __P((void));
197 void printregs __P((struct reg *));
198
199 void
200 alpha_init(pfn, ptb, bim, bip, biv)
201 u_long pfn; /* first free PFN number */
202 u_long ptb; /* PFN of current level 1 page table */
203 u_long bim; /* bootinfo magic */
204 u_long bip; /* bootinfo pointer */
205 u_long biv; /* bootinfo version */
206 {
207 extern char kernel_text[], _end[];
208 struct mddt *mddtp;
209 struct mddt_cluster *memc;
210 int i, mddtweird;
211 struct vm_physseg *vps;
212 vaddr_t kernstart, kernend;
213 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
214 vsize_t size;
215 cpuid_t cpu_id;
216 struct cpu_info *ci;
217 char *p;
218 caddr_t v;
219 const char *bootinfo_msg;
220 const struct cpuinit *c;
221
222 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
223
224 /*
225 * Turn off interrupts (not mchecks) and floating point.
226 * Make sure the instruction and data streams are consistent.
227 */
228 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
229 alpha_pal_wrfen(0);
230 ALPHA_TBIA();
231 alpha_pal_imb();
232
233 cpu_id = cpu_number();
234
235 #if defined(MULTIPROCESSOR)
236 /*
237 * Set our SysValue to the address of our cpu_info structure.
238 * Secondary processors do this in their spinup trampoline.
239 */
240 alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
241 #endif
242
243 ci = curcpu();
244 ci->ci_cpuid = cpu_id;
245
246 /*
247 * Get critical system information (if possible, from the
248 * information provided by the boot program).
249 */
250 bootinfo_msg = NULL;
251 if (bim == BOOTINFO_MAGIC) {
252 if (biv == 0) { /* backward compat */
253 biv = *(u_long *)bip;
254 bip += 8;
255 }
256 switch (biv) {
257 case 1: {
258 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
259
260 bootinfo.ssym = v1p->ssym;
261 bootinfo.esym = v1p->esym;
262 /* hwrpb may not be provided by boot block in v1 */
263 if (v1p->hwrpb != NULL) {
264 bootinfo.hwrpb_phys =
265 ((struct rpb *)v1p->hwrpb)->rpb_phys;
266 bootinfo.hwrpb_size = v1p->hwrpbsize;
267 } else {
268 bootinfo.hwrpb_phys =
269 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
270 bootinfo.hwrpb_size =
271 ((struct rpb *)HWRPB_ADDR)->rpb_size;
272 }
273 bcopy(v1p->boot_flags, bootinfo.boot_flags,
274 min(sizeof v1p->boot_flags,
275 sizeof bootinfo.boot_flags));
276 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
277 min(sizeof v1p->booted_kernel,
278 sizeof bootinfo.booted_kernel));
279 /* booted dev not provided in bootinfo */
280 init_prom_interface((struct rpb *)
281 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
282 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
283 sizeof bootinfo.booted_dev);
284 break;
285 }
286 default:
287 bootinfo_msg = "unknown bootinfo version";
288 goto nobootinfo;
289 }
290 } else {
291 bootinfo_msg = "boot program did not pass bootinfo";
292 nobootinfo:
293 bootinfo.ssym = (u_long)_end;
294 bootinfo.esym = (u_long)_end;
295 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
296 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
297 init_prom_interface((struct rpb *)HWRPB_ADDR);
298 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
299 sizeof bootinfo.boot_flags);
300 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
301 sizeof bootinfo.booted_kernel);
302 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
303 sizeof bootinfo.booted_dev);
304 }
305
306 /*
307 * Initialize the kernel's mapping of the RPB. It's needed for
308 * lots of things.
309 */
310 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
311
312 #if defined(DEC_3000_300) || defined(DEC_3000_500)
313 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
314 hwrpb->rpb_type == ST_DEC_3000_500) {
315 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
316 sizeof(dec_3000_scsiid));
317 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
318 sizeof(dec_3000_scsifast));
319 }
320 #endif
321
322 /*
323 * Remember how many cycles there are per microsecond,
324 * so that we can use delay(). Round up, for safety.
325 */
326 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
327
328 /*
329 * Initalize the (temporary) bootstrap console interface, so
330 * we can use printf until the VM system starts being setup.
331 * The real console is initialized before then.
332 */
333 init_bootstrap_console();
334
335 /* OUTPUT NOW ALLOWED */
336
337 /* delayed from above */
338 if (bootinfo_msg)
339 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
340 bootinfo_msg, bim, bip, biv);
341
342 /* Initialize the trap vectors on the primary processor. */
343 trap_init();
344
345 /*
346 * Find out what hardware we're on, and do basic initialization.
347 */
348 cputype = hwrpb->rpb_type;
349 if (cputype < 0) {
350 /*
351 * At least some white-box systems have SRM which
352 * reports a systype that's the negative of their
353 * blue-box counterpart.
354 */
355 cputype = -cputype;
356 }
357 c = platform_lookup(cputype);
358 if (c == NULL) {
359 platform_not_supported();
360 /* NOTREACHED */
361 }
362 (*c->init)();
363 strcpy(cpu_model, platform.model);
364
365 /*
366 * Initalize the real console, so that the bootstrap console is
367 * no longer necessary.
368 */
369 (*platform.cons_init)();
370
371 #ifdef DIAGNOSTIC
372 /* Paranoid sanity checking */
373
374 /* We should always be running on the primary. */
375 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
376
377 /*
378 * On single-CPU systypes, the primary should always be CPU 0,
379 * except on Alpha 8200 systems where the CPU id is related
380 * to the VID, which is related to the Turbo Laser node id.
381 */
382 if (cputype != ST_DEC_21000)
383 assert(hwrpb->rpb_primary_cpu_id == 0);
384 #endif
385
386 /* NO MORE FIRMWARE ACCESS ALLOWED */
387 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
388 /*
389 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
390 * XXX pmap_uses_prom_console() evaluates to non-zero.)
391 */
392 #endif
393
394 /*
395 * find out this system's page size
396 */
397 PAGE_SIZE = hwrpb->rpb_page_size;
398 if (PAGE_SIZE != 8192)
399 panic("page size %d != 8192?!", PAGE_SIZE);
400
401 /*
402 * Initialize PAGE_SIZE-dependent variables.
403 */
404 uvm_setpagesize();
405
406 /*
407 * Find the beginning and end of the kernel (and leave a
408 * bit of space before the beginning for the bootstrap
409 * stack).
410 */
411 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
412 #ifdef DDB
413 ksym_start = (void *)bootinfo.ssym;
414 ksym_end = (void *)bootinfo.esym;
415 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
416 #else
417 kernend = (vaddr_t)round_page((vaddr_t)_end);
418 #endif
419
420 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
421 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
422
423 /*
424 * Find out how much memory is available, by looking at
425 * the memory cluster descriptors. This also tries to do
426 * its best to detect things things that have never been seen
427 * before...
428 */
429 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
430
431 /* MDDT SANITY CHECKING */
432 mddtweird = 0;
433 if (mddtp->mddt_cluster_cnt < 2) {
434 mddtweird = 1;
435 printf("WARNING: weird number of mem clusters: %lu\n",
436 mddtp->mddt_cluster_cnt);
437 }
438
439 #if 0
440 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
441 #endif
442
443 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
444 memc = &mddtp->mddt_clusters[i];
445 #if 0
446 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
447 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
448 #endif
449 totalphysmem += memc->mddt_pg_cnt;
450 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
451 mem_clusters[mem_cluster_cnt].start =
452 ptoa(memc->mddt_pfn);
453 mem_clusters[mem_cluster_cnt].size =
454 ptoa(memc->mddt_pg_cnt);
455 if (memc->mddt_usage & MDDT_mbz ||
456 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
457 memc->mddt_usage & MDDT_PALCODE)
458 mem_clusters[mem_cluster_cnt].size |=
459 PROT_READ;
460 else
461 mem_clusters[mem_cluster_cnt].size |=
462 PROT_READ | PROT_WRITE | PROT_EXEC;
463 mem_cluster_cnt++;
464 }
465
466 if (memc->mddt_usage & MDDT_mbz) {
467 mddtweird = 1;
468 printf("WARNING: mem cluster %d has weird "
469 "usage 0x%lx\n", i, memc->mddt_usage);
470 unknownmem += memc->mddt_pg_cnt;
471 continue;
472 }
473 if (memc->mddt_usage & MDDT_NONVOLATILE) {
474 /* XXX should handle these... */
475 printf("WARNING: skipping non-volatile mem "
476 "cluster %d\n", i);
477 unusedmem += memc->mddt_pg_cnt;
478 continue;
479 }
480 if (memc->mddt_usage & MDDT_PALCODE) {
481 resvmem += memc->mddt_pg_cnt;
482 continue;
483 }
484
485 /*
486 * We have a memory cluster available for system
487 * software use. We must determine if this cluster
488 * holds the kernel.
489 */
490 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
491 /*
492 * XXX If the kernel uses the PROM console, we only use the
493 * XXX memory after the kernel in the first system segment,
494 * XXX to avoid clobbering prom mapping, data, etc.
495 */
496 if (!pmap_uses_prom_console() || physmem == 0) {
497 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
498 physmem += memc->mddt_pg_cnt;
499 pfn0 = memc->mddt_pfn;
500 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
501 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
502 /*
503 * Must compute the location of the kernel
504 * within the segment.
505 */
506 #if 0
507 printf("Cluster %d contains kernel\n", i);
508 #endif
509 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
510 if (!pmap_uses_prom_console()) {
511 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
512 if (pfn0 < kernstartpfn) {
513 /*
514 * There is a chunk before the kernel.
515 */
516 #if 0
517 printf("Loading chunk before kernel: "
518 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
519 #endif
520 uvm_page_physload(pfn0, kernstartpfn,
521 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
522 }
523 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
524 }
525 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
526 if (kernendpfn < pfn1) {
527 /*
528 * There is a chunk after the kernel.
529 */
530 #if 0
531 printf("Loading chunk after kernel: "
532 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
533 #endif
534 uvm_page_physload(kernendpfn, pfn1,
535 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
536 }
537 } else {
538 /*
539 * Just load this cluster as one chunk.
540 */
541 #if 0
542 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
543 pfn0, pfn1);
544 #endif
545 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
546 VM_FREELIST_DEFAULT);
547 }
548 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
549 }
550 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
551 }
552
553 /*
554 * Dump out the MDDT if it looks odd...
555 */
556 if (mddtweird) {
557 printf("\n");
558 printf("complete memory cluster information:\n");
559 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
560 printf("mddt %d:\n", i);
561 printf("\tpfn %lx\n",
562 mddtp->mddt_clusters[i].mddt_pfn);
563 printf("\tcnt %lx\n",
564 mddtp->mddt_clusters[i].mddt_pg_cnt);
565 printf("\ttest %lx\n",
566 mddtp->mddt_clusters[i].mddt_pg_test);
567 printf("\tbva %lx\n",
568 mddtp->mddt_clusters[i].mddt_v_bitaddr);
569 printf("\tbpa %lx\n",
570 mddtp->mddt_clusters[i].mddt_p_bitaddr);
571 printf("\tbcksum %lx\n",
572 mddtp->mddt_clusters[i].mddt_bit_cksum);
573 printf("\tusage %lx\n",
574 mddtp->mddt_clusters[i].mddt_usage);
575 }
576 printf("\n");
577 }
578
579 if (totalphysmem == 0)
580 panic("can't happen: system seems to have no memory!");
581 maxmem = physmem;
582 #if 0
583 printf("totalphysmem = %d\n", totalphysmem);
584 printf("physmem = %d\n", physmem);
585 printf("resvmem = %d\n", resvmem);
586 printf("unusedmem = %d\n", unusedmem);
587 printf("unknownmem = %d\n", unknownmem);
588 #endif
589
590 /*
591 * Initialize error message buffer (at end of core).
592 */
593 {
594 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
595 vsize_t reqsz = sz;
596
597 vps = &vm_physmem[vm_nphysseg - 1];
598
599 /* shrink so that it'll fit in the last segment */
600 if ((vps->avail_end - vps->avail_start) < atop(sz))
601 sz = ptoa(vps->avail_end - vps->avail_start);
602
603 vps->end -= atop(sz);
604 vps->avail_end -= atop(sz);
605 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
606 initmsgbuf(msgbufaddr, sz);
607
608 /* Remove the last segment if it now has no pages. */
609 if (vps->start == vps->end)
610 vm_nphysseg--;
611
612 /* warn if the message buffer had to be shrunk */
613 if (sz != reqsz)
614 printf("WARNING: %ld bytes not available for msgbuf "
615 "in last cluster (%ld used)\n", reqsz, sz);
616
617 }
618
619 /*
620 * Init mapping for u page(s) for proc 0
621 */
622 proc0.p_addr = proc0paddr =
623 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
624
625 /*
626 * Allocate space for system data structures. These data structures
627 * are allocated here instead of cpu_startup() because physical
628 * memory is directly addressable. We don't have to map these into
629 * virtual address space.
630 */
631 size = (vsize_t)allocsys(NULL, NULL);
632 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
633 if ((allocsys(v, NULL) - v) != size)
634 panic("alpha_init: table size inconsistency");
635
636 /*
637 * Initialize the virtual memory system, and set the
638 * page table base register in proc 0's PCB.
639 */
640 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
641 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
642
643 /*
644 * Initialize the rest of proc 0's PCB, and cache its physical
645 * address.
646 */
647 proc0.p_md.md_pcbpaddr =
648 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
649
650 /*
651 * Set the kernel sp, reserving space for an (empty) trapframe,
652 * and make proc0's trapframe pointer point to it for sanity.
653 */
654 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
655 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
656 proc0.p_md.md_tf =
657 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
658
659 /*
660 * Initialize the primary CPU's idle PCB to proc0's. In a
661 * MULTIPROCESSOR configuration, each CPU will later get
662 * its own idle PCB when autoconfiguration runs.
663 */
664 ci->ci_idle_pcb = &proc0paddr->u_pcb;
665 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
666
667 /* Indicate that proc0 has a CPU. */
668 proc0.p_cpu = ci;
669
670 /*
671 * Look at arguments passed to us and compute boothowto.
672 */
673
674 boothowto = RB_SINGLE;
675 #ifdef KADB
676 boothowto |= RB_KDB;
677 #endif
678 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
679 /*
680 * Note that we'd really like to differentiate case here,
681 * but the Alpha AXP Architecture Reference Manual
682 * says that we shouldn't.
683 */
684 switch (*p) {
685 case 'a': /* autoboot */
686 case 'A':
687 boothowto &= ~RB_SINGLE;
688 break;
689
690 #ifdef DEBUG
691 case 'c': /* crash dump immediately after autoconfig */
692 case 'C':
693 boothowto |= RB_DUMP;
694 break;
695 #endif
696
697 #if defined(KGDB) || defined(DDB)
698 case 'd': /* break into the kernel debugger ASAP */
699 case 'D':
700 boothowto |= RB_KDB;
701 break;
702 #endif
703
704 case 'h': /* always halt, never reboot */
705 case 'H':
706 boothowto |= RB_HALT;
707 break;
708
709 #if 0
710 case 'm': /* mini root present in memory */
711 case 'M':
712 boothowto |= RB_MINIROOT;
713 break;
714 #endif
715
716 case 'n': /* askname */
717 case 'N':
718 boothowto |= RB_ASKNAME;
719 break;
720
721 case 's': /* single-user (default, supported for sanity) */
722 case 'S':
723 boothowto |= RB_SINGLE;
724 break;
725
726 case 'q': /* quiet boot */
727 case 'Q':
728 boothowto |= AB_QUIET;
729 break;
730
731 case 'v': /* verbose boot */
732 case 'V':
733 boothowto |= AB_VERBOSE;
734 break;
735
736 case '-':
737 /*
738 * Just ignore this. It's not required, but it's
739 * common for it to be passed regardless.
740 */
741 break;
742
743 default:
744 printf("Unrecognized boot flag '%c'.\n", *p);
745 break;
746 }
747 }
748
749
750 /*
751 * Figure out the number of cpus in the box, from RPB fields.
752 * Really. We mean it.
753 */
754 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
755 struct pcs *pcsp;
756
757 pcsp = LOCATE_PCS(hwrpb, i);
758 if ((pcsp->pcs_flags & PCS_PP) != 0)
759 ncpus++;
760 }
761
762 /*
763 * Initialize debuggers, and break into them if appropriate.
764 */
765 #ifdef DDB
766 db_machine_init();
767 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
768 ksym_start, ksym_end);
769 if (boothowto & RB_KDB)
770 Debugger();
771 #endif
772 #ifdef KGDB
773 if (boothowto & RB_KDB)
774 kgdb_connect(0);
775 #endif
776 /*
777 * Figure out our clock frequency, from RPB fields.
778 */
779 hz = hwrpb->rpb_intr_freq >> 12;
780 if (!(60 <= hz && hz <= 10240)) {
781 hz = 1024;
782 #ifdef DIAGNOSTIC
783 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
784 hwrpb->rpb_intr_freq, hz);
785 #endif
786 }
787 }
788
789 void
790 consinit()
791 {
792
793 /*
794 * Everything related to console initialization is done
795 * in alpha_init().
796 */
797 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
798 printf("consinit: %susing prom console\n",
799 pmap_uses_prom_console() ? "" : "not ");
800 #endif
801 }
802
803 #include "pckbc.h"
804 #include "pckbd.h"
805 #if (NPCKBC > 0) && (NPCKBD == 0)
806
807 #include <dev/ic/pckbcvar.h>
808
809 /*
810 * This is called by the pbkbc driver if no pckbd is configured.
811 * On the i386, it is used to glue in the old, deprecated console
812 * code. On the Alpha, it does nothing.
813 */
814 int
815 pckbc_machdep_cnattach(kbctag, kbcslot)
816 pckbc_tag_t kbctag;
817 pckbc_slot_t kbcslot;
818 {
819
820 return (ENXIO);
821 }
822 #endif /* NPCKBC > 0 && NPCKBD == 0 */
823
824 void
825 cpu_startup()
826 {
827 register unsigned i;
828 int base, residual;
829 vaddr_t minaddr, maxaddr;
830 vsize_t size;
831 char pbuf[9];
832 #if defined(DEBUG)
833 extern int pmapdebug;
834 int opmapdebug = pmapdebug;
835
836 pmapdebug = 0;
837 #endif
838
839 /*
840 * Good {morning,afternoon,evening,night}.
841 */
842 printf(version);
843 identifycpu();
844 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
845 printf("total memory = %s\n", pbuf);
846 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
847 printf("(%s reserved for PROM, ", pbuf);
848 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
849 printf("%s used by NetBSD)\n", pbuf);
850 if (unusedmem) {
851 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
852 printf("WARNING: unused memory = %s\n", pbuf);
853 }
854 if (unknownmem) {
855 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
856 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
857 }
858
859 /*
860 * Allocate virtual address space for file I/O buffers.
861 * Note they are different than the array of headers, 'buf',
862 * and usually occupy more virtual memory than physical.
863 */
864 size = MAXBSIZE * nbuf;
865 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
866 NULL, UVM_UNKNOWN_OFFSET, 0,
867 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
868 UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
869 panic("startup: cannot allocate VM for buffers");
870 base = bufpages / nbuf;
871 residual = bufpages % nbuf;
872 for (i = 0; i < nbuf; i++) {
873 vsize_t curbufsize;
874 vaddr_t curbuf;
875 struct vm_page *pg;
876
877 /*
878 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
879 * that MAXBSIZE space, we allocate and map (base+1) pages
880 * for the first "residual" buffers, and then we allocate
881 * "base" pages for the rest.
882 */
883 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
884 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
885
886 while (curbufsize) {
887 pg = uvm_pagealloc(NULL, 0, NULL, 0);
888 if (pg == NULL)
889 panic("cpu_startup: not enough memory for "
890 "buffer cache");
891 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
892 VM_PROT_READ|VM_PROT_WRITE);
893 curbuf += PAGE_SIZE;
894 curbufsize -= PAGE_SIZE;
895 }
896 }
897 /*
898 * Allocate a submap for exec arguments. This map effectively
899 * limits the number of processes exec'ing at any time.
900 */
901 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
902 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
903
904 /*
905 * Allocate a submap for physio
906 */
907 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
908 VM_PHYS_SIZE, 0, FALSE, NULL);
909
910 /*
911 * No need to allocate an mbuf cluster submap. Mbuf clusters
912 * are allocated via the pool allocator, and we use K0SEG to
913 * map those pages.
914 */
915
916 #if defined(DEBUG)
917 pmapdebug = opmapdebug;
918 #endif
919 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
920 printf("avail memory = %s\n", pbuf);
921 #if 0
922 {
923 extern u_long pmap_pages_stolen;
924
925 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
926 printf("stolen memory for VM structures = %s\n", pbuf);
927 }
928 #endif
929 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
930 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
931
932 /*
933 * Set up buffers, so they can be used to read disk labels.
934 */
935 bufinit();
936
937 /*
938 * Set up the HWPCB so that it's safe to configure secondary
939 * CPUs.
940 */
941 hwrpb_primary_init();
942 }
943
944 /*
945 * Retrieve the platform name from the DSR.
946 */
947 const char *
948 alpha_dsr_sysname()
949 {
950 struct dsrdb *dsr;
951 const char *sysname;
952
953 /*
954 * DSR does not exist on early HWRPB versions.
955 */
956 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
957 return (NULL);
958
959 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
960 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
961 sizeof(u_int64_t)));
962 return (sysname);
963 }
964
965 /*
966 * Lookup the system specified system variation in the provided table,
967 * returning the model string on match.
968 */
969 const char *
970 alpha_variation_name(variation, avtp)
971 u_int64_t variation;
972 const struct alpha_variation_table *avtp;
973 {
974 int i;
975
976 for (i = 0; avtp[i].avt_model != NULL; i++)
977 if (avtp[i].avt_variation == variation)
978 return (avtp[i].avt_model);
979 return (NULL);
980 }
981
982 /*
983 * Generate a default platform name based for unknown system variations.
984 */
985 const char *
986 alpha_unknown_sysname()
987 {
988 static char s[128]; /* safe size */
989
990 sprintf(s, "%s family, unknown model variation 0x%lx",
991 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
992 return ((const char *)s);
993 }
994
995 void
996 identifycpu()
997 {
998 char *s;
999 int i;
1000
1001 /*
1002 * print out CPU identification information.
1003 */
1004 printf("%s", cpu_model);
1005 for(s = cpu_model; *s; ++s)
1006 if(strncasecmp(s, "MHz", 3) == 0)
1007 goto skipMHz;
1008 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1009 skipMHz:
1010 printf(", s/n ");
1011 for (i = 0; i < 10; i++)
1012 printf("%c", hwrpb->rpb_ssn[i]);
1013 printf("\n");
1014 printf("%ld byte page size, %d processor%s.\n",
1015 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1016 #if 0
1017 /* this isn't defined for any systems that we run on? */
1018 printf("serial number 0x%lx 0x%lx\n",
1019 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1020
1021 /* and these aren't particularly useful! */
1022 printf("variation: 0x%lx, revision 0x%lx\n",
1023 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1024 #endif
1025 }
1026
1027 int waittime = -1;
1028 struct pcb dumppcb;
1029
1030 void
1031 cpu_reboot(howto, bootstr)
1032 int howto;
1033 char *bootstr;
1034 {
1035 #if defined(MULTIPROCESSOR)
1036 u_long cpu_id = cpu_number();
1037 u_long wait_mask = (1UL << cpu_id) |
1038 (1UL << hwrpb->rpb_primary_cpu_id);
1039 int i;
1040 #endif
1041
1042 /* If "always halt" was specified as a boot flag, obey. */
1043 if ((boothowto & RB_HALT) != 0)
1044 howto |= RB_HALT;
1045
1046 boothowto = howto;
1047
1048 /* If system is cold, just halt. */
1049 if (cold) {
1050 boothowto |= RB_HALT;
1051 goto haltsys;
1052 }
1053
1054 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1055 waittime = 0;
1056 vfs_shutdown();
1057 /*
1058 * If we've been adjusting the clock, the todr
1059 * will be out of synch; adjust it now.
1060 */
1061 resettodr();
1062 }
1063
1064 /* Disable interrupts. */
1065 splhigh();
1066
1067 #if defined(MULTIPROCESSOR)
1068 /*
1069 * Halt all other CPUs. If we're not the primary, the
1070 * primary will spin, waiting for us to halt.
1071 */
1072 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1073
1074 for (i = 0; i < 10000; i++) {
1075 alpha_mb();
1076 if (cpus_running == wait_mask)
1077 break;
1078 delay(1000);
1079 }
1080 alpha_mb();
1081 if (cpus_running != wait_mask)
1082 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1083 cpus_running);
1084 #endif /* MULTIPROCESSOR */
1085
1086 /* If rebooting and a dump is requested do it. */
1087 #if 0
1088 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1089 #else
1090 if (boothowto & RB_DUMP)
1091 #endif
1092 dumpsys();
1093
1094 haltsys:
1095
1096 /* run any shutdown hooks */
1097 doshutdownhooks();
1098
1099 #ifdef BOOTKEY
1100 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1101 cnpollc(1); /* for proper keyboard command handling */
1102 cngetc();
1103 cnpollc(0);
1104 printf("\n");
1105 #endif
1106
1107 /* Finally, powerdown/halt/reboot the system. */
1108 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1109 platform.powerdown != NULL) {
1110 (*platform.powerdown)();
1111 printf("WARNING: powerdown failed!\n");
1112 }
1113 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1114 #if defined(MULTIPROCESSOR)
1115 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1116 cpu_halt();
1117 else
1118 #endif
1119 prom_halt(boothowto & RB_HALT);
1120 /*NOTREACHED*/
1121 }
1122
1123 /*
1124 * These variables are needed by /sbin/savecore
1125 */
1126 u_long dumpmag = 0x8fca0101; /* magic number */
1127 int dumpsize = 0; /* pages */
1128 long dumplo = 0; /* blocks */
1129
1130 /*
1131 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1132 */
1133 int
1134 cpu_dumpsize()
1135 {
1136 int size;
1137
1138 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1139 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1140 if (roundup(size, dbtob(1)) != dbtob(1))
1141 return -1;
1142
1143 return (1);
1144 }
1145
1146 /*
1147 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1148 */
1149 u_long
1150 cpu_dump_mempagecnt()
1151 {
1152 u_long i, n;
1153
1154 n = 0;
1155 for (i = 0; i < mem_cluster_cnt; i++)
1156 n += atop(mem_clusters[i].size);
1157 return (n);
1158 }
1159
1160 /*
1161 * cpu_dump: dump machine-dependent kernel core dump headers.
1162 */
1163 int
1164 cpu_dump()
1165 {
1166 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1167 char buf[dbtob(1)];
1168 kcore_seg_t *segp;
1169 cpu_kcore_hdr_t *cpuhdrp;
1170 phys_ram_seg_t *memsegp;
1171 int i;
1172
1173 dump = bdevsw[major(dumpdev)].d_dump;
1174
1175 bzero(buf, sizeof buf);
1176 segp = (kcore_seg_t *)buf;
1177 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1178 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1179 ALIGN(sizeof(*cpuhdrp))];
1180
1181 /*
1182 * Generate a segment header.
1183 */
1184 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1185 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1186
1187 /*
1188 * Add the machine-dependent header info.
1189 */
1190 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1191 cpuhdrp->page_size = PAGE_SIZE;
1192 cpuhdrp->nmemsegs = mem_cluster_cnt;
1193
1194 /*
1195 * Fill in the memory segment descriptors.
1196 */
1197 for (i = 0; i < mem_cluster_cnt; i++) {
1198 memsegp[i].start = mem_clusters[i].start;
1199 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1200 }
1201
1202 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1203 }
1204
1205 /*
1206 * This is called by main to set dumplo and dumpsize.
1207 * Dumps always skip the first NBPG of disk space
1208 * in case there might be a disk label stored there.
1209 * If there is extra space, put dump at the end to
1210 * reduce the chance that swapping trashes it.
1211 */
1212 void
1213 cpu_dumpconf()
1214 {
1215 int nblks, dumpblks; /* size of dump area */
1216 int maj;
1217
1218 if (dumpdev == NODEV)
1219 goto bad;
1220 maj = major(dumpdev);
1221 if (maj < 0 || maj >= nblkdev)
1222 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1223 if (bdevsw[maj].d_psize == NULL)
1224 goto bad;
1225 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1226 if (nblks <= ctod(1))
1227 goto bad;
1228
1229 dumpblks = cpu_dumpsize();
1230 if (dumpblks < 0)
1231 goto bad;
1232 dumpblks += ctod(cpu_dump_mempagecnt());
1233
1234 /* If dump won't fit (incl. room for possible label), punt. */
1235 if (dumpblks > (nblks - ctod(1)))
1236 goto bad;
1237
1238 /* Put dump at end of partition */
1239 dumplo = nblks - dumpblks;
1240
1241 /* dumpsize is in page units, and doesn't include headers. */
1242 dumpsize = cpu_dump_mempagecnt();
1243 return;
1244
1245 bad:
1246 dumpsize = 0;
1247 return;
1248 }
1249
1250 /*
1251 * Dump the kernel's image to the swap partition.
1252 */
1253 #define BYTES_PER_DUMP NBPG
1254
1255 void
1256 dumpsys()
1257 {
1258 u_long totalbytesleft, bytes, i, n, memcl;
1259 u_long maddr;
1260 int psize;
1261 daddr_t blkno;
1262 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1263 int error;
1264
1265 /* Save registers. */
1266 savectx(&dumppcb);
1267
1268 if (dumpdev == NODEV)
1269 return;
1270
1271 /*
1272 * For dumps during autoconfiguration,
1273 * if dump device has already configured...
1274 */
1275 if (dumpsize == 0)
1276 cpu_dumpconf();
1277 if (dumplo <= 0) {
1278 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1279 minor(dumpdev));
1280 return;
1281 }
1282 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1283 minor(dumpdev), dumplo);
1284
1285 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1286 printf("dump ");
1287 if (psize == -1) {
1288 printf("area unavailable\n");
1289 return;
1290 }
1291
1292 /* XXX should purge all outstanding keystrokes. */
1293
1294 if ((error = cpu_dump()) != 0)
1295 goto err;
1296
1297 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1298 blkno = dumplo + cpu_dumpsize();
1299 dump = bdevsw[major(dumpdev)].d_dump;
1300 error = 0;
1301
1302 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1303 maddr = mem_clusters[memcl].start;
1304 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1305
1306 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1307
1308 /* Print out how many MBs we to go. */
1309 if ((totalbytesleft % (1024*1024)) == 0)
1310 printf("%ld ", totalbytesleft / (1024 * 1024));
1311
1312 /* Limit size for next transfer. */
1313 n = bytes - i;
1314 if (n > BYTES_PER_DUMP)
1315 n = BYTES_PER_DUMP;
1316
1317 error = (*dump)(dumpdev, blkno,
1318 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1319 if (error)
1320 goto err;
1321 maddr += n;
1322 blkno += btodb(n); /* XXX? */
1323
1324 /* XXX should look for keystrokes, to cancel. */
1325 }
1326 }
1327
1328 err:
1329 switch (error) {
1330
1331 case ENXIO:
1332 printf("device bad\n");
1333 break;
1334
1335 case EFAULT:
1336 printf("device not ready\n");
1337 break;
1338
1339 case EINVAL:
1340 printf("area improper\n");
1341 break;
1342
1343 case EIO:
1344 printf("i/o error\n");
1345 break;
1346
1347 case EINTR:
1348 printf("aborted from console\n");
1349 break;
1350
1351 case 0:
1352 printf("succeeded\n");
1353 break;
1354
1355 default:
1356 printf("error %d\n", error);
1357 break;
1358 }
1359 printf("\n\n");
1360 delay(1000);
1361 }
1362
1363 void
1364 frametoreg(framep, regp)
1365 struct trapframe *framep;
1366 struct reg *regp;
1367 {
1368
1369 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1370 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1371 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1372 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1373 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1374 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1375 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1376 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1377 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1378 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1379 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1380 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1381 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1382 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1383 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1384 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1385 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1386 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1387 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1388 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1389 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1390 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1391 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1392 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1393 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1394 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1395 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1396 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1397 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1398 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1399 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1400 regp->r_regs[R_ZERO] = 0;
1401 }
1402
1403 void
1404 regtoframe(regp, framep)
1405 struct reg *regp;
1406 struct trapframe *framep;
1407 {
1408
1409 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1410 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1411 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1412 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1413 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1414 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1415 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1416 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1417 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1418 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1419 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1420 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1421 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1422 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1423 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1424 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1425 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1426 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1427 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1428 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1429 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1430 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1431 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1432 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1433 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1434 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1435 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1436 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1437 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1438 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1439 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1440 /* ??? = regp->r_regs[R_ZERO]; */
1441 }
1442
1443 void
1444 printregs(regp)
1445 struct reg *regp;
1446 {
1447 int i;
1448
1449 for (i = 0; i < 32; i++)
1450 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1451 i & 1 ? "\n" : "\t");
1452 }
1453
1454 void
1455 regdump(framep)
1456 struct trapframe *framep;
1457 {
1458 struct reg reg;
1459
1460 frametoreg(framep, ®);
1461 reg.r_regs[R_SP] = alpha_pal_rdusp();
1462
1463 printf("REGISTERS:\n");
1464 printregs(®);
1465 }
1466
1467 #ifdef DEBUG
1468 int sigdebug = 0;
1469 int sigpid = 0;
1470 #define SDB_FOLLOW 0x01
1471 #define SDB_KSTACK 0x02
1472 #endif
1473
1474 /*
1475 * Send an interrupt to process.
1476 */
1477 void
1478 sendsig(catcher, sig, mask, code)
1479 sig_t catcher;
1480 int sig;
1481 sigset_t *mask;
1482 u_long code;
1483 {
1484 struct proc *p = curproc;
1485 struct sigcontext *scp, ksc;
1486 struct trapframe *frame;
1487 int onstack, fsize, rndfsize;
1488
1489 frame = p->p_md.md_tf;
1490
1491 /* Do we need to jump onto the signal stack? */
1492 onstack =
1493 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1494 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1495
1496 /* Allocate space for the signal handler context. */
1497 fsize = sizeof(ksc);
1498 rndfsize = ((fsize + 15) / 16) * 16;
1499
1500 if (onstack)
1501 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1502 p->p_sigctx.ps_sigstk.ss_size);
1503 else
1504 scp = (struct sigcontext *)(alpha_pal_rdusp());
1505 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1506
1507 #ifdef DEBUG
1508 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1509 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1510 sig, &onstack, scp);
1511 #endif
1512
1513 /* Build stack frame for signal trampoline. */
1514 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1515 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1516
1517 /* Save register context. */
1518 frametoreg(frame, (struct reg *)ksc.sc_regs);
1519 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1520 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1521
1522 /* save the floating-point state, if necessary, then copy it. */
1523 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1524 fpusave_proc(p, 1);
1525 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1526 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1527 sizeof(struct fpreg));
1528 ksc.sc_fp_control = 0; /* XXX ? */
1529 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1530 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1531
1532 /* Save signal stack. */
1533 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1534
1535 /* Save signal mask. */
1536 ksc.sc_mask = *mask;
1537
1538 #ifdef COMPAT_13
1539 /*
1540 * XXX We always have to save an old style signal mask because
1541 * XXX we might be delivering a signal to a process which will
1542 * XXX escape from the signal in a non-standard way and invoke
1543 * XXX sigreturn() directly.
1544 */
1545 {
1546 /* Note: it's a long in the stack frame. */
1547 sigset13_t mask13;
1548
1549 native_sigset_to_sigset13(mask, &mask13);
1550 ksc.__sc_mask13 = mask13;
1551 }
1552 #endif
1553
1554 #ifdef COMPAT_OSF1
1555 /*
1556 * XXX Create an OSF/1-style sigcontext and associated goo.
1557 */
1558 #endif
1559
1560 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1561 /*
1562 * Process has trashed its stack; give it an illegal
1563 * instruction to halt it in its tracks.
1564 */
1565 #ifdef DEBUG
1566 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1567 printf("sendsig(%d): copyout failed on sig %d\n",
1568 p->p_pid, sig);
1569 #endif
1570 sigexit(p, SIGILL);
1571 /* NOTREACHED */
1572 }
1573 #ifdef DEBUG
1574 if (sigdebug & SDB_FOLLOW)
1575 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1576 scp, code);
1577 #endif
1578
1579 /* Set up the registers to return to sigcode. */
1580 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1581 frame->tf_regs[FRAME_A0] = sig;
1582 frame->tf_regs[FRAME_A1] = code;
1583 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1584 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1585 alpha_pal_wrusp((unsigned long)scp);
1586
1587 /* Remember that we're now on the signal stack. */
1588 if (onstack)
1589 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1590
1591 #ifdef DEBUG
1592 if (sigdebug & SDB_FOLLOW)
1593 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1594 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1595 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1596 printf("sendsig(%d): sig %d returns\n",
1597 p->p_pid, sig);
1598 #endif
1599 }
1600
1601 /*
1602 * System call to cleanup state after a signal
1603 * has been taken. Reset signal mask and
1604 * stack state from context left by sendsig (above).
1605 * Return to previous pc and psl as specified by
1606 * context left by sendsig. Check carefully to
1607 * make sure that the user has not modified the
1608 * psl to gain improper privileges or to cause
1609 * a machine fault.
1610 */
1611 /* ARGSUSED */
1612 int
1613 sys___sigreturn14(p, v, retval)
1614 struct proc *p;
1615 void *v;
1616 register_t *retval;
1617 {
1618 struct sys___sigreturn14_args /* {
1619 syscallarg(struct sigcontext *) sigcntxp;
1620 } */ *uap = v;
1621 struct sigcontext *scp, ksc;
1622
1623 /*
1624 * The trampoline code hands us the context.
1625 * It is unsafe to keep track of it ourselves, in the event that a
1626 * program jumps out of a signal handler.
1627 */
1628 scp = SCARG(uap, sigcntxp);
1629 #ifdef DEBUG
1630 if (sigdebug & SDB_FOLLOW)
1631 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1632 #endif
1633 if (ALIGN(scp) != (u_int64_t)scp)
1634 return (EINVAL);
1635
1636 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1637 return (EFAULT);
1638
1639 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1640 return (EINVAL);
1641
1642 /* Restore register context. */
1643 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1644 p->p_md.md_tf->tf_regs[FRAME_PS] =
1645 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1646
1647 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1648 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1649
1650 /* XXX ksc.sc_ownedfp ? */
1651 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1652 fpusave_proc(p, 0);
1653 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1654 sizeof(struct fpreg));
1655 /* XXX ksc.sc_fp_control ? */
1656
1657 /* Restore signal stack. */
1658 if (ksc.sc_onstack & SS_ONSTACK)
1659 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1660 else
1661 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1662
1663 /* Restore signal mask. */
1664 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1665
1666 #ifdef DEBUG
1667 if (sigdebug & SDB_FOLLOW)
1668 printf("sigreturn(%d): returns\n", p->p_pid);
1669 #endif
1670 return (EJUSTRETURN);
1671 }
1672
1673 /*
1674 * machine dependent system variables.
1675 */
1676 int
1677 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1678 int *name;
1679 u_int namelen;
1680 void *oldp;
1681 size_t *oldlenp;
1682 void *newp;
1683 size_t newlen;
1684 struct proc *p;
1685 {
1686 dev_t consdev;
1687
1688 /* all sysctl names at this level are terminal */
1689 if (namelen != 1)
1690 return (ENOTDIR); /* overloaded */
1691
1692 switch (name[0]) {
1693 case CPU_CONSDEV:
1694 if (cn_tab != NULL)
1695 consdev = cn_tab->cn_dev;
1696 else
1697 consdev = NODEV;
1698 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1699 sizeof consdev));
1700
1701 case CPU_ROOT_DEVICE:
1702 return (sysctl_rdstring(oldp, oldlenp, newp,
1703 root_device->dv_xname));
1704
1705 case CPU_UNALIGNED_PRINT:
1706 return (sysctl_int(oldp, oldlenp, newp, newlen,
1707 &alpha_unaligned_print));
1708
1709 case CPU_UNALIGNED_FIX:
1710 return (sysctl_int(oldp, oldlenp, newp, newlen,
1711 &alpha_unaligned_fix));
1712
1713 case CPU_UNALIGNED_SIGBUS:
1714 return (sysctl_int(oldp, oldlenp, newp, newlen,
1715 &alpha_unaligned_sigbus));
1716
1717 case CPU_BOOTED_KERNEL:
1718 return (sysctl_rdstring(oldp, oldlenp, newp,
1719 bootinfo.booted_kernel));
1720
1721 default:
1722 return (EOPNOTSUPP);
1723 }
1724 /* NOTREACHED */
1725 }
1726
1727 /*
1728 * Set registers on exec.
1729 */
1730 void
1731 setregs(p, pack, stack)
1732 register struct proc *p;
1733 struct exec_package *pack;
1734 u_long stack;
1735 {
1736 struct trapframe *tfp = p->p_md.md_tf;
1737 #ifdef DEBUG
1738 int i;
1739 #endif
1740
1741 #ifdef DEBUG
1742 /*
1743 * Crash and dump, if the user requested it.
1744 */
1745 if (boothowto & RB_DUMP)
1746 panic("crash requested by boot flags");
1747 #endif
1748
1749 #ifdef DEBUG
1750 for (i = 0; i < FRAME_SIZE; i++)
1751 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1752 #else
1753 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1754 #endif
1755 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1756 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1757 | FPCR_UNFD
1758 | FPCR_UNDZ
1759 | FPCR_DYN(FP_RN)
1760 | FPCR_OVFD
1761 | FPCR_DZED
1762 | FPCR_INVD
1763 | FPCR_DNZ;
1764 alpha_pal_wrusp(stack);
1765 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1766 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1767
1768 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1769 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1770 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1771 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1772 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1773
1774 p->p_md.md_flags &= ~MDP_FPUSED;
1775 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1776 fpusave_proc(p, 0);
1777 }
1778
1779 /*
1780 * Release the FPU.
1781 */
1782 void
1783 fpusave_cpu(struct cpu_info *ci, int save)
1784 {
1785 struct proc *p;
1786 #if defined(MULTIPROCESSOR)
1787 int s;
1788 #endif
1789
1790 KDASSERT(ci == curcpu());
1791
1792 p = ci->ci_fpcurproc;
1793 if (p == NULL)
1794 return;
1795
1796 if (save) {
1797 alpha_pal_wrfen(1);
1798 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1799 }
1800
1801 alpha_pal_wrfen(0);
1802
1803 #if defined(MULTIPROCESSOR)
1804 s = splhigh();
1805 #endif
1806 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1807 ci->ci_fpcurproc = NULL;
1808 #if defined(MULTIPROCESSOR)
1809 splx(s);
1810 alpha_mb();
1811 #endif
1812 }
1813
1814 /*
1815 * Synchronize FP state for this process.
1816 */
1817 void
1818 fpusave_proc(struct proc *p, int save)
1819 {
1820 struct cpu_info *ci = curcpu();
1821 struct cpu_info *oci;
1822
1823 KDASSERT(p->p_addr != NULL);
1824 KDASSERT(p->p_flag & P_INMEM);
1825
1826 oci = p->p_addr->u_pcb.pcb_fpcpu;
1827 if (oci == NULL)
1828 return;
1829
1830 #if defined(MULTIPROCESSOR)
1831 if (oci == ci) {
1832 int s;
1833 KASSERT(ci->ci_fpcurproc == p);
1834 s = splhigh();
1835 fpusave_cpu(ci, save);
1836 splx(s);
1837 } else {
1838 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU :
1839 ALPHA_IPI_DISCARD_FPU;
1840
1841 KASSERT(oci->ci_fpcurproc == p);
1842 do {
1843 alpha_send_ipi(oci->ci_cpuid, ipi);
1844 } while (p->p_addr->u_pcb.pcb_fpcpu != NULL);
1845 }
1846 #else
1847 KASSERT(ci->ci_fpcurproc == p);
1848 fpusave_cpu(ci, save);
1849 #endif /* MULTIPROCESSOR */
1850 }
1851
1852 void
1853 spl0()
1854 {
1855
1856 if (ssir) {
1857 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1858 softintr_dispatch();
1859 }
1860
1861 (void) alpha_pal_swpipl(ALPHA_PSL_IPL_0);
1862 }
1863
1864 /*
1865 * The following primitives manipulate the run queues. _whichqs tells which
1866 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1867 * into queues, Remrunqueue removes them from queues. The running process is
1868 * on no queue, other processes are on a queue related to p->p_priority,
1869 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1870 * available queues.
1871 */
1872 /*
1873 * setrunqueue(p)
1874 * proc *p;
1875 *
1876 * Call should be made at splclock(), and p->p_stat should be SRUN.
1877 */
1878
1879 void
1880 setrunqueue(p)
1881 struct proc *p;
1882 {
1883 int bit;
1884
1885 /* firewall: p->p_back must be NULL */
1886 if (p->p_back != NULL)
1887 panic("setrunqueue");
1888
1889 bit = p->p_priority >> 2;
1890 sched_whichqs |= (1 << bit);
1891 p->p_forw = (struct proc *)&sched_qs[bit];
1892 p->p_back = sched_qs[bit].ph_rlink;
1893 p->p_back->p_forw = p;
1894 sched_qs[bit].ph_rlink = p;
1895 }
1896
1897 /*
1898 * remrunqueue(p)
1899 *
1900 * Call should be made at splclock().
1901 */
1902 void
1903 remrunqueue(p)
1904 struct proc *p;
1905 {
1906 int bit;
1907
1908 bit = p->p_priority >> 2;
1909 if ((sched_whichqs & (1 << bit)) == 0)
1910 panic("remrunqueue");
1911
1912 p->p_back->p_forw = p->p_forw;
1913 p->p_forw->p_back = p->p_back;
1914 p->p_back = NULL; /* for firewall checking. */
1915
1916 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1917 sched_whichqs &= ~(1 << bit);
1918 }
1919
1920 /*
1921 * Return the best possible estimate of the time in the timeval
1922 * to which tvp points. Unfortunately, we can't read the hardware registers.
1923 * We guarantee that the time will be greater than the value obtained by a
1924 * previous call.
1925 *
1926 * XXX PLEASE REWRITE ME TO USE THE CYCLE COUNTER AND DEAL WITH
1927 * XXX MULTIPLE CPUs IN A SANE WAY!
1928 */
1929 void
1930 microtime(tvp)
1931 register struct timeval *tvp;
1932 {
1933 static struct timeval lasttime;
1934 static struct simplelock microtime_slock = SIMPLELOCK_INITIALIZER;
1935 int s;
1936
1937 s = splclock();
1938 simple_lock(µtime_slock);
1939
1940 *tvp = time;
1941 #ifdef notdef
1942 tvp->tv_usec += clkread();
1943 while (tvp->tv_usec >= 1000000) {
1944 tvp->tv_sec++;
1945 tvp->tv_usec -= 1000000;
1946 }
1947 #endif
1948 if (tvp->tv_sec == lasttime.tv_sec &&
1949 tvp->tv_usec <= lasttime.tv_usec &&
1950 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1951 tvp->tv_sec++;
1952 tvp->tv_usec -= 1000000;
1953 }
1954 lasttime = *tvp;
1955
1956 simple_unlock(µtime_slock);
1957 splx(s);
1958 }
1959
1960 /*
1961 * Wait "n" microseconds.
1962 */
1963 void
1964 delay(n)
1965 unsigned long n;
1966 {
1967 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1968
1969 if (n == 0)
1970 return;
1971
1972 pcc0 = alpha_rpcc() & 0xffffffffUL;
1973 cycles = 0;
1974 usec = 0;
1975
1976 while (usec <= n) {
1977 /*
1978 * Get the next CPU cycle count- assumes that we cannot
1979 * have had more than one 32 bit overflow.
1980 */
1981 pcc1 = alpha_rpcc() & 0xffffffffUL;
1982 if (pcc1 < pcc0)
1983 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1984 else
1985 curcycle = pcc1 - pcc0;
1986
1987 /*
1988 * We now have the number of processor cycles since we
1989 * last checked. Add the current cycle count to the
1990 * running total. If it's over cycles_per_usec, increment
1991 * the usec counter.
1992 */
1993 cycles += curcycle;
1994 while (cycles > cycles_per_usec) {
1995 usec++;
1996 cycles -= cycles_per_usec;
1997 }
1998 pcc0 = pcc1;
1999 }
2000 }
2001
2002 #if defined(COMPAT_OSF1) || 1 /* XXX */
2003 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2004 u_long));
2005 #endif
2006
2007 #if 1 /* XXX */
2008 void
2009 cpu_exec_ecoff_setregs(p, epp, stack)
2010 struct proc *p;
2011 struct exec_package *epp;
2012 u_long stack;
2013 {
2014 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2015
2016 setregs(p, epp, stack);
2017 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2018 }
2019
2020 /*
2021 * cpu_exec_ecoff_hook():
2022 * cpu-dependent ECOFF format hook for execve().
2023 *
2024 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2025 *
2026 */
2027 int
2028 cpu_exec_ecoff_probe(p, epp)
2029 struct proc *p;
2030 struct exec_package *epp;
2031 {
2032 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2033 int error;
2034
2035 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2036 error = 0;
2037 else
2038 error = ENOEXEC;
2039
2040 return (error);
2041 }
2042 #endif
2043
2044 int
2045 alpha_pa_access(pa)
2046 u_long pa;
2047 {
2048 int i;
2049
2050 for (i = 0; i < mem_cluster_cnt; i++) {
2051 if (pa < mem_clusters[i].start)
2052 continue;
2053 if ((pa - mem_clusters[i].start) >=
2054 (mem_clusters[i].size & ~PAGE_MASK))
2055 continue;
2056 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2057 }
2058
2059 /*
2060 * Address is not a memory address. If we're secure, disallow
2061 * access. Otherwise, grant read/write.
2062 */
2063 if (securelevel > 0)
2064 return (PROT_NONE);
2065 else
2066 return (PROT_READ | PROT_WRITE);
2067 }
2068
2069 /* XXX XXX BEGIN XXX XXX */
2070 paddr_t alpha_XXX_dmamap_or; /* XXX */
2071 /* XXX */
2072 paddr_t /* XXX */
2073 alpha_XXX_dmamap(v) /* XXX */
2074 vaddr_t v; /* XXX */
2075 { /* XXX */
2076 /* XXX */
2077 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2078 } /* XXX */
2079 /* XXX XXX END XXX XXX */
2080
2081 char *
2082 dot_conv(x)
2083 unsigned long x;
2084 {
2085 int i;
2086 char *xc;
2087 static int next;
2088 static char space[2][20];
2089
2090 xc = space[next ^= 1] + sizeof space[0];
2091 *--xc = '\0';
2092 for (i = 0;; ++i) {
2093 if (i && (i & 3) == 0)
2094 *--xc = '.';
2095 *--xc = "0123456789abcdef"[x & 0xf];
2096 x >>= 4;
2097 if (x == 0)
2098 break;
2099 }
2100 return xc;
2101 }
2102