machdep.c revision 1.24 1 /* $NetBSD: machdep.c,v 1.24 1996/06/12 22:06:52 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #ifdef REAL_CLISTS
41 #include <sys/clist.h>
42 #endif
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/msgbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/tty.h>
49 #include <sys/user.h>
50 #include <sys/exec.h>
51 #include <sys/exec_ecoff.h>
52 #include <sys/sysctl.h>
53 #ifdef SYSVMSG
54 #include <sys/msg.h>
55 #endif
56 #ifdef SYSVSEM
57 #include <sys/sem.h>
58 #endif
59 #ifdef SYSVSHM
60 #include <sys/shm.h>
61 #endif
62
63 #include <sys/mount.h>
64 #include <sys/syscallargs.h>
65
66 #include <vm/vm_kern.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/cpu.h>
71 #include <machine/reg.h>
72 #include <machine/rpb.h>
73 #include <machine/prom.h>
74
75 #ifdef DEC_3000_500
76 #include <alpha/alpha/dec_3000_500.h>
77 #endif
78 #ifdef DEC_3000_300
79 #include <alpha/alpha/dec_3000_300.h>
80 #endif
81 #ifdef DEC_2100_A50
82 #include <alpha/alpha/dec_2100_a50.h>
83 #endif
84 #ifdef DEC_KN20AA
85 #include <alpha/alpha/dec_kn20aa.h>
86 #endif
87 #ifdef DEC_AXPPCI_33
88 #include <alpha/alpha/dec_axppci_33.h>
89 #endif
90 #ifdef DEC_21000
91 #include <alpha/alpha/dec_21000.h>
92 #endif
93
94 #include <net/netisr.h>
95 #include "ether.h"
96
97 #include "le_ioasic.h" /* for le_iomem creation */
98
99 vm_map_t buffer_map;
100
101 void dumpsys __P((void));
102
103 /*
104 * Declare these as initialized data so we can patch them.
105 */
106 int nswbuf = 0;
107 #ifdef NBUF
108 int nbuf = NBUF;
109 #else
110 int nbuf = 0;
111 #endif
112 #ifdef BUFPAGES
113 int bufpages = BUFPAGES;
114 #else
115 int bufpages = 0;
116 #endif
117 int msgbufmapped = 0; /* set when safe to use msgbuf */
118 int maxmem; /* max memory per process */
119
120 int totalphysmem; /* total amount of physical memory in system */
121 int physmem; /* physical memory used by NetBSD + some rsvd */
122 int firstusablepage; /* first usable memory page */
123 int lastusablepage; /* last usable memory page */
124 int resvmem; /* amount of memory reserved for PROM */
125 int unusedmem; /* amount of memory for OS that we don't use */
126 int unknownmem; /* amount of memory with an unknown use */
127
128 int cputype; /* system type, from the RPB */
129
130 /*
131 * XXX We need an address to which we can assign things so that they
132 * won't be optimized away because we didn't use the value.
133 */
134 u_int32_t no_optimize;
135
136 /* the following is used externally (sysctl_hw) */
137 char machine[] = "alpha";
138 char *cpu_model;
139 char *model_names[] = {
140 "UNKNOWN (0)",
141 "Alpha Demonstration Unit",
142 "DEC 4000 (\"Cobra\")",
143 "DEC 7000 (\"Ruby\")",
144 "DEC 3000/500 (\"Flamingo\") family",
145 "UNKNOWN (5)",
146 "DEC 2000/300 (\"Jensen\")",
147 "DEC 3000/300 (\"Pelican\")",
148 "UNKNOWN (8)",
149 "DEC 2100/A500 (\"Sable\")",
150 "AXPvme 64",
151 "AXPpci 33 (\"NoName\")",
152 "DEC 21000 (\"TurboLaser\")",
153 "DEC 2100/A50 (\"Avanti\") family",
154 "Mustang",
155 "DEC KN20AA",
156 "UNKNOWN (16)",
157 "DEC 1000 (\"Mikasa\")",
158 };
159 int nmodel_names = sizeof model_names/sizeof model_names[0];
160
161 struct user *proc0paddr;
162
163 /* Number of machine cycles per microsecond */
164 u_int64_t cycles_per_usec;
165
166 /* some memory areas for device DMA. "ick." */
167 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
168
169 /* Interrupt vectors (in locore) */
170 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
171
172 /* number of cpus in the box. really! */
173 int ncpus;
174
175 /* various CPU-specific functions. */
176 char *(*cpu_modelname) __P((void));
177 void (*cpu_consinit) __P((void));
178 char *cpu_iobus;
179
180 char *boot_file, *boot_flags, *boot_console, *boot_dev;
181
182 int
183 alpha_init(pfn, ptb, argc, argv, envp)
184 u_long pfn; /* first free PFN number */
185 u_long ptb; /* PFN of current level 1 page table */
186 u_long argc;
187 char *argv[], *envp[];
188 {
189 extern char _end[];
190 caddr_t start, v;
191 struct mddt *mddtp;
192 int i, mddtweird;
193 char *p;
194
195 /*
196 * Turn off interrupts and floating point.
197 * Make sure the instruction and data streams are consistent.
198 */
199 (void)splhigh();
200 pal_wrfen(0);
201 TBIA();
202 IMB();
203
204 /*
205 * get address of the restart block, while we the bootstrap
206 * mapping is still around.
207 */
208 hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
209
210 /*
211 * Remember how many cycles there are per microsecond,
212 * so that we can use delay(). Round up, for safety.
213 */
214 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
215
216 /*
217 * Init the PROM interface, so we can use printf
218 * until PROM mappings go away in consinit.
219 */
220 init_prom_interface();
221
222 /*
223 * Point interrupt/exception vectors to our own.
224 */
225 pal_wrent(XentInt, 0);
226 pal_wrent(XentArith, 1);
227 pal_wrent(XentMM, 2);
228 pal_wrent(XentIF, 3);
229 pal_wrent(XentUna, 4);
230 pal_wrent(XentSys, 5);
231
232 /*
233 * Find out how much memory is available, by looking at
234 * the memory cluster descriptors. This also tries to do
235 * its best to detect things things that have never been seen
236 * before...
237 *
238 * XXX Assumes that the first "system" cluster is the
239 * only one we can use. Is the second (etc.) system cluster
240 * (if one happens to exist) guaranteed to be contiguous? or...?
241 */
242 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
243
244 /*
245 * BEGIN MDDT WEIRDNESS CHECKING
246 */
247 mddtweird = 0;
248
249 #define cnt mddtp->mddt_cluster_cnt
250 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
251 if (cnt != 2 && cnt != 3) {
252 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
253 mddtweird = 1;
254 } else if (usage(0) != MDDT_PALCODE ||
255 usage(1) != MDDT_SYSTEM ||
256 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
257 mddtweird = 1;
258 printf("WARNING: %d mem clusters, but weird config\n", cnt);
259 }
260
261 for (i = 0; i < cnt; i++) {
262 if ((usage(i) & MDDT_mbz) != 0) {
263 printf("WARNING: mem cluster %d has weird usage %lx\n",
264 i, usage(i));
265 mddtweird = 1;
266 }
267 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
268 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
269 mddtweird = 1;
270 }
271 /* XXX other things to check? */
272 }
273 #undef cnt
274 #undef usage
275
276 if (mddtweird) {
277 printf("\n");
278 printf("complete memory cluster information:\n");
279 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
280 printf("mddt %d:\n", i);
281 printf("\tpfn %lx\n",
282 mddtp->mddt_clusters[i].mddt_pfn);
283 printf("\tcnt %lx\n",
284 mddtp->mddt_clusters[i].mddt_pg_cnt);
285 printf("\ttest %lx\n",
286 mddtp->mddt_clusters[i].mddt_pg_test);
287 printf("\tbva %lx\n",
288 mddtp->mddt_clusters[i].mddt_v_bitaddr);
289 printf("\tbpa %lx\n",
290 mddtp->mddt_clusters[i].mddt_p_bitaddr);
291 printf("\tbcksum %lx\n",
292 mddtp->mddt_clusters[i].mddt_bit_cksum);
293 printf("\tusage %lx\n",
294 mddtp->mddt_clusters[i].mddt_usage);
295 }
296 printf("\n");
297 }
298 /*
299 * END MDDT WEIRDNESS CHECKING
300 */
301
302 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
303 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
304 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
305 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
306 if ((usage(i) & MDDT_mbz) != 0)
307 unknownmem += pgcnt(i);
308 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
309 resvmem += pgcnt(i);
310 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
311 /*
312 * assumes that the system cluster listed is
313 * one we're in...
314 */
315 if (physmem != resvmem) {
316 physmem += pgcnt(i);
317 firstusablepage =
318 mddtp->mddt_clusters[i].mddt_pfn;
319 lastusablepage = firstusablepage + pgcnt(i) - 1;
320 } else
321 unusedmem += pgcnt(i);
322 }
323 #undef usage
324 #undef pgcnt
325 }
326 if (totalphysmem == 0)
327 panic("can't happen: system seems to have no memory!");
328 maxmem = physmem;
329
330 #if 0
331 printf("totalphysmem = %d\n", totalphysmem);
332 printf("physmem = %d\n", physmem);
333 printf("firstusablepage = %d\n", firstusablepage);
334 printf("lastusablepage = %d\n", lastusablepage);
335 printf("resvmem = %d\n", resvmem);
336 printf("unusedmem = %d\n", unusedmem);
337 printf("unknownmem = %d\n", unknownmem);
338 #endif
339
340 /*
341 * find out this CPU's page size
342 */
343 PAGE_SIZE = hwrpb->rpb_page_size;
344 if (PAGE_SIZE != 8192)
345 panic("page size %d != 8192?!", PAGE_SIZE);
346
347 v = (caddr_t)alpha_round_page(_end);
348 /*
349 * Init mapping for u page(s) for proc 0
350 */
351 start = v;
352 curproc->p_addr = proc0paddr = (struct user *)v;
353 v += UPAGES * NBPG;
354
355 /*
356 * Find out what hardware we're on, and remember its type name.
357 */
358 cputype = hwrpb->rpb_type;
359 switch (cputype) {
360 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
361 case ST_DEC_3000_500:
362 cpu_modelname = dec_3000_500_modelname;
363 cpu_consinit = dec_3000_500_consinit;
364 cpu_iobus = "tcasic";
365 break;
366 #endif
367
368 #ifdef DEC_3000_300
369 case ST_DEC_3000_300:
370 cpu_modelname = dec_3000_300_modelname;
371 cpu_consinit = dec_3000_300_consinit;
372 cpu_iobus = "tcasic";
373 break;
374 #endif
375
376 #ifdef DEC_2100_A50
377 case ST_DEC_2100_A50:
378 cpu_modelname = dec_2100_a50_modelname;
379 cpu_consinit = dec_2100_a50_consinit;
380 cpu_iobus = "apecs";
381 break;
382 #endif
383
384 #ifdef DEC_KN20AA
385 case ST_DEC_KN20AA:
386 cpu_modelname = dec_kn20aa_modelname;
387 cpu_consinit = dec_kn20aa_consinit;
388 cpu_iobus = "cia";
389 break;
390 #endif
391
392 #ifdef DEC_AXPPCI_33
393 case ST_DEC_AXPPCI_33:
394 cpu_modelname = dec_axppci_33_modelname;
395 cpu_consinit = dec_axppci_33_consinit;
396 cpu_iobus = "lca";
397 break;
398 #endif
399
400 #ifdef DEC_2000_300
401 case ST_DEC_2000_300:
402 cpu_modelname = dec_2000_300_modelname;
403 cpu_consinit = dec_2000_300_consinit;
404 cpu_iobus = "ibus";
405 XXX DEC 2000/300 NOT SUPPORTED
406 break;
407 #endif
408
409 #ifdef DEC_21000
410 case ST_DEC_21000:
411 cpu_modelname = dec_21000_modelname;
412 cpu_consinit = dec_21000_consinit;
413 cpu_iobus = "tlsb";
414 break;
415 #endif
416
417 default:
418 if (cputype > nmodel_names)
419 panic("Unknown system type %d", cputype);
420 else
421 panic("Support for %s system type not in kernel.",
422 model_names[cputype]);
423 }
424
425 cpu_model = (*cpu_modelname)();
426 if (cpu_model == NULL)
427 cpu_model = model_names[cputype];
428
429 #if NLE_IOASIC > 0
430 /*
431 * Grab 128K at the top of physical memory for the lance chip
432 * on machines where it does dma through the I/O ASIC.
433 * It must be physically contiguous and aligned on a 128K boundary.
434 *
435 * Note that since this is conditional on the presence of
436 * IOASIC-attached 'le' units in the kernel config, the
437 * message buffer may move on these systems. This shouldn't
438 * be a problem, because once people have a kernel config that
439 * they use, they're going to stick with it.
440 */
441 if (cputype == ST_DEC_3000_500 ||
442 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
443 lastusablepage -= btoc(128 * 1024);
444 le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
445 }
446 #endif /* NLE_IOASIC */
447
448 /*
449 * Initialize error message buffer (at end of core).
450 */
451 lastusablepage -= btoc(sizeof (struct msgbuf));
452 msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
453 msgbufmapped = 1;
454
455 /*
456 * Allocate space for system data structures.
457 * The first available kernel virtual address is in "v".
458 * As pages of kernel virtual memory are allocated, "v" is incremented.
459 *
460 * These data structures are allocated here instead of cpu_startup()
461 * because physical memory is directly addressable. We don't have
462 * to map these into virtual address space.
463 */
464 #define valloc(name, type, num) \
465 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
466 #define valloclim(name, type, num, lim) \
467 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
468 #ifdef REAL_CLISTS
469 valloc(cfree, struct cblock, nclist);
470 #endif
471 valloc(callout, struct callout, ncallout);
472 valloc(swapmap, struct map, nswapmap = maxproc * 2);
473 #ifdef SYSVSHM
474 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
475 #endif
476 #ifdef SYSVSEM
477 valloc(sema, struct semid_ds, seminfo.semmni);
478 valloc(sem, struct sem, seminfo.semmns);
479 /* This is pretty disgusting! */
480 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
481 #endif
482 #ifdef SYSVMSG
483 valloc(msgpool, char, msginfo.msgmax);
484 valloc(msgmaps, struct msgmap, msginfo.msgseg);
485 valloc(msghdrs, struct msg, msginfo.msgtql);
486 valloc(msqids, struct msqid_ds, msginfo.msgmni);
487 #endif
488
489 /*
490 * Determine how many buffers to allocate.
491 * We allocate the BSD standard of 10% of memory for the first
492 * 2 Meg, and 5% of remaining memory for buffer space. Insure a
493 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
494 * headers as file i/o buffers.
495 */
496 if (bufpages == 0)
497 bufpages = (btoc(2 * 1024 * 1024) + physmem) /
498 (20 * CLSIZE);
499 if (nbuf == 0) {
500 nbuf = bufpages;
501 if (nbuf < 16)
502 nbuf = 16;
503 }
504 if (nswbuf == 0) {
505 nswbuf = (nbuf / 2) &~ 1; /* force even */
506 if (nswbuf > 256)
507 nswbuf = 256; /* sanity */
508 }
509 valloc(swbuf, struct buf, nswbuf);
510 valloc(buf, struct buf, nbuf);
511
512 /*
513 * Clear allocated memory.
514 */
515 bzero(start, v - start);
516
517 /*
518 * Initialize the virtual memory system, and set the
519 * page table base register in proc 0's PCB.
520 */
521 pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
522
523 /*
524 * Initialize the rest of proc 0's PCB, and cache its physical
525 * address.
526 */
527 proc0.p_md.md_pcbpaddr =
528 (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
529
530 /*
531 * Set the kernel sp, reserving space for an (empty) trapframe,
532 * and make proc0's trapframe pointer point to it for sanity.
533 */
534 proc0paddr->u_pcb.pcb_ksp =
535 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
536 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
537
538 /*
539 * figure out what arguments we have
540 */
541 switch (argc) {
542 default:
543 printf("weird number of arguments from boot: %d\n", argc);
544 if (argc < 1)
545 break;
546 /* FALLTHRU */
547 case 4:
548 boot_dev = argv[3];
549 /* FALLTHRU */
550 case 3:
551 boot_console = argv[2];
552 /* FALLTHRU */
553 case 2:
554 boot_flags = argv[1];
555 /* FALLTHRU */
556 case 1:
557 boot_file = argv[0];
558 /* FALLTHRU */
559 }
560
561 /*
562 * Look at arguments passed to us and compute boothowto.
563 */
564 boothowto = RB_SINGLE;
565 #ifdef KADB
566 boothowto |= RB_KDB;
567 #endif
568 for (p = boot_flags; p && *p != '\0'; p++) {
569 switch (*p) {
570 case 'a': /* askname */
571 boothowto |= RB_ASKNAME;
572 break;
573
574 case 'A': /* DEC's notion of autoboot */
575 boothowto &= ~RB_SINGLE;
576 break;
577
578 #if 0
579 case 'm': /* mini root present in memory */
580 boothowto |= RB_MINIROOT;
581 break;
582 #endif
583 }
584 }
585
586 /*
587 * Figure out the number of cpus in the box, from RPB fields.
588 * Really. We mean it.
589 */
590 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
591 struct pcs *pcsp;
592
593 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
594 (i * hwrpb->rpb_pcs_size));
595 if ((pcsp->pcs_flags & PCS_PP) != 0)
596 ncpus++;
597 }
598
599 return (0);
600 }
601
602 void
603 consinit()
604 {
605
606 (*cpu_consinit)();
607 pmap_unmap_prom();
608 }
609
610 void
611 cpu_startup()
612 {
613 register unsigned i;
614 register caddr_t v;
615 int base, residual;
616 vm_offset_t minaddr, maxaddr;
617 vm_size_t size;
618 #ifdef DEBUG
619 extern int pmapdebug;
620 int opmapdebug = pmapdebug;
621
622 pmapdebug = 0;
623 #endif
624
625 /*
626 * Good {morning,afternoon,evening,night}.
627 */
628 printf(version);
629 identifycpu();
630 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
631 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
632 if (unusedmem)
633 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
634 if (unknownmem)
635 printf("WARNING: %d bytes of memory with unknown purpose\n",
636 ctob(unknownmem));
637
638 /*
639 * Allocate virtual address space for file I/O buffers.
640 * Note they are different than the array of headers, 'buf',
641 * and usually occupy more virtual memory than physical.
642 */
643 size = MAXBSIZE * nbuf;
644 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
645 &maxaddr, size, TRUE);
646 minaddr = (vm_offset_t)buffers;
647 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
648 &minaddr, size, FALSE) != KERN_SUCCESS)
649 panic("startup: cannot allocate buffers");
650 base = bufpages / nbuf;
651 residual = bufpages % nbuf;
652 for (i = 0; i < nbuf; i++) {
653 vm_size_t curbufsize;
654 vm_offset_t curbuf;
655
656 /*
657 * First <residual> buffers get (base+1) physical pages
658 * allocated for them. The rest get (base) physical pages.
659 *
660 * The rest of each buffer occupies virtual space,
661 * but has no physical memory allocated for it.
662 */
663 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
664 curbufsize = CLBYTES * (i < residual ? base+1 : base);
665 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
666 vm_map_simplify(buffer_map, curbuf);
667 }
668 /*
669 * Allocate a submap for exec arguments. This map effectively
670 * limits the number of processes exec'ing at any time.
671 */
672 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
673 16 * NCARGS, TRUE);
674
675 /*
676 * Allocate a submap for physio
677 */
678 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
679 VM_PHYS_SIZE, TRUE);
680
681 /*
682 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
683 * we use the more space efficient malloc in place of kmem_alloc.
684 */
685 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
686 M_MBUF, M_NOWAIT);
687 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
688 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
689 VM_MBUF_SIZE, FALSE);
690 /*
691 * Initialize callouts
692 */
693 callfree = callout;
694 for (i = 1; i < ncallout; i++)
695 callout[i-1].c_next = &callout[i];
696 callout[i-1].c_next = NULL;
697
698 #ifdef DEBUG
699 pmapdebug = opmapdebug;
700 #endif
701 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
702 printf("using %ld buffers containing %ld bytes of memory\n",
703 (long)nbuf, (long)(bufpages * CLBYTES));
704
705 /*
706 * Set up buffers, so they can be used to read disk labels.
707 */
708 bufinit();
709
710 /*
711 * Configure the system.
712 */
713 configure();
714 }
715
716 identifycpu()
717 {
718
719 /*
720 * print out CPU identification information.
721 */
722 printf("%s, %dMHz\n", cpu_model,
723 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
724 printf("%d byte page size, %d processor%s.\n",
725 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
726 #if 0
727 /* this isn't defined for any systems that we run on? */
728 printf("serial number 0x%lx 0x%lx\n",
729 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
730
731 /* and these aren't particularly useful! */
732 printf("variation: 0x%lx, revision 0x%lx\n",
733 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
734 #endif
735 }
736
737 int waittime = -1;
738 struct pcb dumppcb;
739
740 void
741 boot(howto)
742 int howto;
743 {
744 extern int cold;
745
746 /* If system is cold, just halt. */
747 if (cold) {
748 howto |= RB_HALT;
749 goto haltsys;
750 }
751
752 boothowto = howto;
753 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
754 waittime = 0;
755 vfs_shutdown();
756 /*
757 * If we've been adjusting the clock, the todr
758 * will be out of synch; adjust it now.
759 */
760 resettodr();
761 }
762
763 /* Disable interrupts. */
764 splhigh();
765
766 /* If rebooting and a dump is requested do it. */
767 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
768 savectx(&dumppcb, 0);
769 dumpsys();
770 }
771
772 haltsys:
773
774 /* run any shutdown hooks */
775 doshutdownhooks();
776
777 #ifdef BOOTKEY
778 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
779 cngetc();
780 printf("\n");
781 #endif
782
783 /* Finally, halt/reboot the system. */
784 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
785 prom_halt(howto & RB_HALT);
786 /*NOTREACHED*/
787 }
788
789 /*
790 * These variables are needed by /sbin/savecore
791 */
792 u_long dumpmag = 0x8fca0101; /* magic number */
793 int dumpsize = 0; /* pages */
794 long dumplo = 0; /* blocks */
795
796 /*
797 * This is called by configure to set dumplo and dumpsize.
798 * Dumps always skip the first CLBYTES of disk space
799 * in case there might be a disk label stored there.
800 * If there is extra space, put dump at the end to
801 * reduce the chance that swapping trashes it.
802 */
803 void
804 dumpconf()
805 {
806 int nblks; /* size of dump area */
807 int maj;
808
809 if (dumpdev == NODEV)
810 return;
811 maj = major(dumpdev);
812 if (maj < 0 || maj >= nblkdev)
813 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
814 if (bdevsw[maj].d_psize == NULL)
815 return;
816 nblks = (*bdevsw[maj].d_psize)(dumpdev);
817 if (nblks <= ctod(1))
818 return;
819
820 /* XXX XXX XXX STARTING MEMORY LOCATION */
821 dumpsize = physmem;
822
823 /* Always skip the first CLBYTES, in case there is a label there. */
824 if (dumplo < ctod(1))
825 dumplo = ctod(1);
826
827 /* Put dump at end of partition, and make it fit. */
828 if (dumpsize > dtoc(nblks - dumplo))
829 dumpsize = dtoc(nblks - dumplo);
830 if (dumplo < nblks - ctod(dumpsize))
831 dumplo = nblks - ctod(dumpsize);
832 }
833
834 /*
835 * Doadump comes here after turning off memory management and
836 * getting on the dump stack, either when called above, or by
837 * the auto-restart code.
838 */
839 void
840 dumpsys()
841 {
842
843 msgbufmapped = 0;
844 if (dumpdev == NODEV)
845 return;
846 if (dumpsize == 0) {
847 dumpconf();
848 if (dumpsize == 0)
849 return;
850 }
851 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
852
853 printf("dump ");
854 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
855
856 case ENXIO:
857 printf("device bad\n");
858 break;
859
860 case EFAULT:
861 printf("device not ready\n");
862 break;
863
864 case EINVAL:
865 printf("area improper\n");
866 break;
867
868 case EIO:
869 printf("i/o error\n");
870 break;
871
872 case EINTR:
873 printf("aborted from console\n");
874 break;
875
876 default:
877 printf("succeeded\n");
878 break;
879 }
880 printf("\n\n");
881 delay(1000);
882 }
883
884 void
885 frametoreg(framep, regp)
886 struct trapframe *framep;
887 struct reg *regp;
888 {
889
890 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
891 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
892 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
893 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
894 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
895 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
896 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
897 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
898 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
899 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
900 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
901 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
902 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
903 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
904 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
905 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
906 regp->r_regs[R_A0] = framep->tf_a0;
907 regp->r_regs[R_A1] = framep->tf_a1;
908 regp->r_regs[R_A2] = framep->tf_a2;
909 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
910 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
911 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
912 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
913 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
914 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
915 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
916 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
917 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
918 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
919 regp->r_regs[R_GP] = framep->tf_gp;
920 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
921 regp->r_regs[R_ZERO] = 0;
922 }
923
924 void
925 regtoframe(regp, framep)
926 struct reg *regp;
927 struct trapframe *framep;
928 {
929
930 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
931 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
932 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
933 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
934 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
935 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
936 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
937 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
938 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
939 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
940 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
941 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
942 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
943 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
944 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
945 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
946 framep->tf_a0 = regp->r_regs[R_A0];
947 framep->tf_a1 = regp->r_regs[R_A1];
948 framep->tf_a2 = regp->r_regs[R_A2];
949 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
950 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
951 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
952 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
953 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
954 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
955 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
956 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
957 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
958 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
959 framep->tf_gp = regp->r_regs[R_GP];
960 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
961 /* ??? = regp->r_regs[R_ZERO]; */
962 }
963
964 void
965 printregs(regp)
966 struct reg *regp;
967 {
968 int i;
969
970 for (i = 0; i < 32; i++)
971 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
972 i & 1 ? "\n" : "\t");
973 }
974
975 void
976 regdump(framep)
977 struct trapframe *framep;
978 {
979 struct reg reg;
980
981 frametoreg(framep, ®);
982 printf("REGISTERS:\n");
983 printregs(®);
984 }
985
986 #ifdef DEBUG
987 int sigdebug = 0;
988 int sigpid = 0;
989 #define SDB_FOLLOW 0x01
990 #define SDB_KSTACK 0x02
991 #endif
992
993 /*
994 * Send an interrupt to process.
995 */
996 void
997 sendsig(catcher, sig, mask, code)
998 sig_t catcher;
999 int sig, mask;
1000 u_long code;
1001 {
1002 struct proc *p = curproc;
1003 struct sigcontext *scp, ksc;
1004 struct trapframe *frame;
1005 struct sigacts *psp = p->p_sigacts;
1006 int oonstack, fsize, rndfsize;
1007 extern char sigcode[], esigcode[];
1008 extern struct proc *fpcurproc;
1009
1010 frame = p->p_md.md_tf;
1011 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1012 fsize = sizeof ksc;
1013 rndfsize = ((fsize + 15) / 16) * 16;
1014 /*
1015 * Allocate and validate space for the signal handler
1016 * context. Note that if the stack is in P0 space, the
1017 * call to grow() is a nop, and the useracc() check
1018 * will fail if the process has not already allocated
1019 * the space with a `brk'.
1020 */
1021 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1022 (psp->ps_sigonstack & sigmask(sig))) {
1023 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1024 psp->ps_sigstk.ss_size - rndfsize);
1025 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1026 } else
1027 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1028 rndfsize);
1029 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1030 (void)grow(p, (u_long)scp);
1031 #ifdef DEBUG
1032 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1033 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1034 sig, &oonstack, scp);
1035 #endif
1036 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1037 #ifdef DEBUG
1038 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1039 printf("sendsig(%d): useracc failed on sig %d\n",
1040 p->p_pid, sig);
1041 #endif
1042 /*
1043 * Process has trashed its stack; give it an illegal
1044 * instruction to halt it in its tracks.
1045 */
1046 SIGACTION(p, SIGILL) = SIG_DFL;
1047 sig = sigmask(SIGILL);
1048 p->p_sigignore &= ~sig;
1049 p->p_sigcatch &= ~sig;
1050 p->p_sigmask &= ~sig;
1051 psignal(p, SIGILL);
1052 return;
1053 }
1054
1055 /*
1056 * Build the signal context to be used by sigreturn.
1057 */
1058 ksc.sc_onstack = oonstack;
1059 ksc.sc_mask = mask;
1060 ksc.sc_pc = frame->tf_pc;
1061 ksc.sc_ps = frame->tf_ps;
1062
1063 /* copy the registers. */
1064 frametoreg(frame, (struct reg *)ksc.sc_regs);
1065 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1066
1067 /* save the floating-point state, if necessary, then copy it. */
1068 if (p == fpcurproc) {
1069 pal_wrfen(1);
1070 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1071 pal_wrfen(0);
1072 fpcurproc = NULL;
1073 }
1074 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1075 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1076 sizeof(struct fpreg));
1077 ksc.sc_fp_control = 0; /* XXX ? */
1078 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1079 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1080
1081
1082 #ifdef COMPAT_OSF1
1083 /*
1084 * XXX Create an OSF/1-style sigcontext and associated goo.
1085 */
1086 #endif
1087
1088 /*
1089 * copy the frame out to userland.
1090 */
1091 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1092 #ifdef DEBUG
1093 if (sigdebug & SDB_FOLLOW)
1094 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1095 scp, code);
1096 #endif
1097
1098 /*
1099 * Set up the registers to return to sigcode.
1100 */
1101 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1102 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1103 frame->tf_a0 = sig;
1104 frame->tf_a1 = code;
1105 frame->tf_a2 = (u_int64_t)scp;
1106 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1107
1108 #ifdef DEBUG
1109 if (sigdebug & SDB_FOLLOW)
1110 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1111 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1112 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1113 printf("sendsig(%d): sig %d returns\n",
1114 p->p_pid, sig);
1115 #endif
1116 }
1117
1118 /*
1119 * System call to cleanup state after a signal
1120 * has been taken. Reset signal mask and
1121 * stack state from context left by sendsig (above).
1122 * Return to previous pc and psl as specified by
1123 * context left by sendsig. Check carefully to
1124 * make sure that the user has not modified the
1125 * psl to gain improper priviledges or to cause
1126 * a machine fault.
1127 */
1128 /* ARGSUSED */
1129 int
1130 sys_sigreturn(p, v, retval)
1131 struct proc *p;
1132 void *v;
1133 register_t *retval;
1134 {
1135 struct sys_sigreturn_args /* {
1136 syscallarg(struct sigcontext *) sigcntxp;
1137 } */ *uap = v;
1138 struct sigcontext *scp, ksc;
1139 extern struct proc *fpcurproc;
1140
1141 scp = SCARG(uap, sigcntxp);
1142 #ifdef DEBUG
1143 if (sigdebug & SDB_FOLLOW)
1144 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1145 #endif
1146
1147 if (ALIGN(scp) != (u_int64_t)scp)
1148 return (EINVAL);
1149
1150 /*
1151 * Test and fetch the context structure.
1152 * We grab it all at once for speed.
1153 */
1154 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1155 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1156 return (EINVAL);
1157
1158 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1159 return (EINVAL);
1160 /*
1161 * Restore the user-supplied information
1162 */
1163 if (ksc.sc_onstack)
1164 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1165 else
1166 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1167 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1168
1169 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1170 p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1171
1172 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1173
1174 /* XXX ksc.sc_ownedfp ? */
1175 if (p == fpcurproc)
1176 fpcurproc = NULL;
1177 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1178 sizeof(struct fpreg));
1179 /* XXX ksc.sc_fp_control ? */
1180
1181 #ifdef DEBUG
1182 if (sigdebug & SDB_FOLLOW)
1183 printf("sigreturn(%d): returns\n", p->p_pid);
1184 #endif
1185 return (EJUSTRETURN);
1186 }
1187
1188 /*
1189 * machine dependent system variables.
1190 */
1191 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1192 int *name;
1193 u_int namelen;
1194 void *oldp;
1195 size_t *oldlenp;
1196 void *newp;
1197 size_t newlen;
1198 struct proc *p;
1199 {
1200 dev_t consdev;
1201
1202 /* all sysctl names at this level are terminal */
1203 if (namelen != 1)
1204 return (ENOTDIR); /* overloaded */
1205
1206 switch (name[0]) {
1207 case CPU_CONSDEV:
1208 if (cn_tab != NULL)
1209 consdev = cn_tab->cn_dev;
1210 else
1211 consdev = NODEV;
1212 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1213 sizeof consdev));
1214 default:
1215 return (EOPNOTSUPP);
1216 }
1217 /* NOTREACHED */
1218 }
1219
1220 /*
1221 * Set registers on exec.
1222 */
1223 void
1224 setregs(p, pack, stack, retval)
1225 register struct proc *p;
1226 struct exec_package *pack;
1227 u_long stack;
1228 register_t *retval;
1229 {
1230 struct trapframe *tfp = p->p_md.md_tf;
1231 int i;
1232 extern struct proc *fpcurproc;
1233
1234 #ifdef DEBUG
1235 for (i = 0; i < FRAME_NSAVEREGS; i++)
1236 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1237 tfp->tf_gp = 0xbabefacedeadbeef;
1238 tfp->tf_a0 = 0xbabefacedeadbeef;
1239 tfp->tf_a1 = 0xbabefacedeadbeef;
1240 tfp->tf_a2 = 0xbabefacedeadbeef;
1241 #else
1242 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1243 tfp->tf_gp = 0;
1244 tfp->tf_a0 = 0;
1245 tfp->tf_a1 = 0;
1246 tfp->tf_a2 = 0;
1247 #endif
1248 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1249 #define FP_RN 2 /* XXX */
1250 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1251 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1252 tfp->tf_ps = PSL_USERSET;
1253 tfp->tf_pc = pack->ep_entry & ~3;
1254
1255 p->p_md.md_flags & ~MDP_FPUSED;
1256 if (fpcurproc == p)
1257 fpcurproc = NULL;
1258
1259 retval[0] = retval[1] = 0;
1260 }
1261
1262 void
1263 netintr()
1264 {
1265 #ifdef INET
1266 #if NETHER > 0
1267 if (netisr & (1 << NETISR_ARP)) {
1268 netisr &= ~(1 << NETISR_ARP);
1269 arpintr();
1270 }
1271 #endif
1272 if (netisr & (1 << NETISR_IP)) {
1273 netisr &= ~(1 << NETISR_IP);
1274 ipintr();
1275 }
1276 #endif
1277 #ifdef NS
1278 if (netisr & (1 << NETISR_NS)) {
1279 netisr &= ~(1 << NETISR_NS);
1280 nsintr();
1281 }
1282 #endif
1283 #ifdef ISO
1284 if (netisr & (1 << NETISR_ISO)) {
1285 netisr &= ~(1 << NETISR_ISO);
1286 clnlintr();
1287 }
1288 #endif
1289 #ifdef CCITT
1290 if (netisr & (1 << NETISR_CCITT)) {
1291 netisr &= ~(1 << NETISR_CCITT);
1292 ccittintr();
1293 }
1294 #endif
1295 #ifdef PPP
1296 if (netisr & (1 << NETISR_PPP)) {
1297 netisr &= ~(1 << NETISR_PPP);
1298 pppintr();
1299 }
1300 #endif
1301 }
1302
1303 void
1304 do_sir()
1305 {
1306
1307 if (ssir & SIR_NET) {
1308 siroff(SIR_NET);
1309 cnt.v_soft++;
1310 netintr();
1311 }
1312 if (ssir & SIR_CLOCK) {
1313 siroff(SIR_CLOCK);
1314 cnt.v_soft++;
1315 softclock();
1316 }
1317 }
1318
1319 int
1320 spl0()
1321 {
1322
1323 if (ssir) {
1324 splsoft();
1325 do_sir();
1326 }
1327
1328 return (pal_swpipl(PSL_IPL_0));
1329 }
1330
1331 /*
1332 * The following primitives manipulate the run queues. _whichqs tells which
1333 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1334 * into queues, Remrq removes them from queues. The running process is on
1335 * no queue, other processes are on a queue related to p->p_priority, divided
1336 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1337 * queues.
1338 */
1339 /*
1340 * setrunqueue(p)
1341 * proc *p;
1342 *
1343 * Call should be made at splclock(), and p->p_stat should be SRUN.
1344 */
1345
1346 void
1347 setrunqueue(p)
1348 struct proc *p;
1349 {
1350 int bit;
1351
1352 /* firewall: p->p_back must be NULL */
1353 if (p->p_back != NULL)
1354 panic("setrunqueue");
1355
1356 bit = p->p_priority >> 2;
1357 whichqs |= (1 << bit);
1358 p->p_forw = (struct proc *)&qs[bit];
1359 p->p_back = qs[bit].ph_rlink;
1360 p->p_back->p_forw = p;
1361 qs[bit].ph_rlink = p;
1362 }
1363
1364 /*
1365 * Remrq(p)
1366 *
1367 * Call should be made at splclock().
1368 */
1369 void
1370 remrq(p)
1371 struct proc *p;
1372 {
1373 int bit;
1374
1375 bit = p->p_priority >> 2;
1376 if ((whichqs & (1 << bit)) == 0)
1377 panic("remrq");
1378
1379 p->p_back->p_forw = p->p_forw;
1380 p->p_forw->p_back = p->p_back;
1381 p->p_back = NULL; /* for firewall checking. */
1382
1383 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1384 whichqs &= ~(1 << bit);
1385 }
1386
1387 /*
1388 * Return the best possible estimate of the time in the timeval
1389 * to which tvp points. Unfortunately, we can't read the hardware registers.
1390 * We guarantee that the time will be greater than the value obtained by a
1391 * previous call.
1392 */
1393 void
1394 microtime(tvp)
1395 register struct timeval *tvp;
1396 {
1397 int s = splclock();
1398 static struct timeval lasttime;
1399
1400 *tvp = time;
1401 #ifdef notdef
1402 tvp->tv_usec += clkread();
1403 while (tvp->tv_usec > 1000000) {
1404 tvp->tv_sec++;
1405 tvp->tv_usec -= 1000000;
1406 }
1407 #endif
1408 if (tvp->tv_sec == lasttime.tv_sec &&
1409 tvp->tv_usec <= lasttime.tv_usec &&
1410 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1411 tvp->tv_sec++;
1412 tvp->tv_usec -= 1000000;
1413 }
1414 lasttime = *tvp;
1415 splx(s);
1416 }
1417
1418 /*
1419 * Wait "n" microseconds.
1420 */
1421 int
1422 delay(n)
1423 int n;
1424 {
1425 long N = cycles_per_usec * (n);
1426
1427 while (N > 0) /* XXX */
1428 N -= 3; /* XXX */
1429 }
1430
1431 #if defined(COMPAT_OSF1) || 1 /* XXX */
1432 void
1433 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1434 struct proc *p;
1435 struct exec_package *epp;
1436 u_long stack;
1437 register_t *retval;
1438 {
1439 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1440
1441 setregs(p, epp, stack, retval);
1442 p->p_md.md_tf->tf_gp = execp->a.gp_value;
1443 }
1444
1445 /*
1446 * cpu_exec_ecoff_hook():
1447 * cpu-dependent ECOFF format hook for execve().
1448 *
1449 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1450 *
1451 */
1452 int
1453 cpu_exec_ecoff_hook(p, epp)
1454 struct proc *p;
1455 struct exec_package *epp;
1456 {
1457 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1458 extern struct emul emul_netbsd;
1459 #ifdef COMPAT_OSF1
1460 extern struct emul emul_osf1;
1461 #endif
1462
1463 switch (execp->f.f_magic) {
1464 #ifdef COMPAT_OSF1
1465 case ECOFF_MAGIC_ALPHA:
1466 epp->ep_emul = &emul_osf1;
1467 break;
1468 #endif
1469
1470 case ECOFF_MAGIC_NETBSD_ALPHA:
1471 epp->ep_emul = &emul_netbsd;
1472 break;
1473
1474 default:
1475 return ENOEXEC;
1476 }
1477 return 0;
1478 }
1479 #endif
1480
1481 vm_offset_t
1482 vtophys(vaddr)
1483 vm_offset_t vaddr;
1484 {
1485 vm_offset_t paddr;
1486
1487 if (vaddr < K0SEG_BEGIN) {
1488 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1489 paddr = vaddr;
1490 } else if (vaddr < K0SEG_END)
1491 paddr = k0segtophys(vaddr);
1492 else
1493 paddr = vatopa(vaddr);
1494
1495 #if 0
1496 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1497 #endif
1498
1499 return (paddr);
1500 }
1501