machdep.c revision 1.235 1 /* $NetBSD: machdep.c,v 1.235 2001/04/20 00:10:17 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73
74 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75
76 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.235 2001/04/20 00:10:17 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/signalvar.h>
81 #include <sys/kernel.h>
82 #include <sys/map.h>
83 #include <sys/proc.h>
84 #include <sys/sched.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/device.h>
88 #include <sys/file.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <sys/core.h>
99 #include <sys/kcore.h>
100 #include <machine/kcore.h>
101
102 #include <sys/mount.h>
103 #include <sys/syscallargs.h>
104
105 #include <uvm/uvm_extern.h>
106 #include <sys/sysctl.h>
107
108 #include <dev/cons.h>
109
110 #include <machine/autoconf.h>
111 #include <machine/cpu.h>
112 #include <machine/reg.h>
113 #include <machine/rpb.h>
114 #include <machine/prom.h>
115 #include <machine/conf.h>
116 #include <machine/ieeefp.h>
117
118 #ifdef DDB
119 #include <machine/db_machdep.h>
120 #include <ddb/db_access.h>
121 #include <ddb/db_sym.h>
122 #include <ddb/db_extern.h>
123 #include <ddb/db_interface.h>
124 #endif
125
126 #ifdef KGDB
127 #include <sys/kgdb.h>
128 #endif
129
130 #ifdef DEBUG
131 #include <machine/sigdebug.h>
132 #endif
133
134 #include <machine/alpha.h>
135
136 vm_map_t exec_map = NULL;
137 vm_map_t mb_map = NULL;
138 vm_map_t phys_map = NULL;
139
140 caddr_t msgbufaddr;
141
142 int maxmem; /* max memory per process */
143
144 int totalphysmem; /* total amount of physical memory in system */
145 int physmem; /* physical memory used by NetBSD + some rsvd */
146 int resvmem; /* amount of memory reserved for PROM */
147 int unusedmem; /* amount of memory for OS that we don't use */
148 int unknownmem; /* amount of memory with an unknown use */
149
150 int cputype; /* system type, from the RPB */
151
152 int bootdev_debug = 0; /* patchable, or from DDB */
153
154 /*
155 * XXX We need an address to which we can assign things so that they
156 * won't be optimized away because we didn't use the value.
157 */
158 u_int32_t no_optimize;
159
160 /* the following is used externally (sysctl_hw) */
161 char machine[] = MACHINE; /* from <machine/param.h> */
162 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
163 char cpu_model[128];
164
165 struct user *proc0paddr;
166
167 /* Number of machine cycles per microsecond */
168 u_int64_t cycles_per_usec;
169
170 /* number of cpus in the box. really! */
171 int ncpus;
172
173 struct bootinfo_kernel bootinfo;
174
175 /* For built-in TCDS */
176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
178 #endif
179
180 struct platform platform;
181
182 #ifdef DDB
183 /* start and end of kernel symbol table */
184 void *ksym_start, *ksym_end;
185 #endif
186
187 /* for cpu_sysctl() */
188 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191
192 /*
193 * XXX This should be dynamically sized, but we have the chicken-egg problem!
194 * XXX it should also be larger than it is, because not all of the mddt
195 * XXX clusters end up being used for VM.
196 */
197 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
198 int mem_cluster_cnt;
199
200 int cpu_dump __P((void));
201 int cpu_dumpsize __P((void));
202 u_long cpu_dump_mempagecnt __P((void));
203 void dumpsys __P((void));
204 void identifycpu __P((void));
205 void printregs __P((struct reg *));
206
207 void
208 alpha_init(pfn, ptb, bim, bip, biv)
209 u_long pfn; /* first free PFN number */
210 u_long ptb; /* PFN of current level 1 page table */
211 u_long bim; /* bootinfo magic */
212 u_long bip; /* bootinfo pointer */
213 u_long biv; /* bootinfo version */
214 {
215 extern char kernel_text[], _end[];
216 struct mddt *mddtp;
217 struct mddt_cluster *memc;
218 int i, mddtweird;
219 struct vm_physseg *vps;
220 vaddr_t kernstart, kernend;
221 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
222 vsize_t size;
223 cpuid_t cpu_id;
224 struct cpu_info *ci;
225 char *p;
226 caddr_t v;
227 const char *bootinfo_msg;
228 const struct cpuinit *c;
229
230 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
231
232 /*
233 * Turn off interrupts (not mchecks) and floating point.
234 * Make sure the instruction and data streams are consistent.
235 */
236 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
237 alpha_pal_wrfen(0);
238 ALPHA_TBIA();
239 alpha_pal_imb();
240
241 cpu_id = cpu_number();
242
243 #if defined(MULTIPROCESSOR)
244 /*
245 * Set our SysValue to the address of our cpu_info structure.
246 * Secondary processors do this in their spinup trampoline.
247 */
248 alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
249 #endif
250
251 ci = curcpu();
252 ci->ci_cpuid = cpu_id;
253
254 /*
255 * Get critical system information (if possible, from the
256 * information provided by the boot program).
257 */
258 bootinfo_msg = NULL;
259 if (bim == BOOTINFO_MAGIC) {
260 if (biv == 0) { /* backward compat */
261 biv = *(u_long *)bip;
262 bip += 8;
263 }
264 switch (biv) {
265 case 1: {
266 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
267
268 bootinfo.ssym = v1p->ssym;
269 bootinfo.esym = v1p->esym;
270 /* hwrpb may not be provided by boot block in v1 */
271 if (v1p->hwrpb != NULL) {
272 bootinfo.hwrpb_phys =
273 ((struct rpb *)v1p->hwrpb)->rpb_phys;
274 bootinfo.hwrpb_size = v1p->hwrpbsize;
275 } else {
276 bootinfo.hwrpb_phys =
277 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
278 bootinfo.hwrpb_size =
279 ((struct rpb *)HWRPB_ADDR)->rpb_size;
280 }
281 bcopy(v1p->boot_flags, bootinfo.boot_flags,
282 min(sizeof v1p->boot_flags,
283 sizeof bootinfo.boot_flags));
284 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
285 min(sizeof v1p->booted_kernel,
286 sizeof bootinfo.booted_kernel));
287 /* booted dev not provided in bootinfo */
288 init_prom_interface((struct rpb *)
289 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
290 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
291 sizeof bootinfo.booted_dev);
292 break;
293 }
294 default:
295 bootinfo_msg = "unknown bootinfo version";
296 goto nobootinfo;
297 }
298 } else {
299 bootinfo_msg = "boot program did not pass bootinfo";
300 nobootinfo:
301 bootinfo.ssym = (u_long)_end;
302 bootinfo.esym = (u_long)_end;
303 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
304 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
305 init_prom_interface((struct rpb *)HWRPB_ADDR);
306 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
307 sizeof bootinfo.boot_flags);
308 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
309 sizeof bootinfo.booted_kernel);
310 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
311 sizeof bootinfo.booted_dev);
312 }
313
314 /*
315 * Initialize the kernel's mapping of the RPB. It's needed for
316 * lots of things.
317 */
318 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
319
320 #if defined(DEC_3000_300) || defined(DEC_3000_500)
321 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
322 hwrpb->rpb_type == ST_DEC_3000_500) {
323 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
324 sizeof(dec_3000_scsiid));
325 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
326 sizeof(dec_3000_scsifast));
327 }
328 #endif
329
330 /*
331 * Remember how many cycles there are per microsecond,
332 * so that we can use delay(). Round up, for safety.
333 */
334 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
335
336 /*
337 * Initalize the (temporary) bootstrap console interface, so
338 * we can use printf until the VM system starts being setup.
339 * The real console is initialized before then.
340 */
341 init_bootstrap_console();
342
343 /* OUTPUT NOW ALLOWED */
344
345 /* delayed from above */
346 if (bootinfo_msg)
347 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
348 bootinfo_msg, bim, bip, biv);
349
350 /* Initialize the trap vectors on the primary processor. */
351 trap_init();
352
353 /*
354 * Find out what hardware we're on, and do basic initialization.
355 */
356 cputype = hwrpb->rpb_type;
357 if (cputype < 0) {
358 /*
359 * At least some white-box systems have SRM which
360 * reports a systype that's the negative of their
361 * blue-box counterpart.
362 */
363 cputype = -cputype;
364 }
365 c = platform_lookup(cputype);
366 if (c == NULL) {
367 platform_not_supported();
368 /* NOTREACHED */
369 }
370 (*c->init)();
371 strcpy(cpu_model, platform.model);
372
373 /*
374 * Initalize the real console, so that the bootstrap console is
375 * no longer necessary.
376 */
377 (*platform.cons_init)();
378
379 #ifdef DIAGNOSTIC
380 /* Paranoid sanity checking */
381
382 /* We should always be running on the primary. */
383 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
384
385 /*
386 * On single-CPU systypes, the primary should always be CPU 0,
387 * except on Alpha 8200 systems where the CPU id is related
388 * to the VID, which is related to the Turbo Laser node id.
389 */
390 if (cputype != ST_DEC_21000)
391 assert(hwrpb->rpb_primary_cpu_id == 0);
392 #endif
393
394 /* NO MORE FIRMWARE ACCESS ALLOWED */
395 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
396 /*
397 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
398 * XXX pmap_uses_prom_console() evaluates to non-zero.)
399 */
400 #endif
401
402 /*
403 * find out this system's page size
404 */
405 PAGE_SIZE = hwrpb->rpb_page_size;
406 if (PAGE_SIZE != 8192)
407 panic("page size %d != 8192?!", PAGE_SIZE);
408
409 /*
410 * Initialize PAGE_SIZE-dependent variables.
411 */
412 uvm_setpagesize();
413
414 /*
415 * Find the beginning and end of the kernel (and leave a
416 * bit of space before the beginning for the bootstrap
417 * stack).
418 */
419 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
420 #ifdef DDB
421 ksym_start = (void *)bootinfo.ssym;
422 ksym_end = (void *)bootinfo.esym;
423 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
424 #else
425 kernend = (vaddr_t)round_page((vaddr_t)_end);
426 #endif
427
428 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
429 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
430
431 /*
432 * Find out how much memory is available, by looking at
433 * the memory cluster descriptors. This also tries to do
434 * its best to detect things things that have never been seen
435 * before...
436 */
437 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
438
439 /* MDDT SANITY CHECKING */
440 mddtweird = 0;
441 if (mddtp->mddt_cluster_cnt < 2) {
442 mddtweird = 1;
443 printf("WARNING: weird number of mem clusters: %lu\n",
444 mddtp->mddt_cluster_cnt);
445 }
446
447 #if 0
448 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
449 #endif
450
451 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
452 memc = &mddtp->mddt_clusters[i];
453 #if 0
454 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
455 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
456 #endif
457 totalphysmem += memc->mddt_pg_cnt;
458 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
459 mem_clusters[mem_cluster_cnt].start =
460 ptoa(memc->mddt_pfn);
461 mem_clusters[mem_cluster_cnt].size =
462 ptoa(memc->mddt_pg_cnt);
463 if (memc->mddt_usage & MDDT_mbz ||
464 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
465 memc->mddt_usage & MDDT_PALCODE)
466 mem_clusters[mem_cluster_cnt].size |=
467 PROT_READ;
468 else
469 mem_clusters[mem_cluster_cnt].size |=
470 PROT_READ | PROT_WRITE | PROT_EXEC;
471 mem_cluster_cnt++;
472 }
473
474 if (memc->mddt_usage & MDDT_mbz) {
475 mddtweird = 1;
476 printf("WARNING: mem cluster %d has weird "
477 "usage 0x%lx\n", i, memc->mddt_usage);
478 unknownmem += memc->mddt_pg_cnt;
479 continue;
480 }
481 if (memc->mddt_usage & MDDT_NONVOLATILE) {
482 /* XXX should handle these... */
483 printf("WARNING: skipping non-volatile mem "
484 "cluster %d\n", i);
485 unusedmem += memc->mddt_pg_cnt;
486 continue;
487 }
488 if (memc->mddt_usage & MDDT_PALCODE) {
489 resvmem += memc->mddt_pg_cnt;
490 continue;
491 }
492
493 /*
494 * We have a memory cluster available for system
495 * software use. We must determine if this cluster
496 * holds the kernel.
497 */
498 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
499 /*
500 * XXX If the kernel uses the PROM console, we only use the
501 * XXX memory after the kernel in the first system segment,
502 * XXX to avoid clobbering prom mapping, data, etc.
503 */
504 if (!pmap_uses_prom_console() || physmem == 0) {
505 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
506 physmem += memc->mddt_pg_cnt;
507 pfn0 = memc->mddt_pfn;
508 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
509 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
510 /*
511 * Must compute the location of the kernel
512 * within the segment.
513 */
514 #if 0
515 printf("Cluster %d contains kernel\n", i);
516 #endif
517 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
518 if (!pmap_uses_prom_console()) {
519 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
520 if (pfn0 < kernstartpfn) {
521 /*
522 * There is a chunk before the kernel.
523 */
524 #if 0
525 printf("Loading chunk before kernel: "
526 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
527 #endif
528 uvm_page_physload(pfn0, kernstartpfn,
529 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
530 }
531 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
532 }
533 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
534 if (kernendpfn < pfn1) {
535 /*
536 * There is a chunk after the kernel.
537 */
538 #if 0
539 printf("Loading chunk after kernel: "
540 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
541 #endif
542 uvm_page_physload(kernendpfn, pfn1,
543 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
544 }
545 } else {
546 /*
547 * Just load this cluster as one chunk.
548 */
549 #if 0
550 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
551 pfn0, pfn1);
552 #endif
553 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
554 VM_FREELIST_DEFAULT);
555 }
556 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
557 }
558 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
559 }
560
561 /*
562 * Dump out the MDDT if it looks odd...
563 */
564 if (mddtweird) {
565 printf("\n");
566 printf("complete memory cluster information:\n");
567 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
568 printf("mddt %d:\n", i);
569 printf("\tpfn %lx\n",
570 mddtp->mddt_clusters[i].mddt_pfn);
571 printf("\tcnt %lx\n",
572 mddtp->mddt_clusters[i].mddt_pg_cnt);
573 printf("\ttest %lx\n",
574 mddtp->mddt_clusters[i].mddt_pg_test);
575 printf("\tbva %lx\n",
576 mddtp->mddt_clusters[i].mddt_v_bitaddr);
577 printf("\tbpa %lx\n",
578 mddtp->mddt_clusters[i].mddt_p_bitaddr);
579 printf("\tbcksum %lx\n",
580 mddtp->mddt_clusters[i].mddt_bit_cksum);
581 printf("\tusage %lx\n",
582 mddtp->mddt_clusters[i].mddt_usage);
583 }
584 printf("\n");
585 }
586
587 if (totalphysmem == 0)
588 panic("can't happen: system seems to have no memory!");
589 maxmem = physmem;
590 #if 0
591 printf("totalphysmem = %d\n", totalphysmem);
592 printf("physmem = %d\n", physmem);
593 printf("resvmem = %d\n", resvmem);
594 printf("unusedmem = %d\n", unusedmem);
595 printf("unknownmem = %d\n", unknownmem);
596 #endif
597
598 /*
599 * Initialize error message buffer (at end of core).
600 */
601 {
602 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
603 vsize_t reqsz = sz;
604
605 vps = &vm_physmem[vm_nphysseg - 1];
606
607 /* shrink so that it'll fit in the last segment */
608 if ((vps->avail_end - vps->avail_start) < atop(sz))
609 sz = ptoa(vps->avail_end - vps->avail_start);
610
611 vps->end -= atop(sz);
612 vps->avail_end -= atop(sz);
613 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
614 initmsgbuf(msgbufaddr, sz);
615
616 /* Remove the last segment if it now has no pages. */
617 if (vps->start == vps->end)
618 vm_nphysseg--;
619
620 /* warn if the message buffer had to be shrunk */
621 if (sz != reqsz)
622 printf("WARNING: %ld bytes not available for msgbuf "
623 "in last cluster (%ld used)\n", reqsz, sz);
624
625 }
626
627 /*
628 * Init mapping for u page(s) for proc 0
629 */
630 proc0.p_addr = proc0paddr =
631 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
632
633 /*
634 * Allocate space for system data structures. These data structures
635 * are allocated here instead of cpu_startup() because physical
636 * memory is directly addressable. We don't have to map these into
637 * virtual address space.
638 */
639 size = (vsize_t)allocsys(NULL, NULL);
640 v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
641 if ((allocsys(v, NULL) - v) != size)
642 panic("alpha_init: table size inconsistency");
643
644 /*
645 * Initialize the virtual memory system, and set the
646 * page table base register in proc 0's PCB.
647 */
648 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
649 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
650
651 /*
652 * Initialize the rest of proc 0's PCB, and cache its physical
653 * address.
654 */
655 proc0.p_md.md_pcbpaddr =
656 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
657
658 /*
659 * Set the kernel sp, reserving space for an (empty) trapframe,
660 * and make proc0's trapframe pointer point to it for sanity.
661 */
662 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
663 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
664 proc0.p_md.md_tf =
665 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
666 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
667
668 /*
669 * Initialize the primary CPU's idle PCB to proc0's. In a
670 * MULTIPROCESSOR configuration, each CPU will later get
671 * its own idle PCB when autoconfiguration runs.
672 */
673 ci->ci_idle_pcb = &proc0paddr->u_pcb;
674 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
675
676 /* Indicate that proc0 has a CPU. */
677 proc0.p_cpu = ci;
678
679 /*
680 * Look at arguments passed to us and compute boothowto.
681 */
682
683 boothowto = RB_SINGLE;
684 #ifdef KADB
685 boothowto |= RB_KDB;
686 #endif
687 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
688 /*
689 * Note that we'd really like to differentiate case here,
690 * but the Alpha AXP Architecture Reference Manual
691 * says that we shouldn't.
692 */
693 switch (*p) {
694 case 'a': /* autoboot */
695 case 'A':
696 boothowto &= ~RB_SINGLE;
697 break;
698
699 #ifdef DEBUG
700 case 'c': /* crash dump immediately after autoconfig */
701 case 'C':
702 boothowto |= RB_DUMP;
703 break;
704 #endif
705
706 #if defined(KGDB) || defined(DDB)
707 case 'd': /* break into the kernel debugger ASAP */
708 case 'D':
709 boothowto |= RB_KDB;
710 break;
711 #endif
712
713 case 'h': /* always halt, never reboot */
714 case 'H':
715 boothowto |= RB_HALT;
716 break;
717
718 #if 0
719 case 'm': /* mini root present in memory */
720 case 'M':
721 boothowto |= RB_MINIROOT;
722 break;
723 #endif
724
725 case 'n': /* askname */
726 case 'N':
727 boothowto |= RB_ASKNAME;
728 break;
729
730 case 's': /* single-user (default, supported for sanity) */
731 case 'S':
732 boothowto |= RB_SINGLE;
733 break;
734
735 case 'q': /* quiet boot */
736 case 'Q':
737 boothowto |= AB_QUIET;
738 break;
739
740 case 'v': /* verbose boot */
741 case 'V':
742 boothowto |= AB_VERBOSE;
743 break;
744
745 case '-':
746 /*
747 * Just ignore this. It's not required, but it's
748 * common for it to be passed regardless.
749 */
750 break;
751
752 default:
753 printf("Unrecognized boot flag '%c'.\n", *p);
754 break;
755 }
756 }
757
758
759 /*
760 * Figure out the number of cpus in the box, from RPB fields.
761 * Really. We mean it.
762 */
763 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
764 struct pcs *pcsp;
765
766 pcsp = LOCATE_PCS(hwrpb, i);
767 if ((pcsp->pcs_flags & PCS_PP) != 0)
768 ncpus++;
769 }
770
771 /*
772 * Initialize debuggers, and break into them if appropriate.
773 */
774 #ifdef DDB
775 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
776 ksym_start, ksym_end);
777 #endif
778
779 if (boothowto & RB_KDB) {
780 #if defined(KGDB)
781 kgdb_debug_init = 1;
782 kgdb_connect(1);
783 #elif defined(DDB)
784 Debugger();
785 #endif
786 }
787
788 /*
789 * Figure out our clock frequency, from RPB fields.
790 */
791 hz = hwrpb->rpb_intr_freq >> 12;
792 if (!(60 <= hz && hz <= 10240)) {
793 hz = 1024;
794 #ifdef DIAGNOSTIC
795 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
796 hwrpb->rpb_intr_freq, hz);
797 #endif
798 }
799 }
800
801 void
802 consinit()
803 {
804
805 /*
806 * Everything related to console initialization is done
807 * in alpha_init().
808 */
809 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
810 printf("consinit: %susing prom console\n",
811 pmap_uses_prom_console() ? "" : "not ");
812 #endif
813 }
814
815 #include "pckbc.h"
816 #include "pckbd.h"
817 #if (NPCKBC > 0) && (NPCKBD == 0)
818
819 #include <dev/ic/pckbcvar.h>
820
821 /*
822 * This is called by the pbkbc driver if no pckbd is configured.
823 * On the i386, it is used to glue in the old, deprecated console
824 * code. On the Alpha, it does nothing.
825 */
826 int
827 pckbc_machdep_cnattach(kbctag, kbcslot)
828 pckbc_tag_t kbctag;
829 pckbc_slot_t kbcslot;
830 {
831
832 return (ENXIO);
833 }
834 #endif /* NPCKBC > 0 && NPCKBD == 0 */
835
836 void
837 cpu_startup()
838 {
839 register unsigned i;
840 int base, residual;
841 vaddr_t minaddr, maxaddr;
842 vsize_t size;
843 char pbuf[9];
844 #if defined(DEBUG)
845 extern int pmapdebug;
846 int opmapdebug = pmapdebug;
847
848 pmapdebug = 0;
849 #endif
850
851 /*
852 * Good {morning,afternoon,evening,night}.
853 */
854 printf(version);
855 identifycpu();
856 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
857 printf("total memory = %s\n", pbuf);
858 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
859 printf("(%s reserved for PROM, ", pbuf);
860 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
861 printf("%s used by NetBSD)\n", pbuf);
862 if (unusedmem) {
863 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
864 printf("WARNING: unused memory = %s\n", pbuf);
865 }
866 if (unknownmem) {
867 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
868 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
869 }
870
871 /*
872 * Allocate virtual address space for file I/O buffers.
873 * Note they are different than the array of headers, 'buf',
874 * and usually occupy more virtual memory than physical.
875 */
876 size = MAXBSIZE * nbuf;
877 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
878 NULL, UVM_UNKNOWN_OFFSET, 0,
879 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
880 UVM_ADV_NORMAL, 0)) != 0)
881 panic("startup: cannot allocate VM for buffers");
882 base = bufpages / nbuf;
883 residual = bufpages % nbuf;
884 for (i = 0; i < nbuf; i++) {
885 vsize_t curbufsize;
886 vaddr_t curbuf;
887 struct vm_page *pg;
888
889 /*
890 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
891 * that MAXBSIZE space, we allocate and map (base+1) pages
892 * for the first "residual" buffers, and then we allocate
893 * "base" pages for the rest.
894 */
895 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
896 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
897
898 while (curbufsize) {
899 pg = uvm_pagealloc(NULL, 0, NULL, 0);
900 if (pg == NULL)
901 panic("cpu_startup: not enough memory for "
902 "buffer cache");
903 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
904 VM_PROT_READ|VM_PROT_WRITE);
905 curbuf += PAGE_SIZE;
906 curbufsize -= PAGE_SIZE;
907 }
908 }
909 /*
910 * Allocate a submap for exec arguments. This map effectively
911 * limits the number of processes exec'ing at any time.
912 */
913 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
914 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
915
916 /*
917 * Allocate a submap for physio
918 */
919 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
920 VM_PHYS_SIZE, 0, FALSE, NULL);
921
922 /*
923 * No need to allocate an mbuf cluster submap. Mbuf clusters
924 * are allocated via the pool allocator, and we use K0SEG to
925 * map those pages.
926 */
927
928 #if defined(DEBUG)
929 pmapdebug = opmapdebug;
930 #endif
931 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
932 printf("avail memory = %s\n", pbuf);
933 #if 0
934 {
935 extern u_long pmap_pages_stolen;
936
937 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
938 printf("stolen memory for VM structures = %s\n", pbuf);
939 }
940 #endif
941 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
942 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
943
944 /*
945 * Set up buffers, so they can be used to read disk labels.
946 */
947 bufinit();
948
949 /*
950 * Set up the HWPCB so that it's safe to configure secondary
951 * CPUs.
952 */
953 hwrpb_primary_init();
954 }
955
956 /*
957 * Retrieve the platform name from the DSR.
958 */
959 const char *
960 alpha_dsr_sysname()
961 {
962 struct dsrdb *dsr;
963 const char *sysname;
964
965 /*
966 * DSR does not exist on early HWRPB versions.
967 */
968 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
969 return (NULL);
970
971 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
972 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
973 sizeof(u_int64_t)));
974 return (sysname);
975 }
976
977 /*
978 * Lookup the system specified system variation in the provided table,
979 * returning the model string on match.
980 */
981 const char *
982 alpha_variation_name(variation, avtp)
983 u_int64_t variation;
984 const struct alpha_variation_table *avtp;
985 {
986 int i;
987
988 for (i = 0; avtp[i].avt_model != NULL; i++)
989 if (avtp[i].avt_variation == variation)
990 return (avtp[i].avt_model);
991 return (NULL);
992 }
993
994 /*
995 * Generate a default platform name based for unknown system variations.
996 */
997 const char *
998 alpha_unknown_sysname()
999 {
1000 static char s[128]; /* safe size */
1001
1002 sprintf(s, "%s family, unknown model variation 0x%lx",
1003 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1004 return ((const char *)s);
1005 }
1006
1007 void
1008 identifycpu()
1009 {
1010 char *s;
1011 int i;
1012
1013 /*
1014 * print out CPU identification information.
1015 */
1016 printf("%s", cpu_model);
1017 for(s = cpu_model; *s; ++s)
1018 if(strncasecmp(s, "MHz", 3) == 0)
1019 goto skipMHz;
1020 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1021 skipMHz:
1022 printf(", s/n ");
1023 for (i = 0; i < 10; i++)
1024 printf("%c", hwrpb->rpb_ssn[i]);
1025 printf("\n");
1026 printf("%ld byte page size, %d processor%s.\n",
1027 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1028 #if 0
1029 /* this isn't defined for any systems that we run on? */
1030 printf("serial number 0x%lx 0x%lx\n",
1031 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1032
1033 /* and these aren't particularly useful! */
1034 printf("variation: 0x%lx, revision 0x%lx\n",
1035 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1036 #endif
1037 }
1038
1039 int waittime = -1;
1040 struct pcb dumppcb;
1041
1042 void
1043 cpu_reboot(howto, bootstr)
1044 int howto;
1045 char *bootstr;
1046 {
1047 #if defined(MULTIPROCESSOR)
1048 u_long cpu_id = cpu_number();
1049 u_long wait_mask = (1UL << cpu_id) |
1050 (1UL << hwrpb->rpb_primary_cpu_id);
1051 int i;
1052 #endif
1053
1054 /* If "always halt" was specified as a boot flag, obey. */
1055 if ((boothowto & RB_HALT) != 0)
1056 howto |= RB_HALT;
1057
1058 boothowto = howto;
1059
1060 /* If system is cold, just halt. */
1061 if (cold) {
1062 boothowto |= RB_HALT;
1063 goto haltsys;
1064 }
1065
1066 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1067 waittime = 0;
1068 vfs_shutdown();
1069 /*
1070 * If we've been adjusting the clock, the todr
1071 * will be out of synch; adjust it now.
1072 */
1073 resettodr();
1074 }
1075
1076 /* Disable interrupts. */
1077 splhigh();
1078
1079 #if defined(MULTIPROCESSOR)
1080 /*
1081 * Halt all other CPUs. If we're not the primary, the
1082 * primary will spin, waiting for us to halt.
1083 */
1084 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1085
1086 for (i = 0; i < 10000; i++) {
1087 alpha_mb();
1088 if (cpus_running == wait_mask)
1089 break;
1090 delay(1000);
1091 }
1092 alpha_mb();
1093 if (cpus_running != wait_mask)
1094 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1095 cpus_running);
1096 #endif /* MULTIPROCESSOR */
1097
1098 /* If rebooting and a dump is requested do it. */
1099 #if 0
1100 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1101 #else
1102 if (boothowto & RB_DUMP)
1103 #endif
1104 dumpsys();
1105
1106 haltsys:
1107
1108 /* run any shutdown hooks */
1109 doshutdownhooks();
1110
1111 #ifdef BOOTKEY
1112 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1113 cnpollc(1); /* for proper keyboard command handling */
1114 cngetc();
1115 cnpollc(0);
1116 printf("\n");
1117 #endif
1118
1119 /* Finally, powerdown/halt/reboot the system. */
1120 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1121 platform.powerdown != NULL) {
1122 (*platform.powerdown)();
1123 printf("WARNING: powerdown failed!\n");
1124 }
1125 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1126 #if defined(MULTIPROCESSOR)
1127 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1128 cpu_halt();
1129 else
1130 #endif
1131 prom_halt(boothowto & RB_HALT);
1132 /*NOTREACHED*/
1133 }
1134
1135 /*
1136 * These variables are needed by /sbin/savecore
1137 */
1138 u_long dumpmag = 0x8fca0101; /* magic number */
1139 int dumpsize = 0; /* pages */
1140 long dumplo = 0; /* blocks */
1141
1142 /*
1143 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1144 */
1145 int
1146 cpu_dumpsize()
1147 {
1148 int size;
1149
1150 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1151 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1152 if (roundup(size, dbtob(1)) != dbtob(1))
1153 return -1;
1154
1155 return (1);
1156 }
1157
1158 /*
1159 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1160 */
1161 u_long
1162 cpu_dump_mempagecnt()
1163 {
1164 u_long i, n;
1165
1166 n = 0;
1167 for (i = 0; i < mem_cluster_cnt; i++)
1168 n += atop(mem_clusters[i].size);
1169 return (n);
1170 }
1171
1172 /*
1173 * cpu_dump: dump machine-dependent kernel core dump headers.
1174 */
1175 int
1176 cpu_dump()
1177 {
1178 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1179 char buf[dbtob(1)];
1180 kcore_seg_t *segp;
1181 cpu_kcore_hdr_t *cpuhdrp;
1182 phys_ram_seg_t *memsegp;
1183 int i;
1184
1185 dump = bdevsw[major(dumpdev)].d_dump;
1186
1187 bzero(buf, sizeof buf);
1188 segp = (kcore_seg_t *)buf;
1189 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1190 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1191 ALIGN(sizeof(*cpuhdrp))];
1192
1193 /*
1194 * Generate a segment header.
1195 */
1196 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1197 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1198
1199 /*
1200 * Add the machine-dependent header info.
1201 */
1202 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1203 cpuhdrp->page_size = PAGE_SIZE;
1204 cpuhdrp->nmemsegs = mem_cluster_cnt;
1205
1206 /*
1207 * Fill in the memory segment descriptors.
1208 */
1209 for (i = 0; i < mem_cluster_cnt; i++) {
1210 memsegp[i].start = mem_clusters[i].start;
1211 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1212 }
1213
1214 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1215 }
1216
1217 /*
1218 * This is called by main to set dumplo and dumpsize.
1219 * Dumps always skip the first NBPG of disk space
1220 * in case there might be a disk label stored there.
1221 * If there is extra space, put dump at the end to
1222 * reduce the chance that swapping trashes it.
1223 */
1224 void
1225 cpu_dumpconf()
1226 {
1227 int nblks, dumpblks; /* size of dump area */
1228 int maj;
1229
1230 if (dumpdev == NODEV)
1231 goto bad;
1232 maj = major(dumpdev);
1233 if (maj < 0 || maj >= nblkdev)
1234 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1235 if (bdevsw[maj].d_psize == NULL)
1236 goto bad;
1237 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1238 if (nblks <= ctod(1))
1239 goto bad;
1240
1241 dumpblks = cpu_dumpsize();
1242 if (dumpblks < 0)
1243 goto bad;
1244 dumpblks += ctod(cpu_dump_mempagecnt());
1245
1246 /* If dump won't fit (incl. room for possible label), punt. */
1247 if (dumpblks > (nblks - ctod(1)))
1248 goto bad;
1249
1250 /* Put dump at end of partition */
1251 dumplo = nblks - dumpblks;
1252
1253 /* dumpsize is in page units, and doesn't include headers. */
1254 dumpsize = cpu_dump_mempagecnt();
1255 return;
1256
1257 bad:
1258 dumpsize = 0;
1259 return;
1260 }
1261
1262 /*
1263 * Dump the kernel's image to the swap partition.
1264 */
1265 #define BYTES_PER_DUMP NBPG
1266
1267 void
1268 dumpsys()
1269 {
1270 u_long totalbytesleft, bytes, i, n, memcl;
1271 u_long maddr;
1272 int psize;
1273 daddr_t blkno;
1274 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1275 int error;
1276
1277 /* Save registers. */
1278 savectx(&dumppcb);
1279
1280 if (dumpdev == NODEV)
1281 return;
1282
1283 /*
1284 * For dumps during autoconfiguration,
1285 * if dump device has already configured...
1286 */
1287 if (dumpsize == 0)
1288 cpu_dumpconf();
1289 if (dumplo <= 0) {
1290 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1291 minor(dumpdev));
1292 return;
1293 }
1294 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1295 minor(dumpdev), dumplo);
1296
1297 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1298 printf("dump ");
1299 if (psize == -1) {
1300 printf("area unavailable\n");
1301 return;
1302 }
1303
1304 /* XXX should purge all outstanding keystrokes. */
1305
1306 if ((error = cpu_dump()) != 0)
1307 goto err;
1308
1309 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1310 blkno = dumplo + cpu_dumpsize();
1311 dump = bdevsw[major(dumpdev)].d_dump;
1312 error = 0;
1313
1314 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1315 maddr = mem_clusters[memcl].start;
1316 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1317
1318 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1319
1320 /* Print out how many MBs we to go. */
1321 if ((totalbytesleft % (1024*1024)) == 0)
1322 printf("%ld ", totalbytesleft / (1024 * 1024));
1323
1324 /* Limit size for next transfer. */
1325 n = bytes - i;
1326 if (n > BYTES_PER_DUMP)
1327 n = BYTES_PER_DUMP;
1328
1329 error = (*dump)(dumpdev, blkno,
1330 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1331 if (error)
1332 goto err;
1333 maddr += n;
1334 blkno += btodb(n); /* XXX? */
1335
1336 /* XXX should look for keystrokes, to cancel. */
1337 }
1338 }
1339
1340 err:
1341 switch (error) {
1342
1343 case ENXIO:
1344 printf("device bad\n");
1345 break;
1346
1347 case EFAULT:
1348 printf("device not ready\n");
1349 break;
1350
1351 case EINVAL:
1352 printf("area improper\n");
1353 break;
1354
1355 case EIO:
1356 printf("i/o error\n");
1357 break;
1358
1359 case EINTR:
1360 printf("aborted from console\n");
1361 break;
1362
1363 case 0:
1364 printf("succeeded\n");
1365 break;
1366
1367 default:
1368 printf("error %d\n", error);
1369 break;
1370 }
1371 printf("\n\n");
1372 delay(1000);
1373 }
1374
1375 void
1376 frametoreg(framep, regp)
1377 struct trapframe *framep;
1378 struct reg *regp;
1379 {
1380
1381 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1382 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1383 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1384 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1385 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1386 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1387 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1388 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1389 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1390 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1391 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1392 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1393 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1394 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1395 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1396 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1397 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1398 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1399 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1400 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1401 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1402 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1403 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1404 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1405 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1406 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1407 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1408 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1409 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1410 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1411 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1412 regp->r_regs[R_ZERO] = 0;
1413 }
1414
1415 void
1416 regtoframe(regp, framep)
1417 struct reg *regp;
1418 struct trapframe *framep;
1419 {
1420
1421 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1422 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1423 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1424 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1425 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1426 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1427 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1428 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1429 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1430 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1431 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1432 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1433 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1434 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1435 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1436 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1437 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1438 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1439 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1440 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1441 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1442 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1443 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1444 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1445 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1446 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1447 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1448 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1449 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1450 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1451 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1452 /* ??? = regp->r_regs[R_ZERO]; */
1453 }
1454
1455 void
1456 printregs(regp)
1457 struct reg *regp;
1458 {
1459 int i;
1460
1461 for (i = 0; i < 32; i++)
1462 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1463 i & 1 ? "\n" : "\t");
1464 }
1465
1466 void
1467 regdump(framep)
1468 struct trapframe *framep;
1469 {
1470 struct reg reg;
1471
1472 frametoreg(framep, ®);
1473 reg.r_regs[R_SP] = alpha_pal_rdusp();
1474
1475 printf("REGISTERS:\n");
1476 printregs(®);
1477 }
1478
1479
1480 /*
1481 * Send an interrupt to process.
1482 */
1483 void
1484 sendsig(catcher, sig, mask, code)
1485 sig_t catcher;
1486 int sig;
1487 sigset_t *mask;
1488 u_long code;
1489 {
1490 struct proc *p = curproc;
1491 struct sigcontext *scp, ksc;
1492 struct trapframe *frame;
1493 int onstack, fsize, rndfsize;
1494
1495 frame = p->p_md.md_tf;
1496
1497 /* Do we need to jump onto the signal stack? */
1498 onstack =
1499 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1500 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1501
1502 /* Allocate space for the signal handler context. */
1503 fsize = sizeof(ksc);
1504 rndfsize = ((fsize + 15) / 16) * 16;
1505
1506 if (onstack)
1507 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1508 p->p_sigctx.ps_sigstk.ss_size);
1509 else
1510 scp = (struct sigcontext *)(alpha_pal_rdusp());
1511 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1512
1513 #ifdef DEBUG
1514 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1515 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1516 sig, &onstack, scp);
1517 #endif
1518
1519 /* Build stack frame for signal trampoline. */
1520 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1521 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1522
1523 /* Save register context. */
1524 frametoreg(frame, (struct reg *)ksc.sc_regs);
1525 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1526 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1527
1528 /* save the floating-point state, if necessary, then copy it. */
1529 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1530 fpusave_proc(p, 1);
1531 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1532 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1533 sizeof(struct fpreg));
1534 ksc.sc_fp_control = 0; /* XXX ? */
1535 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1536 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1537
1538 /* Save signal stack. */
1539 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1540
1541 /* Save signal mask. */
1542 ksc.sc_mask = *mask;
1543
1544 #ifdef COMPAT_13
1545 /*
1546 * XXX We always have to save an old style signal mask because
1547 * XXX we might be delivering a signal to a process which will
1548 * XXX escape from the signal in a non-standard way and invoke
1549 * XXX sigreturn() directly.
1550 */
1551 {
1552 /* Note: it's a long in the stack frame. */
1553 sigset13_t mask13;
1554
1555 native_sigset_to_sigset13(mask, &mask13);
1556 ksc.__sc_mask13 = mask13;
1557 }
1558 #endif
1559
1560 #ifdef COMPAT_OSF1
1561 /*
1562 * XXX Create an OSF/1-style sigcontext and associated goo.
1563 */
1564 #endif
1565
1566 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1567 /*
1568 * Process has trashed its stack; give it an illegal
1569 * instruction to halt it in its tracks.
1570 */
1571 #ifdef DEBUG
1572 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1573 printf("sendsig(%d): copyout failed on sig %d\n",
1574 p->p_pid, sig);
1575 #endif
1576 sigexit(p, SIGILL);
1577 /* NOTREACHED */
1578 }
1579 #ifdef DEBUG
1580 if (sigdebug & SDB_FOLLOW)
1581 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1582 scp, code);
1583 #endif
1584
1585 /* Set up the registers to return to sigcode. */
1586 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1587 frame->tf_regs[FRAME_A0] = sig;
1588 frame->tf_regs[FRAME_A1] = code;
1589 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1590 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1591 alpha_pal_wrusp((unsigned long)scp);
1592
1593 /* Remember that we're now on the signal stack. */
1594 if (onstack)
1595 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1596
1597 #ifdef DEBUG
1598 if (sigdebug & SDB_FOLLOW)
1599 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1600 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1601 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1602 printf("sendsig(%d): sig %d returns\n",
1603 p->p_pid, sig);
1604 #endif
1605 }
1606
1607 /*
1608 * System call to cleanup state after a signal
1609 * has been taken. Reset signal mask and
1610 * stack state from context left by sendsig (above).
1611 * Return to previous pc and psl as specified by
1612 * context left by sendsig. Check carefully to
1613 * make sure that the user has not modified the
1614 * psl to gain improper privileges or to cause
1615 * a machine fault.
1616 */
1617 /* ARGSUSED */
1618 int
1619 sys___sigreturn14(p, v, retval)
1620 struct proc *p;
1621 void *v;
1622 register_t *retval;
1623 {
1624 struct sys___sigreturn14_args /* {
1625 syscallarg(struct sigcontext *) sigcntxp;
1626 } */ *uap = v;
1627 struct sigcontext *scp, ksc;
1628
1629 /*
1630 * The trampoline code hands us the context.
1631 * It is unsafe to keep track of it ourselves, in the event that a
1632 * program jumps out of a signal handler.
1633 */
1634 scp = SCARG(uap, sigcntxp);
1635 #ifdef DEBUG
1636 if (sigdebug & SDB_FOLLOW)
1637 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1638 #endif
1639 if (ALIGN(scp) != (u_int64_t)scp)
1640 return (EINVAL);
1641
1642 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1643 return (EFAULT);
1644
1645 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1646 return (EINVAL);
1647
1648 /* Restore register context. */
1649 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1650 p->p_md.md_tf->tf_regs[FRAME_PS] =
1651 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1652
1653 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1654 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1655
1656 /* XXX ksc.sc_ownedfp ? */
1657 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1658 fpusave_proc(p, 0);
1659 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1660 sizeof(struct fpreg));
1661 /* XXX ksc.sc_fp_control ? */
1662
1663 /* Restore signal stack. */
1664 if (ksc.sc_onstack & SS_ONSTACK)
1665 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1666 else
1667 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1668
1669 /* Restore signal mask. */
1670 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1671
1672 #ifdef DEBUG
1673 if (sigdebug & SDB_FOLLOW)
1674 printf("sigreturn(%d): returns\n", p->p_pid);
1675 #endif
1676 return (EJUSTRETURN);
1677 }
1678
1679 /*
1680 * machine dependent system variables.
1681 */
1682 int
1683 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1684 int *name;
1685 u_int namelen;
1686 void *oldp;
1687 size_t *oldlenp;
1688 void *newp;
1689 size_t newlen;
1690 struct proc *p;
1691 {
1692 dev_t consdev;
1693
1694 /* all sysctl names at this level are terminal */
1695 if (namelen != 1)
1696 return (ENOTDIR); /* overloaded */
1697
1698 switch (name[0]) {
1699 case CPU_CONSDEV:
1700 if (cn_tab != NULL)
1701 consdev = cn_tab->cn_dev;
1702 else
1703 consdev = NODEV;
1704 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1705 sizeof consdev));
1706
1707 case CPU_ROOT_DEVICE:
1708 return (sysctl_rdstring(oldp, oldlenp, newp,
1709 root_device->dv_xname));
1710
1711 case CPU_UNALIGNED_PRINT:
1712 return (sysctl_int(oldp, oldlenp, newp, newlen,
1713 &alpha_unaligned_print));
1714
1715 case CPU_UNALIGNED_FIX:
1716 return (sysctl_int(oldp, oldlenp, newp, newlen,
1717 &alpha_unaligned_fix));
1718
1719 case CPU_UNALIGNED_SIGBUS:
1720 return (sysctl_int(oldp, oldlenp, newp, newlen,
1721 &alpha_unaligned_sigbus));
1722
1723 case CPU_BOOTED_KERNEL:
1724 return (sysctl_rdstring(oldp, oldlenp, newp,
1725 bootinfo.booted_kernel));
1726
1727 default:
1728 return (EOPNOTSUPP);
1729 }
1730 /* NOTREACHED */
1731 }
1732
1733 /*
1734 * Set registers on exec.
1735 */
1736 void
1737 setregs(p, pack, stack)
1738 register struct proc *p;
1739 struct exec_package *pack;
1740 u_long stack;
1741 {
1742 struct trapframe *tfp = p->p_md.md_tf;
1743 #ifdef DEBUG
1744 int i;
1745 #endif
1746
1747 #ifdef DEBUG
1748 /*
1749 * Crash and dump, if the user requested it.
1750 */
1751 if (boothowto & RB_DUMP)
1752 panic("crash requested by boot flags");
1753 #endif
1754
1755 #ifdef DEBUG
1756 for (i = 0; i < FRAME_SIZE; i++)
1757 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1758 #else
1759 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1760 #endif
1761 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1762 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1763 | FPCR_UNFD
1764 | FPCR_UNDZ
1765 | FPCR_DYN(FP_RN)
1766 | FPCR_OVFD
1767 | FPCR_DZED
1768 | FPCR_INVD
1769 | FPCR_DNZ;
1770 alpha_pal_wrusp(stack);
1771 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1772 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1773
1774 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1775 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1776 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1777 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1778 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1779
1780 p->p_md.md_flags &= ~MDP_FPUSED;
1781 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1782 fpusave_proc(p, 0);
1783 }
1784
1785 /*
1786 * Release the FPU.
1787 */
1788 void
1789 fpusave_cpu(struct cpu_info *ci, int save)
1790 {
1791 struct proc *p;
1792 #if defined(MULTIPROCESSOR)
1793 int s;
1794 #endif
1795
1796 KDASSERT(ci == curcpu());
1797
1798 #if defined(MULTIPROCESSOR)
1799 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1800 #endif
1801
1802 p = ci->ci_fpcurproc;
1803 if (p == NULL)
1804 goto out;
1805
1806 if (save) {
1807 alpha_pal_wrfen(1);
1808 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1809 }
1810
1811 alpha_pal_wrfen(0);
1812
1813 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1814
1815 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1816 ci->ci_fpcurproc = NULL;
1817
1818 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1819
1820 out:
1821 #if defined(MULTIPROCESSOR)
1822 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1823 #endif
1824 return;
1825 }
1826
1827 /*
1828 * Synchronize FP state for this process.
1829 */
1830 void
1831 fpusave_proc(struct proc *p, int save)
1832 {
1833 struct cpu_info *ci = curcpu();
1834 struct cpu_info *oci;
1835 #if defined(MULTIPROCESSOR)
1836 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1837 int s, spincount, hold_count;
1838 #endif
1839
1840 KDASSERT(p->p_addr != NULL);
1841 KDASSERT(p->p_flag & P_INMEM);
1842
1843 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1844
1845 oci = p->p_addr->u_pcb.pcb_fpcpu;
1846 if (oci == NULL) {
1847 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1848 return;
1849 }
1850
1851 #if defined(MULTIPROCESSOR)
1852 if (oci == ci) {
1853 KASSERT(ci->ci_fpcurproc == p);
1854 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1855 fpusave_cpu(ci, save);
1856 return;
1857 }
1858
1859 KASSERT(oci->ci_fpcurproc == p);
1860 alpha_send_ipi(oci->ci_cpuid, ipi);
1861 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1862
1863 /*
1864 * If we're holding the kernel lock, release it before
1865 * spinning.
1866 *
1867 * XXX Why do we have to do this?! We shouldn't need to!
1868 */
1869 if (p->p_flag & P_BIGLOCK)
1870 hold_count = spinlock_release_all(&kernel_lock);
1871
1872 spincount = 0;
1873 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1874 spincount++;
1875 delay(1000); /* XXX */
1876 if (spincount > 10000)
1877 panic("fpsave ipi didn't");
1878 }
1879
1880 /*
1881 * ...and reacquire it.
1882 */
1883 if (p->p_flag & P_BIGLOCK)
1884 spinlock_acquire_count(&kernel_lock, hold_count);
1885 #else
1886 KASSERT(ci->ci_fpcurproc == p);
1887 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1888 fpusave_cpu(ci, save);
1889 #endif /* MULTIPROCESSOR */
1890 }
1891
1892 /*
1893 * The following primitives manipulate the run queues. _whichqs tells which
1894 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1895 * into queues, Remrunqueue removes them from queues. The running process is
1896 * on no queue, other processes are on a queue related to p->p_priority,
1897 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1898 * available queues.
1899 */
1900 /*
1901 * setrunqueue(p)
1902 * proc *p;
1903 *
1904 * Call should be made at splclock(), and p->p_stat should be SRUN.
1905 */
1906
1907 void
1908 setrunqueue(p)
1909 struct proc *p;
1910 {
1911 int bit;
1912
1913 /* firewall: p->p_back must be NULL */
1914 if (p->p_back != NULL)
1915 panic("setrunqueue");
1916
1917 bit = p->p_priority >> 2;
1918 sched_whichqs |= (1 << bit);
1919 p->p_forw = (struct proc *)&sched_qs[bit];
1920 p->p_back = sched_qs[bit].ph_rlink;
1921 p->p_back->p_forw = p;
1922 sched_qs[bit].ph_rlink = p;
1923 }
1924
1925 /*
1926 * remrunqueue(p)
1927 *
1928 * Call should be made at splclock().
1929 */
1930 void
1931 remrunqueue(p)
1932 struct proc *p;
1933 {
1934 int bit;
1935
1936 bit = p->p_priority >> 2;
1937 if ((sched_whichqs & (1 << bit)) == 0)
1938 panic("remrunqueue");
1939
1940 p->p_back->p_forw = p->p_forw;
1941 p->p_forw->p_back = p->p_back;
1942 p->p_back = NULL; /* for firewall checking. */
1943
1944 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1945 sched_whichqs &= ~(1 << bit);
1946 }
1947
1948 /*
1949 * Return the best possible estimate of the time in the timeval
1950 * to which tvp points. Unfortunately, we can't read the hardware registers.
1951 * We guarantee that the time will be greater than the value obtained by a
1952 * previous call.
1953 *
1954 * XXX PLEASE REWRITE ME TO USE THE CYCLE COUNTER AND DEAL WITH
1955 * XXX MULTIPLE CPUs IN A SANE WAY!
1956 */
1957 void
1958 microtime(tvp)
1959 register struct timeval *tvp;
1960 {
1961 static struct timeval lasttime;
1962 static struct simplelock microtime_slock = SIMPLELOCK_INITIALIZER;
1963 int s;
1964
1965 s = splclock();
1966 simple_lock(µtime_slock);
1967
1968 *tvp = time;
1969 #ifdef notdef
1970 tvp->tv_usec += clkread();
1971 while (tvp->tv_usec >= 1000000) {
1972 tvp->tv_sec++;
1973 tvp->tv_usec -= 1000000;
1974 }
1975 #endif
1976 if (tvp->tv_sec == lasttime.tv_sec &&
1977 tvp->tv_usec <= lasttime.tv_usec &&
1978 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1979 tvp->tv_sec++;
1980 tvp->tv_usec -= 1000000;
1981 }
1982 lasttime = *tvp;
1983
1984 simple_unlock(µtime_slock);
1985 splx(s);
1986 }
1987
1988 /*
1989 * Wait "n" microseconds.
1990 */
1991 void
1992 delay(n)
1993 unsigned long n;
1994 {
1995 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1996
1997 if (n == 0)
1998 return;
1999
2000 pcc0 = alpha_rpcc() & 0xffffffffUL;
2001 cycles = 0;
2002 usec = 0;
2003
2004 while (usec <= n) {
2005 /*
2006 * Get the next CPU cycle count- assumes that we cannot
2007 * have had more than one 32 bit overflow.
2008 */
2009 pcc1 = alpha_rpcc() & 0xffffffffUL;
2010 if (pcc1 < pcc0)
2011 curcycle = (pcc1 + 0x100000000UL) - pcc0;
2012 else
2013 curcycle = pcc1 - pcc0;
2014
2015 /*
2016 * We now have the number of processor cycles since we
2017 * last checked. Add the current cycle count to the
2018 * running total. If it's over cycles_per_usec, increment
2019 * the usec counter.
2020 */
2021 cycles += curcycle;
2022 while (cycles > cycles_per_usec) {
2023 usec++;
2024 cycles -= cycles_per_usec;
2025 }
2026 pcc0 = pcc1;
2027 }
2028 }
2029
2030 #if defined(COMPAT_OSF1) || 1 /* XXX */
2031 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2032 u_long));
2033 #endif
2034
2035 #if 1 /* XXX */
2036 void
2037 cpu_exec_ecoff_setregs(p, epp, stack)
2038 struct proc *p;
2039 struct exec_package *epp;
2040 u_long stack;
2041 {
2042 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2043
2044 setregs(p, epp, stack);
2045 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2046 }
2047
2048 /*
2049 * cpu_exec_ecoff_hook():
2050 * cpu-dependent ECOFF format hook for execve().
2051 *
2052 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2053 *
2054 */
2055 int
2056 cpu_exec_ecoff_probe(p, epp)
2057 struct proc *p;
2058 struct exec_package *epp;
2059 {
2060 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2061 int error;
2062
2063 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2064 error = 0;
2065 else
2066 error = ENOEXEC;
2067
2068 return (error);
2069 }
2070 #endif
2071
2072 int
2073 alpha_pa_access(pa)
2074 u_long pa;
2075 {
2076 int i;
2077
2078 for (i = 0; i < mem_cluster_cnt; i++) {
2079 if (pa < mem_clusters[i].start)
2080 continue;
2081 if ((pa - mem_clusters[i].start) >=
2082 (mem_clusters[i].size & ~PAGE_MASK))
2083 continue;
2084 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2085 }
2086
2087 /*
2088 * Address is not a memory address. If we're secure, disallow
2089 * access. Otherwise, grant read/write.
2090 */
2091 if (securelevel > 0)
2092 return (PROT_NONE);
2093 else
2094 return (PROT_READ | PROT_WRITE);
2095 }
2096
2097 /* XXX XXX BEGIN XXX XXX */
2098 paddr_t alpha_XXX_dmamap_or; /* XXX */
2099 /* XXX */
2100 paddr_t /* XXX */
2101 alpha_XXX_dmamap(v) /* XXX */
2102 vaddr_t v; /* XXX */
2103 { /* XXX */
2104 /* XXX */
2105 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2106 } /* XXX */
2107 /* XXX XXX END XXX XXX */
2108
2109 char *
2110 dot_conv(x)
2111 unsigned long x;
2112 {
2113 int i;
2114 char *xc;
2115 static int next;
2116 static char space[2][20];
2117
2118 xc = space[next ^= 1] + sizeof space[0];
2119 *--xc = '\0';
2120 for (i = 0;; ++i) {
2121 if (i && (i & 3) == 0)
2122 *--xc = '.';
2123 *--xc = "0123456789abcdef"[x & 0xf];
2124 x >>= 4;
2125 if (x == 0)
2126 break;
2127 }
2128 return xc;
2129 }
2130